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The primary functions of a bank are to obtain funds through deposits from external
sources and to use the said funds to issue loans. Moreover, risk management practices
related to the withdrawal of these bank deposits have always been of considerable inter-
est. In this spirit, we construct Lévy process-driven models of banking reserves in order
to address the problem of hedging deposit withdrawals from such institutions by means
of reserves. Here reserves are related to outstanding debt and act as a proxy for the as-
sets held by the bank. The aforementioned modeling enables us to formulate a stochastic
optimal control problem related to the minimization of reserve, depository, and intrinsic
risk that are associated with the reserve process, the net cash flows from depository ac-
tivity, and cumulative costs of the bank’s provisioning strategy, respectively. A discussion
of the main risk management issues arising from the optimization problem mentioned
earlier forms an integral part of our paper. This includes the presentation of a numer-
ical example involving a simulation of the provisions made for deposit withdrawals via
Treasuries and reserves.

Copyright © 2007 F. Gideon et al. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

1. Introduction

We apply the quadratic hedging approach developed in [1] to a situation related to bank
deposit withdrawals. In incomplete markets, this problem arises due to the fact that ran-
dom obligations cannot be replicated with probability one by trading in available assets.
For any hedging strategy, there is some residual risk. More specifically, in the quadratic
hedging approach, the variance of the hedging error is minimized. With regard to this,
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our contribution addresses the problem of determining risk minimizing hedging strate-
gies that may be employed when a bank faces deposit withdrawals with fixed maturities
resulting from lump sum deposits.

In the recent past, more attention has been given to modeling procedures that devi-
ate from those that rely on the seminal Black-Scholes financial model (see, e.g., [2, 3]).
Some of the most popular and tractable of these procedures are related to Lévy process-
based models. In this regard, our paper investigates the dynamics of banking items such
as loans, reserves, capital, and regulatory ratios that are driven by such processes. An ad-
vantage of Lévy-processes is that they are very flexible since for any time increment Δt,
any infinitely divisible distribution can be chosen as the increment distribution of periods
of time Δt. In addition, they have a simple structure when compared with general semi-
martingales and are able to take different important stylized features of financial time
series into account. A specific motivation for modeling banking items in terms of Lévy
processes is that they have an advantage over the more traditional modeling tools such
as Brownian motion (see, e.g., [4–7]), since they describe the noncontinuous evolution
of the value of economic and financial indicators more accurately. Our contention is that
these models lead to analytically and numerically tractable formulas for banking items
that are characterized by jumps.

Some banking activities that we wish to model dynamically are constituents of the
assets and liabilities held by the bank. With regard to the former, it is important to be
able to measure the volume of Treasuries and reserves that a bank holds. Treasuries are
bonds issued by a national treasury and may be modeled as a risk-free asset (bond) in the
usual way. In the modern banking industry, it is appropriate to assign a price to reserves
and to model it by means of a Lévy process because of the discontinuity associated with
its evolution and because it provides a good fit to real-life data. Banks are interested in
establishing the level of Treasuries and reserves on demand deposits that the bank must
hold. By setting a bank’s individual level of reserves, roleplayers assist in mitigating the
costs of financial distress. For instance, if the minimum level of required reserves exceeds
a bank’s optimally determined level of reserves, this may lead to deadweight losses. While
the academic literature on pricing bank assets is vast and well developed, little atten-
tion is given to pricing bank liabilities. Most bank deposits contain an embedded option
which permits the depositor to withdraw funds at will. Demand deposits generally allow
costless withdrawal, while time deposits often require payment of an early withdrawal
penalty. Managing the risk that depositors will exercise their withdrawal option is an im-
portant aspect of our contribution. The main thrust of our paper is the hedging of bank
deposit withdrawals. In this spirit, we discuss an optimal risk management problem for
commercial banks which use the Treasuries and reserves to cater for such withdrawals. In
this regard, the main risks that can be identified are reserve, depository, and intrinsic risk
that are associated with the reserve process, the net cash flows from depository activity,
and cumulative costs of the bank’s provisioning strategy, respectively.

In the sequel, we use the notational convention “subscript t or s” to represent (possi-
bly) random processes, while “bracket t or s” is used to denote deterministic processes.
In the ensuing discussion, for the sake of completeness, we firstly provide a general
description of a Lévy process and an associated measure and then describe the Lévy
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decomposition that is appropriate for our analysis. In this regard, we assume that φ(ξ)
is the characteristic function of a distribution. If for every positive integer n, φ(ξ) is also
the nth power of a characteristic function, we say that the distribution is infinitely di-
visible. For each infinitely divisible distribution, a stochastic process L = (Lt)0≤t called a
Lévy process exists. This process initiates at zero, has independent and stationary incre-
ments and has (φ(u))t as a characteristic function for the distribution of an increment
over [s,s+ t], 0≤ s, t, such that Lt+s−Ls. Every Lévy process is a semimartingale and has
a cádlág version (right continuous with left-hand limits) which is itself a Lévy process.
We will assume that the type of such processes that we work with is always cádlág. As a
result, sample paths of L are continuous a.e. from the right and have limits from the left.
The jump of Lt at t ≥ 0 is defined by ΔLt = Lt − Lt− . Since L has stationary independent
increments, its characteristic function must have the form

E
[

exp
{− iξLt

}]= exp
{− tΨ(ξ)

}
(1.1)

for some function Ψ called the Lévy or characteristic exponent of L. The Lévy-Khintchine
formula is given by

Ψ(ξ)= iγξ +
c2

2
ξ2 +

∫

|x|<1

[
1− exp{−iξx}− iξx

]
ν(dx)

+
∫

|x|≥1

[
1− exp{−iξx}]ν(dx), γ,c ∈R

(1.2)

and for some σ-finite measure ν on R \ {0} with
∫

inf
{

1,x2}ν(dx)=
∫

inf
(
1∧ x2)ν(dx) <∞. (1.3)

An infinitely divisible distribution has a Lévy triplet of the form

[
γ,c2,ν(dx)

]
, (1.4)

where the measure ν is called the Lévy measure.
The Lévy-Khintchine formula given by (1.2) is closely related to the Lévy process, L.

This is particularly true for the Lévy decomposition of L which we specify in the rest of
this paragraph. From (1.2), it is clear that L must be a linear combination of a Brownian
motion and a quadratic jump process X which is independent of the Brownian motion.
We recall that a process is classified as quadratic pure jump if the continuous part of its
quadratic variation 〈X〉c ≡ 0, so that its quadratic variation becomes

〈X〉t =
∑

0<s≤t

(
ΔXs

)2
, (1.5)

where ΔXs = Xs−Xs− is the jump size at time s. If we separate the Brownian component,
Z, from the quadratic pure jump component X , we obtain

Lt = Xt + cZt, (1.6)
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where X is quadratic pure jump and Z is standard Brownian motion on R. Next, we
describe the Lévy decomposition of Z. Let Q(dt,dx) be the Poisson measure on R+×R \
{0} with expectation (or intensity) measure dt× ν. Here dt is the Lebesque measure and
ν is the Lévy measure as before. The measure dt× ν (or sometimes just ν) is called the
compensator of Q. The Lévy decomposition of X specifies that

Xt =
∫

|x|<1
x
[
Q
(
(0, t],dx

)− tν(dx)
]

+
∫

|x|≥1
xQ
(
(0, t],dx

)
+ tE

[
X1−

∫

|x|≥1
xν(dx)

]

=
∫

|x|<1
x
[
Q
(
(0, t],dx

)− tν(dx)
]

+
∫

|x|≥1
xQ
(
(0, t],dx

)
+ γt,

(1.7)

where

γ = E
[
X1−

∫

|x|≥1
xν(dx)

]
. (1.8)

The parameter γ is called the drift of X . In addition, in order to describe the Lévy de-
composition of L, we specify more conditions that L must satisfy. The most important
supposition that we make about L is that

E
[

exp
{−hL1

}]
<∞, ∀h∈ (−h1,h2

)
, (1.9)

where 0 < h1, h2 ≤∞. This implies that Lt has finite moments of all orders and in par-
ticular, E[X1] <∞. In terms of the Lévy measure ν of X , we have, for all h ∈ (−h1,h2),
that

∫

|x|≥1
exp{−hx}ν(dx) <∞,

∫

|x|≥1
xα exp{−hx}ν(dx) <∞, ∀α > 0,

∫

|x|≥1
xν(dx) <∞.

(1.10)

The above assumptions lead to the fact that (1.7) can be rewritten as

Xt =
∫

R
x
[
Q
(
(0, t],dx

)− tν(dx)
]

+ tE
[
X1
]=Mt + at, (1.11)

where

Mt =
∫

R
x
[
Q
(
(0, t],dx

)− tν(dx)
]

(1.12)

is a martingale and a= E[X1].
In the specification of our model, we assume that the Lévy measure ν(dx) of L satisfies

∫

|x|>1
|x|3ν(dx) <∞. (1.13)
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As in the general discussion above, this allows a decomposition of L of the form

Lt = cZt +Mt + at, 0≤ t ≤ T , (1.14)

where (cZt)0≤t≤τ is a Brownian motion with standard deviation c > 0, a= E(L1) and the
martingale

Mt =
∫ t

0

∫

R
xM(ds,dx), 0≤ t ≤ T , (1.15)

is a square-integrable. Here, we denote the compensated Poisson random measure on [0,
∞)×R \ {0} related to L by M(dt,dx). Subsequently, if ν = 0, then we will have that
Lt = Zt, where Zt is appropriately defined Brownian motion.

Our work generalizes several aspects of the contribution [5] (see, also, [8–10]) by ex-
tending the description of bank behavior in a continuous-time Brownian motion frame-
work to one in which the dynamics of bank items may have jumps and be driven by Lévy
processes. As far as information on these processes is concerned, Protter [11, Chapter I,
Section 4] and Jacod and Shiryaev [12, Chapter II] are standard texts (see, also, [13, 14]).
Also, the connections between Lévy processes and finance are embellished upon in [15]
(see, also, [16, 17]). If there is a deviation from the Black-Scholes paradigm, one typically
enters into the realm of incomplete market models. Most theoretical financial market
models are incomplete, with academics and practitioners alike agreeing that “real-world”
markets are also not complete. The issue of completeness goes hand-in-hand with the
uniqueness of the martingale measure (see, e.g., [18]). In incomplete markets, we have
to choose an equivalent martingale measure that may emanate from the market. For the
purposes of our investigation, for bank Treasuries and reserves, we choose a risk-neutral
martingale measure, Qg , that is related to the classical Kunita-Watanabe measure (see
[19]). We observe that, in practice, it is quite acceptable to estimate the risk-neutral mea-
sure directly from market data via, for instance, the volatility surface. It is well known
that if the (discounted) underlying asset is a martingale under the original probability
measure, P, the optimal hedging strategy is given by the Galtchouck-Kunita-Watanabe
decomposition as observed in [1]. In the general case, the underlying asset has some drift
under P, and the solution to the minimization problem is much more technical as it pos-
sesses a feedback component.

A vast literature exists on the properties of Treasuries and reserves and their inter-
play with deposit withdrawals. For instance, [20] (and the references contained therein)
provides a neat discussion about Treasuries and loans and the interplay between them.
Reserves are discussed in such contributions as [21–26]. Firstly, [21] investigates the role
of a central bank in preventing and avoiding financial contagion. Such a bank, by im-
posing reserve requirements on the banking industry, trades off the cost of reducing the
resources available for long-term investment with the benefit of raising liquidity to face
an adverse shock that could cause contagious crises. We have that [22] presents a com-
putational model for optimal reserve management policy in the banking industry. Also,
[23] asserts that the standard view of the monetary transmission mechanism depends on
the central bank ability to manipulate the overnight interest rate by controlling reserve
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supply. They note that in the 90’s, there was a marked decline in the level of reserve bal-
ances in the US accompanied at first by an increase in federal funds rate volatility. The
article [24] examines how a bank run may affect the investment decisions made by a com-
petitive bank. The basic premise is that when the probability of a run is small, the bank
will offer a contract that admits a bank-run equilibrium. They show that in this case, the
bank will hold an amount of liquid reserves exactly equal to what the withdrawal de-
mand will be if a run does not occur; precautionary or excess liquidity will not be held.
The paper [25] asserts that the payment of interest on bank reserves by the government
assists in the implementation of monetary policy. In particular, it is demonstrated that
paying interest on reserves financed by labor tax reduces welfare. Finally, [26] asserts that
reserve requirements allow period-average smoothing of interest rates but are subject to
reserve avoidance activities. A system of voluntary, period-average reserve commitments
could offer equivalent rate-smoothing advantages. A common theme in the aforemen-
tioned contributions about reserves is the fact that they can be viewed as a proxy for
general banking assets and that reserve dynamics are closely related to the dynamics of
the deposits.

In the current section, we provide preliminary information about Lévy processes and
distinguish our paper from the preexisting literature. Under the conditions highlighted
above, the main problems addressed in the rest of our contribution is subsequently iden-
tified.

In Section 2, we extend some of the modeling and optimization issues highlighted in
[9] (see, also, [5, 8, 10]) by presenting jump diffusion models for various bank items.
Here, we introduce a probability space that is the product of two spaces that models
the uncertainty associated with the bank reserve portfolio and deposit withdrawals. As
a consequence of this approach, the intrinsic risk of the bank arises now not only from
the reserve portfolio but also from the deposit withdrawals. Throughout we consider a
depository contract that stipulates payment to the depositor on the contract’s maturity
date. We concentrate on the fact that deposit withdrawals are catered for by the Treasuries
and reserves held by the bank. The stochastic dynamics of the latter mentioned items and
their sum are presented in Sections 2.1.1 and 2.1.2, respectively. In Section 2.2, our main
focus is on depository contracts that permit a cohort of depositors to withdraw funds at
will, with the stipulation that the payment of an early withdrawal is only settled at matu-
rity. This issue is outlined in more detail in Section 2.2.1. Furthermore, in Section 2.2.2,
we suggest a way of counting deposit withdrawals by cohort depositors from which the
bank has taken a single deposit at the initial time, t = 0.

Section 3 explores the relationship between the risk management of deposit with-
drawals and reserves and the dynamic models for Treasuries and reserves. Moreover,
Section 3.1 briefly explains basic risk concepts and Section 3.2 provides some risk mini-
mization results that directly pertain to our studies. In Theorem 3.1, we derive a gener-
alized GKW decomposition of the arbitrage-free value of the sum of cohort deposits de-
pending on the reserve price. Theorem 3.2 provides a hedging strategy for bank reserve-
dependent depository contracts in an incomplete reserve market setting. Intrinsic risk
and the said strategies are derived with the (local) risk minimization theory contained in
[1], assuming that bank deposits held accumulate interest on a risk-free basis. In order
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to derive a hedging strategy for a bank reserve-dependent depository contract we require
the generalized GKW decomposition for both its intrinsic value and the product of the
inverse of Treasuries and the arbitrage free value of the sum of the cohort deposits. We
accomplish this by assuming that the bank takes deposits (from a certain cohort of depos-
itors with prespecified characteristics) as a single lump sum at the beginning of a specified
time interval and holds it until withdrawal some time later. More specifically, under these
conditions, we show that the reserve risk (risk of losses from earning opportunity costs
through bank and Federal government operations) is not diversifiable by raising the num-
ber of depository contracts within the portfolio. This is however the case with depository
risk originating from the amount and timing of net cash flows from deposits and deposit
withdrawals emanating from a cession of the depository contract. We conclude Section 3
by considering the risk management of reserve, depository and intrinsic risk in our Lévy
process setting (see Section 3.3 for more details).

In Section 4, we analyze the main risk management issues arising from the Lévy
process-driven banking model that we constructed in the aforegoing sections. Some of the
highlights of this section are mentioned below. A description of the role that bank assets
play is presented in Section 4.1. Furthermore, we provide more information about depos-
itory contracts and the stochastic counting process for deposit withdrawals in Section 4.2.
Moreover, Section 4.3 provides a numerical simulation of provisioning via the sum of
Treasuries and reserves. Risk minimization and the hedging of withdrawals is discussed
in Section 4.4. In addition to the solutions to the problems outlined above, Section 5 of-
fers a few concluding remarks and possible topics for future research.

2. Lévy process-driven banking model

Our main objective is to construct a Lévy process-driven stochastic dynamic model that
consists of assets, A, (uses of funds) and liabilities, Γ, (sources of funds). In our contribu-
tion, these items can specifically be identified as

At =Λt +T(t) +Rt, Γt = Δt, (2.1)

where Λ, T , R, and Δ are loans, Treasuries, reserves, and outstanding debt, respectively.

2.1. Assets. In this subsection, the bank assets that we discuss are loans, provisions, Trea-
suries, reserves, and unweighted and risk-weighted assets. In order to model the un-
certainty associated with these items, we consider the filtered probability space (Ω1,G,
(�t)0≤t≤T , P1).

2.1.1. Treasuries and reserves. Treasuries are the debt financing instruments of the federal
government. There are four types of Treasuries, namely, treasury bills, treasury notes,
treasury bonds, and savings bonds. All of the Treasuries besides savings bonds are very
liquid and are heavily traded on the secondary market. We denote the interest rate on
Treasuries or treasury rate by rT(t). In the sequel, the dynamics of the Treasuries will be
described by

dT(t)= rT(t)T(t)dt, T(0)= t > 0. (2.2)
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Bank reserves are the deposits held in accounts with a national agency (e.g., the Federal
Reserve for banks) plus money that is physically held by banks (vault cash). Such reserves
are constituted by money that is not lent out but is earmarked to cater for withdrawals
by depositors. Since it is uncommon for depositors to withdraw all of their funds simul-
taneously, only a portion of total deposits will be needed as reserves. As a result of this
description, we may introduce a reserve-deposit ratio, η, for which

Rt = ηΔt, Δt = 1
η
Rt, 0 < η ≤ 1. (2.3)

The bank uses the remaining deposits to earn profit, either by issuing loans or by invest-
ing in assets such as Treasuries and stocks. The individual rationality constraint implies
that reserves may implicitly earn at least their opportunity cost through certain bank op-
erations and Federal government subsidies. For instance, members of the Federal Reserve
in the United States may earn a return on required reserves through government debt
trading, foreign exchange trading, other Federal Reserve payment systems, and affinity
relationships (outsourcing) between large and small banks. We note that vault cash in
the automated teller machines (ATMs) network also qualifies as required reserves. The
conclusion is that banks may earn a positive return on reserves. In the sequel, we take
the above discussion into account when assuming that the dynamics of the reserves are
described by

dRt = Rt−
{[
rR(t)− f R(t) + aRσR(t)

]
dt+ σR(t)

(
cRdZR

t +dMR
t

)}
, R0 = r > 0, (2.4)

where rR is the deterministic rate of (positive) return on reserves earned by the bank, f R

is the fraction of the reserves consumed by deposit withdrawals, and σR is the volatility
in the level of reserves. In order to have Rt > 0, we assume that σRΔRt > −1 for all t a.s.
Here, in a manner analogous to (1.14), we assume that LR admits the decomposition

LRt = cRZR
t +MR

t + aRt, 0≤ t ≤ T , (2.5)

where (cRZR
t )0≤t≤τ is a Brownian motion with standard deviation cR > 0, aR = E(LR1 ) and

MR
t =

∫ t

0

∫

R
xMR(ds,dx), 0≤ t ≤ τ, (2.6)

is a square-integrable martingale. We know that the SDE (2.4) has the explicit solution

Rt=R0 exp
{∫ t

0
cRσR(s)dZR

s +
∫ t

0
σR(s)dMR

s +
∫ t

0

[
aRσR(s)+rR(s)− f R(s)− cR2σR2(s)

2

]
ds
}

×
∏

0≤s≤t

(
1 + σR(s)ΔMR

s

)
exp

(− σR(s)ΔMR
s

)
.

(2.7)

We can use the notation R̂t = T−1(t)Rt to denote the value of the discounted reserves.
It is clear that R̂t has a nonzero drift term so that it is only a semimartingale rather than
a martingale. In order for R̂ to be a martingale, under the approach of risk neutral val-
uation, a P1-equivalent martingale measure is required. There are infinitely many such



F. Gideon et al. 9

measures in incomplete markets (see [27] for the incomplete information case). However,
an equivalent martingale measure that fits the bill is the generalized Kunita-Watanabe
(GKW) measure, Qg , (see [19]) whose Girsanov parameter may be represented by

Gt = rT(t)− rR(t) + f R(t)− aRσR(t)
σR(t)

(
cR2 + v

) ,

v =
∫

R
x2ν(dx), GtΔRt >−1 ∀t ∈ [0,T].

(2.8)

In the sequel, the compensated jump measure of LR under Qg is denoted by MQ(dt,dx)
and the Lévy measure ν(dx) under Qg has the form

νQ
t (dx)= (1 +Gtx

)
ν(dx). (2.9)

In addition, R̂ is a square-integrable martingale under Qg (cf. (1.13)) that satisfies

dR̂t = σRt R̂t−
(
cRdZQ

t +dMQ
t

)
. (2.10)

Here ZQ is standard Brownian motion and

MQ
t =Mt −

∫ t

0

∫

R
Gsx

2ν(dx)ds=
∫ t

0

∫

R
xMQ(ds,dx) (2.11)

is a square-integrable Qg-martingale. Under the above martingale, LR may not be a Lévy
process since it may violate the fact that a semimartingale has stationary increments if
and only if its characteristics are linear in time (cf. Jacod and Shiryaev [12, Chapter II,
Corollory 4.19]).

2.1.2. Provisions for deposit withdrawals. In the main, provisioning for deposit with-
drawals involve decisions about the volume of Treasuries and reserves held by the bank.
Without loss of generality, in the sequel, we suppose that the provisions for deposit with-
drawals correspond with the sum of Treasuries and reserves as defined by (2.2) and (2.4),
respectively.

For withdrawal provisioning, we assume that the stochastic dynamics of the sum of
Treasuries and reserves, W , is given by

dWt =Wt−
[(
rT(t) +πt

(
rR(t)− f R(t)− rT(t) + aRσR(t)

))
dt+πtσ

R(t)
(
cRdZR

t +dMR
t

)]

− k(t)dt; W0− = t+ r =w ≥ 0, Wt =Wu
t = Tu(t) +Ru

t ≥ 0, ∀t ≥ 0,
(2.12)

where πt = Rt/Wt and the depository value, k, is the rate at which Treasuries are consumed
by deposit withdrawals.

2.2. Liabilities. In the sequel, we assume that the bank deposit withdrawals are repre-
sented by the filtered probability space (Ω2,H,H,P2). Here, H is the natural filtration
generated by I(Ti ≤ t), i= 1, . . . ,nx, �0 is trivial and �T =H. We suppose risk neutrality
of the bank towards deposit withdrawals, which means that P2 is the risk neutral measure.
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2.2.1. Depository contracts. A depository contract is an agreement that stipulates the con-
ditions for deposit taking and holding by the bank and withdrawal by the depositor. De-
pository contracts typically specify the payment of some maturity amount that could be
fixed or a function of some specified traded bank asset. Furthermore, we define the deposit
holding time as the time between bank deposit taking and its withdrawal by the depositor.
Our main supposition is that such times are mutually independent and identically dis-
tributed (i.i.d.). This assumption implies that depository contracts may be picked to form
a cohort of individual contracts that have been held for an equal amount of time, x, with
nx denoting the number of such contracts. Ultimately, this situation leads to the descrip-
tion of the remaining deposit holding time by the i.i.d. nonnegative random variables
T1, . . . ,Tnx . Under the assumption that the distribution of Ti is absolutely continuous, the
deposit survival conditional probability may be represented by

P2
(
Ti > t+ x | Ti > x

)= exp
{
−
∫ t

0
ωx+τdτ

}
, (2.13)

where the withdrawal rate function is denoted by ωx+t. Roughly speaking, for a deposit
withdrawal at time instant T ,P2(T > t + x | T > x) provides information about the prob-
ability that a deposit will still be held by a bank at x + t conditional on a single deposit
being taken by the bank at x.

In the sequel, reserves are related to outstanding debt (see, e.g., (2.3)) and acts as a
proxy for the assets held by the bank. This suggests that the sum of cohort deposits, Dc, may
be dependent on the bank reserves, Rt, and as a consequence may be denoted by Dc

t (Rt).
For T and R from (2.2) and (2.4), respectively, suppose that Dc

t (Rt) is a �t-measurable
function with

sup
u∈[0,T]

EQ[(T−1(u)Dc
u

(
Ru)
)2]

<∞. (2.14)

We suppose that deposit withdrawals may take place at any time, u ∈ [0,T], but that
payment is deferred to the term of the contract. As a consequence, the contingent claim
Dc

u(Ru) must be time-dependent. From risk-neutral valuation, the arbitrage-free value
function, Ft(Rt,u), of the sum of cohort deposits, Dc

t (Rt), is

Ft
(
Rt,u

)=
⎧
⎨

⎩
EQ
[
T(t)T−1(u)Dc

u

(
Ru
) |�t

]
, 0≤ t < u≤ T ,

T(t)T−1(u)Dc
u

(
Ru
)
, 0≤ u≤ t ≤ T.

(2.15)

From [11, Chapter I, Theorem 32], for 0≤ t < u≤ T and x ≥ 0, we have

Ft(x,u)= EQ
t,x
[
T(t)T−1(u)Dc

u

(
Ru
)]= EQ[T(t)T−1(u)Dc

u

(
Ru
) | Rt = x

]
, (2.16)

with F.(·,u)∈ C1,2([0,T]× [0,∞)) and DxFt(x,u) bounded. Furthermore, we consider

jt(x,u)= T−1(t)
{
Ft
(
Rt−
(
1 + σR(t)x

)
,u
)−Ft(Rt− ,u)

}
(2.17)

to be the value of the jump in the reserve process induced by a jump of the underlying Lévy
process, LR.
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In the case where (2.14) holds, the depository contract terminated at t receives the
payout,

Dc
Ti

(
RTi

)
T(T)T−1(Ti

)
(2.18)

at time T . By way of consistency with our framework, the present value of the bank’s de-
pository obligation generated by the entire portfolio of depository contracts is considered
to be Q-a.s. of the form

D = T−1(T)
nx∑

i=1

Dc
Ti

(
RTi

)
T−1(Ti

)
T(T)I

(
Ti ≤ T

)

=
nx∑

i=1

∫ T

0
Dc

u

(
Ru
)
T−1(u)dI

(
Ti ≤ u

)=
∫ T

0
Dc

u

(
Ru
)
T−1(u)dNI

u.

(2.19)

2.2.2. Stochastic counting process for deposit withdrawals. We assume that the bank takes
a single deposit from each of nx cohort depositors at t = 0. Furthermore, we model the
number of deposit withdrawals, NI , by

NI
t =

nx∑

i=1

I
(
Ti ≤ t

)
, lxt = nx −NI

t =
nx∑

i=1

I
(
Ti > t

)
. (2.20)

The compensated counting process, MI = (MI
t )0≤t≤T , expressible as

MI
t =NI

t −
∫ t

0
ιudu, where ιtdt ≡ lxt−ωx+tdt = E

[
dNI

t |�t−
]
, (2.21)

defines an H-martingale with

〈
MI
〉
t =
∫ t

0
ιudu, 0≤ t ≤ T , (2.22)

where ι is the (stochastic) intensity of NI (cf. with [12, Chapter II, Proposition 3.32]). In
other words, ι is more or less the product of the withdrawal rate function, ωx+t, and the
remaining number of cohort depositors just before time instant t.

2.2.3. Cost of deposit withdrawals. Another modeling issue relates to the possibility that
unanticipated deposit withdrawals, w, will occur. By way of making provision for these
withdrawals, the bank is inclined to hold reserves, R, and Treasuries, T, that are very liq-
uid. In our contribution, we propose that w may be associated with the probability density
function, f (w), that is independent of time. In this regard, we may suppose that the unan-
ticipated deposit withdrawals have a uniform distribution with support [Δ,Δ] so that the
cost of liquidation, cl, or additional external funding is a quadratic function of the sum of
Treasuries and reserves, W = T+R. In addition, for any t, if

w >Wt, (2.23)
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then bank assets are liquidated at some penalty rate, r
p
t . In this case, the cost of deposit

withdrawals is

cw
(
Wt
)= r

p
t

∫∞

Wt

[
w−Wt

]
f (w)dw = r

p
t

2Δ

[
Δ−Wt

]2
. (2.24)

3. Risk and the banking model

Our model has far-reaching implications for risk management in the banking industry.
For instance, we can apply the quadratic hedging theory developed in [1, 28] to derive
a risk minimizing strategy for deposit withdrawals. An approach that we adopt in this
case involves the introduction of a probability space that is the product of two spaces
modeling the uncertainty associated with the bank’s provision for deposit withdrawals
via Treasuries and reserves and the withdrawals themselves given by

(
Ω1,G,G,P1

)
,

(
Ω2,H,H,P2

)
, (3.1)

respectively. In the sequel, we represent the product probability space by (Ω,F,F,P),
where the filtration, F, is characterized by

�t =�t ∨�t . (3.2)

Here, �t and �t are stochastically independent. As an equivalent martingale measure, Q,
we use the product measure of the generalized GKW measure Qg and of the risk-neutral
deposit withdrawal law P2. As a consequence of this approach, the intrinsic risk of the
bank arises now not only from the Treasuries/reserves provisioning portfolio but also
from the deposit withdrawals.

3.1. Basic risk concepts. We assume that the actual provisions for deposit withdrawals
are constituted by Treasuries and reserves with price processes T = (T(t))0≤t≤T and R =
(Rt)0≤t≤T , respectively. Suppose that nTt and nRt are the number of Treasuries and reserves
held in the withdrawal provisioning portfolio, respectively. Let L2(QR̂) be the space of
square-integrable predictable processes nR = (nRt )0≤t≤T satisfying

EQ
{∫ T

0

(
nRs
)2
d〈R̂〉s

}
<∞, (3.3)

where R̂t = T−1(t)Rt. For the discounted reserve price, R̂t, we call Θt = (nRt ,nTt ), 0≤ t ≤ T ,
a provisioning strategy if

(1) nR ∈ L2(QR̂);
(2) nT is adapted;
(3) the discounted provisioning portfolio value process

V̂t(Θ)=Vt(Θ)T−1(t); Vt(Θ)= nRt Rt +nTt T(t)∈ L2(Q), 0≤ t ≤ T ; (3.4)

(4) V̂t(Θ) is cádlág.



F. Gideon et al. 13

The (cumulative) cost process c(Θ) associated with a provisioning strategy, Θ, is

ct(Θ)= V̂t(Θ)−
∫ t

0
nRs dR̂s, 0≤ t ≤ T. (3.5)

The intrinsic or remaining risk process, R(Θ), associated with a strategy is

Rt(Θ)= EQ[(cT(Θ)− ct(Θ)
)2 |�t

]
, 0≤ t ≤ T. (3.6)

It is clear that this concept is related to the conditioned expected square value of future
costs. The strategy Θ= (nRt ,nTt ), 0≤ t ≤ T is mean self-financing if its corresponding cost
process c = (ct)0≤t≤T is a martingale. Furthermore, the strategy Θ is self-financing if and
only if

V̂t(Θ)= V̂0(Θ) +
∫ t

0
nRudR̂u, 0≤ t ≤ T. (3.7)

A strategy Θ̃ is called an admissible time t continuation of Θ if Θ̃ coincides with Θ at
all times before t and VT(Θ) = DQ-a.s. Moreover, a provisioning strategy is called risk
minimizing if for any t ∈ [0,T), Θ minimizes the remaining risk. In other words, for any
admissible continuation Θ̃ of Θ at t we have

Rt(Θ)≤ Rt(Θ̃), P-a.s. (3.8)

The contribution [1] shows that a unique risk minimizing provisioning strategy ΘD can
be found using the generalized GKW decomposition of the intrinsic value process, V∗ =
(V∗

t )0≤t≤T , of a contingent withdrawal, D, given by

V∗
t = EQ[D |�t

]= EQ[D]=
∫ t

0
nRDs dR̂s +KD

t , 0≤ t ≤ T , (3.9)

where KD = (KD
t )0≤t≤T is a zero-mean square-integrable martingale, orthogonal to the

square-integrable martingale R̂ and nRD ∈ L2(QR̂). Furthermore, ΘD
t is mean self-financ-

ing and given by

ΘD
t =

(
nRDt ,V∗

t −nRDt R̂t
)
, 0≤ t ≤ T. (3.10)

In this case, we have the intrinsic or remaining risk process

Rt
(
ΘD
)= EQ[(KD

T −KD
t

)2 |�t
]
, 0≤ t ≤ T. (3.11)

3.2. Generalized GKW decomposition of T−1(t)Ft(Rt,u). Suppose that nTt and nRt are the
number of Treasuries and reserves in the provisioning strategy, Θ= (nR,nT), respectively.
Next, we produce the generalized GKW decomposition of T−1(t)Ft(Rt,u), in order to
eventually derive a hedging strategy for a reserve-dependent deposit withdrawal.
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Theorem 3.1 (generalized GKW decomposition of T−1(t)Ft(Rt,u)). Let Ft(Rt,u) and j
be defined by (2.15) and (2.17), respectively and assume that

vQ
t =

∫

R
x2νQ

t (dx), κt = s̃2 + vQ
t , t ∈ [0,T]. (3.12)

For 0≤ t < u≤ T , the predictable process

nRt (u)= s̃2

κt
DxFt

(
Rt− ,u

)
+

1

σ(t)R̂t−κt

∫

R
x jt(x,u)νQ

t (dx) (3.13)

and continuous and discontinuous terms are defined by

ϑ(1)
t (u)= s̃σ(t)R̂t−

{
DxFt

(
R̂t− ,u

)−nRt (u)
}

,

ϑ(2)
t (y,u)= jt(y,u)− yσ(t)R̂t−n

R
t (u),

(3.14)

respectively. In this situation, the generalized GKW decomposition of T−1(t)Ft(Rt,u) is given
by

T−1(t)Ft
(
Rt,u

)= F0
(
R0,u

)
+
∫ t

0
nRs (u)dR̂s +Kt(u), (3.15)

where

Kt(u)=
∫ t

0
ϑ(1)
t (u)dZQ

s +
∫ t

0

∫

R
ϑ(2)
t (y,u)NQ(ds,dy) (3.16)

is orthogonal to R̂.

Proof. We base our proof on the additivity of the projection in the GKW decomposi-
tion. From (1.13), (2.11), and the fact that DxFt(x,u) is bounded, the integrals driven by
R̂,NQ(·,·), and ZQ are well-defined and square-integrable martingales. Furthermore, we
note that [29, Proposition 10.5] determines nRt for the generalized GKW decomposition
in the Lévy process case. Under the equivalent measure, Q, this result extends quite natu-
rally to the case of the additive process L. We are able to deduce from Ito’s formula in [11,
Chapter II, Theorem 33], that the discounted arbitrage-free value, T−1(t)Ft(Rt,u), admits
the decomposition

T−1(t)Ft
(
Rt,u

)= F0
(
R0,u

)
+
∫ t

0
DxFs

(
Rs− ,u

)
dR̂s + K̃t(u), 0≤ t ≤ T , (3.17)

where

K̃t(u)=
∫ t

0

∫

R

{
Js(y,u)−DxFs

(
Rs− ,u

)
σsR̂s− y

}
NQ(ds,dy). (3.18)

This formula, along with the differential (2.10), allows the orthogonal part (3.16) in the
hypothesis of Theorem 3.1 to be computed via

Kt(u)=
∫ t

0

{
DxFs

(
Rs− ,u

)−nRs (u)
}
dR̂s + K̃t(u).

(3.19)

�
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3.3. Risk-minimizing strategy for depository contracts. In the discussion thus far, bank
obligations generated by depository contracts unfortunately do not correspond to a T-
claim so that special assumptions are required. A way of transforming the aforemen-
tioned obligations into a T-claim is to suppose that deposit withdrawals are deferred to
the term of the contract and are accumulated with a risk-free interest rate of r. In the
wake of this specification, the depository contract terminated at time t would receive the
payout Dc

Ti
(RTi)T(T)T−1(Ti) at time T , in the case where (2.14) holds. These contracts by

deferment usually have short time horizons. By way of consistency with our framework,
the present value of the bank obligation generated by the entire portfolio of depository
contracts is considered to be Q-a.s. of the form

D = T−1(T)
nx∑

i=1

Dc
Ti

(
RTi

)
T−1(Ti

)
T(T)I

(
Ti ≤ T

)

=
nx∑

i=1

∫ T

0
Dc

u

(
Ru
)
T−1(u)dI

(
Ti ≤ u

)

=
∫ T

0
Dc

u

(
Ru
)
T−1(u)dNI

u.

(3.20)

Also, we recall that the intrinsic risk process associated with D may be given by

Rt
(
Θ∗
)= EQ[(KD

T −KD
t

)2 |�t
]
. (3.21)

The independence of the reserve market and deposit withdrawals enables us to represent
the intrinsic value of the entire depository contract portfolio, V∗

t , as

V∗
t =

∫ t

0
T−1(u)Dc

u(Ru)dNI
u +
∫ T

t
T−1(t)Ft

(
Rt,u

)
lxt P2

(
Ti > u− t+ x | Ti > x+ t

)
ωx+udu,

(3.22)

with initial value

V∗
0 =

∫ T

0
F0
(
R0
)
nxP2

(
Ti > u+ x | Ti > x

)
ωx+udu. (3.23)

Under certain conditions,V0 may be the single deposit taken by the bank at t = 0. The risk
minimization approach adopted in the ensuing main result is dependent on the fact that
the value of the optimal provisioning strategy, Θ∗, is exactly equal to the sum of cohort
deposits that have already been withdrawn and expected possible future withdrawals as
in

V̂t
(
Θ∗
)=V∗

t =
∫ t

0
T−1(u)Dc

u

(
Ru
)
dNI

u + EQ
[∫ T

t
T−1(t)Fu

(
Ru
)
dNI

u |�t

]
. (3.24)

Theorem 3.2 (GKW decomposition of V∗
t and risk-minimizing strategy). Suppose that

nR, ϑ(1)
t , ϑ(2)

t , and V∗
t are given by (3.13), (3.14) in Theorem 3.1 and (3.22), respectively.
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(1) For (3.20), with 0≤ t ≤ T , the intrinsic value process, V∗, has the GKW decomposi-
tion

V∗
t =V∗

0 +
∫ t

0
lxs−n

R
s dR̂s +KH

t , (3.25)

where

nRt =
∫ T

t
P2
(
Ti > u− t+ x | Ti > x+ t

)
ωx+un

R
t (u)du, (3.26)

KD
t =

∫ t

0
lxs−ϑ

(1)
s dZQ

s +
∫ t

0

∫

R
lxs−ϑ

(2)
t (y)NQ(ds,dy) +

∫ t

0
υsdM

I
s , (3.27)

are orthogonal to R̂. Here,

ϑ(1)
t =

∫ T

t
P2
(
Ti > u− t+ x | Ti > x+ t

)
ωx+uϑ

(1)
t (u)du,

ϑ(2)
t (y)=

∫ T

t
P2
(
Ti > u− t+ x | Ti > x+ t

)
ωx+uϑ

(2)
t (y,u)du,

υt = T−1(T)Dc
t

(
Rt
)−

∫ T

t
T−1(T)Ft

(
Rt− ,u

)
P2
(
Ti > u− t+ x | Ti > x+ t

)
ωx+udu.

(3.28)

(2) For 0 ≤ t ≤ T , under Q, the unique admissible risk-minimizing hedging strategy,
Θ∗ = (nR∗,nT∗), for the bank obligation in (3.20) is given by

nR∗t = lxt−

∫ T

t
P2
(
Ti > u− t+ x | Ti > x+ t

)
nRt (u)du,

nT∗t =
∫ t

0
T−1(u)Dc

u

(
Ru
)
dNI

u

+ lxt

∫ T

t
T−1(t)Ft

(
Rt,u

)
P2
(
Ti > u− t+ x | Ti > x+ t

)
ωx+udu−nR∗t R̂t.

(3.29)

For 0≤ t ≤ T , the intrinsic risk process is

Rt
(
Θ∗
)=

∫ T

t

{
EQ[(lxt

)2 |�t
]

EQ
[
ϑ(1)2
s +

∫

R

(
ϑ(2)
s (y)

)2
νQ
s (dy) |�t

]}
ds

+ lxt

∫ T

t
EQ[υ2

s

(
Rs
) |�t

]
P2
(
Ti > s− t+ x | Ti > x+ t

)
ωx+sds.

(3.30)

Proof. (1) The proof of (3.25) in the first part of the theorem relies on the stochastic
Fubini theorem (see, e.g., [11, Chapter II]).

(2) In order to complete the proof, we make use of a combination of isometry results,
Tonelli’s theorem, and orthogonality. In this regard, we bear in mind that

dιs = lxs ωx+sds,

EQ[lxs |�t
]= lxs−P2

(
Ti > s− t+ x | Ti > x+ t

)
.

(3.31)

�
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4. Analysis of the main risk management issues

The dynamic models of bank items constructed in this paper are compliant with the
dictates of the Basel II capital accord. For instance, the properties of our models are pos-
itively correlated with the methods currently being used to assess the riskiness of bank
provisioning portfolios and their minimum capital requirement (see [30, 31]).

4.1. Assets. In this subsection, we analyze aspects of the bank assets such as provisions
for deposit withdrawals, Treasuries, and reserves.

4.1.1. Treasuries and reserves. As was mentioned in Section 2.1.1, Treasuries are bonds
issued by a national treasury and may be modeled as a risk-free asset (bond) in the usual
way. In modern times, it is possible to assign a price to reserves and to model them by
means of Lévy processes. This is due to the discontinuity associated with their evolution
and because they provide a good fit to real-life data. In this regard, several interesting
contributions have led to the choice of representation (2.12) for the dynamics of the sum
of the Treasuries and reserves. Amongst these is a paper by Chan (see [27]) that treats the
case where the Lévy decomposition of general assets corresponds to our decomposition.
The size of the depository value, k, from (2.12), can vary greatly.

Two economic aspects of required reserves on bank deposits are noteworthy. Firstly,
their impact on bank-intermediated investment versus direct investment and, secondly,
their opportunity cost. The main function of bank reserves is to serve as a buffer to miti-
gate inefficient liquidation of a bank’s assets in order to meet the demand for liquidity by
investors. Due to some transaction costs or information costs, investors may prefer bank-
intermediated investment to direct investment. Banks offer investors competitive deposit
returns compared to the liquidation value of investment to attract funds from investors.
If the Federal Reserve allows banks to set their individual optimal level of reserves, this
might mitigate costs associated with required reserves. If banks implement the social op-
timum, this may introduce additional fragility into the banking system. We argue that
required reserves might lead to deadweight loss if they are set above a bank’s optimally
determined reserves.

4.1.2. Provisions for deposit withdrawals. As has been noted in Section 2.1.2, deposits are
subject to the risk of early withdrawal. This phenomenon can be associated with some
interesting trends. For instance, as interest rates fall, depositors become less inclined to
withdraw their deposits and the volume of provisions for deposit withdrawals may de-
crease. On the other hand, at higher rates of interest, depositors have a greater propensity
towards withdrawal and provisions for deposit withdrawals may increase. Furthermore,
an increase in interest rate volatility diminishes the adverse impact of the correlation
between interest rates and withdrawals. As a consequence, the optimal deposit rate may
decrease which results in the widening of the optimal intermediation margin. An increase
in the volatility of withdrawals exacerbates the impact of the correlation between inter-
est rates and the propensity to withdraw. A negative correlation between interest rates
and propensity to withdraw would be to the advantage of bank management because an
increase in this correlation increases optimal deposit rates.
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4.2. Liabilities. This subsection provides an analysis of aspects of the discussion about
liabilities in Section 2.2.

4.2.1. Depository contracts. In Section 2.2.1, we noted that (2.3) suggests an association
between reserves and deposits that allows the sum of cohort deposits, Dc, to be dependent
on the bank reserves, Rt, and denote this by Dc

t (Rt). In reality, Dc will not only be depen-
dent on R but on all the unweighted assets and several other banking items. The building
of a model to incorporate this dependence is the subject of much debate at present.

A simplifying modification of the depository contract can be considered where Ti = T
for all i. In this situation, (2.18) becomes

Dc
T

(
RT
)=Dc

T

(
RT
)
T(T)T−1(T). (4.1)

4.2.2. Stochastic counting process for deposit withdrawals. In standard banking models, the
volume of deposits and their withdrawals usually equates the input prices Lerner index
with the inverse of the elasticity of supply to determine the optimal rate paid for deposits.
These models have no explicit time dimension so that deposits have no meaningful term
to maturity. Their implicit time to maturity is homogeneous across accounts and, with-
out modeling the intertemporal behavior of interest rates, deposits must be assumed to
be held until maturity. Clearly, the models above ignore critical aspects of bank input
pricing, namely, depository contracts have different times to maturity and the fact that
depositors can withdraw funds before maturity. Both these issues are addressed in our
contribution.

4.2.3. Cost of deposit withdrawals. In Section 2.2.3, the rate term for auxiliary profits,
μa(s), may be generated from activities such as special screening, monitoring, liquidity
provision, and access to the payment system. Also, this additional profit may arise from
imperfect competition, barriers to entry, exclusive access to cheap deposits, or tax bene-
fits.

4.3. Simulations and numerical examples. In the sequel, further insight is gained by
considering a simulation of a trajectory for the stochastic dynamics of the sum of the
Treasuries and reserves, W (denoted by SDSTR), as given by (2.12).

4.3.1. Parameters and values. We consider the SDSTR problem with the constant rates
and variance functions with parameters set out in Table 4.1.

Below is the trajectory for the simulated SDSTR given by (2.12) and is numerically
simulated by using the parameter choices in Table 4.1.

4.3.2. Properties of the trajectory. Figure 4.1 shows the simulated trajectory for the CIR
process of the SDSTR problem with W being given by (2.12). Here, different values for
the banking parameters are collected in Table 4.1. The number of jumps of the trajectory
was limited to 1000, with the initial values for T and R fixed at 1 and 20, respectively.

In the main, provisioning for the deposit withdrawals involve decisions about the vol-
ume of Treasuries and reserves held by the banks. For withdrawal provisioning, we as-
sume that the stochastic dynamics of W are given by (2.12). This stochastic dynamic
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Table 4.1. Parameters use in SDSTR.

Parameters Values

rT 0.4

π 2

rR 0.8

f R 5

aR 1.25

σR 0.4

cR 0.0006

κ 1.5

γ 1.9992

λ 2

20
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Figure 4.1. Trajectory of simulated SDSTR of W .

model enables us to analyze the interplay between deposit withdrawals and the provi-
sioning for these withdrawals via Treasuries and reserves. In this spirit, we consider the
stochastic dynamics of W that is driven by a CIR process with its trajectory given by
Figure 4.1. As has been noted in Section 2.1.2, deposits are subjected to the risk of early
withdrawals. According to the trajectory in Figure 4.1, we associate the latter assertion
with the following trends: the trajectory initial depicted a steady path that shows the
correspondence between the provisions of deposit withdrawals and W. Subsequently, a
decrease in value occurs which may be due to the influence of an interest rate change.
A model with such financial behavior forces depositors to become less inclined to with-
draw their deposits. In this case, the volume of provisions for deposits withdrawals may
decrease. Finally, we observe that the trajectory does not make an allowance for deposit
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withdrawals with W < 0. This is an indication that the bank may have inadequate secu-
rities and assets. With the higher interest rate volatility of 0.4, the adverse impact of the
correlation between interest rate and withdrawals is diminished.

4.4. Risk and the banking model. This subsection provides some comments about the
connection between our dynamic banking models and risk management.

4.4.1. Basic risk concepts. The cost process, c(Θ), presented in Section 3.1, corresponds to
the value of the provisioning portfolio, V̂(Θ) less the accumulated return from reserves,
R. Usually, the aggregate costs, ct(Θ), incurred on the time interval [0, t] decompose easily
into the cost incurred on (0, t] and an initial cost c0(Θ)=V0(Θ).

4.4.2. Generalized GKW decomposition of T−1(t)Ft(Rt,u). From (3.13) and (3.14) in
Theorem 3.1, we have two distinct parts associated with the continuous and discontin-
uous (jump) components of nR given by DxFt(x,Rt− ,u) and jt(x,u), respectively. In the
Brownian framework of the Black-Scholes asset market, a hedging strategy for reserves
(assets) results from

nRt =DxFt
(
Rt− ,u

)
. (4.2)

By contrast, Theorem 3.1 suggests that the hedging strategy for reserves with jumps is
(3.13). This means that if L corresponds with Z, then νQ

t (dx)= 0 and κt = s̃2.

4.4.3. Risk minimizing strategy for depository contracts. KD from (3.27) in Theorem 3.2
has interesting ramifications for risk (minimization) management of the bank provision-
ing portfolio. For instance, KD allows for the possibility that the reserve risk can be re-
duced to intrinsic risk. In this regard, small changes in KD can be represented as

dKD
t = lxs−ϑ

(1)
s dZQ

s +
∫

R
lxs−ϑ

(2)
t (y)NQ(ds,dy) + υsdM

I
s , (4.3)

and interpreted as the losses incurred by the bank. If we analyze the first two terms of
KD and dKD in (3.27) and (4.3), respectively, we may conclude that the integrals with
respect to ZQ and NQ are the drivers of reserve risk. In the context of incomplete reserve
markets in a Lévy-process setting, this demonstrates the influence of bank reserves on

deposit risk. Here, the reliance of the provisioning strategy components, ϑ(1)
t and ϑ(2)

t , on
Dx and jt(x), results in a risk increase that originates from the continuous part of the bank
reserve process. Note that the reserve risk driver is a function of the expected number of
depository contracts surviving on the time interval [t−,T]. Here, a deposit withdrawal
results in a decrease in dKD

t . Also, the last term of dKD in (4.3), that contains

dMI
t = dNI

t − ιtdt, (4.4)

can be interpreted as the source of risk for the entire bank provisioning portfolio.
From the first formula in (3.29) of Theorem 3.2, it is clear that the optimal investment

in reserves, nR∗t , is heavily dependent on the number of cohort deposits that are with-
drawn during the time interval [t−,T]. In particular, as the number of withdrawals, NI ,
increases (lxt− decreases), it is likely that nR∗t will decrease. This trend is also possible for
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the optimal investment in the bank Treasuries, nT∗t , from the second formula in (3.29).
The second part of Theorem 3.2 leads to an expression for the initial risk of the provision-
ing strategy, R0. In this regard, for s > t, and lxs− defined by (2.20), the filtration �t follows
a binomial distribution with the survival probability being P2(Ti > u− t + x | Ti > x + t).
As a consequence, for 0≤ t ≤ T , we have that

EQ[(lxs
)2 |�t

]= lxs P2
(
Ti > s− t+ x | Ti > x+ t

)(
1−P2

(
Ti > s− t+ x | Ti > x+ t

))

+
(
lxt
)2(

P2
(
Ti > s− t+ x | Ti > x+ t

))2
,

(4.5)

R0
(
Θ∗
)=nx

∫ T

0

{
P2
(
Ti>s+x | Ti>x

)[
1−P2

(
Ti>s+x | Ti>x

)
+nxP2

(
Ti>s+x | Ti>x

)]

×EQ
[
ϑ(1)2
s +

∫

R

(
ϑ(2)
s (y)

)2
νQ
s (dy)

]

+ EQ[υ2
s

(
Rs
)]

P2
(
Ti > s+ x | Ti > x

)
ωx+s

}
ds.

(4.6)

A first observation is that the reserve risk component of R0 in (4.6) has the form

nx
∫ T

0

{
P2
(
Ti > s+ x | Ti > x

)[
1−P2

(
Ti > s+ x | Ti > x

)
+nxP2

(
Ti > s+ x | Ti > x

)]

×EQ
[
ϑ(1)2
s +

∫

R

(
ϑ(2)
s (y)

)2
νQ
s (dy)

]}
ds.

(4.7)

It is clear that for the reserve risk component (4.7), if nx increases, then division of the
risk component by (nx)2 does not result in the value of the said component tending to
0. This means that in our incomplete information setting, by contrast to the findings in
the Brownian motion framework, a portion of risk resulting from the holding of reserves
cannot be hedged against by merely increasing the number of depository contracts, nx.
As far as bank deposit risk is concerned, R0 and the relative initial risk ratio given by

ρ0 =
√
R0

nx
(4.8)

may be used to measure the risk associated with the nonhedgeable part of the sum of
cohort deposits. Also, the deposit risk component of R0 given by (4.6) behaves as in

nx −→∞=⇒ 1/nx2
{
nx
∫ T

0
EQ[υ2

s

(
Rs
)]

P2
(
Ti > s+ x | Ti > x

)
ωx+sds

}
−→ 0. (4.9)

It is not clear how a general risk analysis can be done for the relative risk ratio of the form

ρt =
√
Rt
lxt

. (4.10)

The simplifying modification of the depository contract in (4.1) also has important
ramifications for risk management. This scenario considers the cohort claim at terminal
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time, Dc(RT), rather than the more general Dc
t (Rt,u) (see, e.g., (2.15) and (4.1)), so that it

becomes redundant to consider the variable “u.” Henceforth, the bank obligation gener-
ated by the entire portfolio of depository contracts is considered to be the �T-measurable
discounted deposit withdrawal

Ds = T−1(T)Dc
(
RT
) nx∑

i=1

I
(
Ti > T

)= T−1(T)Dc
(
RT
)
lxT . (4.11)

In the simplified case, the independence of the reserves and the bank withdrawals enables
us to represent the intrinsic value of the entire depository contract portfolio, Vs∗

t , as

Vs∗
t = lxt P2

(
T1 > T − t+ x | T1 > x+ t

)
T−1
t Ft(Rt), 0≤ t ≤ T , (4.12)

with initial value

Vs∗
0 = nxP2

(
T1 > T + x | T1 > x

)
F0
(
R0
)
. (4.13)

Under certain conditions, Vs
0 may be considered to be the single deposit taken by the bank

at t = 0.
In order to hedge deposit withdrawals, it is appropriate to adopt a (local) risk mini-

mization approach, since

Vs
t

(
Θs∗)=Vs∗

t , ∀t ∈ (0,T). (4.14)

Suppose that the intrinsic value, Vs∗
t , is given by (4.12) and the variables ϑ(1)s

t and ϑ(2)s
t are

analogous to those given by (3.14). For the depository contract in (4.11), with 0≤ t ≤ T ,
the intrinsic value process, V∗, has the generalized GKW decomposition

Vs∗
t =Vs∗

0 +
∫ t

0
lxs−P2

(
T1 > T − s+ x | T1 > x+ s

)
nRs dR̂s +KDs

t , (4.15)

where

KDs

t =
∫ t

0
lxs−P2

(
T1 > T − s+ x | T1 > x+ s

)
ϑ(1)s
t dZQ

s

+
∫ t

0

∫

R
lxs−P2

(
T1 > T − s+ x | T1 > x+ s

)
ϑ(2)s
t (y)NQ(ds,dy)

+
∫ t

0
−T−1

s Fs
(
Rs−
)

P2
(
T1 > T − s+ x | T1 > x+ s

)
dMI

s ,

(4.16)

is orthogonal to R̂. For 0≤ t ≤ T , under the equivalent probability measure Q, the unique
admissible risk-minimizing provisioning strategy, Θs∗ = (nRs∗,nTs∗), for the deposit
withdrawal in (4.11) has the form

nRs∗t = lxt−P2
(
T1 > T − t+ x | T1 > x+ t

)
nRt ,

nTs∗t = lxt P2
(
T1 > T − t+ x | T1 > x+ t

)
T−1(t)Ft

(
Rt
)−nRs∗t R̂t.

(4.17)
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For 0≤ t ≤ T , the intrinsic or remaining risk process may be expressed as

Rst
(
Θs∗)=

∫ T

t

{
P2

2

(
T1 > T − s+ x | T1 > x+ s

)
EQ[(lxt

)2 |�t
]

×EQ
[
ϑ(1)2
s +

∫

R

(
ϑ(2)s
s (y)

)2
νQ
s (dy) |�t

]}
ds

+ lxt P2
(
T1 > T − t+ x | T1 > x+ t

)

×
∫ T

t
P2
(
T1 > T − s+ x | T1 > x+ s

)
ωx+sT

−2(s)EQ[F2
s

(
Rs
) |�t

]
ds.

(4.18)

5. Concluding remarks

For incomplete bank reserves, we derived a (locally) risk-minimizing hedging strategy
for deposit withdrawals. This context provides a fertile environment for the derivation
of general Lévy-driven models for reserves. Furthermore, we investigate the generalized
GKW decomposition of the intrinsic value of the sum of cohort deposits contingent on
a reserve process. This leads naturally to a solution of a risk minimization problem for
banks that provides a hedging strategy for deposit withdrawals. The specific risk types
related to our study are intrinsic, reserve and depository risk that are associated with the
cumulative cost of the bank provisioning strategy, reserve processes and the amount and
timing of net cash flows from deposits, and deposit withdrawals emanating from a cession
of the depository contract, respectively. In addition, we provide a discussion of the main
risk management issues mentioned above.

An open problem is to directly determine the hedging strategies for loan processes that
are semimartingales and are not subjected to transformation by an equivalent measure
into a martingale. Further issues that have not been resolved yet relate to the generaliza-
tion from 1 to n (multidimensional) reserve types (cf., e.g., (2.4)) and deterministic to
stochastic interest rates (cf., e.g., (2.2)).

References
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