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1. Introduction

Beju [1], and many other authors have established some existence and uniqueness theo-
rems in the nonlinear classical theory of elastic bodies.

The theory of micropolar bodies has been introduced by Eringen and Suhubi in [2,
3]. Also, in [4] Eringen developed the theory of micromorphic continua. The theory of
multipolar continuum was given by Green and Rivlin in [5]. A review of the field and
further developments can be found in [6].

The concept of a porous material was introduced by Cowin and Nunziato, in the con-
text of classical theory of Elasticity, in the paper [7] and also [8] by Goodman and Cowin.
In these papers, the authors introduce an additional degree of freedom in order to de-
velop the mechanical behavior of porous solids in which the matrix material is elastic
and the interstices are voids of material.

The basic premise underling this theory is the concept of a material for which the bulk
density is written as the product of two fields, the matrix material density field and the
volume fraction field.

The intended applications of this theory are to geological materials like rocks and soil
and to manufactured porous materials, like ceramics and pressed powders.
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In the present paper we restrict our considerations to the case of isothermal processes.
Our intention is to extend the result of Beju established in the classical theory of Elastic-
ity. To obtain these results, we must make certain assumptions on the material response
relating the convexity of internal energy to be compatible with the principle of objectivity.

2. Notations and basic equations

Consider that a bounded region B of three-dimensional Euclidean space R3 is occupied
by a porous micropolar body in mechanical equilibrium referred to the reference config-
uration and a fixed system of rectangular Cartesian axes. Let ∂B be the boundary of the
domain B. With B we denote the closure of B. Suppose ∂B is a sufficiently smooth surface
such that we can use the divergence theorem and Friedrich’s inequality.

Letters in bold face stand for vector fields. The components of a vector v are denoted
by vi. The italic indices will always assume the values 1, 2, 3, whereas Greek indices will
range over the values 1, 2. The Einstein convention regarding the summation on repeated
indices is implied. A comma followed by a subscript denotes partial differentiation with
respect to the spatial corresponding Cartesian coordinates.

Also, the spatial argument of a function will be omitted when there is no likelihood of
confusion.

As usual, we will denote (XK ) the material coordinates of a typical particle and (xi) the
spatial coordinates of the same particle and we have

xi = xi
(
XK
)
, XK ∈ B. (2.1)

Suppose the continuous differentiability of the functions xi with respect to each of the
variables XK , as many times, is required. Also we assume that

det
(
∂xi
∂XK

)
> 0. (2.2)

As in the paper [8] of Goodman and Cowin, we introduce the following additional kine-
matic variables:

mi =mi
(
XK
)
, XK ∈ B, (2.3)

with the property

det
(
∂mi

∂XK

)
�=0. (2.4)

This is to characterize the micropolar aspects of the bodies. To characterize the voids
of material we consider that the bulk density ρ of the material is the product of two fields,
the density field of the matrix material γ and the volume fraction ν, that is,

ρ= γν, (2.5)

and this relation also holds for the reference configuration:

ρ0 = γ0ν0. (2.6)
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In this way, the deformation of a micropolar body with voids is characterized by the
following independent kinematic variables:

xi = xi
(
XK
)
, mi =mi

(
XK
)
, ν= ν

(
XK
)
, XK ∈ B. (2.7)

We will denote by ui and ϕi the components of the displacement field and microrotation
vector, respectively. As it is well known, we have

ui = xi− δiKXK ,

ϕi =mi− δiKMK ,
(2.8)

where δiK is the Kronecker symbol and MK is the value of mi in the reference state. Using
the known procedure of Green and Rivlin, it is easy to prove that the equations of the
equilibrium theory can be written in the following form:

TKi,K + ρ0Fi = 0,

SiK ,K + εi jKTK j + ρ0Gi = 0,

HK ,K + g + ρ0L= 0.

(2.9)

In these equations we have used the following notations:
(i) ρ0: the constant mass density (in the reference configuration),

(ii) Fi: the body force,
(iii) Li: the components of the body couple,
(iv) L: the extrinsic equilibrated body force,
(v) g: the intrinsic equilibrated body force,

(vi) TKi: the first Piola-Kirchhoff stress tensor,
(vii) SKi: the couple stress tensor,

(viii) HK : the components of the equilibrated stress vector associated with surface in
the domain B, which were originally coordinate planes perpendicular to the XK -
axes through the point (XK ) measured per unit area of these planes.

In the context of the nonlinear theory of micropolar bodies with voids, the constitutive
equations are:

σ = σ(ui,K ,ϕi,ϕi,K ,ν,ν,K
)
,

TKi = ∂σ

∂ui,K
, SiK = ∂σ

∂ϕi,K
, HK = ∂σ

∂ν,K
, g = ∂σ

∂ν
,

(2.10)

where σ is the internal energy density, considered as a smooth function.
In all that follows, we consider a materially homogeneous body.
To the equation of equilibrium (2.9) we add the following boundary conditions:

ui = ũi, ϕi = ϕ̃i, ν= ν̃ on ∂B, (2.11)

where ũi, ϕ̃i, and ν̃ are prescribed functions.
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By summarizing, the boundary-value problem in the context of micropolar bodies
with voids consists in finding the functions ui, ϕi, and ν which satisfy (2.9) and (2.10) in
B and the boundary conditions (2.11) on ∂B.

3. Basic results

In the beginning of this section, we formulate some results due to Langenbach. These re-
sults will be used in order to prove the existence and uniqueness theorems in our context.

Consider a bounded domain Ω in n-dimensional Euclidean space Rn. We denote by
∂Ω the boundary of Ω and consider this surface to be sufficiently smooth such that we
can apply the divergence theorem. By �(Ω) we denote a Hilbert space on Ω.

Let T be an operator T :D(T)→�(Ω), where D(T)⊂�(Ω) is the effective domain of
the operator T and is a linear subset, dense in �(Ω). Suppose that the operator T has a
linear Gateaux differential on the set ω ⊂D(T), which means there exists an operator:

(DT) : ω −→ L
(
D(T),�(Ω)

)
, (3.1)

such that

lim
t→0

1
t

[
T(x+ th)−T(x)

]= (DT)(x)h, x ∈ ω, h∈D(T). (3.2)

Here, as usual, we have denoted by L(D(T), �(Ω)) the set of all linear operators defined
on D(T), having the values in the Hilbert space �(Ω).

The connection between T and (ST) is given by

Tx−Tx0 =
∫ t

0
(DT)

(
x0 + τ

(
x− x0

))(
x− x0

)
dτ. (3.3)

We remember that the operator T is called monotone if it satisfies the relation

〈Tu−Tv,u− v〉 ≥ 0, ∀u,v ∈D(T), (3.4)

and T is a strictly monotone operator if it is monotone and, in addition, satisfies the rela-
tion

〈Tu−Tv,u− v〉 = 0, ⇐⇒ u= v. (3.5)

Now, we consider the operatorial equation:

Tu= f , (3.6)

with the linear and homogeneous boundary value conditions:

Liu= 0, i= 1,m. (3.7)

Consider the set D0 defined by

D0 =
{
u∈D(T) : Liu= 0

}
. (3.8)



Marin Marin 5

The following theorem allows us to associate a variational problem with our boundary-
value problem formulated in Section 2.

Theorem 3.1. Consider the following five conditions to be satisfied:
(1) D0(T) and D(T) are linear sets and D0(T) is dense in the Hilbert space �(Ω);
(2) the operator T has linear Gateaux differential for all u,h ∈ D(T) and the map-

ping (DT)(u)h is continuous with respect to u, the value (DT)(u)h belonging to a two-
dimensional hyperplane which contains the point u;

(3) the operator T satisfies the condition

T(0)= 0; (3.9)

(4) for all u∈D(T), h,g ∈D0(T), one has

〈
(DT)(u)h,g

〉= 〈(DT)(u)g,h
〉

; (3.10)

(5) for all u∈D(T), h∈D0(T), h �=0, one has

〈
(DT)(u)h,h

〉
> 0. (3.11)

Then one has the following:
(i) if there exists a solution u0 ∈ D0(T) of (3.6), it is unique and attains on D0(T) the

minimum of the functional

Φ(u)=
∫ t

0

(
T(τu),u

)
dτ − ( f ,u), (3.12)

where f ∈�(Ω);
(ii) conversely, if an element of D0(T) attains the minimum of the functional defined in

(3.12), then this element is a solution of (3.6).

The following theorem has been proved also by Langenbach and assures the condi-
tions for the existence and uniqueness of a generalized solution for the boundary value
problems (3.6), (3.7).

Theorem 3.2. If one says that

〈
(DT)(u)h,h

〉≥ c|h|2, u∈D(T), h∈D0(T), c = constant, c > 0, (3.13)

then,
(i) the functional (3.12) is bounded below on D0(T),

(ii) the functional (3.12) is strictly convex on D0(T),
(iii) any minimizing sequence of the functional (3.12) is convergent in �(Ω).

The limit of a minimizing sequence of the functional (3.12) is called generalized solu-
tion of the boundary value problems (3.6), (3.7).

Langenbach has proved that the generalized solution of (3.6), (3.7) is unique.
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Theorem 3.3. Assume that there exists an element u0 ∈D0(T) such that

〈
(DT)(u)h,h

〉≥ c1
〈

(DT)
(
u0
)
h,h
〉≥ c2|h|2, (3.14)

where c1 and c2 are positive constants.
Then the generalized solution of the boundary value problems (3.6), (3.7) is an element

of the energetic space of the linear operator (DT)(u0).

In the following, we will use these theorems to characterize our boundary value prob-
lems (2.9), (2.10), (2.11). Equation (2.9) can be rewritten in the following form:

(
∂σ

∂ui,K

)

,K
=−ρ0Fi,

(
∂σ

∂ϕi,K

)

,K

+ εi jK
∂σ

∂uj,K
=−ρ0Gi,

(
∂σ

∂ν,K

)

,K
+
∂σ

∂ν
=−ρ0L.

(3.15)

The ordered triplets U = (ui,ϕi,ν) are elements of the real vector space

�(7) =�(3)

⊕
�(3)

⊕
�(1). (3.16)

Of course, the space �(7) is seven-dimensional and is defined on B. We now introduce
the notations

MiU=−
(
∂σ

∂ui,K

)

,K
,

NiU=−
(
∂σ

∂ϕi,K

)

,K

− εi jK ∂σ

∂uj,K
,

P0U=−
(
∂σ

∂ν,K

)

,K
− ∂σ

∂ν
,

MU = (MiU, NiU, P0U
)
,

F= (ρ0Fi, ρ0Gi, ρ0L
)
.

(3.17)

Taking into account the notations (3.17), the system of (3.15) can be written in the form

MU= F, on B. (3.18)

For the sake of simplicity, we denote by � the space �(7). Let V∈�, V= (vi,ψi,v) such
that

vi = ui, ψi = ϕi, v = ν, on ∂B, (3.19)

where ui, ϕi, and ν are prescribed functions defined in (2.11).
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Let us define W, AW, and � by

W=U−V, �= F−MV,

AW= (AiW, BiW, C0W
)=M(W + V)−MV.

(3.20)

Then the boundary value problems (2.9), (2.10), (2.11) receive the form

AW=�, on B, (3.21)

W= 0, on ∂B. (3.22)

Let L2(B) be the Hilbert space of all vector fields U = (ui,ϕi,ν) whose components are
square integrable on B, with the norm generated by the scalar product:

〈U,V〉 =
∫

B

(
uivi +ϕiψi + νv

)
dV , (3.23)

where U= (ui,ϕi,ν) and V= (vi,ϕi,ν).
We denote by W2

0 (B) the Sobolev space of all elements from L2(B) belonging to C2(B)
which satisfy the boundary condition (3.22). This space will be the domain of definition
for the operator A defined in (3.20), that is,

A :W2
0 (B)−→ L2(B). (3.24)

Also, we suppose that �∈ L2(B).

Theorem 3.4. One assumes that the function σ is of class C2 with respect to each variables
ui,K , ϕj , ϕs,M , ν, ν,N and satisfies the inequality

Γ(W)=
∫

B

(
∂2σ

∂ui,K∂uj,M
fi,K f j,M + 2

∂2σ

∂ui,K∂ϕj
fi,Kgj

+2
∂2σ

∂ui,K∂ϕj,M
fi,Kgj,M + 2

∂2σ

∂ui,K∂ν
fi,Kh+ 2

∂2σ

∂ui,K∂ν,M
fi,Kh,M

+
∂2σ

∂ϕi,K∂ϕj,M
gi,Kgj,M + 2

∂2σ

∂ϕi,K∂ϕj
gi,Kgj + 2

∂2σ

∂ϕi,K∂ν
gi,Kh

+
∂2σ

∂ϕi,K∂ν,M
gi,Kh,M +

∂2σ

∂ϕi∂ϕj
gig j + 2

∂2σ

∂ϕi∂ν
gih+

∂2σ

∂ϕi∂ν,K
gih,K

+
∂2σ

∂ν∂ν
h2 +

∂2σ

∂ν,K∂ν,M
h,Kh,M +

∂2σ

∂ν∂ν,K
hh,K

)
dv > 0,

(3.25)

for all W= (ui,ϕi,ν), G= ( fi,gi,h), G �= 0, which possess the partial derivatives of first order
with respect to the variable XK .
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Then one has the following:
(i) if there exists a solution W∈W2

0 (B) of (3.21), it is unique and attains on W2
0 (B) the

minimum of the functional

Φ(W)=
∫ 1

0

〈
A(tW,W

〉
dt−〈�,W〉; (3.26)

(ii) conversely, if the minimum of the functional (3.26), on the space W2
0 (B), is attained

in an element W0 ∈W2
0 (B), then this element is a solution of (3.21).

Proof. The two assertions of the theorem will be proved if we show that the hypotheses
of Theorem 3.1 are satisfied.

Therefore, we have the following:
(1) as it is known, W2

0 (B) is a linear set, dense in the space L2(B) (see, e.g., Minty [9]);
(2) for all W,G∈W2

0 (B), the operator A defined in (3.20) has a linear Gateaux differ-
ential given by

(
DAi

)
(W)G=−

(
∂2σ

∂ui,K∂uj,M
fj,M +

∂2σ

∂ui,K∂ϕj
gj

+
∂2σ

∂ui,K∂ϕj,M
gj,M +

∂2σ

∂ui,K∂ν
h+

∂2σ

∂ui,K∂ν,M
h,M

)

,K

,

(
DBi

)
(W)G=−

(
∂2σ

∂ϕi,K∂uj,M
fj,M +

∂2σ

∂ϕi,K∂ϕj
gj

+
∂2σ

∂ϕi,K∂ϕj,M
gj,M +

∂2σ

∂ϕi,K∂ν
h+

∂2σ

∂ϕi,K∂ν,M
h,M

)

,K

+
∂2σ

∂ϕi∂uj,K
f j,K +

∂2σ

∂ϕi∂ϕj
gj +

∂2σ

∂ϕi∂ϕj,K
gj,K +

∂2σ

∂ϕi∂ν
h+

∂2σ

∂ϕi∂ν,K
h,K ,

(
DC0

)
(W)G=−

(
∂2σ

∂ν,K∂ui,M
fi,M +

∂2σ

∂ν,K∂ϕj
gj

+
∂2σ

∂ν,K∂ϕj,M
gj,M +

∂2σ

∂ν,K∂ν
h+

∂2σ

∂ν,K∂ν,M
h,M

)

,K

+
∂2σ

∂ν∂ui,K
fi,K +

∂2σ

∂ν∂ϕi
gi +

∂2σ

∂ν∂ϕi,K
gi,K +

∂2σ

∂ν∂ν
h+

∂2σ

∂ν∂ν,K
h,K ,

(3.27)

it is easy to verify that for a given G, the mapping (DA)(W)G is continuous with respect
to W in every two-dimensional hyperplane which contains the point W;

(3) this hypothesis is satisfied because from (3.20) we deduce that A(0)= 0;
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(4) for W,G,H∈W2
0 (B), provided that H= (hi,χi,μ) possess the partial derivatives of

first order with respect to the variable XK , we get

〈
(DA)(W)G, H

〉=
∫

B

[(
DAi

)
(W)Ghi +

(
DBi

)
(W)Gχi +

(
DC0

)
(W)Gμ

]
dV

=
∫

B

[(
DAi

)
(W)H fi +

(
DBi

)
(W)Hgi +

(
DC0

)
(W)Hh

]
dV

= 〈(DA)(W)H, G
〉

;

(3.28)

(5) taking into account the inequality (3.25) and the equality (3.28), we deduce that
〈

(DA)(W)H,H
〉
> 0, ∀W,H∈W2

0 (B), H �= 0, (3.29)

that is, the last hypothesis of Theorem 3.1 is satisfied and the demonstration of the theo-
rem is complete. �

Theorem 3.5. One supposes that (3.25) holds. Then the boundary value problems (2.9),
(2.10), (2.11) have at most one solution U∈ C0(B).

Proof. The demonstration of this theorem will be based on the following result (see, e.g.,
the paper [9] of Minty).

If the domain D(T) of the operator T is convex, then a sufficient condition for T to be
strictly monotone on D(T) is that the derivative

d

dt

[〈
T(U + tG),G

〉]
t=0 (3.30)

exists and is positive for all U,V∈D(T), G=V−V, G �=0.
In view of this result, consider Z to be the set of all vector fields U = (ui,ϕi,ν) that

satisfy the boundary conditions (2.11).
We will prove that the operator M defined by (3.17) is strictly monotone on Z.
Let U,V∈ Z, 0≤ t ≤ 1. It is easy to verify that

tU + (1− t)V∈ Z. (3.31)

Then, by using (3.25) and (3.28), we can prove that

d

dt

[〈
M(U + tG),G

〉]
t=0

=
[
d

dt

∫
B

[
Mi(U + tG) fi +Ni(U + tG)gi +P0(U + tG)h

]
dV
]

t=0

= 〈(DA)(U)G,G
〉

,

(3.32)

for all U,V∈ Z, G=V−U, G �=0 on ∂B.
Therefore, we deduce that the operator M is strictly monotone on the set Z. As a

consequence, if U1 and U2 are two solutions of our problem, then by direct calculations
we get

〈
MU1−MU2,U1−U2

〉= 〈0,U1−U2
〉= 0, (3.33)
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such that we deduce that U1 = U2, according to the definition of a strictly monotone
operator. �

Following the proof of Theorem 3.2, we immediately obtain the next results.

Theorem 3.6. One supposes that the hypotheses of Theorem 3.4 are satisfied. Moreover,
assume that

Γ(W) > c
∫

B

(
fi fi + gigi +h2)dV , (3.34)

for W = (ui,ϕi,ν), G = ( fi,gi,h) having the partial derivatives of first order with respect to
the variable XK , and c = constant, c > 0.

Then one has the following:
(a) the functional (3.26) is bounded below on W2

0 (B);
(b) the functional (3.26) is strictly convex on W2

0 (B);
(c) any minimizing sequence of the functional (3.26) is convergent in L2(B) and its limit

is a generalized solution of the problems (3.21), (3.22);
(d) this generalized solution is unique.

Regarding (3.34), we make the following observations.
Suppose there exists a positive constant c1 such that for all

W= (ui,ϕi,ν
)
, G= ( fi,gi,h

)∈W2
0 (B), (3.35)

we have

∂2σ

∂ui,K∂uj,M
fi,K f j,M + 2

∂2σ

∂ui,K∂ϕj
fi,Kgj + 2

∂2σ

∂ui,K∂ϕj,M
fi,Kgj,M

+ 2
∂2σ

∂ui,K∂ν
fi,Kh+ 2

∂2σ

∂ui,K∂ν,M
fi,Kh,M +

∂2σ

∂ϕi,K∂ϕj,M
gi,Kgj,M

+ 2
∂2σ

∂ϕi,K∂ϕj
gi,Kgj + 2

∂2σ

∂ϕi,K∂ν
gi,Kh+

∂2σ

∂ϕi,K∂ν,M
gi,Kh,M

+
∂2σ

∂ϕi∂ϕj
gig j + 2

∂2σ

∂ϕi∂ν
gih+ 2

∂2σ

∂ϕi∂ν,K
gih,K

+
∂2σ

∂ν∂ν
h2 +

∂2σ

∂ν,K∂ν,M
h,Kh,M + 2

∂2σ

∂ν∂ν,K
hh,K

> c1
(
fi,K fi,K + gigi + gi,Kgi,K +hKhK +h2

)
.

(3.36)

On the other hand, by using Friedrich’s inequality, we deduce that there exists a real con-
stant c2 such that

∫

B

(
fi,K fi,K + gigi + gi,Kgi,K +hKhK +h2)dV ≥ c2

∫

B

(
fi fi + gigi +h2)dV. (3.37)

Finally, taking into account (3.36) and (3.37), we deduce that the condition (3.34) is
satisfied.
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As a consequence of Theorem 3.3, it is easy to obtain the result from the following
theorem.

Theorem 3.7. One assumes that there exists W0 ∈W2
0 (B) and two positive constants c1

and c2 such that

T(W)≥ c1T
(

W0
)≥ c2

∫

B

(
fi fi + gigi +h2)dV , (3.38)

for all W,G∈W2
0 (B), G= ( fi,gi,h).

Then the generalized solution of the boundary value problems (3.21), (3.22) belongs to
the energetic space of the linear operator (DA)(W0).
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