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Euler sequence and Koszul complex of a module

Björn Andreas, Daŕıo Sánchez Gómez and Fernando Sancho de Salas

Abstract. We construct relative and global Euler sequences of a module. We apply it to

prove some acyclicity results of the Koszul complex of a module and to compute the cohomology

of the sheaves of (relative and absolute) differential p-forms of a projective bundle. In particular

we generalize Bott’s formula for the projective space to a projective bundle over a scheme of

characteristic zero.

Introduction

This paper deals with two related questions: the acyclicity of the Koszul com-

plex of a module and the cohomology of the sheaves of (relative and absolute)

differential p-forms of a projective bundle over a scheme.

Let M be a module over a commutative ring A. One has the Koszul complex

Kos(M)=Λ·M⊗AS
·M , where Λ·M and S·M stand for the exterior and symmetric

algebras of M . It is a graded complex Kos(M)=
⊕

n≥0 Kos(M)n, whose n-th graded

component Kos(M)n is the complex:

0−−→ΛnM −−→Λn−1M⊗M −−→Λn−2M⊗S2M −−→ ...−−→SnM −−→ 0

It has been known for many years that Kos(M)n is acyclic for n>0, provided that

M is a flat A-module or n is invertible in A (see [3] or [10]). It was conjectured

in [11] that Kos(M) is always acyclic. A counterexample in characteristic 2 was

given in [5], but it is also proved there that Hμ(Kos(M)μ)=0 for any M , where μ is

the minimal number of generators of M . Leaving aside the case of characteristic 2

(whose pathology is clear for the exterior algebra), we prove two new evidences for

the validity of the conjecture (for A Noetherian): firstly, we prove (Theorem 1.6)

that, for any finitely generated M , Kos(M)n is acyclic for n�0; secondly, we prove
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http://crossmark.crossref.org/dialog/?doi=10.1007/s11512-016-0236-4&domain=pdf
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(Theorem 1.7) that if I is an ideal locally generated by a regular sequence, then

Kos(I)n is acyclic for any n>0. These two results are a consequence of relating the

Koszul complex Kos(M) with the geometry of the space P=ProjS·M , as follows.

First of all, we shall reformulate the Koszul complex in terms of differential

forms of S·M over A: the canonical isomorphism ΩS·M/A=M⊗AS
·M allows us to

interpret the Koszul complex Kos(M) as the complex of differential forms Ω·
S·M/A

whose differential, iD : Ωp

S·M/A
→Ωp−1

S·M/A
, is the inner product with the A-derivation

D : S·M→S·M consisting in multiplication by n on SnM . By homogeneous local-

ization, one obtains a complex of OP-modules K̃os(M) on P. Our first result (The-

orem 1.4) is that the complex K̃os(M) is acyclic with factors (cycles or boundaries)

the sheaves Ωp
P/A. Moreover, one has a natural morphism

Kos(M)n −−→π∗[K̃os(M)⊗OP(n)]

with π : P→SpecA the canonical morphism. In Theorem 1.5 we give (cohomologi-

cal) sufficient conditions for the acyclicity of the complexes π∗[K̃os(M)⊗OP(n)] and

Kos(M)n. These conditions, under Noetherian hypothesis, are satisfied for n�0,

thus obtaining Theorem 1.6. The acyclicity of the Koszul complex of a locally

regular ideal follows then from Theorem 1.5 and the theorem of formal functions.

The advantage of expressing the Koszul complex Kos(M) as (Ω·
S·M/A

, iD)

is two-fold. Firstly, it makes clear its relationship with the De Rham complex

(Ω·
S·M/A

, d): The Koszul and De Rham differentials are related by Cartan’s for-

mula: iD◦d+d ◦iD= multiplication by n on Kos(M)n. This yields a splitting

result (Proposition 1.10 or Corollary 1.11) which will be essential for some coho-

mological results in Section 3 as we shall explain later on. Secondly, it allows a

natural generalization (which is the subject of Section 2): If A is a k-algebra, we

define the complex Kos(M/k) as the complex of differential forms (over k), Ω·
S·M/k

whose differential is the inner product with the same D as before. Again, one has

that Kos(M/k)=
⊕

n≥0 Kos(M/k)n and it induces, by homogeneous localization, a

complex K̃os(M/k) of modules on P which is also acyclic and whose factors are the

sheaves Ωp
P/k (Theorem 2.1). We can reproduce the aforementioned results about

the complexes Kos(M)n, K̃os(M), for the complexes Kos(M/k)n, K̃os(M/k).

Section 3 deals with the second subject of the paper: let E be a locally free

module of rank r+1 on a k-scheme X and let π : P→X be the associated projective

bundle, i.e., P=ProjS·E . There are well known results about the (global and rela-

tive) cohomology of the sheaves Ωp
P/X(n) and Ωp

P/k(n) (we are using the standard ab-

breviated notation N (n)=N⊗OP(n)) due to Deligne, Verdier and Berthelot-Illusie

([4], [12], [1]) and about the cohomology of the sheaves Ωp
Pr
(n) of the ordinary pro-

jective space due to Bott (the so called Bott’s formula, [2]). We shall not use their
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results; instead, we reprove them and we obtain some new results, overall when X

is a Q-scheme. Let us be more precise:

In Theorem 3.4 we compute the relative cohomology sheaves Riπ∗Ω
p
P/X(n),

obtaining Deligne’s result (see [4] and also [12]) and a new (splitting) result, in

the case of a Q-scheme, concerning the sheaves π∗Ω
p
P/X(n) and Rrπ∗Ω

p
P/X(−n)

for n>0. We obtain Bott formula for the projective space as a consequence. In

Theorem 3.11 we compute the relative cohomology sheaves Riπ∗Ω
p
P/k(n), obtaining

Verdier’s results (see [12]) and improving them in two ways: first, we give a more

explicit description of π∗Ω
p
P/k(n) and of Rrπ∗Ω

p
P/k(−n) for n>0; secondly, we obtain

a splitting result for these sheaves when X is a Q-scheme (as in the relative case).

Regarding Bott’s formula, we are able to generalize it for a projective bundle,

computing the dimension of the cohomology vector spaces Hq(P,Ωp
P/X(n)) and

Hq(P,Ωp
P/k(n)) when X is a proper k-scheme of characteristic zero (Corollaries 3.7

and 3.14).

It should be mentioned that these results make use of the complexes K̃os(E) (as
Deligne and Verdier) and K̃os(E/k). The complex K̃os(E) is essentially equivalent

to the exact sequence

0−−→ΩP/X −−→ (π∗E)⊗OP(−1)−−→OP −−→ 0

which is usually called Euler sequence. The complex K̃os(E/k) is equivalent to the

exact sequence

0−−→ΩP/k −−→ Ω̃B/k −−→OP −−→ 0

with B=S·E , which we have called global Euler sequence. These sequences still hold

for any A-module M (which we have called relative and global Euler sequences of

M ). The aforementioned results about the acyclicity of the Koszul complexes of a

module obtained in Sections 1 and 2 are a consequence of this fact.

1. Relative Euler sequence of a module and Koszul complexes

Let (X,O) be a scheme and let M be quasi-coherent O-module. Let B=
S·M be the symmetric algebra of M (over O), which is a graded O-algebra: the

homogeneous component of degree n is Bn=SnM. The module ΩB/O of Kähler

differentials is a graded B-module in a natural way: B⊗OB is a graded O-algebra,

with (B⊗OB)n= ⊕
p+q=n

Bp⊗OBq and the natural morphism B⊗OB→B is a degree 0

homogeneous morphism of graded algebras. Hence, the kernel Δ is a homogeneous

ideal and Δ/Δ2=ΩB/O is a graded B-module. If bp, bq∈B are homogeneous of

degree p, q, then bp d bq is an element of ΩB/O of degree p+q. We shall denote by

Ωp
B/O the p-th exterior power of ΩB/O, that is Λp

BΩB/O, which is also a graded
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B-module in a natural way. For each O-module N , N⊗OB is a graded B-module

with gradation: (N⊗OB)n=N⊗OBn. Then one has the following basic result:

Theorem 1.1. The natural morphism of graded B-modules

M⊗OB[−1]−−→ΩB/O

m⊗b �−→ b dm

is an isomorphism. Hence Ωp
B/O�ΛpM⊗OB[−p], where ΛiM=Λi

OM.

The natural morphism M⊗OSiM→Si+1M defines a degree zero homoge-

neous morphism of B-modules ΩB/O=M⊗OB[−1]→B which induces a (degree

zero) O-derivation D : B→B, such that ΩB/O→B is the inner product with D.

This derivation consists in multiplication by n in degree n. It induces homogeneous

morphisms of degree zero:

iD : Ωp
B/O −−→Ωp−1

B/O

and we obtain:

Definition 1.2. The Koszul complex, denoted by Kos(M), is the complex:

(1) ... Ωp
B/O

iD
Ωp−1

B/O

iD
...

iD
ΩB/O

iD
B 0

Via Theorem 1.1, this complex is

...
iD−−→ΛpM⊗OB[−p]

iD−−→ ...
iD−−→M⊗OB[−1]

iD−−→B−→ 0

Taking the homogeneous components of degree n≥0, we obtain a complex of

O-modules, which we denote by Kos(M)n:

0−→ΛnM−→Λn−1M⊗OM−→ ...−→M⊗OSn−1M−→SnM−→ 0

such that Kos(M)= ⊕
n≥0

Kos(M)n.

Now let P=ProjB and π : P→X the natural morphism. We shall use the

following standard notations: for each OP-module N , we shall denote by N (n)

the twisted sheaf N⊗OP
OP(n) and for each graded B-module N we shall denote

by Ñ the sheaf of OP-modules obtained by homogeneous localization. We shall

use without mention the following facts: homogeneous localization commutes with

exterior powers and for any quasi-coherent module L on X one has ˜(L⊗OB[r])=
(π∗L)(r).
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Definition 1.3. Taking homogeneous localization on the Koszul complex (1),

we obtain a complex of OP-modules, which we denote by K̃os(M):

(2) ... Ω̃d
B/O

iD
Ω̃d−1

B/O

iD
...

iD
Ω̃B/O

iD
OP 0

By Theorem 1.1, Ω̃d
B/O=(π∗ΛdM)(−d), hence K̃os(M) can be written as

...
iD−−→ (π∗ΛdM)(−d)

iD−−→ ...−−→ (π∗M)(−1)
iD−−→OP −−→ 0

Theorem 1.4. The complex K̃os(M) is acyclic (that is, an exact sequence).

Moreover,

Ωp
P/X =Ker

(
Ω̃p

B/O
iD−−→ Ω̃p−1

B/O
)

Hence one has exact sequences

0−−→Ωp
P/X −−→ Ω̃p

B/O −−→Ωp−1
P/X −−→ 0

and right and left resolutions of Ωp
P/X :

0−−→Ωp
P/X −−→ Ω̃p

B/O −−→ Ω̃p−1
B/O −−→ ...−−→ Ω̃B/O −−→OP −−→ 0

...−−→ Ω̃r+1
B/O −−→ Ω̃r

B/O −−→ ...−−→ Ω̃p+1
B/O −−→Ωp

P/X −−→ 0

In particular, for p=1 the exact sequence

(3) 0−−→ΩP/X −−→ Ω̃B/O −−→OP −−→ 0

is called the (relative) Euler sequence.

Proof. The morphism Ω̃B/O→OP is surjective, since M⊗OB[−1]→B is surjec-

tive in positive degree. Let K be the kernel. We obtain an exact sequence

0−−→K −−→ Ω̃B/O −−→OP −−→ 0

Since OP is free, this sequence splits locally; then, it induces exact sequences

0−−→ΛpK −−→ Ω̃p
B/O −−→Λp−1K −−→ 0

Joining these exact sequences one obtains the Koszul complex K̃os(M). This proves

the acyclicity of K̃os(M). To conclude, it suffices to prove that K=ΩP/X .

Let us first define a morphism ΩP/X→Ω̃B/O. Assume for simplicity that X=

SpecA. For each b∈B of degree 1, let Ub the standard affine open subset of P defined
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by Ub=Spec(B(b)), with B(b) the 0-degree component of Bb. The natural inclusion

B(b)→Bb induces a morphism ΩB(b)/A→ΩBb/A=(ΩB/A)b which takes values in the

0-degree component, (ΩB/A)(b). Thus one has a morphism ΩB(b)/A→(ΩB/A)(b), i.e.

a morphism Γ(Ub,ΩP/X)→Γ(Ub, Ω̃B/A). One checks that these morphisms glue to

a morphism f : ΩP/X→Ω̃B/A. This morphism is injective, because the inclusion

B(b)→Bb has a retract, cn/b
k �→cn/b

n, which induces a retract in the differentials.

The composition ΩP/X→Ω̃B/A→OP is null, as one checks in each Ub:

(iD◦f)(d(ck
bk

))= iD

(
bk d ck−ck d b

k

b2k

)

=
bkiD d ck−ckiD d bk

b2k
=0

because iD d cr=rcr for any element cr of degree r. Thus, we have that ΩP/X is

contained in the kernel of Ω̃B/A→OP. To conclude, it is enough to see that the

image of Ω̃2
B/A

iD→Ω̃B/A is contained in ΩP/X . Again, this is a computation in each

Ub; one checks the equality

iD

(
d cp∧d cq

bp+q

)

= p
cp
bp

d

(
cq
bq

)

−q
cq
bq

d

(
cp
bp

)

and the right member belongs to ΩB(b)/A. �

For each n∈Z, we shall denote by K̃os(M)(n) the complex K̃os(M) twisted

by OP(n) (notice that the differential of the Koszul complex is OP-linear). The

differential of the complex K̃os(M)(n) is still denoted by iD.

1.1. Acyclicity of the Koszul complex of a module

Let K̃os(M)n :=π∗(K̃os(M)(n)). The natural morphisms

[Ωp
B/O]n −−→π∗[Ω̃

p
B/O(n)]

give a morphism of complexes

Kos(M)n −−→ K̃os(M)n

and one has:

Theorem 1.5. Let M be a finitely generated quasi-coherent module on a

scheme (X,O), P=ProjS·M and π : P→X the natural morphism. Let d be the min-

imal number of generators of M (i.e., it is the greatest integer such that ΛdM�=0)

and n>0. Then:

1. If Rjπ∗[Ω̃
i
B/O(n)]=0 for any j>0 and any 0≤i≤d, then K̃os(M)n is acyclic.
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2. If (1) holds and the natural morphism [Ωi
B/O]n→π∗[Ω̃

i
B/O(n)] is an isomor-

phism for any 0≤i≤d, then Kos(M)n is also acyclic.

Proof. (1) By Theorem 1.4, the complex K̃os(M)(n) is acyclic. Since the (non-

zero) terms of this complex are Ω̃i
B/O(n), the hypothesis tells us that π∗(K̃os(M)⊗

OP(n)) is acyclic, that is, K̃os(M)n is acyclic.

(2) By hypothesis, Kos(M)n→K̃os(M)n is an isomorphism and then Kos(M)n
is also acyclic. �

Theorem 1.6. Let X be a Noetherian scheme and M a coherent module on X .

The Koszul complexes Kos(M)n and K̃os(M)n are acyclic for n�0.

Proof. Indeed, the hypothesis (1) and (2) of Theorem 1.5 hold for n�0 (see

[8, Theorem 2.2.1] and [7, Section 3.3 and Section 3.4]). �

Theorem 1.7. Let I be an ideal of a Noetherian ring A. If I is locally gener-

ated by a regular sequence, then Kos(I)n and K̃os(I)n are acyclic for any n>0.

Proof. In this case π : P→X=SpecA is the blow-up with respect to I , because

SnI=In, since I is locally a regular ideal ([9]). Let d be the minimum number of

generators of I . By Theorem 1.5, it suffices to see that for any A-module M and

any 0≤i≤d one has:

Hj(P, (π∗M)(n−i))=

{
0 if j>0

M⊗AI
n−i if j=0

This is a consequence of the Theorem of formal functions (see [8, Corol-

lary 4.1.7]). Indeed, let Yr=SpecA/Ir, Er=π−1(Yr) and πr : Er→Yr. One has

that Er=ProjS·A/Ir (I/Ir+1) is a projective bundle over Yr, because I/Ir+1 is a lo-

cally free A/Ir-module of rank d, since I is locally regular. Hence, for any module

N on Yr and any m>−d one has

Hj(Er, (π
∗
rN)(m))=

{
0 if j>0

N⊗A/Ir Im/Im+r if j=0

Now, by the theorem of formal functions (let m=n−i)

Hj(P, (π∗M)(m))∧ = lim
←
r

Hj(Er, π
∗
r (M/IrM)(m))= 0, for j > 0.
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For j=0, the natural morphism M⊗AI
m→H0(P, (π∗M)(m)) is an isomor-

phism because it is an isomorphism after completion by I :

H0(P, (π∗M)(m))∧ = lim
←
r

H0(Er, π
∗
r (M/IrM)(m))

= lim
←
r

(M/IrM)⊗A/Ir Im/Im+r

= lim
←
r

(M⊗AS
mI)⊗AA/Ir =(M⊗AI

m)∧. �

Remark 1.8. Let d be the minimum number of generators ofM. Since K̃os(M)

is acyclic and π∗ is left exact, one has that Hd(K̃os(M)n)=0 for any n. One

the other hand, it is proved in [5] that Hd(Kos(M)d)=0. One cannot expect

Kos(M)n→K̃os(M)n to be an isomorphism in general. For instance, consider

X=SpecA with A=k[u, v, s1, s2, t1, t2]/I where k is a field and I=(−us1+vt1+

ut2, vs1+us2−vt2, vs2, ut1). Let M=(Ax⊕Ay)/A(ūx+v̄y), where ū (resp. v̄) is

the class of u (resp. v) in A. Then one can prove that the map M→π∗OP(1) is not

injective (for details we refer to section 26.21 of The Stacks project). So that the

question which arises here is whether Kos(M)n→K̃os(M)n is a quasi-isomorphism.

We do not know the answer, besides the acyclicity theorems for both complexes

mentioned above.

1.2. Koszul versus De Rham

The exterior differential defines morphisms

d: Ωp
B/O −−→Ωp+1

B/O

which are O-linear, but not B-linear. One has then the De Rham complex:

DeRham(M)≡ 0−−→B d−→ΩB/O
d−→ ...

d−→Ωp
B/O

d−→Ωp+1
B/O −−→ ...

which can be reformulated as

0−−→B d−→M⊗OB[−1]−−→ ...ΛpM⊗OB[−p]−−→Λp+1M⊗OB[−p−1]−−→ ...

Taking into account that d is homogeneous of degree 0, one has for each n≥0 a

complex of O-modules

0−−→SnM−−→M⊗OSn−1 −−→ ...−−→Λn−1M⊗OM−−→ΛnM−−→ 0

which we denote by DeRham(M)n.
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The differentials of the Koszul and De Rham complexes are related by Cartan’s

formula: iD◦d+d ◦iD= multiplication by n on ΛpM⊗OSn−pM. This immediately

implies the following result:

Proposition 1.9. If X is a scheme over Q, then Kos(M)n and DeRham(M)n
are homotopically trivial for any n>0. In particular, they are acyclic.

Now we pass to homogeneous localizations. The differential d : Ωp
B/O→Ωp+1

B/O
is compatible with homogeneous localization, since for any ωk+n∈Ωp

B/O of degree

k+n and any b∈B of degree 1, one has:

d

(
ωk+n

bn

)

=
bn dωk+n−(d bn)∧ωk+n

b2n

Thus, for any n∈Z, one has (O-linear) morphisms of sheaves

d: Ω̃p
B/O(n)−−→ Ω̃p+1

B/O(n)

and we obtain, for each n, a complex of sheaves on P:

˜DeRham(M, n)= 0−−→OP(n)
d−→ Ω̃B/O(n)

d−→ ...
d−→ Ω̃p

B/O(n)−−→ ...

which can be reformulated as

0−−→OP(n)
d−→ (π∗M)(n−1)−−→ ...−−→ (π∗ΛpM)(n−p)−−→ ...

It should be noticed that ˜DeRham(M, n) is not the complex obtained for n=0

twisted by OP(n), because the differential is not OP-linear.

Again, one has that iD◦d+d ◦iD= multiplication by n, on Ω̃p
B/O(n). Hence,

one has:

Proposition 1.10. If X is a scheme over Q, then the complexes K̃os(M)(n)

and ˜DeRham(M, n) are homotopically trivial for any n �=0.

Corollary 1.11. Let X be a scheme over Q. For any n �=0, the exact sequences

0−−→Ωp
P/X(n)−−→ Ω̃p

B/O(n)−−→Ωp−1
P/X(n)−−→ 0

split as sheaves of O-modules (but not as OP-modules).
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2. Global Euler sequence of a module and Koszul complexes

Assume that (X,O) is a k-scheme, where k is a ring (just for simplicity, one

could assume that k is another scheme). Let M be an O-module and B=S·M the

symmetric algebra over O. Instead of considering the module of Kähler differentials

of B over O, we shall now consider the module of Kähler differentials over k, that

is, ΩB/k. As it happened with ΩB/O (Section 1), the module ΩB/k is a graded B-
module in a natural way. The O-derivation D : B→B is in particular a k-derivation,

hence it defines a morphism iD : ΩB/k→B, which is nothing but the composition of

the natural morphism ΩB/k→ΩB/O with the inner product iD : ΩB/O→B defined

in Section 1. Again we obtain a complex of B-modules (Ω·B/k, iD) which we denote

by Kos(M/k):

(4) ... Ωp
B/k

iD
Ωp−1

B/k

iD
...

iD
ΩB/k

iD
B 0

and for each n≥0 a complex of O-modules

Kos(M/k)n=... [Ωp
B/k]n

iD
... [ΩB/k]n

iD
SnM 0

By homogeneous localization one has a complex of OP-modules, denoted by

K̃os(M/k):

... Ω̃p
B/k

iD
Ω̃p−1

B/k

iD
... Ω̃B/k

iD
OP 0

Theorem 2.1. The complex K̃os(M/k) is acyclic (that is, an exact sequence).

Moreover,

Ωp
P/k =Ker

(
Ω̃p

B/k

iD−→ Ω̃p−1
B/k

)

Hence one has exact sequences

0−−→Ωp
P/k −−→ Ω̃p

B/k −−→Ωp−1
P/k −−→ 0

and right and left resolutions of Ωp
P/k:

0−−→Ωp
P/k −−→ Ω̃p

B/k −−→ Ω̃p−1
B/k −−→ ...−−→ Ω̃B/k −−→OP −−→ 0

...−−→ Ω̃e
B/k −−→ Ω̃e−1

B/k −−→ ...−−→ Ω̃p+1
B/k −−→Ωp

P/k −−→ 0

In particular, for p=1 the exact sequence

(5) 0−−→ΩP/k −−→ Ω̃B/k −−→OP −−→ 0

is called the (global) Euler sequence.
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Proof. It is completely analogous to the proof of Theorem 1.4. �

Let K̃os(M/k)n :=π∗(K̃os(M/k)(n)). The natural morphisms

[Ωp
B/k]n −−→π∗

(
Ω̃p

B/k(n)
)

give a morphism of complexes

Kos(M/k)n −−→ K̃os(M/k)n

In complete analogy to the relative setting we have the following:

Theorem 2.2. Let M be a finitely generated quasi-coherent module on a

scheme (X,O), B=S·M, P=ProjB and π : P→X the natural morphism. Let d′

be the greatest integer such that Ωd′

B/k �=0 and n>0. Then:

1. If Rjπ∗(Ω̃
i
B/k(n))=0 for any j>0 and any 0≤i≤d′, then K̃os(M/k)n is

acyclic.

2. If (1) holds and the natural morphism [Ωi
B/k]n→π∗(Ω̃

i
B/k(n)) is an isomor-

phism for any 0≤i≤d′, then Kos(M/k)n is also acyclic.

Theorem 2.3. Let X be a Noetherian scheme and M a coherent module on X .

The Koszul complexes Kos(M/k)n and K̃os(M/k)n are acyclic for n�0.

2.1. Koszul versus De Rham (Global case)

Now we pass to the De Rham complex (over k). The k-linear differentials

d : Ωp
B/k −−→Ωp+1

B/k

give a (global) De Rham complex

DeRham(M/k)≡ 0−−→B d−→ΩB/k
d−→ ...

d−→Ωp−1
B/k

d−→Ωp
B/k −−→ ...

which is bounded if X is of finite type over k. Since d is homogeneous of degree 0,

one has for each n≥0 a complex of O-modules (with k-linear differential)

DeRham(M/k)n ≡ 0−−→SnM d−→ [ΩB/k]n
d−→ ...

d−→ [Ωp
B/k]n −−→ ...

One has again Cartan’s formula: iD◦d+d ◦iD= multiplication by n, on [Ωp
B/k]n

and then:

Proposition 2.4. If X is a scheme over Q, then the complexes Kos(M/k)n
and DeRham(M/k)n are homotopically trivial (in particular, acyclic) for any n>0.
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As in Section 1.2, we can take homogeneous localizations: for each n∈Z, the
differentials Ωp

B/k→Ωp+1
B/k induce k-linear morphisms

d: Ω̃p
B/k(n)−−→ Ω̃p+1

B/k(n)

and one obtains a complex of OP-modules (with k-linear differential)

˜DeRham(M/k, n)= 0−−→OP(n)
d−→ Ω̃B/k(n)

d−→ ...
d−→ Ω̃p

B/k(n)−−→ ...

Again, the differentials of Koszul and De Rham complexes are related by Car-

tan’s formula: iD◦d+d ◦iD= multiplication by n, on Ω̃p
B/k(n), so one has:

Proposition 2.5. Let X be a scheme over Q. The complexes K̃os(M/k)(n)

and ˜DeRham(M/k, n) are homotopically trivial (in particular, acyclic) for any

n �=0.

Corollary 2.6. If X is a scheme over Q, then for any n �=0, the exact se-

quences

0−−→Ωp
P/k(n)−−→ Ω̃p

B/k(n)−−→Ωp−1
P/k (n)−−→ 0

split as sheaves of k-modules (but not as OP-modules).

3. Cohomology of projective bundles

In this section we assume that E is a locally free sheaf of rank r+1 on a k-

scheme (X,O). Let B=S·E be its symmetric algebra over O and P=ProjB
π
−−→X

the corresponding projective bundle. Our aim is to determine the cohomology of

the sheaves Ωp
P/X(n) and Ωp

P/k(n).

3.1. Cohomology of Ωp
P/X(n)

Notations: In order to simplify some statements, we shall use the following

conventions:

1. SpE=0 whenever p<0, and analogously for exterior powers.

2. For any integer p, let p̄=r+1−p.

3. For any O-module M, we shall denote by M∗ its dual Hom (M,O).

We shall use the following well known result on the cohomology of a projective

bundle:
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Proposition 3.1. Let n be a non negative integer. Then

Riπ∗OP(n)=

{
0 for i �=0

SnE for i=0

If n is a positive integer, then

Riπ∗OP(−n)=

{
0 for i �=r

Sn−r−1E∗⊗Λr+1E∗ for i=r

We shall also use without further explanation a particular case of projection

formula: for any quasi-coherent module N on X and any locally free module L on

P such that Rjπ∗L is locally free (for any j), one has

Riπ∗(π
∗N⊗L)=N⊗Riπ∗L

Proposition 3.2. Let n be a non negative integer. Then

Riπ∗Ω̃
p
B/O(n)=

{
0 for i �=0

ΛpE⊗Sn−pE for i=0

For any positive integer n, one has

Riπ∗Ω̃
p
B/O(−n)=

{
0 for i �=r

Λp̄E∗⊗Sn−p̄E∗ for i=r with p̄=r+1−p

Proof. Since Ω̃p
B/O=(π∗ΛpE)(−p), the results follows from Proposition 3.1.

For the second formula we have also used the natural isomorphism Λp̄E=ΛpE∗⊗
Λr+1E . �

Remark 3.3. Notice that ΛpE⊗Sn−pE=[Ωp
B/O]n. Thus, Proposition 3.2 and

Theorem 1.5 tell us that Kos(E)n→K̃os(E)n is an isomorphism for any n≥0 and

the Koszul complexes K̃os(E)n and Kos(E)n are acyclic for any n>0 (thus we obtain

the well known fact of the acyclicity of the Koszul complex of a locally free module).

Let us denote by Kp,n the kernels of the morphisms iD in Kos(E)n, that is,

Kp,n :=Ker
(
ΛpE⊗Sn−pE −−→Λp−1E⊗Sn−p+1E

)

One has the following result (see [12] or [4, Exposé XI] for different approaches).

Theorem 3.4. Let E be a locally free sheaf of rank r+1 on a k-scheme (X,O)

and P=ProjS·E
π
−−→X the corresponding projective bundle.

Let n be a positive integer number.
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1.

Riπ∗Ω
p
P/X =

{
O if 0≤i=p≤r

0 otherwise

2.

Riπ∗Ω
p
P/X(n)=

{
0 if i �=0

Kp,n if i=0

and, if X is a Q-scheme, then

Kp,n⊕Kp−1,n =ΛpE⊗Sn−pE .

3.

Riπ∗Ω
p
P/X(−n)=

{
0 if i �=r

K∗
r−p,n if i=r

and, if X is a Q-scheme, then

K∗
r−p,n⊕K∗

r−p+1,n =Λp̄E∗⊗Sn−p̄E∗

Proof. Let n≥0. By Theorem 1.4

0−−→Ωp
P/X(n)−−→ Ω̃p

B/O(n)−−→ ...−−→ Ω̃B/O(n)−−→OP(n)−−→ 0

is a resolution of Ωp
P/X(n) by π∗-acyclic sheaves (by Proposition 3.2). One concludes

then by Proposition 3.2 and Remark 3.3.

(3) follows from (2) and (relative) Grothendieck duality: one has an isomor-

phism Ωp
P/X=Hom (Ωr−p

P/X ,Ωr
P/X) and then

Rπ∗Ω
p
P/X(−n)�Rπ∗Hom (Ωr−p

P/X(n),Ωr
P/X)�RHom (Rπ∗Ω

r−p
P/X(n)[r],O)

and one concludes by (2).

Finally, the statements of (2) and (3) regarding the case that X is a Q-scheme

follow from Corollary 1.11. �

Corollary 3.5. (Bott’s formula) Let Pr be the projective space of dimension

r over a field k. Let n be a positive integer number.

1.

dimk H
q(Pr,Ω

p
Pr
)=

{
1 if 0≤q=p≤r

0 otherwise

2.

dimk H
q(Pr,Ω

p
Pr
(n))=

{
0 if q �=0(
n+r−p

n

)(
n−1
p

)
if q=0
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3.

dimk H
q(Pr,Ω

p
Pr
(−n))=

{
0 if q �=r(
n+p
n

)(
n−1
r−p

)
if q=r

Proof. By Theorem 3.4, it is enough to prove that dimk Kp,n=
(
n+r−p

n

)(
n−1
p

)
.

From the exact sequence

0−−→Kp,n −−→ΛpE⊗Sn−pE −−→Kp−1,n −−→ 0

it follows that dimk Kp,n+dimk Kp−1,n=
(
r+1
p

)(
n−p+r

r

)
; hence it suffices to prove

that (
n+r−p

n

)(
n−1

p

)

+

(
n+r−p+1

n

)(
n−1

p−1

)

=

(
r+1

p

)(
n−p+r

r

)

which is an easy computation if one writes
(
a
b

)
= a!

b!(a−b)! . �

Remark 3.6. (1) We can give an interpretation of H0(Pr,Ω
p
Pr
(n)) in terms of

differentials forms of the polynomial ring k[x0, ..., xr]; one has the exact sequence

0−−→H0(Pr,Ω
p
Pr
(n))−−→ [Ωp

k[x0,...,xr ]/k
]n

iD−→ [Ωp−1
k[x0,...,xr ]/k

]n

that is, H0(Pr,Ω
p
Pr
(n)) are those p-forms ωp∈Ωp

k[x0,...,xr ]/k
which are homogeneous

of degree n and such that iDωp=0, where D=
∑r

i=0 xi∂/∂xi.

(2) From the exact sequence

0−−→H0(Pr,Ω
p
Pr
(n))−−→ΛpE⊗Sn−pE −−→ ...−−→ E⊗Sn−1E −−→SnE −−→ 0

we can give a different combinatorial expression of dimk H
0(Pr,Ω

p
Pr
(n)) (as Verdier

does):

dimk H
0(Pr,Ω

p
Pr
(n))=

p∑

i=0

(−1)i
(
r+1

p−i

)(
n+r−p+i

r

)

.

It follows from Theorem 3.4 that Hq(P,Ωp
P/X)=Hq−p(X,O). For the twisted

case we have the following:

Corollary 3.7. Let X be a proper scheme over a field k of characteristic zero.

Let E be a locally free module on X of rank r+1 and P=ProjS·E the associated

projective bundle. Then, for any positive integer n, one has:

1. dimk H
q(P,Ωp

P/X(n))=
∑p

i=0(−1)i dimHq(X,Λp−iE⊗Sn−p+iE).
2. dimk H

q(P,Ωp
P/X(−n))=

∑p
i=0(−1)i dimHq−r(X,Λp̄+iE∗⊗Sn−p̄−iE∗)

with p̄=r+1−p.
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Proof. (1) By Corollary 1.11, one has

Hq(P,Ωp
P/X(n))⊕Hq(P,Ωp−1

P/X(n))=Hq(P, Ω̃p
B/O(n))

and Hq(P, Ω̃p
B/O(n))=Hq(X,ΛpE⊗Sn−pE) by Proposition 3.2. Conclusion follows.

(2) is completely analogous. �

3.2. Cohomology of Ωp
P/k(n)

Let us consider the exact sequence of differentials

0−−→ΩX/k⊗OB−−→ΩB/k −−→ΩB/O −−→ 0

This sequence locally splits: indeed, if E is trivial, then E=E⊗kO and B=
B⊗kO, with B=S·E; hence, ΩB/O=ΩB/k⊗kO and there is a natural morphism

ΩB/k⊗kO→ΩB/k which is a section of ΩB/k→ΩB/O.

Remark 3.8. The exact sequence is a sequence of graded B-modules, hence it

gives an exact sequence of O-modules in each degree. In particular, in degree 0 one

obtains an isomorphism ΩX/k=[ΩB/k]0, and an exact sequence in degree 1:

0−−→ΩX/k⊗OE −−→ [ΩB/k]1 −−→ E −−→ 0

which is nothing but the Atiyah extension.

Taking homogeneous localizations we obtain an exact sequence of OP-modules

0−−→π∗ΩX/k −−→ Ω̃B/k −−→ Ω̃B/O −−→ 0

which splits locally (on X).

Proposition 3.9. Let n be a positive integer. Then:

1.

Riπ∗Ω̃
p
B/k =

⎧
⎪⎨

⎪⎩

0 for i �=0, r

Ωp
X/k for i=0

Ωp−r−1
X/k for i=r

2.

Riπ∗Ω̃
p
B/k(n)=

{
0 for i �=0

[Ωp
B/k]n for i=0
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3. Riπ∗Ω̃
p
B/k(−n)=0 for i �=r and Rrπ∗Ω̃

p
B/k(−n) is locally isomorphic to

p⊕

q=0

(Ωp−q
X/k⊗Λq̄E∗⊗Sn−q̄E∗)

with q̄=r+1−q.

4. Furthermore, if X is a smooth k-scheme (of relative dimension d), then

Rrπ∗Ω̃
p
B/k(−n)=

[
Ωd+p̄

B/k

]∗
n
⊗Ωd

X/k

Proof. If E is trivial, then Ω̃B/k=π∗ΩX/k⊕Ω̃B/O, so Ω̃p
B/k=

⊕p
q=0 π

∗Ωp−q
X/k⊗

Ω̃q
B/O and (1)–(3) follow from Proposition 3.2 in this case. Since E is locally trivial,

we obtain the vanishing statements of (1)–(3).

(1) The natural morphism Ωp
X/k→π∗Ω̃

p
B/k is an isomorphism because it is

locally so. The natural morphism Ω̃r+1
B/k→Ωr+1

B/O gives a morphism Rrπ∗Ω̃
r+1
B/k→

Rrπ∗Ω̃
r+1
B/O=O, which is an isomorphism because it is locally so. Finally, for any

p≥0, the natural morphism Ω̃p
B/k⊗Ω̃r+1

B/k→Ω̃p+r+1
B/k induces a morphism π∗(Ω̃

p
B/k)⊗

Rrπ∗(Ω̃
r+1
B/k)→Rrπ∗Ω̃

p+r+1
B/k , i.e. a morphism Ωp

X/k→Rrπ∗Ω̃
p+r+1
B/k , which is an iso-

morphism because it is locally so.

(2) The natural morphism [Ωp
B/k]n→π∗Ω̃

p
B/k(n) is an isomorphism because it

is locally so.

It only remains to prove (4), which is a consequence of (relative) Grothendieck

duality. Indeed, notice that, under the smoothness hypothesis, Rrπ∗Ω̃
p
B/k(−n) is

locally free, by (3). Hence, if suffices to compute its dual. This is given by duality:

the relative dualizing sheaf is Ωr
P/X=Ω̃r+1

B/O and one has isomorphisms Ω̃d+r+1
B/k =

Ω̃r+1
B/O⊗π∗Ωd

X/k and Hom (Ω̃p
B/k, Ω̃

d+r+1
B/k )=Ω̃d+p̄

B/k ; then:

[
Rrπ∗Ω̃

p
B/k(−n)

]∗
=π∗Hom P(Ω̃

p
B/k(−n), Ω̃r+1

B/O)

=π∗[Hom P(Ω̃
p
B/k(−n), Ω̃d+r+1

B/k )⊗π∗(Ωd
X/k)

∗]

= (π∗Ω̃
d+p̄
B/k(n))⊗(Ωd

X/k)
∗ (2)
= [Ωd+p̄

B/k ]n⊗(Ωd
X/k)

∗. �

Corollary 3.10. The Koszul complexes Kos(E/k)n and K̃os(E/k)n are acyclic

for n>0 and Kos(E/k)n→K̃os(E/k)n is an isomorphism for any n≥0.

Let us denote by Kp,n the kernels of the morphisms iD in the Koszul complex

Kos(E/k)n; that is,
Kp,n :=Ker

(
[Ωp

B/k]n −−→ [Ωp−1
B/k ]n

)
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Theorem 3.11. Let E be a locally free sheaf of rank r+1 on a k-scheme (X,O)

and P=ProjS·E
π
−−→X the corresponding projective bundle.

Let n be a positive integer. One has:

1. Riπ∗Ω
p
P/k=Ωp−i

X/k.

2.

Riπ∗Ω
p
P/k(n)=

{
0 for i �=0

Kp,n for i=0

and, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of O-

modules)

Kp,n⊕Kp−1,n = [Ωp
B/k]n

3. Riπ∗Ω
p
P/k(−n)=0 for i �=r and Rrπ∗Ω

p
P/k(−n) is locally isomorphic to

p⊕

q=0

Ωp−q
X/k⊗K∗

r−q,n

Moreover, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of

O-modules)

Rrπ∗Ω
p
P/k(−n)⊕Rrπ∗Ω

p−1
P/k (−n)=Rrπ∗Ω̃

p
B/k(−n)

4. If X is a smooth k-scheme (of relative dimension d), then

Rrπ∗Ω
p
P/k(−n)=K∗

d+r−p,n⊗Ωd
X/k

and, if X is a Q-scheme, then one has an isomorphism (of k-modules, not of O-

modules)

Rrπ∗Ω
p
P/k(−n)⊕Rrπ∗Ω

p−1
P/k (−n)=

[
Ωd+p̄

B/k

]∗
n
⊗Ωd

X/k

Proof. If E is trivial, then ΩP/k=π∗ΩX/k⊕ΩP/X , so Ωp
P/k=

⊕p
q=0 π

∗Ωq
X/k⊗

Ωp−q
P/X and (1)–(3) follow from Theorem 3.4 in this case. Since E is locally trivial,

we obtain the vanishing statements of (1)–(3).

(1) The exact sequences 0→Ωp
P/k→Ω̃p

B/k→Ωp−1
P/k →0 induce morphisms

π∗Ω
p−i
P/k −−→R1π∗Ω

p−i+1
P/k −−→ ...−−→Riπ∗Ω

p
P/k

whose composition with the natural morphism Ωp−i
X/k→π∗Ω

p−i
P/k gives a morphism

Ωp−i
X/k→Riπ∗Ω

p
P/k. This morphism is an isomorphism because it is locally so.

(2) The exact sequence 0→Ωp
P/k(n)→Ω̃p

B/k(n)→Ω̃p−1
B/k(n) induces, taking direct

image, the isomorphism π∗Ω
p
P/k(n)=Kp,n.

(4) follows from (2) and (relative) Grothendieck duality. Indeed, notice that,

under the smoothness hypothesis, Rrπ∗Ω
p
P/k(−n) is locally free, by (3). Hence, if
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suffices to compute its dual. This is given by duality: the relative dualizing sheaf

is Ωr
P/X and one has isomorphisms Ωd+r

P/k =Ωr
P/X⊗π∗Ωd

X/k and Hom (Ωp
P/k,Ω

d+r
P/k )=

Ωd+r−p
P/k ; then:

[
Rrπ∗Ω

p
P/k(−n)

]∗
=π∗Hom P(Ω

p
P/k(−n),Ωr

P/k)

=π∗[Hom P(Ω
p
P/k(−n),Ωd+r

P/k )⊗π∗(Ωd
X/k)

∗]

= (π∗Ω̃
d+r−p
P/k (n))⊗(Ωd

X/k)
∗ (2)
= Kd+r−p,n⊗(Ωd

X/k)
∗

Finally, the statements of (2)–(4) regarding the case of a Q-scheme follow from

Corollary 2.6. �

Remark 3.12. For n=1 a little more can be said (as Verdier does): The natural

morphism Ωp
X/k⊗E→π∗Ω

p
P/k(1) is an isomorphism. Indeed, the exact sequence

0−−→ΩX/k⊗B−−→ΩB/k −−→ΩB/O −−→ 0

induces for each p an exact sequence

0−−→Ωp
X/k⊗B−−→Ωp

B/k −−→Ωp−1
B/k⊗ΩB/O −−→Ωp−2

B/k⊗S2ΩB/O −−→ ...

and taking degree 1, an exact sequence

0−−→Ωp
X/k⊗E −−→ [Ωp

B/k]1 −−→Ωp−1
X/k⊗E −−→ 0

On the other hand, taking π∗ in the exact sequence

0−−→Ωp
P/k(1)−−→ Ω̃p

B/k(1)−−→Ωp−1
P/k (1)−−→ 0

gives the exact sequence

0−−→π∗Ω
p
P/k(1)−−→ [Ωp

B/k]1 −−→π∗Ω
p−1
P/k (1)−−→ 0

Thus, the isomorphism Ωp
X/k⊗E→π∗Ω

p
P/k(1) is proved by induction on p.

Remark 3.13. It is known (see [1] or [6]) that Rπ∗Ω
p
P/k is decomposable, i.e.,

one has an isomorphism in the derived category Rπ∗Ω
p
P/k=

⊕r
i=0 Ω

p−i
X/k[−i]. Let us

see that, for p∈[0, r], this is a consequence of Theorem 2.1 and Proposition 3.9.

Indeed, by Theorem 2.1, one has the exact sequence

0−−→Ωp
P/k −−→ Ω̃p

B/k −−→ Ω̃p−1
B/k −−→ ...−−→ Ω̃B/k −−→OP −−→ 0

and, by Proposition 3.9, Ω̃p−i
B/k are π∗-acyclic for any i≥0 and π∗Ω̃

p−i
B/k=Ωp−i

X/k. Then

Rπ∗Ω
p
P/k ≡ 0−−→Ωp

X/k −−→Ωp−1
X/k −−→ ...−−→ΩX/k −−→O−−→ 0

and, since the differential iD : Ωj
X/k→Ωj−1

X/k is null, we obtain the result.
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The decomposability of Rπ∗Ω
p
P/k implies an isomorphism

Hq(P,Ωp
P/k)=

r⊕

i=0

Hq−i(X,Ωp−i
X/k)

For the twisted case we have the following:

Corollary 3.14. Let X be a proper scheme over a field k of characteristic zero.

Let E be a locally free module on X of rank r+1 and P=ProjS·E the associated

projective bundle. Then, for any positive integer n, one has:

1. dimk H
q(P,Ωp

P/k(n))=
∑p

i=0(−1)i dimk H
q(X, [Ωp−i

B/k]n).

2. If X is smooth over k of dimension d, then

dimk H
q(P,Ωp

P/k(−n))=

d+r−p∑

i=0

(−1)i dimk H
d+r−q(X, [Ωd+r−p−i

B/k ]n)

Proof. (1) By Corollary 2.6,

Hq(P,Ωp
P/k(n))⊕Hq(P,Ωp−1

P/k (n))=Hq(P, Ω̃p
B/k(n))

and Hq(P, Ω̃p
B/k(n))=Hq(X, [Ωp

B/k]n) by Proposition 3.9. Conclusion follows.

(2) follows from (1) and duality. �
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