
Ark. Mat., 54 (2016), 39–54
DOI: 10.1007/s11512-015-0219-x
c© 2015 by Institut Mittag-Leffler. All rights reserved

Distribution of random Cantor sets on tubes

Changhao Chen

Abstract. We show that there exist (d−1)-Ahlfors regular compact sets E⊂R
d, d≥2 such

that for any t<d−1, we have

sup
T

Hd−1(E∩T )

w(T )t
<∞

where the supremum is over all tubes T with width w(T )>0. This settles a question of T.

Orponen. The sets we construct are random Cantor sets, and the method combines geometric and

probabilistic estimates on the intersections of these random Cantor sets with affine subspaces.

1. Introduction

A set E⊂R
d(d≥2) is called tube null if for any ε>0, there exist countable

many tubes {Ti} covering E and
∑

i w(Ti)
d−1<ε. Here and in what follows, a tube

T with width w=w(T )>0 is the w/2-neighborhood of some line in R
d. We always

assume that our tubes have positive width.

This notion comes from the study of the localization problem of the Fourier

transform in dimension d≥2 (this problem can be regarded as looking for the ana-

logues of Riemann’s localization principle in higher dimensions). In [2], they proved

that if E⊂B (here B is the unit ball of Rd) is tube null, then E is a Set of Diver-

gence for the Localization Problem (SDLP). It’s an open problem whether every

SDLP is tube null, for more details see [2].

It’s easy to see that a set E⊂R
d with Hd−1(E)=0 is tube null. Indeed,

[2, Proposition 7] claims that if E⊂R
d with 0<Hd−1(E)<∞, then E is tube null.

This implies

(1) sup
T

Hd−1(E∩T )
w(T )d−1

=∞.
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Since if there is a positive constant C such that Hd−1(E∩T )≤Cw(T )d−1 for all

tubes T , then for any countable family of tubes {Ti} which cover E, we have
∑

i

w(Ti)
d−1 ≥C−1

∑

i

Hd−1(E∩Ti)≥C−1Hd−1(E),

which would contradict the tube nullity of E. Thus (1) holds. In [5], they showed

that the Von Koch curve is tube null. For more tube null examples, see [2].

For the sets which are not tube null, in [2] they showed that for any s∈
(d−1/2, d), there exists set E with dimH(E)=s and E is not tube null. The sharp

low bound of above s was obtained in [10], they proved that there exist set with

Hausdorff dimension d−1 which are not tube null (thus answered the question

of [2]).

Motivated by [1, Proposition 1], Carbery asks to determine which pairs (s, t)∈
[0, d]×[0, d] are admissible in the sense that there exists a set E⊂R

d with 0<

Hs(E)<∞ and satisfies

(2) sup
T

Hs(E∩T )
w(T )t

<∞.

This problem can be regarded as to concern the distribution of sets on tubes. By

the works of [1], [2], [7] and [10] (different contributions), we know that all the pairs

(s, t) with t≤min{d−1, s} except (d−1, d−1) are admissible. In [7], Orponen raised

the following question: is it possible to construct a set E⊂R
d with 0<Hd−1(E)<∞

such that for every t<d−1,

(3) sup
T

Hd−1(E∩T )
w(T )t

<∞?

We are able to settle this question.

Theorem 1.1. There exists a (d−1)-Ahlfors regular compact set E⊂R
d, such

that for every t<d−1,

(4) sup
T

Hd−1(E∩T )
w(T )t

<∞.

Recall that E⊂R
d is called Q-Ahlfors regular for 0<Q≤d, if there exist positive con-

stant C such that rQ/C≤HQ(E∩B(x, r))≤CrQ for all x∈E and 0<r<diam(E),

where diam(E) denotes the diameter of E.

The paper is organized as follows. The random Cantor sets are introduced

in Section 2 together with the required notations, definitions and results. In Sec-

tion 3 we present some geometric lemmas. Section 4 contains the main probabilistic

argument.
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2. Random Cantor sets and their projections

In this section, we define the random Cantor sets and state our results for

them. Closely related random models have been consider in [3] and [10].

Let (Mn) and (Nn) be sequences of integers with 1≤Nn≤Md
n (Mn≥2) for all n.

Denote rn=
∏n

k=1 M
−1
k , and Pn=

∏n
k=1 Nk. We decompose the unit cube [0, 1]d into

Md
1 interior disjoint M1-adic closed subcubes and randomly choose interior disjoint

N1≤Md
1 of these closed subcubes such that each of the closed subcubes has the

same probability (i.e. N1/M
d
1 ) of being chosen, and denote their union by E1.

Given En, a random collection of Pn interior disjoint rn-adic closed subcubes of

[0, 1]d, independently inside each of these closed cubes we choose Nn+1 interior

disjoint (rn+1)-adic closed subcubes such that each of these closed subcubes has

the same probability (i.e. Nn+1/M
d
n+1) of being chosen. Let En+1 be the union

of the chosen closed cubes. Denote by ω the element in the probability space Ω

induced by the construction described above. Let E=Eω be the random limit set

E=

∞⋂

n=1

En.

We also denote the random limit set by E(Mn, Nn) when we want to stress the

connection to the deterministic sequences Mn and Nn.

Remark 2.1. One natural way to choose subcubes is that we first randomly

choose one such that every subcube has the same probability of being chosen. Then

we choose the second subcube from the remaining subcubes such that every sub-

cubes has the same probability of being chosen, and go on this way. But in fact, the

above model contains more general random Cantor sets. For two specific examples

see Example 2.4.

Important assumption: In this paper, we assume that Mn is uniformly bounded

which means that there exists M∈N, such that Mn≤M for every n∈N. Then it’s

easy to see that all the Cantor sets E(Mn, Nn) have Hausdorff dimension s, where

(5) s= lim inf
n→∞

logPn

− log rn
.
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Let G(d,m) denote the family of all m-dimensional linear subspaces of Rd and

A(d,m) denote the family of all m-dimensional planes of Rd that intersect the cube

[0, 1]d. For every V ∈A(d,m), denote by πV the orthogonal projection onto V and by

dimH F the Hausdorff dimension of a set F . Recall the classical Marstand–Mattila

projection theorem (see e.g. [4] and [6]): Let F⊂R
d (d≥2) be a Borel set with

Hausdorff dimension s. If s≤k, then the orthogonal projection of F onto almost

all k-planes has Hausdorff dimension s; if s>k, then the orthogonal projection of

F onto almost all k-planes has positive k-dimensional Lebesgue measure.

Recently, there has been a growing interest in showing that for various random

fractals there are a.s. no exceptional directions in the projection theorem. We will

prove the following projection theorem for the above random Cantor sets.

Theorem 2.2. If s≤k, then almost surely dimH πV (E)=s for all V ∈G(d, k).

For other random sets, same kind of results have been recently obtained e.g.

in [3], [8]–[11] and [12]. For V ∈G(d, k) such that V ⊥ is not parallel to any coordinate

hyperplane, the claim of Theorem 2.2 follows from [11, Theorem 10.1]. In this paper,

we give a direct proof for Theorem 2.2 without relying on the theory of general

spatially independent martingales developed in [11]. In particular, we verity in

detail the claim of [11, Remark 10.3(ii)] for the model at hand.

We consider the natural random measure on the random Cantor set. We denote

by Dn=Dn([0, 1]
d), n∈N all the rn-adic closed subcubes of the unit cube [0, 1]d.

Let E=
⋂∞

n=1 En be a realization. For any n and Q∈Dn, define

μ0(Q)=

{
P−1
n if Q⊂En,

0 otherwise.

By Kolmogorov’s extension theorem, there is a unique measure μ on [0, 1]d such

that μ(Q)=μ0(Q) for any Q∈Dn, n∈N.
In the following, tubular neighborhoods of the elements in A(d,m) are called

strips (1≤m≤d−1). More precisely, a strip S of width w(S)=δ>0, defined by an

element W∈A(d,m), is the set

S=
{
x∈R

d | dist(x,W )<δ/2
}

where dist is the Euclidean distance. We also denote this strip by S(W ) when it

was induced by W . Denote by S(d,m) all the strips induced by the element of

A(d,m) as above. Notice that we call the strips in S(d, 1) tubes.

Theorem 2.2 is easily deduced from the following estimate for the projections

of the measure μ.
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Lemma 2.3. If s≤k, then almost surely for any 0<t<s,

(6) sup
S∈S(d,d−k)

μ(E∩S)
w(S)t

<∞.

Lemma 2.3 will be proved in Section 4. Next we prove Theorem 2.2 and

Theorem 1.1 assuming that Lemma 2.3 holds.

Proof of Theorem 2.2. Clearly dimH πV (E)≤dimH(E)≤s for all V ∈G(d, k),

so it remains to verify the lower bound.

Using Lemma 2.3 we see that, almost surely, the estimate

(πV )∗μ(B(x, r))

(2r)t
=

μ(E∩S′)

(2r)t
≤ sup

S∈S(d,d−k)

μ(E∩S)
w(S)t

<∞

holds for all V ∈G(d, k), x∈V and r and simultaneously for all t<s, where (πV )∗μ

is the image measure of μ under the orthogonal projection of πV and S′ is the strip

with width 2r induced by orthogonal complement of V at the point x. Thus with

full probability dimH πV (E)≥t holds for all V ∈G(d, k) (see e.g. [4, Chapter 4]).

Approaching s along a sequence gives, almost surely for all V ∈G(d, k), the lower

bound dimH E≥s. �

We prove Theorem 1.1 by choosing Mn=2 and Nn=2d−1 for all n∈N in the

above random construction.

Proof of Theorem 1.1. Let Mn=2 and Nn=2d−1 for all n∈N. Then for every

E∈E(2, 2d−1) and for the natural measure μ on E, we have that

(7) μ
(
B(x, r)

)
� rd−1

for x∈E and 0<r<1 where the symbol � means that the ratio of both sides is

bounded above and below by positive and finite constants which does not depend

on x and r. Thus we have that μ�Hd−1|E (see e.g. [6, Chapter 6]), and so we can

replace μ by Hd−1 in (6). It implies that almost surely for any t<d−1, we have

(8) sup
S∈S(d,d−k)

Hd−1(E∩S)
w(S)t

<∞.

Since μ is a probability measure, it follows that 0<Hd−1(E)<∞. By (7) all the

sets E(2, 2d−1) are (d−1)-Ahlfors regular. Thus we complete the proof. �

Now we present two concrete examples of random Cantor sets on R
2 that fit

into our general frame work.
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Figure 1. The first three steps in the construction of E.

Figure 2. The first three steps in the construction of F .

Example 2.4. Consider the unit cube [0, 1]2. Let Nn=Mn=2 for all n∈N. Let
Q1=[0, 1/2]×[0, 1/2], Q2=[1/2, 1]×[0, 1/2], Q3=[1/2, 1]×[1/2, 1] andQ4=[0, 1/2]×
[1/2, 1]. Let L={Q1, Q4}, R={Q2, Q3}, L̃={Q1, Q3}, and D̃={Q2, Q4} corre-

sponding to ‘left’, ‘right’, ‘bottom left and top right’, and ‘bottom right and top

left’ subcubes of the unit cube.

Let E1=L or R with the same probability 1/2. Note that then every subcube

has the same probability 1/2 of being chosen. Given En, a random collection of

2n interior disjoint 2n-adic closed subcubes of [0, 1]2, independently inside each of

these cubes we choose the ‘left’ or ‘right’ column of the subcubes in the same way

as E1⊂[0, 1]2. Let En+1 be the union of the chosen cubes. In the end we have the

limit set (for an example see Figure 1)

E=

∞⋂

n=1

En.

If, on the other hand, we define another random process by changing L and R

in the above construction to L̃ and Q̃, we end up with another random set, denoted

by F (2, 2). For an example see Figure 2.

Note that the construction of both random sets E(2, 2) and F (2, 2) are special

cases of our random Cantor sets model which we described at the beginning of this
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section. Note that both of these constructions give rise to random sets as used in

the proof of Theorem 1.1.

In the end, we will show that E(2, 2) and F (2, 2) are “different”. Indeed for

every element E of E(2, 2), we have πy(E)={0}×[0, 1] and H1(πx(E))≤1/2, where

πx, πy are projections onto x-axis, y-axis respectively. But πx(F )=[0, 1]×{0} and

πy(F )={0}×[0, 1] for all F∈F (2, 2).

3. Geometric part

In this section, we present some geometric lemmas. The following results are

adapted from [10] to our setting. In [10], Corollary 3.2 is proved for lines. Here we

give the detailed proof for general affine subspaces of any dimension.

We are going to define the angle between a plane W∈A(d,m) and a hyperplane

H∈A(d, d−1). We assume W∈G(d,m) and H∈G(d, d−1) first. We say that they

have zero angle if W⊂H . Otherwise we have H+W=R
d where

(9) H+W := {h+w :h∈H,w∈W}.

Applying the basic dimension formula in linear algebra for H and W , we have that

dim(H∩W )=m−1. Thus for any x∈H∩W , there is unique affine line �x⊂W,x∈�x,
�x⊥(H∩W ). We choose an affine unit vector e(x)∈�x such that the root of e(x)

is x. Let

θ(H,W ) := θ(H, �x)

for some x∈H∩W (there is only one point in H∩W when m=1), where θ(H, �) is

the angle between the line � and the plane H defined in the usual manner. Since

�x and �y are parallel for any x, y∈H∩W , the angle θ(H,W ) doesn’t depend on

the choice of x. For the case that W∈A(d,m) and H∈A(d, d−1), there are unique

subspaces W ′∈G(d,m) and H ′∈G(d, d−1) parallel to W and H , respectively. We

define θ(H,W ):=θ(H ′,W ′).

Let Hi={x∈Rd :xi=0} for 1≤i≤d. Define

Γn(d,m)=
{
W ∈A(d,m) : min

1≤i≤d
θ(W,Hi)≥ rdn

}

and Γ(d,m)=∪n∈NΓn(d,m). In the following we use C(d) to represent constants

which don’t depend on n. We use #J to denote the cardinality of a set J .

Lemma 3.1. For any n∈N, there is Γ′
n(d,m)⊂Γ(d,m) such that for any W∈

Γn(d,m), there exists W ′∈Γ′
n(d,m) with

Hm(W∩Q)≤Hm
(
W ′∩Q

)
+C(d)rd+m

n

for all Q∈Dn. Furthermore #Γ′
n(d,m)<r

−C(d)
n .
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Figure 3. For d=2, m=1.

Proof. Define a metric among Γ(d,m) by setting

ρ(V,W )= sup
x∈[0,1]d

∣
∣πV (x)−πW (x)

∣
∣.

Let α=rdn, and ε=r2d+1
n . Let Γ′

n(d,m) be an ε-dense subset of Γ(d,m) in the

ρ-metric. There is such an Γ′
n(d,m) with #Γ′

n(d,m)<ε−C(d).

Let W∈Γ′
n(d,m), then we choose W ′∈A1 such that ρ(W,W ′)≤ε. For any

rn-adic cube Q of Dn with Q∩W �=∅, denote by

B(Q,W, ε)=
{
x∈Q∩W : dist(x, ∂Q)≤ ε

}

the “boundary part” of Q∩W and by I(Q,W, ε)=(Q∩W )\B(Q,W, ε) the “interior

part” of Q∩W , see Figure 3. We have that

(10) Q∩W = I(Q,W, 2ε)∪B(Q,W, 2ε).

Now we will provide that I(Q,W, 2ε)⊂πW (W ′∩Q). For every x∈I(Q,W, 2ε)

there is a unique y∈W ′ such that πW (y)=x. Since

dist(x, y)=dist
(
πW (y), πW ′(y)

)
≤ ε

and dist(x, ∂(Q))>2ε, we have y∈B(x, 3ε
2 )⊂Q. It follows that I(Q,W, 2ε)⊂

πW (W ′∩Q) and then

(11) Hm
(
I(Q,W, 2ε)

)
≤Hm

(
Q∩W ′).

Now we intend to provide that Hm(B(Q,W, 2ε))≤C(d)rd+m
n . For any x∈

W∩∂Q, there exists at least one face of Q which contains x. Then choose any

such face and denote it by F (x). Let H(x) be the hyperplane which contains F (x).

Then there is a local orthogonal basis at x, {e1(x), e2(x), ..., em(x)} of W , such that
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em(x)⊥(W∩H(x)) and we denote by (x1, x2, ..., xm) the co-ordinates of x with

respect to this basis. Then

B(Q,W, 2ε)⊂
{

|xm| ≤ 2ε

sinα
in the above local coordinates

}

.

Note that once the face is fixed, |xm| does not depend on the choice of these local

coordinates. Thus

Hm
(
B(Q,W, 2ε)

)
≤ (2

√
mrn)

m−1 2ε

sinα
.

There exists a constant M∈N, such that for n≥M imply sin(rn)>
1
2rn. Thus we

can choose a large constant C(d) such that

(12) Hm
(
B(Q,W, 2ε)

)
≤C(d)rd+m

n

for all n∈N. Applying the estimates (10), (11) and (12), we have

Hm(W∩Q)≤Hm
(
W ′∩Q

)
+C(d)rd+m

n .

Thus we complete the proof. �

Let m=d−k in Lemma 3.1 and recall that the number of r−1
n -adic subcubes

of En is at most r−d
n . Let Γn :=Γn(d, d−k) and Γ:=Γ(d, d−k). Let A, B be two

subset of Rd. Define

|A∩B| :=Hd−k(A∩B).

We have the following easy corollary.

Corollary 3.2. For any n∈N, there is Γ′
n⊂Γ such that for any W∈Γn, there

exists W ′∈Γ′
n with

|W∩En| ≤
∣
∣W ′∩En

∣
∣+C(d)rd−k

n

for any realization En. Further more #Γ′
n≤r

−C(d)
n .

Proof. By Lemma 3.1, we have that for any W∈Γn, there exist W ′∈Γ′
n such

that

(13) |W∩Q| ≤
∣
∣W ′∩Q

∣
∣+C(d)r2d−k

n

for each Q∈Dn and #Γ′
n<r

−C(d)
n . For any realization En, we sum the two sides of

(13) over Q∈Dn such that Q⊂En:

(14)
∑

Q⊂En

|W∩Q| ≤
∑

Q⊂En

∣
∣W ′∩Q

∣
∣+C(d)rd−k

n .

By the definition of |W∩En|, we arrive at the required estimate. �
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For a strip S∈S(d, d−k), denote

Z(S, n)=#{Q is an rn adic cube :Q∩En∩S �=∅}.

For later use in Corollary 4.4, we state the following easy fact as a lemma.

Lemma 3.3. If |W∩En|≤h for all W∈Γn, then for any strip S∈S(d, d−k)

with width 0<w(S)≤rn, we have

Z(S, n)≤C(d)rk−d
n h.

Proof. We assume S(V )∈S(d, d−k) with V ∈Γn first. Let V ⊥∈G(d, k) be the

orthogonal complement of V and z :=V ⊥∩V . Let BV ⊥(y, r) be the ball of V ⊥ with

center y and radius r. Let tn :=rn/2+
√
drn. Since

{Q is an rn adic cube :Q∩En∩S �=∅}⊂V (tn)

where V (tn) is the tn neighborhood of V in R
d, we have

(15) Z(S, n)rdn ≤Hd
(
En∩V (tn)

)
.

Using Fubini’s theorem and the condition |W∩En|≤h for all W∈Γn, we obtain

that

(16) Hd
(
En∩V (tn)

)
=

∫

B
V ⊥ (z,tn)

Hd−k
(
En∩P−1

V ⊥(x)
)
dHk(x)≤ (tn)

kh.

By (15) and (16) we have Z(S, n)rdn≤(tn)
kh. Let C1(d):=(1+2

√
d)k. We get that

Z(S, n)≤C1(d)r
k−d
n h.

For a strip S(V ) with V ∈Γc
n (Γc

n is the complement of Γn that is A(d, d−k)\Γn)

and w(S)≤rn, there is a strip

S̃=
{
x∈R

d : dist(x, Ṽ )≤ 5rn
}

and S⊂S̃. Thus

Z(S, n)≤Z(S̃, n)≤ 10C1(d)r
k−d
n h.

Let C(d)=10C1. Thus the proof is completed. �

Note that the constant C(d) may be different in different places of this section.

For the convenience in what follows we fix a constant C(d) such that the statements

of all the lemmas and corollaries hold with this constant.
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4. Probabilistic part

We use a similar method as in [3] to estimate the intersections of our sets

with affine planes. The random Cantor sets studied in [3] are different from the

ones considered here. We choose interior disjoint closed subcubes at every step of

our constructions, while in [3] overlaps are allowed. Since we assume that Mn are

uniformly bounded, the proof here will be simpler than that of [3]. On the other

hand, we give here the detailed proof for general d and m while in the main part

of [3], it is assumed that d=2, m=1.

We fix a number t<s≤k and let 0<5ε≤s−t. Recall that by (5), there exists

n0∈N such that

(17) r−t−4ε
m ≤ r−s+ε

m ≤Pm ≤ r−s−ε
m

holds for all m≥n0, m∈N. For this n0, there is a constant R0 such that

(18) |W∩En0 | ≤R0Pn0r
t+d−k
n0

,

holds for all W∈A(d, d−k) and any realization En0 . Let W∈Γ, n∈N. Define

Y W
n =

(
Pnr

d
n

)−1|W∩En|.

Denote by P(·|A) the conditional probability conditioned on the event A.

Lemma 4.1. Let n>n0, n∈N and W∈Γ. Then for any positive λ and λ0 with

λ(2
√
drn−1)

d−k(Pnr
d
n)

−1≤λ0≤1, we have

(19) E
(
eλY

W
n

∣
∣En−1

)
≤ e(1+λ0)λY

W
n−1 .

Proof. Let Q1, Q2, ..., QK be the cubes in En−1 hitting W . For each 1≤i≤K,

consider the random variable

(20) Xi =
(
Pnr

d
n

)−1Hd−k(W∩En∩Qi).

Thus we have Y W
n =

∑K
i=1 Xi. For each 1≤i≤K, we have that

(21) E(Xi|En−1)=
(
Pn−1r

d
n−1

)−1|W∩Qi|.

Conditional on En−1, recall that the cubes forming En are chosen independently

inside each Qi, 1≤i≤K. Thus the random variables Xi, 1≤i≤K are independent.

And so eλXi are also independent. This gives

(22) E
(
eλY

W
n

∣
∣En−1

)
=

K∏

i=1

E
(
eλXi

∣
∣En−1

)
.
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For all |x|≤ρ≤1, we use the fact ex≤1+(1+ρ)x and

λXi ≤λ(2
√
drn−1)

d−k
(
Pnr

d
n

)−1 ≤λ0 ≤ 1

for 1≤i≤K, to obtain

(23) eλXi ≤ 1+(1+λ0)λXi.

Thus by (21) and the trivial inequality 1+x≤ex, we have

(24) E
(
eλXi

∣
∣En−1

)
≤ exp

(
(1+λ0)λ

(
Pn−1r

d
n−1

)−1|W∩Qi|
)
.

Combing this with (22) and the definition of Y W
n−1, we finish the proof. �

Let R>2R0C(n0) be a constant where

(25) C(n0) := (2
√
dM)d−k

∞∏

i=n0+1

(
1+rεi

)
.

By applying Lemma 4.1 and the total expectation formula, we have the following

estimate.

Lemma 4.2. For any n>n0, n∈N and W∈Γ, we have the bound

(26) P
(
Y W
n >Rrt−k

n

)
≤ exp

(
−r−ε

n

)
.

Proof. Let λ=C(n0)
−1Pnr

k+3ε
n . We apply Markov’s inequality to the random

variable eλY
W
n . This gives

(27) P
(
Y W
n >Rrt−k

n

)
≤ e−λRrt−k

n E
(
eλY

W
n

)
.

Now we are going to estimate E(eλY
W
n ). By the choice of λ, we have

λ(2
√
drn−1)

d−k
(
Pnr

d
n

)−1 ≤ rεn.

Applying Lemma 4.1 we have

(28) E
(
eλY

W
n

∣
∣En−1

)
≤ e(1+rεn)λY

W
n−1 .

The total expectation formula and estimate (28) imply

(29) E
(
eλY

W
n

)
=E

(
E

(
eλY

W
n

∣
∣En−1

))
≤E

(
e(1+rεn)λY

W
n−1

)
.
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By the choice of λ, n≥n0 and estimate (17), we see that

λ(2
√
drj−1)

d−k
∏n

i=j+1(1+rεi )

Pjrdj
≤

Pnr
k+3ε
n rd−k

j

Pjrdj
≤ rεj ,

holds for all n0<j<n. Applying (29) inductively, we have

(30) E
(
eλY

W
n

)
≤E

(
eλY

W
n0

Qn
i=n0+1(1+rεi )

)
≤ exp

(
Pnr

k+3ε
n R0r

t−k
n0

)
.

The last inequality holds by our choice of λ and the condition that

(31) |W∩En0 | ≤R0Pn0r
t+d−k
n0

holds for all W∈Γ. Combining the estimates (30) and (27), we have

P
(
Y W
n >Rrt−k

n

)
≤ exp

(
−λRrt−k

n +Pnr
k+3ε
n R0r

t−k
n0

)

= exp
(
−Pnr

k+3ε
n rt−k

n

(
C(n0)

−1R−R0r
t−k
n0

rk−t
n

))

≤ exp
(
−r−ε

n

)
.(32)

The last inequality holds since Pnr
t
n≥r−4ε

n and R>2R0C(n0) (we also ask that

R0>1). �

Let n∈N and W∈Γ. Denoted by Gn(W ) the (good) event

|W∩En| ≤RPnr
t+d−k
n +C(d)rd−k

n .

Let Gn be the event that Gn(W ) holds for all W∈Γn. Applying Corollary 3.2 and

Lemma 4.2, we have the following result.

Corollary 4.3. We have P(∪∞
k=1∩∞

n=kGn)=1.

Proof. By Corollary 3.2 we know that if the estimate
∣
∣W ′∩Eω

n

∣
∣≤RPnr

t+1
n

holds for all W ′∈Γ′
n, then the estimate

∣
∣W∩Eω

n

∣
∣≤RPnr

t+1
n +C(d)rd−k

n ,

holds for any W∈Γn. Thus ω∈Gn. Let n≥N0, n∈N. Then by the above argument

we have

P
(
Gc

n

)
≤P

(∣
∣W∩Eω

n

∣
∣>PnRnr

t+d−k
n for some W ′ ∈Γ′

n

)

≤ r−C(d)
n exp

(
−r−ε

n

)
,
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where Gc
n is the complement of Gn. The last inequality holds by Lemma 4.2. Note

that there are at most r
−C(d)
n elements in Γ′

n.

Since the series
∑∞

n=1 r
−C(d)
n exp(−r−ε

n ) converges, the Borel–Cantelli lemma

implies P(∩∞
k=1∪∞

n=kG
c
n)=0. �

Now we are going to estimate the distribution of the natural measure μ=μω

on strips.

Corollary 4.4. Let ω∈∪∞
k=1∩∞

n=kGn. Then

(33) sup
S∈S(d,d−k)

μω(Eω∩S)
w(S)t

<∞.

Proof. Since ω∈∪∞
k=1∩∞

n=kGn, there exits nω such that Eω∈Gn for all n≥nω .

It means the estimate

|W∩En| ≤RPnr
t+d−k
n +C(d)rd−k

n ≤ 2RPnr
t+d−k
n

holds for all n≥nω and all W∈Γn. The last inequality holds by choosing large R.

Let S(W )∈S(d, d−k) with width w(S). We assume w(S)≤rnω first. There

exists n≥nω such that rn+1<w(S)≤rn. By Lemma 3.3, we have Z(S, n)≤
2C(d)RPnr

t
n. Thus

μ(S)≤ 2C(d)Rrtn ≤ 2C(d)RM tw(S)t.

In the case that w(S)>rnω , it’s trivial to see that

(34) sup
S∈S(d,d−k)
w(S)>rnω

μ(E∩S)
w(S)t

≤ r−1
nω

,

since μ is a probability measure. Thus we complete the proof. �

Notice that all the above claims hold for any t<s. Letting t→s through a

countable sequence gives the proof of Lemma 2.3:

Proof of Lemma 2.3. Let 0<t1<t2<... such that tk↗s. For every tk, we denote

by Ωk the event

(35) sup
S∈S(d,d−k)

μ(E∩S)
w(S)tk

<∞.

By Corollary 4.3 and Corollary 4.4, we have P(Ωk)=1. So P(∩∞
k=1Ωk)=1 as well.

Let ω∈∩∞
k=1Ωk, then μω satisfies (35) for every tk.
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For any t<s, there is tk, such that t<tk<s. We have w(S)t≥w(S)
tk when

w(S)≤1. Thus

(36) sup
S∈S(d,d−k)

w(S)≤1

μ(E∩S)
w(S)t

≤ sup
S∈S(d,d−k)

w(S)≤1

μ(E∩S)
w(S)tk

<∞.

Again since μ is a probability measure we have

(37) sup
S∈S(d,d−k)

w(S)>1

μ(E∩S)
w(S)t

≤ 1.

Combing this with the estimate (36), the claim follows. �
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