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Extrapolation from A2 vector-valued
inequalities and applications in the Schrodinger
settings

Lin Tang

Abstract. In this paper, we generalize the Ao extrapolation theorem (CRUZ-URIBE
MARTELL-PEREZ, Extrapolation from Ao weights and applications, J. Funct. Anal. 213 (2004),
412-439) and the A, extrapolation theorem of Rubio de Francia to Schrédinger settings. In addi-
tion, we also establish weighted vector-valued inequalities for Schrodinger-type maximal operators
by using weights belonging to Ag’oo which includes A,. As applications, we establish weighted
vector-valued inequalities for some Schrédinger-type operators.

1. Introduction

In this paper, we consider the Schrodinger differential operator
L=—A+4+V(z) onR" n>3,

where V (z) is a nonnegative potential satisfying a certain reverse Holder inequality.
A nonnegative locally L? integrable function V(z) on R™ is said to belong to
B, for 1<g<oo if there exists C'>0 such that the reverse Holder inequality

1 /a 1
_ Vi(y dy) §C<7 V(y dy)
(|B<z,r> e | ) B o' Y

holds for every x€R™ and 0<r<oo, where B(z,r) denotes the ball centered at
x with radius r. In particular, if V' is a nonnegative polynomial, then V&€ B.
Throughout this paper, we always assume that 0V € B,, 5.

The study of the Schrodinger operator L=—A+4V has recently attracted much
attention; see [3], [4], [12], [11], [16], [23], [28] and [29]. In particular, it should
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be pointed out that Shen [23] proved that Schriodinger-type operators, such as
V(=A+V)7IV, V(=A+V)"V2 (=A+V) 12V with V€B,,, and (~A+V)" with
v€R and V €B, ;, are standard Calderén—Zygmund operators.

Recently, Bongioanni-Harboure—Salinas [3] proved LP(R"™), 1<p<oo, bound-
edness for commutators of Riesz transforms associated with Schrédinger opera-
tor with BMOu(p) functions, which include the BMO functions, and they [4] es-
tablished the weighted boundedness for Riesz transforms, fractional integrals and
Littlewood—Paley functions associated with Schrodinger operators with weights in
the Af°° class, which includes the Muckenhoupt weights. Very recently, the author
([25] and [26]) established weighted norm inequalities for some Schrodinger-type
operators, which include commutators of Riesz transforms, fractional integrals and
Littlewood—Paley functions associated with Schrédinger operators.

On the other hand, extrapolation of weights plays an important role in har-
monic analysis. In particular, Rubio de Francia [22] proved the A, extrapolation
theorem: If the operator T is bounded on LP°(w) for some py, 1<pg<oo, and every
we Ay, then for every p, 1<p<oco, T is bounded on LP(w), weA, (see also [9]
and [14]). Recently, Cruz-Uribe-Martell-Pérez in [5] extended this theorem from
A, weights to A, weights, to pairs of operators, and to the range 0<p<oo in the
context of Muckenhoupt bases; see also [6], [7], [8], [10], [17] and [18].

In this paper, we generalize the A, extrapolation theorem in [5] and the A,
extrapolation theorem of Rubio de Francia to Schrodinger settings and give some
applications.

The paper is organized as follows. In Section 2, we give factorization of Af-*>°,
and establish weighted vector-valued inequalities for Schrodinger-type maximal op-
erators, these results play a crucial role in this paper. In Section 3, we obtain extrap-
olation theorems from A%;> and Af°°. Finally, we establish weighted vector-valued
inequalities for some Schrédinger-type operators in Section 4.

Throughout this paper, we let C' denote constants that are independent of the
main parameters involved but whose value may differ from line to line. By A~B,
we mean that there exists a constant C'>1 such that 1/C<A/B<C.

2. Factorization and vector-valued inequalities

In this section, we give the factorization of Af>° and weighted vector-valued
inequalities for Schrodinger-type maximal operators.

We first recall some notation. Given B=B(z,r) and A>0, we will write AB
for the A-dilate ball, which is the ball with the same center x and with radius Ar.
Similarly, Q(z,r) denotes the cube centered at  with the sidelength r (here and
below only cubes with sides parallel to the coordinate axes are considered), and
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AQ(z,m)=Q(z, Ar). Let f={fr}?2, be a sequence of locally integrable functions

on R, |f(2)]r= (332, [fr(@) )7, and |Tf(2)],= (3272, 1T fi(@)[) 7.
The function my () is defined by

1 1
r)=———=8supsr: —— Viy)dy<1s;.
ple) = s =suf iy [ V) v<1}

Obviously, 0<my (z)<oo if V#£0. In particular, my (z)=1 if V=1, and my (z)~
(1+]|z]) if V=|z|%.

Lemma 2.1. ([23]) There exists lo>0 and Cy>1 such that

i z—y|lmy (z))~lo my (z)
g (e —yimy () 0 < TV

In particular, my (x)~my (y) if |z—y|<C/my(z).

< Co(l+‘a’:—y‘mv(x))lo/(lo-i-l)_

In this paper, we write Wy(B)=(1+7/p(z0))?, where >0, and zy and r de-
notes the center and radius of B respectively.

A weight will always mean a nonnegative function which is locally integrable.
As in [4], we say that a weight w belongs to the class A%? for 1<p<oo, if there is
a constant C' such that for all balls B

(W /Bw(y) dy) (W /Bw_l/(p_”(y) dy)p_1 <c.

We also say that a nonnegative function w satisfies the A7 % condition if there exists
a constant C' such that

My g(w)(z) <Cw(z) fora.e. zeR"”,

where )

Myof(e) =sup g | 11wl
When V=0, we denote My f(x) by M f(z) (the standard Hardy—Littlewood maxi-
mal function). It is easy to see that |f(z)| <My, f(z)<M f(z) for a.e. z€R" and
any 6>0.

Since ¥y(B)>1if >0, we then have APCA,,?"9 for 1<p<oo, where A, denotes
the classical Muckenhoupt weights; see [15] and [20]. We will see that A,€ A2’
for 1<p<oo in some cases. In fact, letting >0 and 0<~y<#, it is easy to check
that w(z)=(1+]z)~ "t ¢ A, and w(z)dz is not a doubling measure, but w(z)=
(1+]z])~ (M € A?? provided that V=1 and Wg(B(zq,r))=(147)°.

We remark that balls can be replaced by cubes in the definitions of Az’e and
My g, since Uy (B)<Uy(2B)<2"0Vy(B).

Next we give the weighted boundedness for My .
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Lemma 2.2. ([27]) Let 1<p<oo, p'=p/(p—1) and assume thatweAg’a. There
exists a constant C>0 such that

| MyprofllLew) <CIfllLew)-

Similar to the classical Muckenhoupt weights (see [15], [19] and [24]), we give
some properties for the weight class Ag’e for p>1.

Proposition 2.3. Let A?>:= APY for p>1. Then the following are
P 6>0*"p g

true:

(i) If 1<p1<p2<oco, then Ap’ CAgv2 :

(ii) wEApe if and only ifw_l/(p I)EAP’O, where 1/p+1/p'=

iii) I weAPOO 1<p<oo, then there exists €>0 such that weA

(iif) p oot

(iv) Let feLlOC(]R”), 0<d<1, then (Mygf)° AL

v) Let 1<p<oo, then we AL if and only if w=wiwsy *, where wy,wy € AP

P 2 1

Proof. (i) and (ii) are obvious by the definition of A%, (iii) is proved in [4].
In fact, from Lemma 5 in [4], we know that if weAg’e, then weAgf% where
po=1+(p—1)/(1+6)<p with §>0 (§ is a constant depending only on the Ao
constant of w, see [4]) and

Op+n(p—1) l nd
- h
. with n=0p+(0+n) ot +(lp+1 )1+5

0o =

We now prove (iv). It will suffice to show that there exists a constant C' such that
for every f, every cube @) and almost every z€@,

_ 5 5
G0y, Mol W) dy <My s

Fix @ and decompose f as f=fi+f2, where fi=fx20 and fo=f—f1. Then
My o f(x)<Mygfi(z)+Mv,ef2(z), and so for 0<5<1,

My,of(2)° < My f1(x)° + My, f2(2)°.

Since My is weak-(1, 1), by Kolmogorov’s inequality (see [21])

o L
@ el @y < el Ll

< (garal f 'dy>
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)
C(‘I’e 20) |2Q|/ 'dy)

S CMvﬁgf(x) .

To estimate My g fa, note that letting Q" be a cube such that z€@’, we have that
if Q'N(R™\2Q)#9g, then QC4nQ’. Hence, for any z€Q,

1 C
W/Q/ﬁ(y”dyﬁm 4nQ/|f2(y)|dy§CMV,9(Z)-

So My,¢(y) <CMy(z) for any ye@. Thus

m /Q' Mv,ef2(9)6 dy < CMV,ef($)6~

It remains to prove (v). We first assume that wleAT’gl and woy eA’f’eQ. Since

(W/le(y) dy> (igfwl(y))_l <C,

(W/sz(y) dy> (igl%uz(y))_1 <Cq,

T o = Tl Jy 0
<‘I’0 |Q|/“1 ) mfwz(y))lfp,

(W/QW”(?‘”@)@)“ (% |Q|/ L (y)@)pl
= (m/cgw(y) d:t/)p (igfwl(y)yl.

From these inequalities and choosing §=max{6,62}, we get that

p—1
,1/ p— 1) p—1
<‘1’9 QI/ dy) (\119 Q|/ ()dy) <ccrt

To prove the converse, we consider first p>2, let weAgﬂ, and define T' by

Tf= [w—l/pMV’pg(fp/p/wl/p)}p’/p +WP My o (fw™b/P).
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Because w‘p//”EAg}e, then T is bounded on LP by Lemma 2.2, that is,

ITflle < Allfllzes

for some A>0. Also, since p>2, we have p/p’>1, and Minkowski’s inequality gives
T(f1+f2)<Tf1+Tf2. Fix now a nonnegative f with ||f||z»=1 and write

n= i k:Tk
k=1

where TF(f)=T(T*1(f)). Then ||n|z»<1. Furthermore, since T is positivity-
preserving and subadditive, we have the pointwise inequality

<D QA TRTRI ()= (24) R TH(f) <24,
k=1

k=2
Thus, if wlzwl/pnp/p/, then
My pg(w1) < T(n)P/? WP < (2An)P/P WP = (24)P/7 0,

and wGA’f’pe. Similarly, if we=w~1/Pn, then My, po(w1) <2Aws, so wQGA’f’pe. More-
over,
w= wlwéfp :wl/p,,?p/p (wfl/pn)lfp’
since p/p’=p—1, finishing the proof for p>2.
The case p<2 is similar. In fact, let weAg’g, then w_pl/peAzia, and define T'
by
T = [P My o (7P PP ™ 0 My g ().

Then T is bounded on LP by Lemma 2.2, that is,

ITfll Lo < Bl Lo

for some A>0. Also, since p<2, we have p'/p>1, and Minkowski’s inequality gives
T(fi+f2)<Tf1+T f>. Fix now a nonnegative f with || f|/,,»=1 and write

n= i ka

k=1
where T*(f)=T(T*=1(f)). Then |||/, <1. Furthermore, since T is positivity-
preserving and subadditive, we have the pointwise inequality

o0

<> @B)FTEN(£) =) (2B)'*TR(f) < 2Bn.
=1 k=2
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Thus, if wlzw_l/pnp//p, then
My po(w1) < T(n)p//pw—l/p < (QBn)p//”wl/p - (QB)p’/pwl

and weA‘f’p'e. Similarly, if wo =w'/?y, then My r9(w1) <2Bws, s0 wQEA‘l”pIG. More-
over,

W= waifp — wl/pn(wfl/pnp’/p)lfp’

since p/p’=p—1, finishing the proof for p<2. The proof is complete. O

We remark that the referee has pointed out that in fact (v) of Proposition 2.3
can also be obtained by a direct argument in [17]. We leave this as an exercise for
interested readers.

C. Fefferman and E. Stein [13] obtained vector-valued inequalities for Hardy—
Littlewood maximal operators. Later, K. Andersen and R. John [1] generalized
the Fefferman—Stein vector-valued inequalities to the A, weight case. We next give
some weighted vector-valued inequalities for maximal operators My, by using the
new weights above. The following interpolation results will be used. Let S denote
the linear space of sequences f={f;}32, of the form: f(x) is a simple function on
R™ and f;(2)=0 for all sufficient large k. S is dense in LP (I"), 1<p,r<oo; see [2].

Lemma 2.4. ([1]) Let w>0 be locally integrable on R™, 1<r<oo, 1<p; <¢; <00
and suppose T is a sublinear operator defined on S satisfying

qi/pi
Piw(x) dx)

w{zeR™:|Tf(z)],>a}) < ]f;: (/n |f(x)

for i=0,1 and feS. Then T extends uniquely to a sublinear operator on LP (I")
and there is a constant My such that

(. rseetrie) " <vi( [ i dm)l/p,

where (1/p,1/q)=(1-0)(1/po,1/q0)+0(1/p1,1/q1), 0<O<1.

Lemma 2.5. ([1]) Let w>0 be locally integrable on R™, 1<r;,s;<00,
1<p;, q;<oco and suppose T is a sublinear operator defined on S satisfying

([ rseimeea) " < [ 15

1/pi
Piw(x) dx)
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for i=0,1 and f€S. Then T extends uniquely to a sublinear operator on LP (I")
such that

(o rete d””)l/q <ot ([ 15 d:U)l/p,

where (1/p,1/q,1/s,1/r)=(1-0)(1/po,1/q0,1/50,1/70)+0(1/p1,1/q1,1/51,1/71),
0<0<1.

We define the dyadic maximal operator Mﬁg f(x) b

JcEQ(dyadlc cube) 1/’0

where ¢9(Q)=(1+T/maxé p(x))?, r is the side-length of Q, Q is the closure of Q
and 6>0.

Lemma 2.6. Let f be a locally integrable function on R™, A>0, and Qy=
{z @R”:Méef(x)>)\}. Then Q) may be written as a disjoint union of dyadic cubes
{Q; }jo 1 with

(i) A<(¢0(Q] |Q] fQ |f ()| dz;

(i) (vo(Q;)|Q51)~ fQ |f ()] dz < (4n)72"X;

for each cube Q;. This has the immediate consequences:
(iii) |f(z)[<A for a.e. xeR™\UFZ, Qj;
(iv) [QASAT! fon |f(2)] dz.
The proof follows from the same argument as of Lemma 1 on p. 150 of [24].
Theorem 2.7. Let 1<r<oo and 6>0.

(a) If 1<p<oo, weAL? and n=pobo, where po=4(lo+1)°(p+35(r+1)") and
Oo=p((30+n)p+(lo+1)n), there is a constant Cy p 91,0, Such that

(2.1) ol € B [My, f(2)]- > 0} < & | 1@k ds

(b) If 1<p<oo, weAI’;’e and 1 is as above, there is a constant Crp, 9.1,,co Such
that

(2.2) | Mvas@let@ des 5 [ @Rt .
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Proof. Observe first that (2.2) for the case r=p is an easy consequence of
Lemma 2.2 since n>7'6 and

(23) | M f@ls@de =3 [ My fule)ola) do
k=1
<o [ 1) o
L

=03 [ 1ol

Now suppose r>p, weAg" and a>0. As usual, we can assume that feCg°. Let

01=0(lp+1). From Lemma 2.6, we obtain a sequence of nonoverlapping cubes
{Q;}32, such that

(24) f@), <o, z¢Q={]Q;,
j=1
and
(2.5) ! |f(@)], de <2"(4n)"a, j=1,2,...

*= 00 @151 Jo,
Let f=f"+f", where f'={f. 132, fi()=fr(z)xrm\(z). Then
|My,, f(2)]r < [Myy f' ()| + | My, f ()],

From this, (2.1) will follow if we show that

(2.6) w(fr € My @)] > 0}) < = / (@) Pwo(a) do
R

and

(2.7) oo R My )l >ah < o [ | @) de
RTL

Since we A?Y by (i) of Proposition 2.3, from (2.3) and (2.4), we then have

ol R My @) >0l < 5 [ i@l do

Rn

<& [ @)l de.

—aP Rn
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Thus, (2.6) is proved. To prove (2.7), define f={f;}3>, by

= 1

S S— if L i=1,2, ..
fk(x) w@l(Qj)|Qj| 2, |fk(y)|dy7 1 :L'GQJ, J 1327 ’

and zero, otherwise. Let ©j=2an. We now claim that for any xeﬁ:U;il @j,

My, fil(z) <CMy; fi(x) for all k,
where 7=7/2(ly+1)2.

In fact, for all xgéﬁ, and any cube @3z, if Q;NQ#J, then Qjc@:4nQ, and
hence

: dre — i

L@@ J, O - 5 g ;/%QQ'J"C( d
1

< g 2, Jo, e

1 —
=T, QZC:@ Ve, (Q) /QJ fr(x) da
<CT QI /@f’“( )d
< CMy 5 fi(),

where 92:91(lo+1):9(l0+1)2.
By the claim above, it is easy to see that (3.8) will follow if we show that

(2. @< [ 1)) ds
and that
(2.9 wlfa R Mysf@), > o)) < o [ |f(@)lRe(a) da.

If p>1, by (2.5), we then have

(2.10) w(@j):/~ w(z) dz

Q;

< W(/Q If(x)rdx)p[_w(l’)dx

J
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<= / 17 ) (i / W) dx)

T (a0
(wmaman /Q ot )

< [, M@l d

since we ALY

A similar argument shows that (2.10) holds also if p=1. Hence, (2.8) follows
from (2.10) upon summing over j. Note that |f(z)|,<2"(4n)% «, and since |f(z)|,
is supported in 2, using Lemma 2.2, we obtain

w{z eR™: | My f(2)], >a}) <Ca™" / |f(z)fw(z)dr <C | w(z)dz
n Q
which together with (2.10) yields (2.9) as required. This complete the proof of (2.1)
in the case r>p. If r>p>1, by (iii) of Proposition 2.3, we know that for wesze,
there exist constants p;, ps and 3 (depending only on w) such that (r+1)/2<
p1<p<pz2<r and 03<0 so that (2.1) holds with we A% and weAY respectively.
Obviously, 7>2p) 03, and so Lemmas 2.2 and 2.4 yields (2.2) for r>p>1.

Suppose now that p>r and weAg’G. By (iii) of Proposition 2.3, there exist
constants 0,<0y and 1<ro<p such that weAr% ¢>p/ro. In particular, (i) of
Proposition 2.3 yields w(z)>0 a.e. and w(z)' =7 EA’;}Q“, so that by Lemma 2.2, for
any nonnegative function ||¢| Lo <1, we then have

/R (M () @) (@) A < Cy | (o) () da=C,,

where 11 =1/(lop+1)%>¢f4, and hence

21 [ i@ < [ 7@ E )

<o [ el dm)l/q.

In the first inequality of (2.11), we used the fact that for any nonnegative measurable
functions f and g, and ¢>1, we have

(2.12) /(Mv,f,fwgdxgc UMy g) da.
n RVL
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Taking the supremum in (2.11) over such ¢ then yields (2.2) for 1<r<ry upon
taking g=p/r, and this together with the case p=r provided in (2.3) yields (3.3)
for ro<r<p by an application of Lemma 2.4. Thus, the proof of (a) and (b) is
complete.

It remains to prove (2.12), let no=n1(lo+1)=7/(lo+1)?, we shall begin by
proving

(2.13) / (M‘%mf)qu:rgC UMy, g) de.
Rn Rn

We do this as follows: Hold g fixed, and look at the mapping T': f%M‘%nzf.
Then (2.13) says that T" is bounded from L4(R"™, My,,, g(x) dx) to LY(R"™, g(z) dx).
Clearly, T is bounded from L*(R", My, g(z)dz) to L= (R", g(x)dx). If we can
show that T is of weak-(1,1) type, then (2.13) holds by the Marcinkiewicz interpo-
lation theorem.

Lemma 2.6 shows that {xER":M‘%an(ac)>)\}:U;il Qj, where the Q; are
pairwise disjoint cubes satisfying the condition

1
AL ——MM d 2™ (4n)"2 )\,
S (@[] Jg, T =2 4n)

/_g<y)dy</ o(y) dy W(Q]m]' [ swa

<‘/ e @ o o10) )

f( x) My, g() da.

Then

)\
Summing over j, we obtain that
/ 9) dy<C [ Fx) My, g(x) do.

{ze€Rn: (Mv - x)>X} R™
Thus, (2.13) holds. To complete the proof of (2.12), we first define
1

My, f(z R YR T— f(y)ldy.

v ) = T o@yeal Jown T

Obviously, (4n)"CoMy,, f(x)>My,;f(x), where ny=n/(lo+1)=n2(lo+1).
Hence, to end the proof, it will suffice to show that

o0

(2.14) {weR": My, f(x)>c}C 205,
j=1

where co=C24loT1+n (4n)7.
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Fix xgéUjoil 2Q); and let @ be any cube centered at x. Let r denote the side
length of @, and choose k€Z such that 28~1<r<2k. Then @ intersects m (<2")
dyadic cubes with sidelength 2*; call them Ry=R;(x1,2%), Ro=Ra(z2,2%),..., Ryn=
Ry (7, 2F). None of these cubes is contained in any of the Q;’s, for otherwise we
would have z€J;Z, 2Q;. Hence

1 1 m
dy = d
T o T = 71 22 o, O
Ui Cyalotighn
= Fw)ldy
| (14-2F /maxg p(x))"|Q| | Rs| R’i| )]
< 2n4lo+100m)\
< 4lo+1+n00)\.

Thus, (2.14) holds, so (2.12) is proved. O

We remark that the referee has pointed out that in fact Theorem 2.7 can be
also obtained by a similar argument found in [7]. This is left as an exercise for the
interested readers.

3. Extrapolation theorems

In this section, F will denote a family of ordered pairs of nonnegative, mea-
surable functions (f,g). If we say that for p, 0<p<oo, and weAgg:Uij‘;l Ap-ee,

f@Pw(@)de<C [ g(z)’w(z), (f,9)€F,
Rn R
we mean that this inequality holds for any (f,g)€F such that the left-hand side
is finite, and that the constant C' depends only on p and the A2:>° constant of w.
We will make similar abbreviated statements involving Lorentz spaces. For vector-
valued inequalities we will consider sequences {(f;,g;)}52,, where each pair (f;, g;)
is contained in F.

In addition, we will use following classes: given a pair of operators (T, 5), let
F(T,S) denote the family of pairs of functions (|Tf],|Sf|), where f lies in the
common domain of 7" and S, and the left-hand side of the corresponding inequality
is finite. To achieve this, the function f may be restricted in some other way, e.g.
feCE. In this case we may indicate this by writing F(|Tf],|Sf|:f€C§).

We can now state our main results of this paper.
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Theorem 3.1. Given a family F, suppose that for some pg, 0<pg<oo, and
for every weight we AL

(3.1) Rnf(w)p"w(a?)deC gl@)w(x), (f,.9)eF

Rn

Then the following are true:
o for all 0<p<oo and we AL,

(3.2) f@Pu(@) o <C [ gaPuls)dn, (L9)eF:
]Rn n
e For all 0<p<oo, 0<s<oo and we AL,

(3.3) I fllrs @) S Cllgllirs@y, (f,9) €F;

e For all 0<p,g<oo and weAL>,

o | L lE”

e For all 0<p,g<o0, 0<s<00, and we A%,

00 1/q o 1/q
o9 (&) ... =)
j=1 LP# (w) j=1

Our second main result shows that we can also extrapolate from an initial

v A9l F;
Lr(w)

Lr(w)

o S5, 95) 2 CF.

LPs(w)

Lorentz space inequality.

Theorem 3.2. Given a family F, suppose that for some pg, 0<pg<oo, and
for every weight we AL

(3.6) [ fllLro-ewy S CllgllLroeo(wys  (fr9) €F
Then, for all 0<p<oo and we A%®,
(3.7) I fllroe@w) S Cllgllrew), (f,9)€F

Our third main result is a generalization of the A, extrapolation theorem of
Rubio de Francia.

Theorem 3.3. Fizy>1 andr, y<r<oo. If T is a bounded operator on L"(w)
for any we A °°, with operator norm depending only the A, . constant of w, then

T is bounded on LP(w), y<p<oo, for any weAp/A/
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As a consequence of Theorem 3.3, we have the following result.

Corollary 3.4. Fiz v>1. Let v<p,q<ococ and T satisfy the conditions in
Theorem 3.3. Then for any wEAZ’/O,YO such that

=) 1/q o 1/q
[(Xmne) | <] (Sisr)
Jj=1 j=1

Lr(w) L (w)
We shall adapt an argument in [5] for proving Theorems 3.1 and 3.2, and prove
Theorem 3.3 by using an argument in [9]. We first give the proof of Theorem 3.1.

3.1. Proof of inequality (3.2)

Step 1. We first show that hypothesis (3.1) is equivalent to the family of
weighted inequalities with A7 weights.

Proposition 3.5. Hypothesis (3.1) of Theorem 3.1 is equivalent to the fact
that for all 0<q<po, we AT, and (f,g)EF,

(3.8) f@)w(@)de <C [ g(x)lw(z)dx.
R® R®

Proof. We will prove that (3.1) implies (3.8). If (3.2) is proved, then the
converse is proved. Fix (f,g)€F. Without loss of generality, we can assume that

geL¥(w) and || f||La(w)>0. Let s=pg/q. Since we A"™, there is a >0 such that
weA??cA”? and My is bounded on L* (w) by Lemma 2.2, that is,

s’

||MV,s9h||LS’(w) < AHhHLS'(w)’

for some A>0. For he L*' (w), h>0, we apply the algorithm of Rubio de Francia to
define
N Mx]; oh(x)
Rh(z) = —
2 eay
where M\];,se is the operator My 49 iterated k times if £>1, and for k=0 is just the
identity. From the definition of R, it easy to see that
(a) hlx) <RA(2);
(b) [IRA]l Lo () S20Al Lo (0
() My, .o(Rh)(x)<2AR(z), so Rh(x)e AL*® with constant independent of h.
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Since f,geL* (w) with positive norms, from (b), we then have

H(z) :R<<ﬁ>q/8l (myw) (z) € L (w).
By (a),

f Q/Sl g Q/Sl
3.9 - <H d —_— < H .
(3.9 <||fL.«<w)> <H(z) an (|gL.«<w>> <H(z)

So H(x)>0 whenever f(z)>0. Further, H is finite a.e. on the set where w>0
because he L* (w). Hence,

- f(@)lw(z)de < < s F(2) H(z) " w(z) dx)l/s< ) w0 dﬂf)l/s

=:I.1L.

Rn

Obviously, I1<4 by (b).

To estimate I, since we A2?Cc AP*? and He AP by (c), we have wH*=
wH=(1+9) € AP% © AL by (v) of Proposition 2.3. On the other hand, by (3.9),
we get that

()" H () w(z) de < | f|

qs
L5 (w) < 00.

2 [ s ) da= |
]Rn

Rn
So, we can use (3.1); by (3.9), we get that

I< ( [ s@ri@) - we dz>1/s <C [ glapula)ds

By I and II, we obtain the desired result.

Step 2. We now show that for all 0<p<oo and for every we A%:>°, (3.2) holds.
Fix 0<p<oo and weA%>®. Assume that (f,g)€F with f,geLlP(w). By (i) of
Proposition 2.3, we know that Af,chg:f if 1<py<ps, and thus there exist >0
and 0<g<min{p,pp} such that weAqu. Let r=p/q>1. Since weA?Y we get
that wl_r/eAf}g by (ii) of Proposition 2.3. Given he L (w'~""), h>0, we use the
algorithm of Rubio de Francia to define

< ME Jh()

k=0

where B is the operator norm of My, ¢ on L (wlfrl); this is finite since w! ="’ GAﬁ}o.
Then
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(a) h(z)<Rh(z);
(b) [[RAll 1=y 2[Rl Lo (1)

(¢) My, o (Rh)(x)<2BRA(x), so Rh(x)e A" with constant independent of .
By duality

ATy = Lr @)= sup f(@) h(z)w(z) d.

(Al g, <1 R

Fix such a function h>0. Then hweL" (w'~"") and Al o (r=ry =Bl () =1
By (c), R(hw)€A?™. By (a) and (3.1), we then have

. f@)ih(x)w(x)de < . f(@)IR(hw)(x)de <C [ g(x)TR(hw)(z) dx,

RTL
provided that the middle term is finite.
The same argument also holds for g instead of f. Hence,

. f@)h(z)w(z)de <C | g(z)'R(hw)(z)dz < Clgll7 .,

R™

From this, we obtain the desired result. [

3.2. Proof of inequality (3.3)

We need two lemmas. We first give a result about the operator M, defined by

M (f) () = sup —o— / fa

zeB W 5B

Lemma 3.6. Let 1<p<oo. If we A%:>°, then

P
w({z €R™: M, f(z)>\}) gc(”f”f’(“)> for all A>0 and f € LP(w).
In particular, for 1<p<oo,

Mo, fll o) < ClIf o (w)-
Proof. We set x€ Ex={zcR™: M, f(x)>A} with any A>0. Then, there exists
a ball B, >x such that

1
(3.10) 5 [, V0w >
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Thus, {B,}secr, covers Ey. By Vitali’s lemma, there exists a collection of disjoint
cubes {By,}32, such that U]Oil B, CE)\CU;; 5B,, and

(3.11) w(Ex) <> w(5B,,).
j=1

From (3.10) and by Hélder’s inequality, we have

A< R ( [ s dy)l/p.

From this and by (3.11), we get that

Jj=1 j=17v"a;
C C
p < p
= Sy, [fFwly)dy <5 | 1f(m)Pwly)dy

Thus, Lemma 3.6 is proved. [
Given two weights u and v, we say that ue Ay (v) if for every x, M,u(x) <Cu(x).
Lemma 3.7. If w; EAI@’(’, 1<p<o0, and we € Ay (wy), then wlwgeszap.

Proof. If wo€ A1(w1), then for any ball B,

: _ _155) ! wa(z)wi(z) dx
W/BM(:E)M(J:)M_ \I'G(B)p2Bw1(5B)/JB 2(z)r(w)d
Mewm
Vo (B)»*|B|
wl(B)
= C9, (BB essmfw2,

where in the last inequality we used the fact that (see [25])
w1(5B) < CVy(B)Pwi(B).

On the other hand,
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(57 [ caaon o a)

-1

< (L/ wl(@-l/(p—ndx)p
“\IB| /B

From these two inequalities, we get the desired result. [

-1

-1
(ess inf w2> .
B

Proof of (3.3). Fix p, s, we€A%™ and (f,g)eF with f,geLP*(w). Fix 0<
g<min{p, s} and set r=p/q>1 and 7=s/¢g>1. (If s=o0, take 0<g<p and F=00.)
Then

sy = 1o =300 [ F(a) (o) da

where the supremum is taken over all he L " (w) with h>0 and |||
such a function h. Using the algorithm of Rubio de Francia to define

Mkh
Z

! = 1 . FlX

where A,, is the operator norm of M, on LT/’F(UJ) endowed with a norm equivalent
to || - I+ .7(u)- Since M,, is bounded on LP(w) by Lemma 3.6, and by Marcinkiewicz
interpolation in the scale of Lorentz space, it is bounded on Lrli(w). Then,

(a) h(z)<Ryh(z);

(b) HRW}LHLT/,F(wl—T/) §C||h||LT/,;(w1 v/ :C,

(¢) My, s9(Rh)(z)<2A4,Rh(z), so R h(m)eAl (w) with constant independent
of h.

By Lemma 3.7, wR,he€ A2, As above, (3.2) holds with exponent ¢ and the
AL weight wR,h. Thus,

- f(@)h(x)w(x)dr < - f(@) I Ruh(z)w(z)de<C | g(z)IRuh(z)w(z) dx

RTI,
< Cllg“|

@) [Rhll . ) S Clllrr

since

[ @) R (@) (w) do < 7 e )[Rl 0 € CUF Iy < 00

Thus, the desired inequality is obtained. [
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3.3. Proof of inequalities (3.4) and (3.5)

Fix 0<g<oo. It suffices to prove the vector-valued inequalities only for finite
sums by the monotone convergence theorem. Fix N>1 and define

1/q

fq(x)=<§fj(x)">1/q and gq(x):@%(m)q) ,

where {(f;,g,) ;-V:lC]-". Now form a new family F, consisting of the pairs (fy, g4)-
Then, for every we A% and (fq, gq) €Fq, by (3.2) we get

N N
allr =3 [ fi@al@ dr<C S [ gyt do=Claylhag,
j=1vR™ j=1YR"

which implies that the hypotheses of Theorem 3.1 are fulfilled by F, with py=gq.
Hence, by (3.2) and (3.3), for all 0<p<oo, 0<s<oo, weA%>® and (f,,g4)EFq,
[ fallr ) SCllgqllLe )y and [[fqllzrsw) <Cliggllr sy O

3.4. Proof of Theorem 3.2

This is similar to the proof of Theorem 3.1, adapting the same argument of
Theorem 2.2 in [5], we omit the details here.

3.5. Proof of Theorem 3.3

We first need the following lemma, which is different from Lemma 2.2.

Lemma 3.8. Let 1<p<oo and suppose that weAgﬂ. If p<p1 <oo, then
[ vat@Pa@de<c [ (5@l
R™ Rn

Proof. In fact,

1
T BT /B @) dy

1 p —1/p
\Ifg(B)|B|/B|f(y)|w1/ (y)w Y (y)dy

< (W/Blf(y)l’@(y) dy)l/p(méw‘”(p‘”(y)d@

(r=1)/p
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C(m/lglf(y)%(y) dy)l/p<m /513 WD) () dy) (r—1)/p

(=g [ 1) dy)l/p.

Therefore,

IN

IN

IN

My, f(z) <CM,(|fP)(x)"/P, zeR™

From this and using Lemma 3.6, we can deduce Lemma 3.8. [

Proof of Theorem 3.3. We only consider the case y=1, the case y>1 is similar.
We first show that if 1<g<r and w€ A)"* then T is bounded on L4(w). Without loss
of generality, we assume that we A" for some 1>0. By (iv) of Proposition 2.3 the
function M‘(/T’;q)/(rfl) isin AP", and w(My,, f)?""€A?" by (iv) of Proposition 2.3.
Hence,

[T = [T ) O M )0 d
R™ R™

q/r (r—=a)/r
< ([ rmreneras) ([ o)

a/r (r=q)/r
< ([ iraone, ) ([ iwa)

<C |f|%w dz,
R‘VL

where the second inequality holds by our hypothesis on 7" and by Lemma 3.8 (since
weAP’™), and the third inequality holds since |f(z)| <My, f(z) a.e. for any n>0,
so My, f(x)T " <|f(z)|?" a.e.

Given any 1<p<oo and weAg’G, by (iii) of Proposition 2.3 there exists ¢>1
and 6 >0 such that weAz ’/eql. Hence we only need to prove that 7" is bounded on
LP(w) if weAg’/eql.

Fix weAz ’/il. Then by duality there exists ue L®/9" (w) with norm 1 such that

a/p
(/ |Tfpwdm> :/ |T f | wu dz.
R™ R™
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For any s>1, wu< My, ((wu)®)!/* for any n>0 and My, ((wu)®)}/*€ A}, Hence,
by the first part of the proof,

/\Tf|qwudxg/ T £17 My, ((wu)*)'/* da
Rn n
<c / 1My (w)*) Y d
RTL

= C/ |f|qw‘I/va,n((wu)s)l/“"w_q/” dr
Rn

/
SC’(/n |f|pwdx>q ’

, , 1/(p/a)’
x( Moy, ((wu)*) /2 /3, 1=/ dm) _
RTL

Since weAﬁ’/eql, we have wl_(p/q)leAz’f/lq), by (ii) of Proposition 2.3. Therefore, if

we take s sufficiently close to 1, then there exists 65 such that wl=®/a) EAZ;%)//S
by (iii) of Proposition 2.3. If we choose n=((p/q)’/s)'0s, then by Lemma 2.2 the
second integral is dominated by

C [ (wu)®/0 =0/ gz =C.
]R'n,

The proof is complete. [

We remark that an interesting problem posed by the referee is how to extend
Theorem 3.3 to the context of rearrangement-invariant Banach function spaces, as
considered in [8].

4. Some applications

Let T be a Schrédinger-type operator. From Theorem 3.1 in [25] we know that
for all 0<p<oo and weA%:>, for any n>0, there exists a constant C' depending
only on 7, p, q, Cy, ly and the A%:> constant of w such that

HTf”LP(w) < C”MV’UfHLP(@'

By applying Theorem 3.1 to the family F,(|Tf|, Mv,, f:f€C§°), we obtain that
e for all 0<p,g<oo and we A%,

(4.1) 1
H(iwm} :

o A, 912 CFy
Lr(w)

o 1/q
SCH (Z(Mv,nfj)q>
i=1

Lr(w)
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e for all 0<p,g<o0, 0<s<oo and we AL,

(4.2) N » N »
|Tfj|‘1> < CH (;(Mv,nfj)q)

If we combine this with Theorem 2.7, we have the following inequalities:
o If 1<g<oo, then for every we AP, there exists a constant C' depending
only on 7, ¢, Co, lp and the A} constant of w such that

(Z ITfjlq> scH (Zmlq)
=1 Lto°(w) j=1

e If 1<g<oo and 1<p<oo, then for every we Af-°°, there exists a constant C
depending only on 7, p, g, Co, lp and the Ap->° constant of w such that

(4.4) H (i |Tfj|‘J>1/q < CH (i_o:l ff)l/q

Let T be a Schrodinger-type operator as above. From Theorem 3.1 in [25]
we have that for all 0<p<oo and we A, for any >0, there exists a constant C
depending only on 7, p, q, Co, lp and the A%:> constant of w such that

s Af5,99) 152 C Ty

Lr:s(w) Lr:s(w)

1/q 1/q

(4.3)

b

Lt (w)

Lr(w) Lr(w)

110, T] f | () < CllblIBMO. (0) | My, (My, )] Lo (w0) -

By applying Theorem 3.1 to the family F,,(|[b, T f|, My,,(Mv,,f): f€C§®), we ob-
tain that
e for all 0<p, g<oo, we A% and {(f}, 9;)}521 CFys

. 1/q
H(Z I Tf]q) < Clblsro i) ;

<i(Mv,n(Mv,nfj))q>l/q

LP(w) j=1 LP(w)
e for all 0<p, g<o0, 0<s<oo, we A% and {(f;,9;)}52, CFy,
1/q 1/q
H( b, T fa|q> < C|bllBmo..( (Z My, (My, f;))? ) )
Lo (w) = Lo (w)

where the new space BMOg(p) introduced in [3] is defined by

IfllBMOg () = |B|/ |f(x)—fB|dr < oo,
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where fB:ﬁ [ f(y)dy, Vo(B)=(1+71/p(x0))?, B=B(zo,r) and §>0. We also
let BMOoo(p)=Upsq BMOs(p).

If we combine this with Theorem 2.7, we have the following inequality: If
1<g<oo and 1<p<oo, then for every we Af-°°, there exists a constant C' depending
only on 7, p, g, Co, lo and the Af°° constant of w such that

(i) (S

j=1
We remark that the inequalities (4.1)—(4.7) are all new.

Next we consider another class V € B,, with ¢> %n for Riesz transforms asso-
ciated with Schrédinger operators. Let Ti=(—A+V)"V, To=(—A+V)~1/2y1/2
and T3=(—A+V)~1/2V. By using Theorem 3.3 in [26] and Corollary 3.4, we have
the following result.

< C|bllmo.. (p)

an |
Lr(w)

Lr(w)

Theorem 4.1. Suppose VB, and qZ%n. Then

(i) if ¢ <p,r<oc and wGAZ’/C:;7

H|T1f‘rHLp(w) < CH‘ﬂ’“HLP(w);

p,00

- ’
(i) if (2¢)'<p,r<occ and weA} .,

H|T2f‘THLp(w) < CH‘f|r||L1’(w)’

(iil) iof pp<p,r<oco and weAg’/‘Z, where 1/po=1/q—1/n and %n§q<n,

Tl oy < CNAI ] oy

Let Ty =V (=A4V)" Ty =VY2(=A+V)~Y2 and Ty=V(-A+V)~1/2. By
duality we can easily get the following result.

Corollary 4.2. Suppose VEB, and ¢>3n. Then
(i) if 1<p,r<q and wfl/(Pfl)eAg;(;zm

T Pl ] oy < CUA ]

(ii) if 1<p,r<2q and w™"/P~DeAr®

N5 F1ll o ) S CMF Il o
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(iil) if 1<p,r<po and w‘l/(p_l)eAZ;(;;[,), where 1/po=1/q—1/n and n<q<

N5 F 1l oy < CF Il o -

n,

Let Ty, T and T3 be as above. By using Theorem 4.5 in [26] and Corollary 3.4,
we have the following result.

Theorem 4.3. Suppose V€B, and qZ%n. Let b6 BMOy(p). Then

(i) if ¢’ <p,r<oc0 and o.}GAZ’/C;O,7

|||[b7T1:|f‘T‘HLP(w) SC”bHBMOoo(P)|||f|7”HLP(w);

oy / p,00
(ii) if (2¢)'<p,r<oo and WEAPG s

Hl[bDTz]f‘THLp(w) < C”bHBMOoo(P)H|f|THLP(w);

(ili) if po<p,r<oco and weAi’/f,, where 1/pp=1/q—1/n and n<q<n,
0

HHb?Tg]f‘THLp(w) < ClleBMOoo(P)H|f|THLP(w)'

Let Ty, T3 and T3 be as above. By duality we can easily get the following
result.

Corollary 4.4. Suppose VeB, and qZ%n. Let b6 BMOyo(p). Then
(i) if 1<p,r<q and w—l/(”—l)eAg;‘Z,,
H |[ba Tf]f‘THLp(w) < C(”bHBMOOO(p) H |f|THLp(w);

s —1/(p—1) £ AP
(ii) of 1<p,r<2q and w= /P EAp’/(Qq)”

Hl[ba Tz*]f‘THLp(w) < CHbHBMOoo(P)H|f|THLp(w)§

(iil) if 1<p,r<po and w‘l/(”_l)eAZ;Z(), where 1/po=1/q—1/n and n<q<
n’

|||[b’T§]f‘7'|’LP(w) < C”bHBMOoo(P)H|f|T'HLP(w)'

Finally, we consider the Littlewood—Paley g-function related to Schrodinger
operators defined by

s =( [ G e 2tdt) -
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and the commutator g, of g with b6 BMO(p) defined by

2 1/2
t dt) .

The maximal operator of the diffusion semi-group is defined by

a0 = [ |G 0@ - N

T f(xz) =sup |e_th(33)| =sup
t>0 t>0

[ s dy

)

and its commutator

Ty f(z) =sup

t>0

[ e 060)-0) 105 .

where k; is the kernel of the operator e *¥, t>0.
By combining Theorems 1 and 2 in [4], Theorems 1.1 and 3.1 in [26] and
Corollary 3.4 together, we obtain the following result.

Theorem 4.5. Let be BMOy(p) and T, T}, g and g, be as above.
(i) If 1<p,r<o0 and w€e AP, then there exists a constant C such that

(e oy + N 1ol oy < ClIFL N 2oy

(id) If 1<p,r<o0 and we AL, then there exists a constant C such that
H‘gb(f)"rHLp(w)—'_H|Tb*f|r||L:D(w) < CHb”BMOOO(p)H‘f|r||Lp(w)~

Acknowledgement. The author would like to thank the referee for his/her very
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