
Ark. Mat., 50 (2012), 59–67
DOI: 10.1007/s11512-010-0142-0
c© 2011 by Institut Mittag-Leffler. All rights reserved

Polynomial hulls and proper analytic disks
Armen Edigarian

Abstract. We show how to construct the Perron–Bremermann function by using proper

analytic disks. We apply this result to the polynomial hull of a compact set K defined on the

boundary of the unit ball.

1. Introduction

Let K ⊂C
n be a compact set. The polynomial hull of K is defined as

(1) ̂K =
{

z ∈ C
n : |p(z)| ≤ sup

K
|p| for any polynomial p

}

.

Note that if f : D→C
n is a bounded holomorphic map from the unit disk D

such that f̃(ζ)∈K for a.e. ζ ∈T then f(0)∈ ̂K. Here, T denotes the unit circle in C,
and f̃ denotes the non-tangential values of f on T (see e.g. [12]). Polynomial hulls
are not always constructed by analytic disks whose boundaries lie a.e. in the set.
Indeed, the well-known examples of G. Stolzenberg [15] and J. Wermer [16] give
a compact subset K of the unit sphere ∂Bn ⊂C

n such that ̂K \K is non-trivial,
however, for any z0 ∈ ̂K \K there does not exist an analytic disk f : D→C

n such
that f̃ ∈K a.e. on T and f(0)=z0. On the other hand, in some special cases it
is true (see [14] and the references therein). Moreover, by E. Poletsky it holds
approximately.

Theorem 1.1. (See [10], Theorem 7.1) Let D ⊂C
n be a Runge domain and

let K ⊂D be a compact set. Then z0 ∈ ̂K if and only if for any ε>0 there exists an
analytic disk f : D→D such that f(0)=z0 and

(2) σ({ζ ∈ T : f̃(ζ) ∈ Kε}) > 1−ε,
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where σ denotes the normalized Lebesgue measure on T and

Kε = {z ∈ C
n : dist(z, K) <ε}

is the ε-neighborhood of K.

Our aim is to study Theorem 1.1 in case K ⊂∂D, where D is a wide class of
domains. We have the following result.

Theorem 1.2. Let D�C
n be a B-regular domain with C∞ boundary and let

K ⊂∂D be a compact set. Assume that ̂K ⊂D. Then z0 ∈ ̂K ∩D if and only if for
any ε>0 there exists a proper analytic disk f : D→D such that f(0)=z0 and

σ({ζ ∈ T : f̃(ζ) ∈ Kε ∩∂D}) > 1−ε.

Let D�C
n be a domain. Following N. Sibony (see [13]) we say that D is

B-regular if for any continuous function ϕ on ∂D there is a continuous plurisubhar-
monic function v ∈PSH(D)∩C(D) such that u=ϕ on ∂D. In particular, the balls
in C

n are B-regular. For properties of B-regular domains see [1] and [13].
The proof of Theorem 1.2 is based on Poletsky’s theory [10]. Let D�C

n be a
domain and let u be any function on D. For any x∈D we put

u∗(x) = lim sup
D�y→x

u(y).

In particular, u∗ is an upper semicontinuous function on D. For every function
ϕ : D→R bounded from above, the function

Pϕ =sup{v ∈ PSH(D) : v∗ ≤ ϕ}

is called the Perron–Bremermann envelope of ϕ on D. Actually, in the literature
(see e.g. [9]) appears the case when ϕ is defined only on ∂D (then we may extend
ϕ to D by taking ϕ=M , where M is a sufficiently big real number) or the case
when ϕ is defined only on D (then we may take ϕ=M on ∂D, where M is again
a sufficiently big real number). In this way, we get ‘classical’ definitions. For a
subset A⊂∂D we put ω( · , A, D)=P−χA

, where χA is the characteristic function of
A. Note that for an upper semicontinuous function ϕ defined in D or on ∂D we
have that Pϕ is plurisubharmonic in D. One can easily show (see e.g. [10], the proof
of Theorem 7.1) that for a Runge domain D ⊂Cn and a compact set K ⊂D we have

(3) ̂K = {z ∈ D : ω(z, K, D) = −1}.
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The fundamental idea of Poletsky’s theory is to give a description of some extremal
plurisubharmonic functions by analytic disks. In particular, we have the equality

(4) Eϕ =Pϕ

in case ϕ is an upper semicontinuous function defined inside a domain D ⊂C
n, where

(5) Eϕ(z)= inf
{

1
2π

∫ 2π

0

ϕ(f(eiθ)) dθ : f ∈ O(D, D) and f(0) = z

}

.

Here, O(D, D) denotes the set of all holomorphic mappings f : Uf →D, where Uf

is an open neighborhood of D (which may depend on f ). In this way, we get a de-
scription of the polynomial hull by analytic disk. So, in order to prove Theorem 1.2
we have to prove boundary versions of the equality (3) (see Theorem 3.1 below) and
the equality (4) stated as follows.

Theorem 1.3. Let D�C
n be a B-regular domain, n≥2. Then for any upper

semicontinuous function ϕ : ∂D→[−∞, ∞) we have Pϕ= ˜Eϕ on D, where

(6) ˜Eϕ(z)= inf
{

1
2π

∫ 2π

0

ϕ(f̃(eiθ)) dθ : f ∈ O(D, D) is proper and f(0) = z

}

.

In case D is a strictly pseudoconvex domain with Ck boundary it is enough to
take the infimum only over analytic disks which are Ck−ε regular on D for every
ε>0.

A weaker version of Theorem 1.3 (with proper analytic disks replaced by almost
proper) was presented in Poletsky’s paper [10]. In Remark 2.5 we will show that,
in general, in the equality (6) one cannot replace ‘inf’ by ‘min’.

2. Proof of Theorem 1.3

Recall the following result of F. Forstnerič and J. Globevnik (see [7] and [8]).

Theorem 2.1. Let D ⊂C
n be a pseudoconvex domain, n≥2. Fix a metric d

on D which induces the topology of D. Then for any h∈ O(D, D)∩C(D, D), for any
r ∈(0, 1), for any ε>0, and for any finite set A⊂D, there exists a proper analytic
disk f : D→D such that :

(1) d(f(ζ), h(ζ))<ε for any |ζ|<r;
(2) f(ζ)=h(ζ) for any ζ ∈A.

Moreover, if D is a strictly pseudoconvex domain with Ck boundary, then there is
an f as above that is of class Ck−ε on D for every ε>0.
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Proof of Theorem 1.3. Note that there exists a sequence of continuous functions
ϕn defined on ∂D such that ϕn↘ϕ. For any two functions ψ1 and ψ2 defined on
∂D such that ψ1 ≤ψ2, we have Pψ1 ≤Pψ2 and ˜Eψ1 ≤ ˜Eψ2 . So, Pϕ1 ≥Pϕ2 ≥...≥Pϕ

and ˜Eϕ1 ≥ ˜Eϕ2 ≥...≥ ˜Eϕ.
Let us show that limn→∞ ˜Eϕn = ˜Eϕ. Indeed, we know that limn→∞ ˜Eϕn ≥ ˜Eϕ.

Now fix z0 ∈D and take any a>Eϕ(z0). Then there exists a proper analytic disk
f : D→D such that f(0)=z0 and

1
2π

∫ 2π

0

ϕ(f̃(eiθ)) dθ <a.

We have

lim
n→∞

˜Eϕn(z0) ≤ lim sup
n→∞

1
2π

∫ 2π

0

ϕn(f̃(eiθ)) dθ ≤ 1
2π

∫ 2π

0

lim sup
n→∞

ϕn(f̃(eiθ)) dθ <a.

Hence, limn→∞ ˜Eϕn ≤ ˜Eϕ.
Similarly, let us show that limn→∞ Pϕn =Pϕ. Put u=limn→∞ Pϕn . Then

u∈PSH(D) (or, u≡ −∞) and Pϕ ≤u. Moreover, u≤Pϕn for any n∈N. Therefore,
u∗ ≤ϕn on ∂D for any n∈N. Hence, letting n→∞ we get u∗ ≤ϕ on ∂D, and from
the definition of the Perron–Bremermann envelope u≤Pϕ. Therefore, u=Pϕ.

So, without loss of generality, we may assume that ϕ is continuous on ∂D.
Since D is B-regular, there exists a plurisubharmonic function v on D, continuous
on D such that v=−ϕ on ∂D. By (5) for any z ∈D we have

(7) P−v(z)= inf
{

− 1
2π

∫ 2π

0

v(f(eiθ)) dθ : f ∈ O(D, D) and f(0) = z

}

.

Let us show that Pϕ=P−v . Indeed, for any plurisubharmonic function u on D

such that u∗ ≤ϕ=−v on ∂D, by the maximum principle for the plurisubharmonic
function u+v we have u≤ −v on D. Hence, Pϕ ≤P−v . On the other hand, if u is
a plurisubharmonic function on D such that u≤ −v on D, then u∗ ≤ −v=ϕ on ∂D.
So, P−v ≤Pϕ.

Fix z0 ∈D and ε>0. By (7) there exists a holomorphic mapping f ∈ O(D; D)
such that f(0)=z0 and

(8) − 1
2π

∫ 2π

0

v(f(eiθ)) dθ <P−v(z0)+ε.

Then there exists an r ∈(0, 1) such that

(9) − 1
2π

∫ 2π

0

v(f(reiθ)) dθ <P−v(z0)+2ε.
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By Theorem 2.1 there exists a proper analytic disk g : D→D such that g(0)=f(0)=
z0 and

(10) − 1
2π

∫ 2π

0

v(g(reiθ)) dθ <P−v(z0)+3ε.

Since v¨g is subharmonic on D, the averages (1/2π)
∫ 2π

0
v(g(riθ)) dθ are increasing

with respect to r ∈(0, 1). We get

(11) − 1
2π

∫ 2π

0

v(g̃(eiθ)) dθ ≤ − 1
2π

∫ 2π

0

v(g(reiθ)) dθ <P−v(z0)+3ε.

So, ˜Eϕ ≤Pϕ. The inequality Pϕ ≤ ˜Eϕ is elementary.
For the last statement of the theorem (regularity in the case of strictly pseu-

doconvex domains) use the last statement in Theorem 2.1. �

As an immediate corollary of Theorem 1.3 we have the following example.

Example 2.2. Let ϕ : ∂Bn→R be an upper semicontinuous function. Then for
any k ∈N we have

Pϕ(z)= inf
{

1
2π

∫ 2π

0

ϕ(f(eiθ)) dθ : f ∈ O(D, Bn)∩Ck(D, Bn), f(T) ⊂ ∂Bn(12)

and f(0) = z

}

.

In [2] it is shown that in the above equality one can take k=∞.

Corollary 2.3. Let D�C
n be a B-regular domain and let U ⊂∂D be a rela-

tively open subset. Then
(13)

ω(z, U, D) = − sup{σ({eiθ : f(eiθ) ∈ U }) : f ∈ O(D, D) is proper and f(0) = z}.

Proof. Put ϕ=−χU and use Theorem 1.3. �

Remark 2.4. (a) Note that if D ⊂C
n is a pseudoconvex domain, n≥2, then

from the Forstnerič–Globevnik result we get immediately that for any p∈D we
have

(14) gD(z; p)= inf
{

∑

λ∈f −1(p)

log |λ| : f ∈ O(D, D) is proper and f(0) = z

}

,
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where gD( · , p) is the pluricomplex Green function in D with pole at p (see e.g. [5], [9]
and [10]). We have a similar result for the multipole pluricomplex Green function [6].

(b) In a similar way, one can show easily that for the second disk functional
in Poletsky’s theory [10] one can also take the infimum just over proper analytic
disks.

Remark 2.5. One may ask whether there exists a ‘minimal’ proper holomorphic
mapping, i.e., whether there exists an f : D→D which is proper and such that for
any z ∈D we have f(0)=z and

(15) Pϕ(z) =
1
2π

∫ 2π

0

ϕ(f̃(eiθ)) dθ.

Using the idea of Sibony (see e.g. [4]) we show that even in the unit ball for a non-
empty set of z ∈B there are no minimal proper holomorphic mappings. Namely, take
a compact set K ⊂∂B such that its polynomial hull ̂K ∩B does not contain analytic
disks (use the examples of Stolzenberg or Wermer) and ̂K \K 	=∅. Now take a
continuous function ϕ on ∂B such that ϕ=−1 on K and ϕ>−1 on ∂B\K. Note
that ̂K={z :Pϕ(z)=−1}. Assume that z0 ∈ ̂K. If there exists a proper holomorphic
mapping f : D→B such that f(0)=z0 and

(16)
1
2π

∫ 2π

0

ϕ(f̃(eiθ)) dθ =Pϕ(z0) = −1,

then f̃(T)⊂K, and therefore f(D)⊂ ̂K. A contradiction.

Remark 2.6. It is worth noting that Theorem 1.3 can be used to show some
regularity properties of the Perron–Bremermann function (see e.g. [9], Proposi-
tion 4.3.2 and Theorem 4.3.3). Namely take a C2 function ϕ on the unit sphere
∂Bn and put u=Pϕ. Then we can show that for any ε∈(0, 1) there exists a constant
C>0 such that for all z, h∈Cn with ‖z‖ ≤1−ε and ‖h‖ ≤ε/2, we have

(17) u(z+h)−2u(z)+u(z −h) ≤ C‖h‖2.

Indeed, for a fixed z take a proper analytic disk f : D→B with f(0)=z. Now take au-
tomorphisms Φ1, Φ2 : B→B of the unit ball such that Φ1(z)=z+h and Φ2(z)=z −h.
Then consider proper analytic disks f1=Φ1¨f and f2=Φ2¨f and use Theorem 1.3.

In a similar way one can show that u satisfies a Lipschitz condition in the unit
ball.

Remark 2.7. As was pointed out by the referee, Theorem 1.3 can be proved
for appropriately defined B-regular domains on a complex manifold. Indeed, in [3]
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the authors prove Theorem 2.1 for a class of complex manifolds. Also, J. P. Rosay
proved Poletsky’s theory on any complex manifold (see [11]).

3. Proof of Theorem 1.2

As we mentioned in Section 1, the following result is a basic tool in a charac-
terization of polynomial hulls by analytic disks.

Theorem 3.1. Let D�C
n be a B-regular domain with C∞-boundary and let

K ⊂∂D be a compact set. Assume that ̂K ⊂D. Then

(18) ̂K ∩D = {z ∈ D : ω(z, K, D) = −1}.

Before we go into the proof recall the following results. The first one is due to
F. Wikström (see [17]).

Theorem 3.2. Let D�C
n be a B-regular domain and let u be an upper

bounded plurisubharmonic function on D. Then there exists a decreasing sequence
uj ∈PSH(D)∩C(D) such that uj↘u∗ on D.

The second result is due to N. Sibony [13].

Theorem 3.3. Let D be a pseudoconvex domain with C∞ boundary. Then
any u∈PSH(D)∩C(D) is a uniform limit of uj ∈PSH(Dj)∩C∞(Dj), where Dj ⊃D

are domains.

Proof of Theorem 3.1. First note that for a point z ∈D the following conditions
are equivalent:

(1) z ∈ ̂K ;
(2) u(z)≤supK u for any plurisubharmonic function u on D, which is contin-

uous on D;
(3) u(z)≤supK u for any negative plurisubharmonic function u on D.

Indeed, (2)⇔(3) holds by (3.2).
We have the equivalence of (1) and the following condition: u(z)≤supK u for

u plurisubharmonic and continuous on C
n; and hence for u plurisubharmonic and

continuous on a Runge domain containing ̂K . Thus, Theorem 3.3 and the fact that
̂K ⊂D show that (1) and (2) are equivalent.

Now assume that z0 ∈ ̂K ∩D. Then for any negative plurisubharmonic function
u on D such that u∗ ≤ −1 on K we have u(z0)≤ −1. Hence, ω(z0, K, D)=−1.
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Fix a point z0 ∈D such that ω(z0, K, D)=−1. Take a negative plurisubhar-
monic function u on D and put C=− supK u∗. We may assume that C>0. Then
uC =u/C is a negative plurisubharmonic function on D and u∗

C ≤ −1 on K. Hence,
uC(z0)≤ω(z0, K, D)=−1, and therefore, u(z0)≤supK u∗. �

Proof of Theorem 1.2. It suffices to note that

(19) ω(z, K, D) = lim
ε→0

ω(z, Kε, D)

and use Theorem 3.1 and Corollary 2.3. �
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