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Contracting automorphisms and Lp-cohomology
in degree one

Yves Cornulier and Romain Tessera

Abstract. We characterize those Lie groups, and algebraic groups over a local field of

characteristic zero, whose first reduced Lp-cohomology is zero for all p>1, extending a result of

Pansu. As an application, we obtain a description of Gromov-hyperbolic groups among those

groups. In particular we prove that any non-elementary Gromov-hyperbolic algebraic group over

a non-Archimedean local field of zero characteristic is quasi-isometric to a 3-regular tree. We also

extend the study to general semidirect products of a locally compact group by a cyclic group

acting by contracting automorphisms.

1. Introduction

Let G be a locally compact group, endowed with a left Haar measure. Let
ρ=ρG denote the right regular representation of G on the space RG of all real-
valued functions on G, defined by (ρ(g)f)(h)=f(hg) for g, h∈G and f ∈RG. Given
p∈[1, ∞[, let Dp(G) denote the set of p-Dirichlet functions on G, namely measurable
functions f on G such that b(g)=f −ρ(g)f belongs to Lp(G) for all G, and such that
g �→b(g) is continuous from G to Lp(G). This space contains constant functions and
Lp functions (indeed, the continuity of g �→b(g) is clear for continuous compactly
supported functions, which form a dense subspace of Lp(G)). For every compact
subset Q⊂G, we define a seminorm on Dp(G) by

‖f ‖Dp,Q = sup
g∈Q

‖f −ρ(g)f ‖p.

We equip Dp(G) with the topology induced from the seminorms ‖ · ‖Dp,Q for all Q.
Then it follows from [T2, Lemma 5.2] that Dp(G)/R is isomorphic, as a topological
vector space with a G-action, to the space of 1-cocycles Z1(G, ρp

G), where ρp
G denotes

the right regular representation on Lp(G).
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Define the topological quotient vector space

H1
p (G) =Dp(G)/(Lp(G)+R) � H1(G, ρp

G)

and the Banach space

H1
p (G) =Dp(G)/(Lp(G)+R) � H1(G, ρp

G).

The first Lp-cohomology and the reduced one coincide if and only if the norms
‖f ‖p+‖f ‖Dp,Q and ‖f ‖Dp,Q are equivalent on Lp(G) for some compact subset Q.
If G is non-compact, this happens if and only if G satisfies the Sobolev inequality

‖f ‖p ≤ C‖f ‖Dp,Q,

i.e. if and only if [T1, Proposition 11.9] G is either non-unimodular or non-amenable.
This can be reformulated as

– if G is non-compact, amenable and unimodular, then the topological vector
space H1

p (G) is non-Hausdorff (and in particular is non-zero);
– otherwise, H1

p (G)=H1
p (G).

A definition of the first Lp-cohomology of a locally compact group in the context
of metric measured spaces is given in [Pa2] (see also [T2, Section 3] and Appendix B);
the equivalence between the two definitions is obtained in [T2, Section 5].

Definition 1.1. Throughout the paper, Lie groups refer to real Lie groups.
– The unit component of a locally compact group G is denoted by G0.
– Let Z act by automorphisms on a locally compact group H . A vacuum subset

is a subset U ⊂H such that for every compact subset M ⊂H , we have kM ⊂U for k

large enough. We say that Z contracts H if there exists a compact vacuum subset U .
The action is strictly contracting if any neighborhood of 1 is a vacuum subset (in
some papers this is simply referred to as contracting).

– We say that a Lie group G with finitely many connected components is of
Heintze type if it is isomorphic to a semidirect product S�N , where N is a non-
compact simply connected nilpotent Lie group, and S contains Z as a cocompact
subgroup which contracts N .

– We say that a locally compact group G is of non-Archimedean Heintze type
if it is isomorphic to a semidirect product S�N , where N is a non-compact, totally
disconnected, locally compact nilpotent group, and S contains Z as a cocompact
subgroup which contracts N .

– We say that a locally compact group G is of rank-one type (resp. non-
Archimedean rank-one type) if for some (unique) compact normal subgroup W in G,
some finite index subgroup of G/W is isomorphic to the quotient of a simple group
of rank one over the reals (resp. over some non-Archimedean local field) by its
center.
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Example 1.2. Let G=(K ×R)�N be a Lie group with finitely many connected
components, with K compact, and assume that for every positive t∈R⊂G, every
eigenvalue λ of Ad(t) acting on the Lie algebra n of N satisfies |λ|<1. Then N is
nilpotent and simply connected, G is of Heintze type, and conversely every Lie group
with finitely many connected components of Heintze type is of this form. Besides,
Heintze’s main result in [He] is that a connected Lie group of dimension ≥2 has a
left-invariant Riemannian metric of negative curvature if and only if it is a simply
connected solvable Heintze Lie group.

Similarly, if G=(K ×K∗)�N is an algebraic group over a non-Archimedean
local field with K compact, and for every t∈K∗ with |t|>1, all eigenvalues λ of
Ad(t) acting on n satisfy |λ|<1. Then G is of non-Archimedean Heintze type.
When K has characteristic zero, every connected linear algebraic K-group of non-
Archimedean Heintze type, is of this form.

Our main result is the following theorem. We include the statement (1) in
order to give a complete picture, but only prove the other ones.

Theorem 1. Consider p∈[1, ∞). Let G be a connected Lie group, or a linear
algebraic group over a non-Archimedean local field of characteristic zero.

(1) ([T2] and [T3]) If G is amenable and unimodular, then H1
p (G)=0 for all

p>1.
(2) Suppose that G is Heintze or rank-one type (Lie or non-Archimedean).

Then H1
p (G) 
=0 for p large enough.

(3) Otherwise, H1
p (G)=0 for all p≥1.

Pansu [Pa3] obtains (2) and (3) when G is a connected solvable Lie group.
His approach is based on a definition of Lp-cohomology for Riemannian manifolds,
involving differentiation. This gives rise to some technical issues, related to the
fact that the gradient of an Lp-function need not be Lp. The equivalence between
the two definitions of Lp-cohomology is given in [T2, Chapters 4 and 5]. The
discrete version, given here, allows a unified proof of (2) and (3) in the Lie and
non-Archimedean case. Theorem 7 below provides a more general and more precise
statement, which contains (2) as a particular case. We first focus on some corollaries
on Theorem 1.

Corollary 2. The following are equivalent :
(2.1) for some p>1, we have H1

p (G) 
=0;
(2.2) G is Heintze or rank-one type (Lie or non-Archimedean).

Lie groups admitting a left-invariant Riemannian metric with negative sectional
curvature have been described algebraically in [He]. An application of our main
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result is to provide a characterization of Gromov-hyperbolicity for Lie groups and
algebraic groups over a local field of zero characteristic. This can be understood as a
“large-scale” version of Heintze’s theorem [He]. Note that one advantage of focusing
on the large-scale geometry of a Lie group is that the statements are independent
of a choice of Riemannian metric and also make sense when we consider the word
length with respect to a compact generating set. In general, a locally compact group
is said to be Gromov-hyperbolic if it is compactly generated and, viewed as a metric
space with the word metric to some compact generating set, is a Gromov-hyperbolic
metric space.

By [CT, Theorem 1.2], a connected Lie group (or an algebraic group over
a local field with characteristic zero) with exponential growth has a bi-Lipschitz
embedded 3-regular tree. It then follows from [T2, Theorem 6] that if such a
group is Gromov-hyperbolic, it has non-trivial first reduced Lp-cohomology for large
enough p. Accordingly, we get the following corollary.

Corollary 3. The following are equivalent :
(3.1) the group G is non-elementary Gromov-hyperbolic;
(3.2) the group G is of Heintze or rank-one type (Lie or non-Archimedean).

If we distinguish the Lie and the non-Archimedean cases, we get the two fol-
lowing additional corollaries.

Corollary 4. If G is a Lie group with finitely many connected components,
we have the following equivalences:

(4.1) G is [non-elementary ] Gromov-hyperbolic;
(4.2) G is quasi-isometric to a simply connected homogeneous manifold of neg-

ative curvature [of dimension at least two];
(4.3) G acts properly transitively by isometries on a simply connected homoge-

neous manifold of negative curvature [of dimension at least two].

The construction of a left-invariant metric on a simply connected Heintze Lie
group is one of the principal results in [He]. We need slightly more to obtain the
third statement of Corollary 4 for an arbitrary Heintze Lie group, but it turns out
that what we need follows from Heintze’s construction, namely [He, Theorem 2].
This amounts to proving that if G is a simply connected Heintze group and K is a
compact group of automorphisms of G, then G possesses a left-invariant Riemannian
metric which has negative curvature and is K-invariant.

Corollary 5. If G is an algebraic group over a non-Archimedean local field of
characteristic 0, we have the following equivalences:
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(5.1) G is [non-elementary ] Gromov-hyperbolic;
(5.2) G is quasi-isometric to a regular tree of finite degree [of degree at least

three];
(5.3) G acts properly, cocompactly (i.e. with finitely many orbits) by isometries

on some regular tree of finite degree [of degree at least three].

Note that all regular trees of degree 3≤d<∞ are quasi-isometric to each other.
In order to get the third condition, we make use of the following general proposition.

Proposition 6. Consider a contracting action σ of Z on some non-compact,
totally disconnected, locally compact group H . There exists a proper length function
� on the semidirect product G=Z�H such that the pseudo-metric space (G, d),
where d(g, g′)=�(g−1g′), is isometric to the vertex set of an r-regular tree for some
r ≥3.

Turning back to Theorem 1(2), we have the following more general result.

Theorem 7. Let H be a locally compact group whose unit component H0 is
non-compact, with an action of a locally compact group S, which is contracting in
restriction to some cocompact subgroup Z=〈ξ〉 of S, and set G=S�H . Let ξ−1

multiply the Haar measure of N by δ>1, and let λ>1 be the smallest modulus of
eigenvalues greater than 1 of ξ−1 on H0. Set

p0 = p0(G) =
log δ

log λ
≥ 1.

Then for all p≥1,
H1

p (G) 
=0 if and only if p>p0.

Theorem 7 is proved by Pansu ([Pa1] and [Pa3]) when H is a simply connected
solvable Lie group. Theorem 7 applies to “mixed” groups such as Z�(t−1,�)(R×Q�),
where t>1 and � prime, for which p0=log(t�)/log t. Unlike the case of Lie groups,
this provides examples where p0 is (any number) in ]1, 2[. Besides, the assumption
in Theorem 7 of H0 being non-compact is no restriction, since otherwise when
H0 is compact (but not H), Proposition 6 applies and H1

p (G) 
=0 for all p≥1 (see
Proposition 3.4 for a direct proof).

In Section 2, we collect some results relating some properties of Lp-cocycles
to the modular function of the group. These observations, crucial in the non-
unimodular case, are largely adapted from [Pa3]. At the additional cost of some
structural results on Heintze Lie groups, we then obtain Theorem 1(3).

In Section 3, we prove Theorem 7 and in particular deduce (2) of Theorem 1.
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In Section 4, we complete the proof of the corollaries of Theorem 1. In partic-
ular, we prove the existence of a G-invariant metric of negative curvature on G/K

for general Heintze Lie groups, and prove Proposition 6.
Finally, in Appendix A, we give a general structure theorem for locally compact

groups with a contraction, and in Appendix B, we prove the quasi-isometric invari-
ance of Lp-cohomology in degree one, a particular case of an unpublished result of
Pansu [Pa2].

2. Vanishing of the first Lp-cohomology and the modular function

In all this section, p∈[1, ∞). The aim of this section is to prove Theorem 1(3).

2.1. Generalities

Recall that ρ denotes the right regular representation of G on Lp(G). Let Δ
be the modular function on G. For every measurable function f on G and g ∈G, we
have ‖ρ(g)f ‖=Δ(g)−1/p‖f ‖, where ‖ · ‖ is always assumed to denote the Lp-norm.
For every ξ ∈G, define

Wξ = {h ∈ G | {ξ−nhξn}n≥0 is bounded}.

This is a subgroup of G.

Lemma 2.1. Fix ξ ∈G such that Δ(ξ)>1 (such ξ exists if and only if G is
non-unimodular). Suppose that u∈Dp(G). Then there exists u∞ ∈Dp(G) such that
u−u∞ ∈Lp(G) and ρ(ξ)u∞ =u∞.

Proof. We have

‖ρ(ξn+1)u−ρ(ξn)u‖ =Δ(ξ)−n/p‖ρ(ξ)u−u‖.

Therefore the sequence {ρ(ξn)u−u}n≥0 converges in Lp(G) to some function v;
we set u∞ =v+u. In particular, the sequence {ρ(ξn)u}n≥0 converges almost surely
to u∞. In particular, ρ(ξ)u∞ =u∞ almost everywhere. Moreover, u−u∞ ∈Lp(G),
so that u∞ ∈Dp(G) and defines the same class as u in H1

p (G). �

Lemma 2.2. Let G be any locally compact group, and suppose that u∈Dp(G)
satisfies ρ(H)u=u for some non-compact closed subgroup H of G. Let V be the
centralizer of H in G. Then ρ(V )u=u.
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Proof. For any measurable function f on G and any measurable subset X of G,
denote by ‖f ‖X the Lp-norm of f1X .

Fix any compact subset X of G. As H is non-compact, its subset H+=H ∩
{g |Δ(g)≤1} is non-compact. As the right action of G on itself is proper, there
exists a sequence {hi}i≥0 in H+ such that the subsets Bhi are pairwise disjoint.
Fix g ∈V . We have

‖u−ρ(g)u‖X = ‖ρ(hi)u−ρ(g)ρ(hi)u‖X (by the H-invariance of u)

= ‖ρ(hi)u−ρ(hi)ρ(g)u‖X (as u and hi commute)

= Δ(hi)−1/p‖u−ρ(g)u‖Xhi ,

which tends to 0, as i→∞, since u−ρ(g)u is Lp. Hence, ‖u−ρ(g)u‖X =0 for every
compact subset X ⊂G, so that ‖u−ρ(g)u‖=0, i.e. u=ρ(g)u almost everywhere. �

Fix ξ ∈G and u∈Dp(G) satisfying ρ(ξ)u=u. For g ∈G write b(g)=u−ρ(g)u.

Lemma 2.3. If g ∈G then

Δ(ξ)1/p‖b(g)‖ = ‖b(ξ−1gξ)‖.

Proof. This follows from the formula

u−ρ(g)u = ρ(ξ)(u−ρ(ξ−1gξ)u). �

Lemma 2.4. Suppose that Δ(ξ)≥1. If u∈Dp(G) and ρ(ξ)u=u, then u is
invariant by ρ(Wξ).

Proof. Using that b is bounded on bounded subsets of G, this follows from
Lemma 2.3. �

Lemma 2.5. Let G be a locally compact group.
(1) If f ∈Lp(G), p<∞, then f cannot be left- or right-invariant under a non-

compact closed subgroup H unless f=0.
(2) If f ∈Dp(G) is invariant under a non-compact closed normal subgroup N ,

then f is constant.

Proof. (1) Otherwise, there exists ε>0 such that W =
{
f
∣
∣ |f |>ε

}
has non-zero

finite measure m. Take a compact subset K such that the measure of K ∩W has
measure >m/2. There exists g such that K and gK (resp. Kg) are disjoint; we
can suppose that Δ(g)≥1. Then as gK (resp. Kg) are contained in W , we get a
contradiction.
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(2) Then b(g)=f −ρ(g)f is (left)-invariant by N , and so is zero, i.e. f is con-
stant. �

2.2. A criterion for vanishing of Lp-cohomology

Proposition 2.6. Suppose that G contains
(i) an element ξ satisfying Δ(ξ)>1;
(ii) two non-compact closed subgroups Z and Y , with Z normal in G;

and assume that Y ⊂Wξ and Y centralizes Z. Then H1
p (G)=0 for all p≥1.

Proof. Take u∈Dp(G) and let us show that it is in the cohomology class of 0.
By Lemma 2.1 we can suppose that ρ(ξ)u=u. By Lemma 2.4, u is then invariant
by ρ(Y ). By Lemma 2.2, u is invariant by Z, and therefore by Lemma 2.5, u is
constant. �

Remark 2.7. In general, it is not true that if H is a closed non-compact sub-
group contained in KerΔ and if u∈Dp(G) is ρ(H)-invariant, then u is necessarily
zero in H1

p (G)=0. It is shown in [CTV, Proposition 4.3] that if H is any infinite dis-
crete group and K is any non-trivial discrete group, then the free product G=H ∗K

is a counterexample.

2.3. Application to non-unimodular amenable Lie or p-adic groups

We say that a connected Lie group, resp. connected algebraic group over a
local field, is triangulable if it embeds as a closed subgroup of upper triangular real
matrices (resp. upper triangular matrices over the ground field).

Proposition 2.8. Let G be
(i) either a non-unimodular triangulable Lie group; or
(ii) a non-unimodular amenable connected linear algebraic group over a non-

Archimedean local field of characteristic 0.
Then G satisfies the hypotheses of Proposition 2.6 if (and only if ) G is not of
Heintze type (Lie or non-Archimedean).

Proof. The “only if” part is not the point of this section; it follows from Propo-
sitions 2.6 and 3.4. Let us focus on the “if” part, assuming that G is not of Heintze
type.

If G is non-Archimedean, removing a maximal anisotropic torus in a Levi
decomposition, we see that it has a cocompact Zariski-closed normal subgroup which
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is triangulable (and necessarily non-Heintze as well), so we can also suppose in that
case that G is triangulable (the group Z will be chosen characteristic so will remain
normal in the whole group).

Let N be the nilpotent radical and Z be its center; the assumptions imply
that Z is not compact. Write a Cartan decomposition G=AN ; this means that
A is nilpotent and G=AN (in the non-Archimedean case we can have moreover
G=A�N and A abelian).

Consider the adjoint action of A on g. It defines a homomorphism A→GL(g).
Its Zariski closure is connected nilpotent, so decomposes as a direct product DU

with D diagonalizable (over K) and U unipotent. If a∈A, we can thus decompose
the corresponding automorphism of g as du and write (after choice of a suitable ba-
sis) d=diag(λ1(a), ..., λm(a)). Define the weights as the homomorphisms ωi : A→R
defined by ωi(a)=log |λi(a)| ∈R. Set B=

⋂m
i=1 Ker(ωi), so A/B is isomorphic to Rk

(Lie case) or Zk (non-Archimedean case) for some k. For every a∈A, we have
Δ(a)=exp

(∑m
i=1 ωi(a)

)
. Set

E+ = {a ∈ A | Δ(a) > 1} =
{

a ∈ A
∣
∣
∣

m∑

i=1

ωi(a) ≥ 0
}

,

which can be viewed as a “half-space” in A/B. Set

Edil = {a ∈ A | ωi(a) ≥ 0 for all i}.

Clearly, Edil ⊂E+, but in A/B, Edil/B identifies with Rk
+ or Nk.

Therefore, if k ≥2, then there exists an element ξ in E+ which is not in Edil.
So ωi(ξ)<0 for some i. This means that Wξ is not compact and the hypotheses are
fulfilled.

Let us now suppose that k=1 (k=0 is ruled out as it would force G to be
unimodular (and even nilpotent)). Notice that this forces n to have codimension
one. Pick ξ with Δ(ξ)>1. Since the action of ξ on n has at least one eigenvalue of
modulus ≤1 (because G is not Heintze), we have that Wξ non-compact. �

Remark 2.9. Let R2 act on C2 by (r, θ)·(z1, z2)=r(eiθz1, e
πiθz2). Then the

semidirect product R2
�C2 does not satisfy the hypotheses of Proposition 2.6, yet

is non-Heintze. Note that this group is not triangulable.

Lemma 2.10. Let G be a Lie group with π0(G) finite, and assume that G is
of Heintze type with G=S�N as in Definition 1.1. Set K=Ker(ΔG)∩S. Then K

is a compact normal subgroup of S and has a direct factor in S, isomorphic to R.
Moreover, any element g in S \K generates a cocompact subgroup contracting N .
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Proof. As S0 contains a cocompact cyclic subgroup, we have K ∩S0 compact,
and hence K is compact. Since both S and N are unimodular, ΔG is non-trivial
in restriction to S, and hence to S0. Note that K is a maximal compact subgroup
in S and in particular K ∩S0=K0. As K0 is a connected compact Lie group, its
inner automorphism group is open. In particular, the action of S0 by conjugation
on K0 is by inner automorphisms and therefore its kernel S1 satisfies S0=K0S1, in
particular S1 is cocompact in S. Let L denote a one-parameter subgroup of S1, not
contained in Ker(ΔG). In particular, L is closed and non-compact; by construction
it centralizes K. As ΔG is surjective in restriction to L, we have S=KL and as
[K, L]=1, K is compact and K ∩L=1, this is a (topological) direct product.

Let ξ be an element of S contracting N . For some suitable norm, the adjoint
action of K on n is isometric, and the action of the element ξ is strictly contracting.
For some γ ∈L, we have γk=ξ for some k ∈K. Hence γ contracts n. So it has all its
eigenvalues on n of modulus <1. Therefore all {γt}t>0 is contracting, and therefore
any element of the form γtk with t>0 and k ∈K is contracting; each cyclic subgroup
of S not contained in K contains such an element. �

Lemma 2.11. Let G1 be a Lie group of Heintze type and G2 be a connected,
cocompact normal subgroup. Then G2 is of Heintze type.

Proof. Write G1=S�N as in the definition of Heintze type and let ξ be a
contracting element. Then both s and n are sums of characteristic subspaces for
the adjoint action of ξ. Therefore, g2=s2�n2 for some subspaces (necessarily ideals)
s2 and n2 of s and n. Hence G2=S2�N2 with S2 and N2 being normal subgroups
of S and N , respectively. As G2 is cocompact and connected, necessarily N2 is
cocompact and connected, and hence N2=N . In view of Lemma 2.10, S2 contains
a cocompact cyclic subgroup contracting N , so G2 is of Heintze type. �

Lemma 2.12. Let G be a Lie group with π0(G) finite. Let G1 be a cocompact,
normal, contractible subgroup of G. Then G=K�G1 for some compact subgroup
(actually, any maximal compact subgroup).

Proof. Let K be a maximal compact subgroup of G. From the exact sequence
associated with a fibration, we see that the natural map G→G/G1 is a homotopy
equivalence. Also, the inclusion K ⊂G is a homotopy equivalence. So K→G/G1

is a homomorphism between compact Lie groups which is a homotopy equivalence.
Again using the long exact sequence associated with a fibration, we obtain that both
the kernel and the cokernel of K→G/G1 are contractible. As these are compact
manifolds, they are necessarily points, that is, the map K→G/G1 is an isomor-
phism. So G=K�G1. �



Contracting automorphisms and Lp-cohomology in degree one 305

Lemma 2.13. Let G be a Lie group with π0(G) finite. Assume that G is of
Heintze type with G=S�N as in Definition 1.1. Then G/N is the largest quotient
of G with polynomial growth (also known as the “exponential radical of G”). In
particular, N is a characteristic subgroup of G.

Proof. Obviously G/N has polynomial growth. Conversely, let M be a normal,
closed subgroup of G such that G/M has polynomial growth and let us show that
N ⊂M . By Guivarc’h [Gu], this means that in the adjoint representation of G on
g/m, all eigenvalues have modulus one. This forces n⊂m, so N ⊂M . �

Lemma 2.14. Let G be a Lie group with π0(G) finite. Assume that G has a
normal, cocompact subgroup G1 which is of Heintze type. Then G is of Heintze type.

Proof. Write G1=S�N as in Definition 1.1. By Lemma 2.13, N is character-
istic in G1 and therefore normal in G.

By Lemma 2.10, S=K ×T with T �R and K compact. Let us prove that
T �N is normal in G. The subgroup T �N is contained in the radical R1 of G1.
Now R1 is characteristic in G1, so is normal in G, and thus is contained in the
radical R of G. Hence T �N ⊂R. Therefore the image of T in G/N , which we
still denote by T , is contained in the radical R/N of G/N . Since G1 is normal and
cocompact, the restriction of ΔG to G1 is ΔG1 . So the map ΔG can be viewed
as a homomorphism on G/N , which is non-trivial on T , and hence on R. Set
M=R∩Ker(Δ), so R/M �R and M/N is compact. Since R/N is connected and
M/N is its maximal compact subgroup, M/N is connected. As a solvable, connected
compact normal subgroup of R/N , M/N is a central torus. Since it has codimension
one in R/N , there is a one-dimensional factor, and hence a direct factor of M/N in
R/N . Thus R/N is abelian. In particular the action of G on R/N by conjugation
factors through the compact group G/R. This group preserves a direct product
decomposition R/N=M/N ⊕V ; since G/R is compact, its action on the compact
torus M/N is trivial. Moreover, its action leaves invariant the function ΔG and
therefore acts trivially on V . Thus R/N is central in G/N , and hence T is normal
in G/N . Therefore T �N is normal in G. �

Lemma 2.15. Let G be a connected amenable Lie group and W be a compact
normal subgroup. If G/W is of Heintze type, then so is G.

Proof. First observe that the result is clear when W is locally a direct factor.
In general, we can suppose that W is either semisimple, finite, or a circle. When W

is semisimple, as its outer automorphism group is discrete and W has finite center,
its centralizer is locally a direct factor.
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Suppose that W is finite. In particular, W centralizes G0. Using Lemma 2.10,
write G/W =((T/W )×(K/W ))�(N/W ). As T/W and N/W are both simply con-
nected, we have T =T0 ×W and N=N0 ×W . So G=TK�N is of Heintze type.

Finally, suppose that W is a circle and that G/W is of Heintze type. By
Lemmas 2.11 and 2.14, we can suppose that G/W =(S/W )�(N/W ) with S/W �R.
As S/W is one-dimensional, we can lift it to a one-parameter subgroup T of G, so
G=T �N and N ⊃W .

Let ξ ∈T be an element contracting n. Consider the adjoint action of ξ on n,
and denote by c be the sum of the characteristic subspaces for eigenvalues of mod-
ulus <1. Since c={x∈n|limn→∞ Ad(ξn)x→0}, we see that c is a Lie subalgebra.
Note that since G/W is Heintze, c projects onto n/w, that is, c+w=n. Clearly the
intersection is trivial (since w is central), so c⊕w=n. Again using that w is central,
we obtain that this is a decomposition as a direct product of Lie subalgebras. Let
C be the Lie subgroup corresponding to c. The projection C→N/W inducing the
isomorphism c→n/w is a covering; as G/W is simply connected, it is an isomor-
phism. In particular, C is closed, nilpotent and simply connected. This implies
in particular that C ∩W =1. So N is the topological direct product of C and W .
As T normalizes both C and W , we obtain that W is a direct factor in G, hence
clearly G is of Heintze type. �

Theorem 2.16. Let G be a non-unimodular amenable Lie group with finitely
many components, or a non-unimodular amenable linear algebraic group over a
local field of characteristic zero. Assume that G is not of Heintze type (Lie or
non-Archimedean). Then H1

p (G)=0 for all p≥1.

Proof. If G is triangulable or non-Archimedean, this is Proposition 2.8. The
rest of the proof concerns connected Lie groups, and consists in reducing to the tri-
angulable case, using the fact that the Lp-cohomology is a quasi-isometry invariant
(see Appendix B).

Assume that G is an amenable Lie group with π0(G) finite and G not of
Heintze type. Then the radical G1 of G is cocompact and by Lemma 2.14 is not of
Heintze type. Let W be the maximal normal compact subgroup in the connected
solvable Lie group G1. By Lemma 2.15, G2=G1/W is not of Heintze type. Note
that [G2, G2] is simply connected. By the trigshadow construction [C, Lemma 2.4],
there exist connected Lie groups with normal cocompact inclusions G2 ⊂G3 ⊃G4

with G4 triangulable. By Lemmas 2.11 and 2.14, G4 is not of Heintze type and
we can conclude by Proposition 2.8, using that cocompact inclusions are quasi-
isometries. �
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2.4. The case of non-amenable Lie or p-adic groups

Lemma 2.17. Let G be a connected non-amenable Lie group which is not of
rank-one type. Let W be the maximal compact normal subgroup in G. Then G has a
cocompact subgroup L, containing W , such that L/W is a simply connected solvable
Lie group which is not of Heintze type.

Proof. Let M be the connected amenable radical of G. Assume that M is not
compact and G/M has finite center. Let R be the radical of G (R is cocompact
in M ). Modding out if necessary, we can suppose that W =1. So the derived
subgroup [R, R] of R is simply connected. Consider the action by conjugation of
G/R on R/[R, R]. As G/R is semisimple, using the action on the universal covering,
we obtain that R/[R, R] decomposes, under the action of G, as the direct sum of its
maximal compact subgroup and some vector space V0. Let V be the inverse image
of V0 in R. So V is normal in G, simply connected, and cocompact in M . The group
G/V is the direct product, up to some normal finite subgroup, of a compact group
and a semisimple group with finite center. Therefore it has a simply connected
solvable cocompact subgroup; let P be its inverse image in G, which is a simply
connected solvable cocompact subgroup of G. Assume by contradiction that P is
Heintze. We know that the derived subgroup of P/V has codimension at least one
in P/V . As the Heintze assumption implies that [P, P ] has codimension one, this
forces [P, P ] to contain V . As P is Heintze, it contains an element ξ contracting
[P, P ]. In particular, ξ contracts V . If g ∈G, let the action of g by conjugation on
V multiply the Haar measure by q(g). So, using that V is non-compact, q(ξ) 
=1.
Because of the existence of this contraction, V ⊂[G, G] and in particular V ⊂Ker(q),
i.e. q factors through G/V . Now G/V has compact abelianization because it is
compact-by-semisimple. So q is trivial, a contradiction.

Assume that either M is compact or G/M has infinite center. If M is compact,
then by assumption G/M has rank at least two, so G/M either has infinite center
or has rank at least two. Then by Lemmas 2.4 and 6.7 in [C], there exist cocompact
inclusions

G/W ⊃ G1 ⊂ G2

with G2 being a solvable and simply connected Lie group. The assumptions imply
that G/M contains Z2 as a quasi-isometrically embedded subgroup, this copy can
be lifted to a Levi factor of M in G/W , so G/W also contains a quasi-isometrically
embedded subgroup isomorphic to Z2. Therefore G2 contains a quasi-isometrically
embedded copy of Z2 as well (actually, it follows from the construction in [C] that
it can be realized as a subgroup, even if we can bypass it), so is not of Heintze
type. �
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If G is a linear algebraic group over a local field K, the rank (or K-rank) of G

is the least k such that G contains a K-split torus of rank k.

Lemma 2.18. Let G be a connected linear algebraic group over a local field
K of characteristic zero. Suppose that G is not amenable, and is not reductive of
rank one. Then G contains a cocompact subgroup of the form DU (D split torus
and U unipotent) which is not of non-Archimedean Heintze type.

Proof. This is a simplified analog of the proof of Lemma 2.17, so we only sketch
it. The hypotheses mean that either G has rank at least two, or is not reductive.

Let N be the unipotent radical of G. The reductive group G/N has a cocom-
pact subgroup of the form DU ′ with D being a split torus and U ′ unipotent. Let
P =DU be the inverse image of this subgroup in G. If G has rank at least two,
so does P , so that P is not of non-Archimedean Heintze type. Otherwise, since
we assume that G is not amenable, G/N is non-abelian reductive of rank one. In
particular, G/N has no non-trivial homomorphism to R, as well as N . Therefore
the action of G on N by conjugation preserves the Haar measure. As in the proof of
Lemma 2.17, and as N is non-trivial, this prevents P from being a non-Archimedean
Heintze group. �

Proposition 2.19. Let G be either a connected Lie group, or a linear algebraic
group over a local field of characteristic zero. Suppose that G is not amenable, and
not of rank-one type. Then H1

p (G)=0 for all p≥1.

Proof. The hypotheses exactly mean that Lemmas 2.17 and 2.18 do apply.
So G is quasi-isometric to a non-Heintze simply connected solvable Lie group, or a
non-Heintze triangulable group over a local field of characteristic zero. Again using
the quasi-isometry invariance of the Lp-cohomology (Appendix B), the result then
follows from Theorem 2.16. �

3. The Lp-cohomology of Heintze groups

In this section, we prove (2) and (2′) of Theorem 1.
We consider semidirect products D�N with the following convention: D acts

on N on the right, and the group law is given by

(d1, n1)(d2, n2)= (d1d2, (n1d2)n2).

Suppose that D is discrete. Then it is checked at once that if λ0 is a left Haar
measure on N , and δ is the counting measure on D, then λ=δ ⊗λ0 is a left Haar
measure on G=D�N .
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Suppose now that u is a continuous function on G that is invariant for the
right-regular action of D (i.e. u(gd)=u(g) for all g ∈G and d∈D). Then, if we set,
for g ∈N , v(g)=u(1, g), we have u(d, n)=v(nd−1) for all (d, n)∈D�N .

Lemma 3.1. If D is infinite and v is not constant, then u is not in R+Lp(G).

Proof. For some ε>0, there exist two disjoint measurable subsets of positive
measure A1 and A2 of N such that for every (a1, a2)∈A1 ×A2, v(a1)≤v(a2)−ε. As
D is infinite, the subset D+ of D consisting of elements such that the automorphism
g �→gd of N dilates the measure, is infinite. If d∈D+ and a∈Ai, then u(d, aid)=
v(ai). Therefore, for every (b1, b2) with

bi ∈ Bi =
⋃

d∈D+

{d} ×(Aid),

we have u(b1)≤u(b2)−ε. As B1 and B2 both have infinite measure, this implies
that u /∈R+Lp(G). �

Lemma 3.2. Set, for g ∈N , b(g)=v −ρ(g)v. Then u∈Dp(G) if and only if
v ∈Dp(N) and

(1)
∑

d∈D

Δ(d)‖b(gd−1)‖p
p

is finite for all g ∈N and tends to 0 when g→1.

Proof. For g ∈G, set B(g)=u−ρ(g)u. To check that B(g)∈Lp(G) for all g ∈G,
it is enough to check it for g ranging over a generating subset of G. As B(g)=0 for
g ∈D, it is enough to check it for g ∈N .

For fixed d∈D, we have vd(n):=u(d, n)=v(nd−1), and the condition is that
∑

d∈D

‖vd −ρ(g)vd‖p
p < ∞

for all g ∈N . Now (vd −ρ(g)vd)(n)=b(gd−1)(nd−1), so that (reminder:
∫

f(gh) dg=
Δ(h)−1f(g) dg)

‖vd −ρ(g)vd‖p =Δ(d)‖b(gd−1)‖p
p.

Thus, for g ∈N we have

‖B(g)‖p
p =

∑

d∈D

Δ(d)‖b(gd−1)‖p
p. �
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Let us now specialize to the case when D is cyclic and generated by an element
ξ satisfying δ=Δ(ξ)>1.

Let W be the largest compact normal subgroup in the unit component H0 of H ,
look at the eigenvalues of ξ on the Lie algebra on the non-trivial simply connected
Lie group N0/W , and define λ as the minimal modulus of its (complex) eigenvalues.

Theorem 3.3. Consider a locally compact group G=S�H . Assume that some
cyclic cocompact subgroup of S contracts H , and that H0 is non-compact. Define δ

and λ as above and G=Z�H . Then H1
p (G)=0 if and only if

p ≤ p0(G) :=
log δ

log λ
.

Proof. Using the quasi-isometry invariance of Lp-cohomology (Appendix B),
we can suppose that S=Z contracts H .

By Corollary A.6, H/W (H0) has a characteristic open subgroup L decomposing
canonically as a direct product of a connected Lie group and a totally disconnected
characteristic subgroup. Therefore the theorem is a combination of the following
two propositions. �

Proposition 3.4. Consider contracting actions σ and σ′ of Z on a connected
Lie group N and on a totally disconnected locally compact group R, and H=N ×R

with the diagonal (contracting) action of Z. Define G=Z�H . Pick p≥1. If N is
non-compact, assume in addition that p>p0(G). Then H1

p (G) 
=0.

Proof. On H=N ×R, we define v(n, r)=w(n)β(r), where w is non-zero Lip-
schitz and compactly supported on N (Lipschitz referring to the intrinsic Riemann-
ian distance on N ), and β being the indicator function of some clopen neighborhood
of 1.

Since b is bounded, as d→−∞, the sum (1) converges in Lp-norm, uniformly
on g.

Then for fixed g=(h, s)∈N=N ×R,

b(gξ−d)(n, r) = v(n, r)−v((n, r)(g−1ξ−d))

= w(n)β(r)−w((n(h−1ξ−d))β(r(s−1ξ−d))).

When d→∞, we have that s−1ξ−d→1, so eventually, say for d≥d0=d0(g), we
obtain that β(r(g−1ξ−d))=β(r). Thus for d≥d0,

b(gξ−d)(n, r) =β(r)[w(n)−w(n(h−1ξ−d))].
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Pick λ′ <λ such that δ<(λ′)p. Then as λ′ <λ, the Riemannian length h−1ξ−d is
bounded above by (λ′)−d for d�0. As w is Lipschitz, this implies that for some
constant C,

b(gξ−d)(n, r) ≤ C(λ′)−d.

As b(g′) has support of bounded measure (independently of g′), this implies
that ‖b(gξ−d)‖ ≤C ′(λ′)−d for d≥0, for some suitable constant C ′. So

Δ(ξ)d‖b(gξ−d)‖p ≤ C ′(δ/(λ′)−p)d

and (1) holds.
We still need the continuity at 1. First note that d0=d0(g), as defined above,

can be chosen bounded when g is bounded. We pick d0 working for some neighbor-
hood V of 1. From the Lipschitz condition, we actually have

|b(gξ−d)(n, r)| ≤ C|h−1ξ−d|,

where | · | denotes the Riemannian length in N0, and |h−1ξ−d| ≤C ′ |h|(λ′)−d for all
d≥d1, d1 being independent of h∈V , which lies in the given neighborhood of 1.
This implies that the sum ∑

d≥d1

Δ(ξ)d‖b(gξ−d)‖p

is continuous at 1, and therefore so is the entire sum, indexed by Z. �

Proposition 3.5. Consider contracting actions σ and σ′ of Z on a non-
compact connected Lie group N and on a totally disconnected group R, and H=
N ×R with the diagonal (contracting) action of Z. Define G=Z�H and p0(G) as
above. Then H1

p (G)=0 for all p≤p0(G).

Proof. The first step is to modify the action of Z on N so as to have a trian-
gulable action with positive real eigenvalues.

Consider the tangent action of σ(Z) on n. Then we have n=k⊕m, where m,
resp. k is the sum of characteristic subspaces for eigenvalues of σ(Z) of modulus
less than 1, resp. equal to 1. Moreover these are Lie subalgebras, and [k, m]⊂m,
so m is an ideal. Let M and K be the corresponding Lie subgroups of G. Then
M is strictly contracted by σ(Z), and so is nilpotent and simply connected. Since
M is contained in the nilpotent radical of N , which is simply connected, M is
closed. Moreover σ contracts the quotient N/M , so that the tangent action has
all its eigenvalues of modulus one. This implies (for instance) that σ(Z) preserves
the measure on N/M , and therefore N/M is compact. So Z�M ×R is cocompact
in G, and hence quasi-isometric to it. In view of the quasi-isometry invariance of
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the Lp-cohomology (see Appendix B), we can replace N by M if necessary, and we
can suppose that N is nilpotent and simply connected.

Then the group Aut(N)=Aut(n) is a linear algebraic group; and thus we can
write σ(1)=g+k=kg+ with k elliptic and g+ having all eigenvalues real and pos-
itive. If we define a new action σ1 of Z on N by replacing σ(n) by gn

+, define
G1=Z�σ1,σ′ (N ×R). Let K denote the closure of the subgroup 〈k〉 of Aut(N).
We can make Z×K act on N ×R, the action on N being the original action, the
action of Z on R being the original action, and the action of K on R being triv-
ial. Then both G and G1 embed into (Z×K)�(N ×R) as cocompact subgroups.
Therefore G1 is quasi-isometric to G. Again using the quasi-isometry invariance of
Lp-cohomology, we can henceforth assume that N is simply connected and nilpo-
tent, and Z acts on it with all eigenvalues real and positive.

Assume that H1
p (G) 
=0. By Lemma 2.1, there exist u∈Dp(G) which is ρ(ξ)-

invariant, and therefore u can be written as above. As the eigenvalues of ξ on N

are real, there exists a one-parameter subgroup {γ(t)}t∈R of N on which ξ acts by
multiplication by λ. Then (1) reads as

(2)
∑

n∈Z

Δ(ξ)n‖b(γ(λ−n))‖p
p < ∞.

Set g0=γ(1). For n≥0, write λn=mn+εn, where mn=�λn�. Then

‖b(g0)‖ = ‖b(γ(1))‖ = ‖b(γ((mn+εn)λ−n))‖ ≤ mn‖b(u(λ−n))‖+‖b(εnλ−n)‖.

In the last inequality, we use that ρ|N is an isometric action. Set

en =sup
{

‖b(γ(t))‖
∣
∣ t ∈ [0, λ−n]

}
.

Then
‖b(g0)‖ ≤ λn‖b(γ(λ−n))‖+en.

We have en→0, as n→∞, since λ>1 and the cocycle b is continuous. Assume that
‖b(g0)‖ 
=0. Then for n�0 we have

0 ≤ ‖b(g0)‖ −en ≤ λn‖b(γ(λ−n))‖,

so (2) implies that
∑

n∈N

(
Δ(ξ)
λp

)n

(‖b(g0)‖ −en)p < ∞.

As ‖b(g0)‖ −en→‖b(g0)‖>0, this implies that |Δ(ξ)/λp|<1, that is,

p>
log Δ(ξ)

log λ
.
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Now assume by contradiction that b(g0)=0, that is, ρ(g0)u=u. Let Z be the center
of N0, which is non-compact. By Lemma 2.2, ρ(Z)u=u. Thus, by Lemma 2.5, u is
constant on G, a contradiction. �

4. On Gromov-hyperbolic groups

In the section, we prove the corollaries of Theorem 1. First, Corollary 2 is
immediate from the theorem.

The following proposition is essentially proved, in the even more general context
of metric groups by Gromov.

Proposition 4.1. Let G be a non-elementary Gromov-hyperbolic locally com-
pact group. Then G contains a quasi-isometrically embedded free subsemigroup on
two generators.

Proof. Gromov provides [Gr1, Section 8.2.D] two hyperbolic elements γ1 and
γ2 with origins o1 and o2, targets t1 and t2, and #{oi, t1, t2}=3 for i=1, 2. It then
follows from the quasi-isometric ping-pong lemma [CT, Lemma 2.1] that suitable
powers of γ1 and γ2 generate a free subsemigroup. �

Such a quasi-isometrically embedded subsemigroup provides a quasi-isometri-
cally embedded tree in G, and by [T2, Theorem 6], this implies that the Lp-cohomo-
logy is non-zero for large p.

Corollary 4.2. If G is a non-elementary Gromov-hyperbolic locally compact
group, then H1

p (G) 
=0 for p large enough.

Note that for the groups considered in this paper, the results of [CT] are enough
to provide a quasi-isometrically embedded subsemigroup without using Proposi-
tion 4.1, but we found it natural and useful to mention it. Anyway, (3.1)⇒(2.1)
and thus (3.1)⇒(3.2) is proved. The converse (3.2)⇒(3.1) is a particular case of
Corollaries 4 and 5 (although the reader can prove it directly in a more straightfor-
ward way).

In Corollary 4, the implications (4.3)⇒(4.2)⇒(4.1) are straightforward. If (4.1)
holds, by the already proved implication of Corollary 3, the unit component G0,
and therefore G, is a Lie group of Heintze type or rank-one type. So we have to
prove the following proposition.

Proposition 4.3. Let G be a Lie group with finitely many components, of
Heintze type or rank-one type, and K be a maximal compact subgroup. Then the
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connected manifold G/K has a G-invariant Riemannian metric of negative curva-
ture.

Proof. If G is of rank-one type, K acts irreducibly on the tangent space of the
base-point of G/K, so the left-invariant Riemannian metric is unique up to scalar
multiplication, and thus we get one of the simply connected irreducible symmetric
spaces of rank one, which are negatively curved.

So assume that G is of Heintze type. Let H be a cocompact normal subgroup
which is simply connected. Let K be a maximal compact subgroup of G. The
adjoint action of K on h preserves the hyperplane [h, h], and so preserves a com-
plement line a, corresponding to some one-parameter A normalized by K. As the
modular function Δ is non-trivial on A, an element of A cannot be conjugate to its
inverse, and therefore K centralizes A.

Let b be a K-invariant scalar product on h. Consider, for λ>0, the linear
automorphism of h mapping a+v, a∈a and v ∈[h, h], to λ−1a+v. Note that it
commutes with the action of K, so (uλ)∗b is also K-invariant. Then [He, Theorem 2]
states that if λ is large enough, then the left-invariant metric on H obtained by
translating (uλ)∗b from the identity, is negatively curved. Moreover, this metric is
K-invariant, and the group of isometries generated by left translations of H and
conjugation by elements of K is naturally identified with G=K�H . �

Finally similarly, in Corollary 5, the implications (5.3)⇒(5.2)⇒(5.1) are
straightforward. If (5.1) holds, by the already proved implication of Corollary 3,
G is of non-Archimedean Heintze or rank-one type. In the latter case, G acts on
the corresponding Bruhat–Tits tree, giving (5.3). Precisely, the action by conjuga-
tion of G on G0 provides a proper map G→Aut(G0), and Aut(G0) has a natural
action on the Bruhat–Tits tree. For groups of non-Archimedean type, we have
Proposition 4.6 below. We first need the following lemma.

Lemma 4.4. Let H be a non-compact locally compact group with H0 compact,
endowed with a contracting action of Z. Then there exists a vacuum subset which
is a compact open subgroup.

Proof. Let U be a compact vacuum subset and set L=
⋂

k≥0 kU . Then it is easy
to check that L is a compact subgroup. So, as H0 is compact, L is contained in a
compact open subgroup V (by an easy argument; see if necessary [Pe, Theorem 2]),
which is necessarily a vacuum subset. �
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Lemma 4.5. Let H be a non-compact locally compact group with H0 compact.
Let S be a locally compact group with an action π on H by group automorphisms,
and suppose that S possesses a cocompact copy of Z, which contracts H . Then

(i) S has a unique homomorphism p onto Z, which is positive on the given
copy of Z, and W =Ker(p) is compact ;

(ii) there exists a compact open subgroup Ω of H which is π(W )-invariant, and
stable under π(p−1(N)), and for every compact subset K of H there exists k such
that π(p−1(N≥k))K ⊂Ω.

Proof. Let us first check that p is unique. Let p be a surjective homomor-
phism S→Z. As S contains a cocompact copy of Z, W =Ker(p) has to be compact
and is thus determined as the unique maximal normal compact subgroup of S.
This gives only two possibilities for p, and uniqueness follows from the positivity
assumption.

If g ∈S, let the automorphism π(s) of H multiply the Haar measure of H by
q(s)∈R∗

+. As H is non-compact, this is a non-trivial homomorphism S→R∗
+. By

Lemma 4.4, we can choose a vacuum subset L which is a compact open subgroup
of H . Then W+={g ∈S |π(g)L⊂L} contains 1 in its interior. Indeed, otherwise there
exists a net gi→1 in S such that gi /∈W+. So there exists hi ∈L with π(gi)hi /∈L.
As L is compact, we can suppose that {hi}i≥0 has a limit h∈L. Since the action
of G on H is continuous, π(gi)hi /∈L converges to h∈L, a contradiction. Similarly
W− ={g ∈S |π(g−1)L⊂L} contains 1 in its interior, and therefore W0=W+ ∩W− =
{g ∈S |π(g)L=L} is an open subgroup of S. Clearly, W0 ⊂W =Ker(q). Therefore
W is open in S. The group S/W is discrete, is embedded into R (by log¨q), and
contains a cocompact copy of Z, so it is infinite cyclic as well. This yields the
desired homomorphism p.

Let us now turn to the second assertion. It follows from the algebraic con-
tractibility assumption that every compact subset of H generates a relatively com-
pact subgroup of G. Therefore the subgroup L1, defined as the closed subgroup
generated by the compact subset {π(g)h|g ∈W and h∈L} of H , is compact. Now
L1 is π(W )-invariant.

Fix t∈p−1({1}). Let t′ be the positive generator of the given copy of Z. As
π(t)L1 is compact, there exists k ≥0 such that π((t′)k)π(t)L1 ⊂L1. We can write
(t′)kt=t�w with �≥1 and w ∈W . So π(t�)L1 ⊂L1. Define Ω=

⋂�−1
i=0 π(ti)L1. Then Ω

is compact and open, and π(t)Ω⊂Ω. Moreover, as W is normalized by S, π(ti)L1 is
π(W )-invariant for all i, and so Ω is π(W )-invariant as well. Now t and W generate
the semigroup p−1(N), and thus π(p−1(N))Ω⊂Ω.
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As
⋃�−1

i=0 π(ti)L1 is a compact subset of H , there exists ˇ such that

π(tˇ)
( �⋃

i=1

π(ti)L1

)
⊂ L ⊂ L1.

So
π(tˇ+i)L1 ⊂ L1 for all i =1, ..., �,

that is,

π(tˇ)L1 ⊂ π(t−i)L1 for all i =1, ..., �,

and thus

π(tˇ+�)L1 ⊂
�−1⋂

j=0

π(tj)L1 =Ω.

Now if K is a compact subset of H , there exists k ≥0 such that π(tk)K ⊂L⊂L1.
Therefore π(tk+ˇ+�)K ⊂Ω, and hence π(g)K ⊂Ω whenever p(g)≥k+ˇ+�. �

Proposition 4.6. Keep the assumptions as in Lemma 4.5. Then there exists a
proper length function � on the semidirect product G=S�H such that the pseudo-
metric space (G, d), where d(g, g′)=�(g−1g′), is isometric to the vertex set of an
r-regular tree for some r ≥3.

Proof. Let W, p and H0 be as given by Lemma 4.5, and fix t∈p−1({1}). Re-
placing if necessary S by Z (but we still write it multiplicatively) and H by W �H

(and H0 by W �H0), we can suppose that G=Z�H , so now p is just the identity.
Set M=H0{t, t−1}H0. Consider the Cayley graph of G with respect to M .

As M is invariant under conjugation by H0, the right action of H0 on G preserves
this Cayley graph structure. So we get a graph structure on the quotient G/H0;
moreover as the original right action of H0 commutes with the left action of G, we
get a left action of G on the graph G/H0. As M generates G, this graph is connected.
To check that it is a tree, it is enough to check that −p behaves like a Busemann
function, i.e. for any vertex v with p(v)=n there is only one vertex v′ adjacent to
v with p(v′)=n+1. (Indeed, if we have an injective loop, it contains a vertex v

with p(v) minimal, and the two adjacent vertices in the loop have p(v′)=p(v)+1.)
By homogeneousness, it is enough to check this when v=(1, 1) is the identity. Let
(t, u1) and (t, u2) be two neighbors of v, viewed in G. This means that (t, ui) belong
to H0tH0 for i=1, 2. So there exist v1, v

′
1 ∈H0 such that

(t, u1)= (1, v1)(t, 1)(1, v2)= (1, v1)(t, v2)= (t, π(t)v1 ·v2).
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As π(t)v1 ∈H0, we obtain that u1 belongs to H0. Similarly u2 ∈H0. Now

(t, u1)−1(t, u2)= (1, u−1
1 u2) ∈ H0,

so (t, u1) and (t, u2) are identified in G/H0. �

Appendix A. Direct decomposition for a contraction

This appendix is needed for the proof of Theorem 3.3 (and thus Theorem 7).
It can also be of independent interest for the general study of contractions, as it
generalizes [S, Proposition 4.2], which applies to strict contractions.

We refer to Definition 1.1 for the definition of a contraction and a vacuum
subset. If a locally compact group G has a maximal normal compact subgroup,
such a subgroup is unique and denoted by W (G). Notably, such a subgroup exists
when π0(G)=G/G0 is compact [MZ, p. 175] and in particular when G is connected.
We say that a locally compact group G is elliptic if every compact subset is contained
in a compact subgroup. We have the following easy lemma.

Lemma A.1. If a locally compact group G has a contraction, then G/G0 is
elliptic.

Proof. As α induces a contraction of G/G0, we can suppose that G is totally
disconnected and we have to prove that G is elliptic. Let U be a compact vacuum
subset. Define the limit set L as

⋂
n≥0 αn(U). This is a compact subgroup. Note

that α (strictly) contracts G modulo L, in the sense of [HaS]. Since G is totally
disconnected, there exists a compact open subgroup V containing L. If K is any
compact subset of G, then αn(K) is contained in V for some n, and therefore K is
contained in the compact subgroup α−n(V ). �

Lemma A.2. Let G be a locally compact group with π0(G) compact and
W (G0)=1. Then the subgroup generated by G0 and W (G) is naturally isomorphic
to the direct product G0 ×W (G) and is open of finite index.

Proof. As W (G0)=1, we have W (G)∩G0={1}. Hence W (G) and G0 central-
ize each other. As W (G) is compact, this is enough to ensure that the natural
homomorphism G0 ×W (G)→G0W (G) is a topological isomorphism onto a closed
subgroup.

Since π0(G) is compact, G/W (G) is a Lie group with finitely many components.
Now G/G0W (G) is both a quotient of G/W (G) and of G/G0, which is totally
discontinuous, and therefore G/G0W (G) is finite. �
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Under the same assumption, we need to characterize W (G) without referring
to any normality assumption (since in the sequel G will vary among open subgroups
of a given group).

Lemma A.3. Let G be a Lie group with π0(G) finite and W (G)=1. Then G

has no non-trivial compact subgroup centralizing G0.

Proof. Let K be a compact subgroup centralizing G0; let us assume that K is
maximal for this property. Then K ∩G0 is compact and central in G0 and thus triv-
ial. In particular, K is finite. Let S be a maximal compact subgroup of G containing
K, and let N be the centralizer of G0 in G. Since G=SG0 [Mo, Theorem 3.1], any
conjugate of K is contained in S. Moreover since K is contained in N which is nor-
mal, any conjugate of K is contained in S ∩N . Now S ∩N is a compact subgroup
centralizing G0, so by maximality of K, we have K=S ∩N and therefore K contains
all its conjugates, and thus normal in G. As W (G)=1, this implies K=1. �

Lemma A.4. Let G be a locally compact group with π0(G) compact and
W (G0)=1. Then any compact subgroup of G centralizing G0 is contained in W (G).

Proof. Let K be a compact subgroup with [K, G0]=1. By Lemma A.3, the
image of K in G/W (G) is trivial. �

Therefore, when π0(G) is compact and W (G0)=1 holds, W (G) appears as the
maximal compact subgroup centralizing G0.

Theorem A.5. Let G be a locally compact group with π0(G) elliptic and
W (G0)=1. Then G has a unique maximal subgroup W ′(G) among those closed el-
liptic subgroups centralizing G0. Moreover, the natural map G0 ×W ′(G)→G0W

′(G)
is a topological isomorphism onto an open subgroup of G.

Proof. Write G as the union of a net of open subgroups Gi with π0(Gi) com-
pact. If Gi ⊂Gj , then

(A.1) W (Gj)∩Gi =W (Gi).

Indeed, W (Gj)∩Gi ⊂W (Gi) by definition of W , and the reverse inclusion follows
from Lemma A.4 applied inside Gj . Set W ′(G)=

⋃
i W (Gi). From (A.1) it follows

that W ′(G)∩Gi=W (Gi) for all i, and in particular W ′(G) is closed. Clearly it is
elliptic and centralizes G0. Conversely if H is closed, elliptic and centralizes G0,
then H ∩Gi is compact for all i and therefore by Lemma A.4 is contained in W (Gi),
and hence in W ′(G), so that H is contained in W ′(G).
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To check that the natural map G0 ×W ′(G)→G is a topological isomorphism
onto its image, it is enough to check that it is a proper injective homomorphism.
It is injective since G0 ∩W ′(G)=1. To check properness, let {(gn, wn)}n≥0 be a
sequence with gn ∈G0, wn ∈W ′(G) and gnwn→1. Then since Gi is open, eventually
gnwn ∈Gi, so wn ∈W (Gi), and therefore properness is reduced to properness in
restriction to G0 ×W (Gi), which was established in Lemma A.2.

Finally G0W
′(G) contains the open subgroup G0W (Gi) of the open subgroup

Gi, so is open itself in G. �

Corollary A.6. Let G be a locally compact group with W (G0)=1, and assume
that G has a contraction. Then G has a characteristic subgroup W ′(G) satisfying
the properties stated in Theorem A.5, and G0W

′(G) has finite index.

Proof. By Lemma A.1, G/G0 is elliptic and Theorem A.5 applies. It is obvious
from its statement that the subgroup W ′(G) is characteristic, and in particular the
open subgroup G0W

′(G) is characteristic as well, and thus is stable under the given
contraction. Therefore the discrete group G/G0W

′(G) also has a contraction, and
hence must be finite. �

This contains [S, Proposition 4.2] as a particular case.

Corollary A.7. Let G be a locally compact group and assume that G has a
strict contraction. Then G decomposes (canonically) as a product of characteristic
subgroups G=G0 ×W ′(G).

Proof. The strict contraction α strictly contracts the compact normal subgroup
W (G0) and therefore W (G0)=1, so Corollary A.6 applies. Moreover α induces a
strict contraction of the finite group G/G0W

′(G), so this is the trivial group, that
is, G=G0W

′(G). �

Appendix B. Quasi-isometry invariance

The invariance under quasi-isometries of the Lp-cohomology was obtained in
all degrees in [Pa2]. As that preprint from 1995 is not yet published, and the case
of degree one, used in the proof of the vanishing results of the Lp-cohomology in
Theorem 1, is considerably simpler than in higher degree, we include a full proof.

The following coarse notion of (first) Lp-cohomology in degree one is essentially
due to [Pa2] (see also the chapter about Lp-cohomology in [Gr2, Chapter 8], and
[T2] for the case of degree 1). Here, we use the notation of [T2], but we extend
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the definition to spaces which are not necessarily 1-geodesic. This will allow us to
apply our result to non-compactly generated locally compact groups. The fact that
this definition is equivalent to the one we gave in the introduction follows from the
proof of [T2, Theorem 5.1].

Let X=(X, d, μ) be a metric measure space, and let p≥1. For every s>0, we
write Δs={(x, y)∈X2 |d(x, y)≤s}.

First, let us introduce the p-Dirichlet space Dp(X).
– The space Dp(X) is the set of measurable functions f on X such that

∫

Δs

|f(x)−f(y)|p dμ(x) dμ(y) < ∞

for every s>0.
– Let us equip Dp(X) with the topology induced by the following seminorms

(for all s>0):

‖f ‖Dp,s =
(∫

Δs

|f(x)−f(y)|p dμ(x) dμ(y)
)1/p

.

Definition B.1. The first Lp-cohomology of X is the space

H1
p (X) =Dp(X)/(Lp(X)+R),

and the first reduced Lp-cohomology of X is the space

H1
p (X) =Dp(X)/(Lp(X)+R)

Dp(X)
.

Let X=(X, d, μ) be a metric measure space satisfying the following “bounded
geometry” condition: for all x∈X and r>0,

v(r) ≤ μ(BX(x, r)) ≤ V (r),

where v and V are increasing positive functions on (0, ∞) and BX(x, r)={y ∈X |
d(x, y)<r}. It is not difficult to check that this condition is automatically satisfied
if the group of measure-preserving isometries of X acts cocompactly. In particular,
a locally compact group equipped with a left-invariant, proper metric has bounded
geometry (properness is assumed here only for the balls to have finite volume).

We will use the notation f �T g when f ≤Cg for some constant C depending
“only” on T .

Theorem B.2. Suppose that two metric measure spaces X and Y with bounded
geometry are coarse equivalent. Then there exists a topological isomorphism between
their first Lp-cohomology.
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Proof. First, note that if the spaces are discrete (equipped with the counting
measure) and if ϕ is a bijective coarse equivalence from X to Y , then ϕ induces
a topological isomorphism on the first Lp-cohomology. Therefore, owing to the
following lemma, we can suppose that Y is a discretization of X , i.e. a sub-metric
space of X such that d(y, y′)≥1 for all y, y′ ∈Y , y 
=y′, and such that the inclusion
Y ⊂X is a coarse equivalence. This is equivalent to the existence of some R>0
such that X ⊂

⋃
y∈Y BX(y, R). Moreover, since X has bounded geometry, at most

N=N(R) of these balls intersect.

Lemma B.3. Let ϕ:X→Y be a coarse equivalence. There exists a discretiza-
tion Xd of X , such that the restriction of ϕ to Xd is one-to-one, and such that
ϕ(Xd) is a discretization of Y .

Proof. By definition of a coarse equivalence, there exists R>0 such that points
at distance at least R in X are mapped to points at distance at least 1 in Y . Hence
the lemma follows by letting Xd be a maximal R-separated net in X . �

The two main ingredients of the proof, that we will use thoroughly without
mentioning them, are Hölder’s inequality and the fact that X and Y have bounded
geometry.

For every T >0, let us define an operator PT on Lp(X) as follows:

PT f(x0) =EBX(x0,T )f,

where EAf :=(1/μ(A))
∫

A
f(x) dμ(x). Also, we set ∇f(x, x′):=f(x)−f(x′).

Lemma B.4. For every T ≥0, the linear map ψT (f)(y)=PT f(y), from Dp(X)
to Dp(Y ), induces a continuous map on the Lp-cohomology.

Proof. Note that ψT obviously preserves constant functions and it is easy to see
that it is bounded on Lp. Let s≥T . We will sketch the proof that ψT is continuous
from Dp(X) to Dp(Y ) (the details are straightforward and therefore left to the
reader),

∑

d(z,z′)≤s

|PT f(z)−PT f(z′)|p �s

∑

d(z,z′)≤s

(EBX(z,2s)×BX(z,2s)| ∇f |)p

≤
∑

d(z,z′)≤s

EBX(z,2s)×BX(z,2s)(| ∇f |p)

�s

∫

d(x,x′)≤5s

|f(x)−f(x′)|p dμ(x) dμ(x′). �
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Now, let us choose T ≥R, so that X ⊂
⋃

y∈Y BX(y, T ). Let

ST (x) =
∑

z∈Y

1BX(z,T ) for all x ∈ X,

which satisfies 1≤ST ≤N(T )<∞, and for all z ∈Y ,

Sz
T =1BX(z,T )/ST .

Note that {Sz
T }z∈Y forms a partition of unity for X .

Lemma B.5. For every T ≥R, the linear map φT (f)=
∑

z∈Y f(z)Sz
T , from

Dp(Y ) to Dp(X), induces a continuous map on the Lp-cohomology.

Proof. It is clear that φT preserves constant functions, and the proof that it is
bounded on Lp is easy and left to the reader. Let us sketch the proof that φT is
continuous on Dp. Let (x, x′)∈Δs(X) for some s≥T . Then

|φT (f)(x)−φT (f)(x′)|p =
∣
∣
∣
∣

∑

z,z′ ∈Y

(f(z)−f(z′))Sz
T (x)Sz′

T (x′)
∣
∣
∣
∣

p

=
∣
∣
∣
∣

∑

z,z′ ∈BX(x,3s)

(f(z)−f(z′))Sz
T (x)Sz′

T (x′)
∣
∣
∣
∣

p

�s

∑

z,z′ ∈BX(x,3s)

|f(z)−f(z′)|p.

Accordingly
∫

d(x,x′)≤s

|φT (f)(x)−φT (f)(x′)|p �s

∑

d(z,z′)≤6s

|f(z)−f(z′)|p. �

Lemma B.6. For every T ≥R, the maps φT ¨ψT and ψT ¨φT induce the iden-
tity on the Lp-cohomology of X and Y , respectively.

Proof. For every x0 ∈X , we have

|f(x0)−φT ¨ψT (f)(x0)|p =
∣
∣
∣
∣
∑

z∈Y

[f(x0)−PT f(z)]Sz
T (x0)

∣
∣
∣
∣

p

=
∣
∣
∣
∣
∑

z∈Y

EBX(z,T )[f(x0)−f ]Sz
T (x0)

∣
∣
∣
∣

p
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=
∣
∣
∣
∣

∑

d(z,x0)≤T

EBX(z,T )[f(x0)−f ]Sz
T (x0)

∣
∣
∣
∣

p

�T

∑

d(z,x0)≤T

|EBX(z,T )[f(x0)−f ]|p

≤
∑

d(z,x0)≤T

EBX(z,T )|f(x0)−f |p

�T EBX(x0,2T )|f(x0)−f |p.

It follows that
‖f −φT ¨ψT (f)‖p �T ‖f ‖Dp,2T

,

and therefore φT ¨ψT induces the identity on H1
p (X).

For every z0 ∈Y ,

|f(z0)−ψT ¨φT (f)(z0)|p = |PT [f(z0)−φT (f)](z0)|p

=
∣
∣
∣
∣PT

[∑

z∈Y

(f(z0)−f(z))Sz
T

]
(z0)

∣
∣
∣
∣

p

=
∣
∣
∣
∣
∑

z∈Y

(f(z0)−f(z))EBX(z0,T )S
z
T

∣
∣
∣
∣

p

�T

∑

d(z,z0)≤2T

|f(z0)−f(z))|p.

We used the fact that EBX(z0,T )S
z
T �T 1B(z0,2R)(z). We deduce from the above that

‖f −ψT ¨φT (f)‖p �T ‖f ‖Dp,2T
,

which implies that ψT ¨φT induces the identity on H1
p (Y ). �

This also concludes the proof of Theorem B.2. �
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