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An approach through big cells to Clifford
groups of low rank

Hisatoshi Ikai

Abstract. So-called exceptional isomorphisms of low-dimensional spinor groups are directly

worked out for the terminal two cases of rank five and six (in the sense of quadratic modules) at

the level of special Clifford groups with norm characters as group schemes over a ring. Explicit

formulas of identifications are available on big cells, restrictions to which being justified by scheme

theory.

Introduction

It is one of the most interesting parts in the theory of Clifford algebras to have
spinor groups of low rank, which the theory gives a method to construct generally,
in turn identified with classical groups. While identifications are apparent at the
level of Dynkin diagrams, actual constructions of group isomorphisms are rather
complicated and indeed for the terminal cases of rank five and six somewhat other
problems, mainly concerned with classification, usually take the place of realizing
individual isomorphisms, see e.g. [9, Section V-5].

This paper deals exclusively with those cases which are essentially split (Sec-
tion 1.3), and then gives a direct approach to identifications at the level of special
Clifford groups with norm characters. The case of rank five (Theorem 1.4) is, con-
trary to [9], completely separated from that of rank six (Theorem 1.5) and the latter
survives more generally (Remark 1.6). Our method rests on a principle of recover-
ing groups from their ‘big cells’ (Section 1.7), an idea which goes back to Weil and
grew extensively in the Demazure–Grothendieck theory of group schemes [1]. Once
restricted to big cells there exists a systematic way of describing points of special
Clifford groups and their norms ([7] and [8]), which enables us to obtain explicit
formulas of identifications (Section 2.7 and Proposition 3.6).

Special Clifford groups with norm characters are preferred to spinor groups
from the viewpoint of concrete realizations; being by construction the kernels of
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norm characters, spinor groups have, with few exceptions, additional properties like
(semi)-simplicity, but their significance would be rather in general problems like
classification, than in working out particular examples. Furthermore, we notice
that interest in special Clifford groups has been recently aroused by Shimura in
a number-theoretical context [11]. Though being far from touching upon the theory,
this note is hoped to be one of the frames of the underlying structures in pure
algebra.

1. Notation and main results

1.1. General notation

All modules, algebras, and schemes are to be considered over an arbitrary
commutative base ring k of scalars. Modules are usually supposed finitely generated
and projective, and schemes are treated as set-valued covariant functors on the
category of commutative k-algebras, cf. [5]. If E is any finitely generated projective
module, E∗ denotes the k-module Hom(E, k) dual to E and 〈x, f〉 the value of
f∈E∗ at x∈E. We shall allow ourselves to identify the second dual E∗∗ with E

using the canonical isomorphism E
∼!E∗∗ of constructing ‘point-wise distributions’.

Furthermore, the role of E is in many cases replaceable by the associated vector
bundle W(E), the functor sending any k-algebra k′ to the k′-module E⊗kk′ which
is in Grothendieck’s notation the affine k-scheme of the symmetric algebra Sym(E∗).
If A is any k-algebra which is finitely generated and projective as a k-module, U(A)
denotes the multiplicative group assigning those groups for each scalar extensions
A⊗kk′; important examples being U(k)=Gmk (the usual ‘multiplicative group’)
and U(End(E))=GL(E) (the general linear group).

1.2. Exterior powers of modules

Let M be any finitely generated projective module. We put the νth exterior
powers

∧ν(M) and
∧ν(M∗), for each integer ν≥0, in duality by the pairing such

that

〈x1∧...∧xν , f1∧...∧fν〉 := (−1)ν(ν−1)/2 det(〈xi, fj〉)(1.2.1)

for xi∈M and fj∈M∗, understood as the multiplication k×k!k in the case ν=0,
and then, taking their direct sum, extended to the full exterior powers. The wedge
product z∧z′ in

∧
(M) is also denoted by lz ·z′ and considered to be giving a left

∧
(M)-module structure on

∧
(M). Moreover, a left

∧
(M∗)-module structure is

also considered by the (left) interior product z∗� z′=dz∗ ·z′, for which we use the
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following two characterizations (see [3, Section 11] and [7, Section 1.2] for details):
under the pairing above, dz∗∈End(

∧
(M)) is dual to the right wedge product by

z∗ in
∧

(M∗), on the one hand, and df for f∈M∗ is the unique anti-derivation
extending f :

∧1(M)!∧0(M), on the other hand. The exponential map exp in
an exterior algebra (e.g., in

∧
(M)) is understood, following Chevalley [4], to be

the unique homomorphism
∧2(M)!∧

(M) from the additive to the multiplicative
group such that exp(x∧y)=1+x∧y. By naturality it is in fact a homomorphism
W(

∧2(M))!U(
∧

(M)) of k-group schemes, and moreover in the target,
∧

(M)
may well be shrunk to the even part

∧+(M):=
⊕

p≥0

∧2p(M).

1.3. Setups for special Clifford groups

The pairing (x, f) �!〈x, f〉 viewed as a quadratic form on the direct sum M⊕
M∗=:H is by definition the hyperbolic module H(M), and has the Clifford algebra
realized as End(

∧
(M)) equipped with the map (x, f) �!lx+df from H and with

the ‘checker-board grading’ relative to the parity decomposition
∧

(M)=
∧+(M)⊕

∧−(M), cf. [9, Section IV.2.1]. Accordingly, we shall consider the special Clif-
ford group SΓ(H(M)) to be the normalizer taken in GL(

∧+(M))×GL(
∧−(M))

of the embedded H⊂End(
∧

(M)), and employ bold-faced notation SΓ(H(M)) in
the case considered scheme-theoretically. As for the odd rank case H(M)⊥〈1〉,
let e∈End(

∧
(M)) denote the diagonal element diag(1,−1) relative to the parity

decomposition above. Apart from the precise identification of the Clifford alge-
bra, for which we refer to [8, Sections 1.1–1.3],

∧
(M) turns out to be again the

space of spinors, in the sense that one may identify the special Clifford group
SΓ(H(M)⊥〈1〉) with the full normalizer in GL(

∧
(M)) of H⊕k⊂End(

∧
(M)) em-

bedded by (x, f, t) �!lx+df +te. For both cases, the special Clifford group has
a character µ called the norm [9, Chapter IV, Lemma 6.1.1], the kernel of which be-
ing the so-called spinor group. One would like to thus make special Clifford groups
and their norm characters explicit. For example, the case of M =L, an invertible
module, soon yields SΓ(H(L)⊥〈1〉)=GL(

∧
(L)) with µ=det (the rank three case).

Furthermore, it is well-known and easy to verify that if M =P is of rank two then
µ : SΓ(H(P ))!Gmk, considered as an object over Gmk, equals the fiber product
of GL(

∧+(P )) and GL(
∧−(P )), both considered over Gmk by det (the rank four

case). It is our purpose to obtain analogous descriptions for the next two cases of
ranks five and six.

Theorem 1.4. (The rank five case) Let P be any projective module of rank
two. We consider the quadratic module H(P )⊥〈1〉 of rank five and regard

∧
(P ) as

its space of spinors. Furthermore, letting L denote the invertible module
∧2(P ), we
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construct an L-valued alternating form Ψ on
∧

(P ) by

Ψ(Z, Z ′) := Z0Z
′
2−Z ′

0Z2+Z1∧Z ′
1,(1.4.1)

where Z, Z ′∈∧
(P ) with subscripts indicating the degrees of components, e.g. Z0∈k,

Z1∈P , Z2∈
∧2(P )=L, etc. Then the special Clifford group SΓ(H(P )⊥〈1〉) coin-

cides with the similitude group GSp(Ψ), and so does the norm character with the
similitude character.

A point is that an alternating form has appeared intrinsically; necessary rudi-
ments for those forms with values in invertible modules are given in Section 2, which
exposes some generalities culminating in a particular case of proving the theorem,
cf. Section 2.7.

Theorem 1.5. (The rank six case) Let N be any projective module of rank
three. We consider the quadratic module H(N) of rank six and regard

∧
(N)=

∧+(N)⊕∧−(N) as its space of spinors, decomposed into those of half-spinors. Then
the diagram

SΓ(H(N)) norm−−−−! Gmk

half-spin representation

⏐
⏐
�

⏐
⏐
�square

GL(
∧−(N)) −−−−!

det
Gmk

(1.5.1)

is commutative and Cartesian.

That (1.5.1) is commutative has been noticed in [9, ChapterV, (5.6.2)] in a more
general setting, but the Cartesian property seems unnoticed. If GL(2)(

∧−(N))
denotes the actual fiber product of the lower right of the diagram, this amounts to
saying that the homomorphism

� : SΓ(H(N))−!GL(2)(
∧−(N))(1.5.2)

induced by the commutativity is in fact an isomorphism; we shall make the inverse
�
−1 explicit in Section 3.4.

Remark 1.6. By faithfully flat descent, Theorem 1.5 survives in more general
cases of rank six, as far as the quadratic form q in question admits (half-)spin repre-
sentation(s), e.g. when both Witt and Arf invariants are trivial (cf. [9, Section IV.8
p. 242]). Once a space S+ of half-spinors is fixed we have SΓ(q) naturally identified
with GL(2)(S+), by the homomorphism with the norm µ and the fixed half-spin
representation SΓ(q)!GL(S+) as components.
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1.7. Big cells

Let G be a smooth separated finitely presented k-group scheme with connected
fibers, e.g. SΓ(H(M)) or SΓ(H(M)⊥〈1〉) for any finitely generated projective mod-
ule M ([7], [8]). By a big cell of G, we shall understand an open subscheme Ω which
is universally scheme-theoretically dense in G. Since in this case the multiplication
map Ω×Ω!G becomes an fppf (fidélement plat et presentation fini, i.e. faithfully
flat finitely presented) epimorphism (the same argument as employed in [10, re-
mark on p. 31]), once a big cell Ω has been obtained working only with Ω, instead
of considering the most general points, becomes sufficient in many cases; and this
will be indeed our case when proving Theorems 1.4 and 1.5. It is thus appropriate
to recall here the big cells constructed in [7] and [8]. Furthermore, by the same
reason, it is theoretically important for our method to check the smooth with con-
nected fibers property for other groups which are obviously affine finitely presented
(cf. Propositions 2.3 and 3.2).

Now turning attention again to the exterior power
∧

(M), cf. Section 1.2, let
us consider the homomorphisms

W(
∧2(M))

Y+−−!GL(
∧

(M))
Y−−−!W(

∧2(M∗)),(1.7.1)

Y+(u) := lexp(u), Y−(v) := dexp(v),

Y0 : Gmk×GL(M)−!GL(
∧

(M)), Y0(t, h) := t det(h)−1∧(h),(1.7.2)

of k-group schemes. Here and in the sequel in describing scheme morphisms, ex-
pressions like u, v and (t, h) are to be understood for all scalar extensions too,
e.g. u∈∧2(M)⊗kk′ for any k-algebra k′, etc. We recall [7, Proposition 3.7] that Y±

and Y0 are all factoring through SΓ(H(M)) with the product of sources being in
fact embedded as an open subscheme Ω by the multiplication map (v, (t, h), u) �!
Y−(v)Y0(t, h)Y+(u); this Ω, together with a kind of coordinate system (Y−, Y0, Y+),
being our big cell. Furthermore, we recall [7, Section 3.6] that Y± factor through the
spinor group, while Y0 composed with the norm character yields (t, h) �!t2 det(h)−1.
In order to obtain a similar result for the odd rank case H(M)⊥〈1〉, we have only
to extend Y± to

W(
∧2(M)⊕M)

Y+−−!GL(
∧

(M))
Y−−−!W(

∧2(M∗)⊕M∗),(1.7.3)

Y+(u, y) := Y+(u)(1+lye)= (1+lye)Y+(u),

Y−(v, g) := Y−(v)(1+dge)= (1+dge)Y−(v),

where the sources are now to be understood equipped with new multiplications
(u, y)�(u′, y′):=(u+u′−y∧y′, y+y′), etc., so as to keep Y± homomorphic; with this
being done, the triplet (Y−, Y0, Y+) coordinatizes again a big cell of SΓ(H(M)⊥〈1〉)
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and behaves similarly to the previous even rank case under the norm character
(cf. [8, Sections 1.8–1.9]).

2. Alternating forms with values in invertible modules

2.1. Non-singularity, the inverse form

Let P be any finitely generated projective module and L be an invertible mod-
ule. To any bilinear form Φ on P with values in L, there are two associated linear
maps sΦ and dΦ of type P!Hom(P, L) given by the formulas

sΦ(x)(y) := Φ(x, y)=: dΦ(y)(x).(2.1.1)

It is easy to see that dΦ is recovered as the composition Hom(sΦ, 1)�ρ of the map
ρ : P!Hom(Hom(P, L), L), constructing ‘point-wise distributions’, with the map
Hom(sΦ, 1) sending δ∈Hom(Hom(P, L), L) to δ�sΦ∈Hom(P, L). Similarly one has
Hom(dΦ, 1)�ρ=sΦ, and since ρ is bijective, L being of rank one, it follows that sΦ

is bijective if and only if dΦ is bijective; in this case, we say that Φ is non-singular.
Supposing Φ being non-singular and setting Hom(P, L)∼=L⊗kP ∗ and Hom(P ∗, L∗)∼=
L∗⊗kP in natural duality, we regard both transpose-inverses (s∗Φ)−1 and (d∗Φ)−1

as maps of type P ∗!Hom(P ∗, L∗) and make the following remark, verification
of which being straightforward: For any f∈P ∗ the map L!Hom(P, L) given by
ω �!ω⊗f is dual to the distribution δf : Hom(P ∗, L∗)!L∗ at f , and hence one has

(d∗Φ)−1(δf � (s∗Φ)−1)= (s∗Φ)−1(δf � (d∗Φ)−1)= f.(2.1.2)

The formula (2.1.2) is read as Hom((s∗Φ)−1, 1)=(d∗Φ)−1 and Hom((d∗Φ)−1, 1)=(s∗Φ)−1,
where, contrary to the previous ρ, we have treated the map f �!δf as an identifica-
tion. Hence there exists one and only one L∗-valued bilinear form Φ∗ on P ∗ defined
by the two conditions

sΦ∗ = (d∗Φ)−1 and dΦ∗ = (s∗Φ)−1,(2.1.3)

which are equivalent. We call Φ∗ the inverse form of Φ, a terminology consisting
with [2, Section 1.7] in the case where L=k. By construction Φ∗ is also non-
singular and recovers Φ after again taking inverse. Furthermore, if x∈P and f∈P ∗

then (2.1.3) makes the two composite endomorphisms dΦ(x)�sΦ∗(f)∗ and sΦ(x)�
fΦ∗(f)∗ of L to be equal to the scalar multiplication by 〈x, f〉. We shall record this
fact, being acted upon ω∈L, as the identities

Φ(sΦ∗(f)∗ω, x)= Φ(x, dΦ∗(f)∗ω)= 〈x, f〉ω,(2.1.4)
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which actually anticipates part of the calculation needed later (cf. Section 2.5). As
yet another application of (2.1.4), considering those x of the form sΦ∗(g)∗ω′ we
find the bilinear composition Φ�(sΦ∗(f)∗×sΦ∗(g)∗) in L to be equal to (ω, ω′) �!
〈ω′, Φ∗(g, f)〉ω. Since there exists no non-zero alternating map on L, it follows in
particular that if Φ is alternating then so is Φ∗.

2.2. Similitude groups

In the following, P is also supposed to be faithfully projective. We observe that
a surjective linear map u : P!P ′ onto a faithfully projective module P ′ is a uni-
modular element of the k-module Hom(P, P ′)∼=P ′⊗kP ∗. Indeed, there exist finitely
many elements xi∈P , x′

i∈P ′ and f ′
i∈(P ′)∗ such that u(xi)=x′

i and
∑

i〈x′
i, f

′
i〉=1,

and putting γ :=
∑

i xi⊗f ′
i gives a linear form γ on Hom(P, P ′) with the wanted

property γ(u)=1. Applying this to isomorphisms onto P ′=Hom(P, L) we see that
in the totality of all bilinear forms P×P!L a non-singular one Φ is unimodular.
Therefore, its similitude group, which is by formalistic definition the subgroup of
GL(P )×k× consisting of those pairs (g, t) such that

Φ � (g×g)= tΦ,(2.2.1)

may well be embedded into GL(P ) by regarding (g, t) �!g as the inclusion, and thus
equipped with a character (g, t) �!t, the so-called similitude character. Furthermore,
the criterion (2.2.1) may well be released from supposing g invertible in advance.
Namely, (2.2.1) makes sense for general (g, t) in End(P )×k and read as, under the
identification Hom(P, L)∼=L⊗kP ∗,

(1⊗g∗) � sΦ � g = tsΦ.(2.2.2)

In particular det(g)2ϕ=tnϕ for ϕ:=
∧n(sΦ), n:=rk(P ), and since ϕ is unimodular,

again by the observation above, it follows that

det(g)2 = tn(2.2.3)

for all (g, t)∈End(P )×k satisfying (2.2.1). This will be used later (cf. Proposi-
tion 2.6) to assure the invertibility of g from that of t. Furthermore, it seems
appropriate to record here another effect of rewriting (2.2.1) as (2.2.2), which is

Φ∗
� (g∗−1×g∗−1)= t−1Φ∗(2.2.4)

for (g, t)∈GK(P )×k× satisfying (2.2.1). This follows by taking transpose-inverses
in (2.2.2) with (2.1.3) in mind. Our main interest is, actually, the case of non-
singular alternating forms. In this case P is of even rank, as verified at once
by localization, and abusing the standard notation GSp(Φ), or GSp(Φ) in the
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case considered scheme-theoretically, seems natural for the similitude group. There
exists neither difficulty nor speciality of the case in proving that GSp(Φ) is an affine
finitely presented k-group scheme. We shall proceed to details in order to prove the
following result.

Proposition 2.3. The k-group GSp(Φ) is smooth with connected fibers.

Connectedness follows by an adaptation of the classical result [6, Proposi-
tion 4, p. 10] on generators. Namely, k being harmlessly supposed to be an al-
gebraically closed field, the problem reduces to finding an irreducible subset X⊂
GSp(Φ) of generators containing the unit element, and this is done by taking all non-
zero scalar multiples of all symplectic transvections. In order to proceed further, it
suffices to find a smooth open neighborhood of the unit section, to be ultimately
called the big cell (the same argument as employed in [7, Section 3.5]). The case
of rank two and Φ given by the exterior product is trivial, because the formula
∧2(g)=det(g) shows at once that GSp(Φ) equals the whole GL(P ) with det the
similitude character. Incidentally, we notice another example given by P :=k⊕L

equipped with the form ΦL(ξ⊕ω, ξ′⊕ω′):=ξω′−ξ′ω, to be called the fundamental
form as being naturally identified with the wedge product P×P!∧2(P ).

As for the general case, changing notation we let Ψ: Q×Q!L denote any
non-singular alternating form on a projective module of rank ≥4. Moreover, as
far as smoothness of GSp(Ψ) is concerned, it is actually harmless by descent to
make an additional supposition that Q has a direct factor isomorphic to L. In this
case, we claim that Q has in fact a direct factor isomorphic to k⊕L on which is
induced the fundamental form ΦL from Ψ. Indeed, let e1 : L!Q be an injection
admitting a retraction u : Q!L and let e2∈Q be an element such that u=sΨ(e2),
which exists since Ψ is non-singular. From the surjectivity of u, together with
the observation at the beginning of Section 2.2, it follows that e2 is unimodular.
Hence k·e2 is a direct factor, contained in ker(u), Ψ being alternating, while by
construction e1(L)∼=L is supplemental to ker(u). So the map ξ⊕ω �!ξe2+e1(ω)
gives rise to a direct factor k⊕L⊂Q, which clearly has the wanted property. This
being an adaptation of the proof employed in [9, Chapter I, Theorem 4.1.1] for the
usual case of scalar-valued forms, it is in fact possible along the same line as [9,
pp. 16–17] to conclude furthermore that Q decomposes into the direct sum of k⊕L

with its Ψ-orthogonal supplement, say P , and that Ψ induces a non-singular form
Φ: P×P!L on P .

In order to complete the proof of Proposition 2.3, therefore, we may apply an
induction which reduces the problem to constructing a smooth open neighborhood
of the unit section of GSp(Ψ) with the aid of GSp(Φ), the latter being harmlessly
supposed smooth. This will be done in the following way.
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2.4. The setup

Always L denotes an invertible module, and P a projective module of even
rank with a non-singular alternating form Φ: P×P!L. We denote by Q the direct
sum

Q := k⊕P⊕L,(2.4.1)

and by Ψ the form Q×Q!L identified, under the obvious switch, with the orthog-
onal sum ΦL⊥Φ, that is,

Ψ(ξ⊕x⊕ω, ξ′⊕x′⊕ω′) := ξω′−ξ′ω+Φ(x, x′).(2.4.2)

Since both factors ΦL and Φ are non-singular and alternating, so is Ψ. According
to the decomposition (2.4.1), elements of End(Q) are to be represented as 3×3
matrices of type

⎛

⎝
k P ∗ L∗

P End(P ) Hom(L, P )
L Hom(P, L) k

⎞

⎠(2.4.3)

acting from the left. In fact, Hom(P, L)-entries are well described by P through the
isomorphisms sΦ and dΦ associated with Φ, and so are Hom(L, P )-entries by P ∗

through those sΦ∗ and dΦ∗ associated with the inverse from Φ∗, provided we use
the transposition isomorphism Hom(P ∗, L∗)∼=Hom(L, P ). Among the composition
rules for the entries, we call attention here to the relations

f � sΦ∗(f ′)∗ = Φ∗(f ′, f)=−Φ∗(f, f ′),(2.4.4)

sΦ(x) � sΦ∗(f)∗ =−〈x, f〉(2.4.5)

in f , f∈P ∗, x∈P , which are proved by using the alternating property. Indeed, from
this together with the relation f �v∗=v(f)∈L∗ in v∈Hom(P ∗, L∗) follows (2.4.4),
and since sΦ(x)�sΦ∗(f)∗ ·ω may be equated to −Φ(sΦ∗(f)∗ω, x), for any ω∈L, (2.4.5)
is a consequence of (2.1.4).

2.5. Embedded subgroups

The bilinear form Φ: P×P!L gives rise to an extension of P by L as ad-
ditive groups, which is P⊕L with the multiplication (x⊕ω)�(x′⊕ω′):=(x+x′)⊕
(ω+ω′−Φ(x, x′)), and similarly for Φ∗ endowing P ∗⊕L∗ with (f⊕τ)�(f ′⊕τ ′):=
(f +f ′)⊕(τ+τ ′−Φ∗(f, f ′)), and these constructions carry naturally over to vec-
tor bundles so that both W(P⊕L) and W(P ∗⊕L∗) are now treated as unipotent
k-group schemes. This is to be explained by the fact, soon verified using (2.1.1)
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and (2.4.4), that as such they are embedded into GL(Q) by the homomorphisms

W(P⊕L)
X+−−!GL(Q)

X−−−!W(P ∗⊕L∗),(2.5.1)

X+(x⊕ω) :=

⎛

⎝
1 0 0
x 1 0
ω −sΦ(x) 1

⎞

⎠, X−(f⊕τ) :=

⎛

⎝
1 f τ

0 1 sΦ∗(f)∗

0 0 1

⎞

⎠.

Furthermore, there is no difficulty in proving that X+(x⊕ω) stabilizes Ψ, and actu-
ally so does X−(f⊕τ) provided one has (2.1.4) at hand with the fact that

∧2(L)=0
in mind. Thus X± are in fact factoring through the symplectic group of Φ, a for-
tiori, through GSp(Ψ). On the other hand, letting λ (resp. µ) denote the similitude
character of GSp(Φ) (resp. GSp(Ψ)), we embed Gmk×GSp(Φ) into GSp(Ψ) by

X0 : Gmk×GSp(Φ)−!GL(Q), X0(t, h) :=

⎛

⎝
t 0 0
0 h 0
0 0 t−1λ(h)

⎞

⎠,(2.5.2)

and observe that µ�X0=λ�pr2. Moreover, so embedded Gmk×GSp(Φ) clearly
contains the center Gmk⊂GL(Q), and once the commutation relations sΦ(x)�h−1=
λ(h)−1sΦ(h·x) and h�sΦ∗(f)∗=λ(h)sΦ∗(h∗−1 ·f) have been noticed from (2.2.1) and
(2.2.4) it becomes straightforward to see that X0 normalizes X± with the actual
left actions

Int(X0(t, h))·X+(x⊕ω)= X+((t−1h·x)⊕(t−2λ(h)ω)),(2.5.3)

Int(X0(t, h))·X−(f⊕τ)= X−((th∗−1 ·f)⊕(t2λ(h)−1τ)).

It is our purpose to prove that the triplet (X−, X0, X+) gives a coordinate system
of a big cell of GSp(Ψ); a precise statement being Proposition 2.6 below, which
will imply the smoothness of GSp(Ψ) from that of GSp(Φ) and thus complete the
induction employed in (2.3).

Proposition 2.6. The morphism

ξ : W(P ∗⊕L∗)×(Gmk×GSp(Φ))×W(P⊕L)−!GSp(Ψ),(2.6.1)

ξ(f⊕τ, (t, h), x⊕ω) := X−(f⊕τ)X0(t, h)X+(x⊕ω),

is an open embedding with the principal open subscheme Ω⊂GSp(Ψ) defined by the
condition that the (3, 3)-entry of the matrix (2.4.3) be invertible as image.

Proof. The actual calculation of the product X−(f⊕τ)X0(t, h)X+(x⊕ω) shows
at once that it has the invertible scalar t−1λ(h) as (3, 3)-entry, and is of the form
X0(t′, h′) if and only if f , τ , x and ω are all zero, in which case t′=t and h′=h. Thus
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ξ is a monomorphism with the image im(ξ) contained in Ω, and our problem reduces
to proving that any point g of Ω belongs to im(ξ). Without loss of generality we
may suppose g to be a k-valued point and, moreover, to have 1 as the (3, 3)-entry,
since X0 admits scaling and normalizes X±, cf. (2.5.3). So we let g be described as

g =:

⎛

⎝
∗ f ′ τ

∗ h sΦ∗(f)∗

∗ −sΦ(x) 1

⎞

⎠(2.6.2)

with x∈P , f, f ′∈P ∗, h∈End(P ) and τ∈L∗. Easy computation using (2.4.4) shows
that X−(f⊕τ)−1g has (0, 0, 1)∈L∗⊕Hom(L, P )⊕k as the third column, and f ′′ :=
f ′−f �h+τ �sΦ(x)∈P ∗ as the (1, 2)-entry; we shall prove that f ′′=0. Indeed, for any
x0∈P and ω0∈L with x̃0 :=0⊕x0⊕0 and ω̃0 :=0⊕0⊕ω0 designating the elements
of Q extended naturally, the pairing Ψ(x̃0, ω̃0) is zero by (2.4.2), and hence so is
Ψ(g ·x̃0, g ·ω̃0). However

g ·x̃0 = 〈x0, f
′〉⊕h·x0⊕(−Φ(x, x0)) and g ·ω̃0 = 〈ω0, τ〉⊕sΦ∗(f)∗ω⊕ω0

by (2.6.2), which combined with (2.4.2), (2.1.4), and with the fact that

〈ω0, τ〉Φ(x, x0)= 〈Φ(x, x0), τ〉ω0 = 〈x0, τ � sΦ(x)〉ω0

as L is of rank one, soon proves that Ψ(g ·x̃0, g ·ω̃0)=〈x0, f
′′〉ω0; thus f ′′=0, as

expected. Now replacing g by X−(f⊕τ)−1g, which renders f , f ′ and τ in (2.6.2)
all zero, we may and shall reset g in the form

g =

⎛

⎝
t 0 0
x′ h 0
ω −sΦ(x) 1

⎞

⎠,(2.6.3)

where t∈k, x, x′∈P , h∈End(P ) and ω∈L. This having been done, we shall prove
that h belongs to GSp(Ψ) with the multiplier t=λ(h) and x′=h·x being the image
of x. This will convert g (the anterior X−(f⊕τ)−1g) to the form X0(t, h)X+(x⊕ω)
and thus complete our proof. Previous notation like x̃0 and ω̃0, which designated
indefinite elements of Q through those of components, being again employed and
abused now for 1̃:=1⊕0⊕0, we let the relation Ψ�(g×g)=µ(g)Ψ act on (1̃, ω̃0);
on account of (2.6.3) and (2.4.2), the result is tω0=µ(g)ω0. Hence t is invertible
and equal to µ(g). Then the same relation, rewritten now as Ψ�(g×g)=tΨ and
acted upon (x̃0, ỹ0) (where y0∈P is also arbitrary), yields Φ�(h×h)=tΦ which, by
the remark referred to as (2.2.3), amounts to h∈GSp(Φ), t=λ(h). This assures in
particular that tΦ(x, x0)=Φ(h·x, h·x0), and since tΦ(x, x0)=Φ(x′, h·x0), as follows
from the obvious nullity of Ψ(g ·1̃, g ·x̃0), we get the remaining relation x′=h·x. �
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2.7. Proof of Theorem 1.4

We are now in position to consider the special case where P is of rank two
with L:=

∧2(P ) and Φ: P×P!L is given by the wedge product (x, y) �!x∧y. This
being the case mentioned in Proposition 2.3, we have GSp(Φ)=GL(P ), Q=

∧
(P ),

and Ψ being the form defined in (1.4.1). It is also appropriate to observe here
that if L∗ is identified with

∧2(P ∗) by the pairing (1.2.1) then the inverse form
Φ∗ : P ∗×P ∗!L∗ also becomes the wedge product (f, g) �!f∧g. To see this, it
suffices to use the formula

sΦ∗(f)∗ω =−f� ω(2.7.1)

since ω �!f� ω is dual to g �!g∧f , cf. Section 1.2, and this follows from (2.1.4),
rewritten in the form Φ(sΦ∗(f)∗ω, x)=Φ(x, f� ω) by using x∧(f� ω)=〈x, f〉ω. This
being said, put H:=Gmk×GL(P ) and U± :=W(

∧2(P±)⊕P±) with P+ :=P and
P− :=P ∗ for short; we shall prove that

Y+(ω, x)= X+(x⊕ω), Y−(τ, f)= X+((−f)⊕τ),(2.7.2)

Y0(t, h)= X0(t det(h)−1, t det(h)−1h)(2.7.3)

for all points ((τ, f), (t, h), (ω, x)) of the k-scheme U−×H×U+. Note that, in ad-
dition to the obvious isomorphisms U±∼=W(P±⊕L±) involved in (2.7.2), the map
(t, h) �!(t1, h1) which we have from (2.7.3) rewritten as Y0(t, h)=X0(t1, h1) is also an
actual automorphism H ∼!Gmk×GSp(Φ) inverse to (t1, h1) �!(t−1

1 det(h1), t−1
1 h1).

Therefore, (2.7.2) and (2.7.3) will prove in particular that the two big cells defined
by (Y−, Y0, Y+) and by (X−, X0, X+) are equal, and hence generate the same group
sheaves: SΓ(H(P )⊥〈1〉)=GSp(Ψ).

In order to prove (2.7.2) and (2.7.3), it is harmless to work with k-points and,
in particular, from x∧y=sΦ(x)(y) and (2.7.1) we see at once that

lx =

⎛

⎝
0 0 0
x 0 0
0 sΦ(x) 0

⎞

⎠ and df =

⎛

⎝
0 f 0
0 0 −sΦ∗(f)∗

0 0 0

⎞

⎠(2.7.4)

in the matrix notation (2.4.3). Other matrices, e.g. e=diag(1,−1, 1), lω=[ω]31,
the extension by zeros of ω inserted in the (3, 1)-entry, and dτ =[τ ]13 being more
apparent, it is now a straightforward calculation to get (2.7.2) from the definitions
Y+(ω, x)=(1+lω)(1+lxe), Y−(τ, f)=(1+dτ)(1+dfe), cf. (1.7.3). Similarly (1.7.2)
with

∧
(h)=diag(1, h, det(h)) makes (2.7.3) apparent, and the latter proves also

that the norm character of SΓ(H(P )⊥〈1〉) coincides with the similitude character
of GSp(Ψ).
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3. The rank six case

3.1. The group GL(n)(P )

Again let P be any faithfully projective module. For each integer n≥1, we
denote by

GL(n)(P ) :=GL(P )×(det,n)Gmk(3.1.1)

the fiber product relative to the determinant and the nth power, in other words,
the closed subgroup scheme of GL(P )×Gmk consisting of those points (g, t) such
that det(g)=tn. This is a central extension of GL(P ), in the sense that the first
projection GL(n)(P )!GL(P ) is an fppf epimorphism with kernel µn, the group of
nth roots of unity, inserted by ζ �!(1, ζ) which is central. As before, the role of big
cells is central to our approach and we begin with the following result.

Proposition 3.2. The k-group GL(n)(P ) is smooth with connected fibers.

The proof follows the lines of that of Proposition 2.3 but requires less effort.
Connectedness only needs to be checked for the set GL(n)(P ) of k-points, where k is
supposed to be an algebraically closed field, and in this case, since P is a non-zero
k-vector space, there exists a map δ : k×!GL(P ) such that det(δ(t))=tn, which
renders GL(n)(P ) the image of SL(P )×k× under the surjection π : (h, t) �!(δ(t)h, t);
hence it is irreducible, a fortiori, connected. The next step is to find a smooth open
neighborhood of the unit section, to be ultimately called the big cell, and so far as
the smoothness is concerned we may localize to consider the following situation.

3.3. A big cell

Suppose P given as the direct sum

P := N⊕L(3.3.1)

of an arbitrary finitely generated projective module N and an arbitrary invertible
module L. In this case, elements of End(P ) being expressed as 2×2 matrices of
type

(
End(N) Hom(L, N)

Hom(N, L) k

)

(3.3.2)
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acting from the left and similarly for all scalar extensions, there are associated the
following homomorphisms of k-group schemes:

W(P⊕Hom(N, L))
T+−−!GL(n)(P )

T−−−!W(Hom(L, N)),(3.3.3)

T+(u) :=
((

1 0
u 1

)

, 1
)

, T−(v) :=
((

1 v

0 1

)

, 1
)

,

T0 : GL(N)×Gmk −!GL(n)(P ), T0(h, t) :=
((

h 0
0 tn det(h)−1

)

, t

)

.(3.3.4)

Apparently they are all monomorphic. In fact, it is also clear that T0 identifies
the closed subgroup scheme of GL(n)(P ) consisting of points (g, t) with the ‘ma-
trix part’ g being diagonal, and this combined with the calculation of the product
T−(v)T0(h, t)T+(u)=:τ(v, (h, t), u) shows at once that the so defined τ is an open em-
bedding with the principal open subscheme of GL(n)(P ) defined by the invertibility
of the (2, 2)-entry of the matrix part as image. Therefore, GL(n)(P ) is smooth with
im(τ) being a big cell isomorphic to the product of sources of the triplet (T−, T0, T+).
This completes the proof of Proposition 3.2, and we are now in position to consider
the original situation of Theorem 1.5.

3.4. The construction of the inverse �
−1

In the following, N is supposed to be of rank three and L denotes the invertible
module

∧3(N). Notice that the previous P =N⊕L is then the space
∧−(N) of

‘odd spinors’ for the hyperbolic module H(N). In order to describe the even space
∧+(N)=k⊕∧2(N) in terms of

∧−(N), we shall make use of the linear map

u �−! û : Hom(N, L)∼=L⊗kN∗ −!∧2(N), ̂(ω⊗f) := f� ω,(3.4.1)

which, apart from local-global transition, is in fact a special case of well-known iso-
morphisms attached to exterior algebras (cf. [3, Section 11.11]). Actually, tensoring
L to the direct sum L∗⊕N∗ considered obviously dual to

∧−(N), we set the negative
of (3.4.1), together with the natural L⊗kL∗ ∼!k, constituting an isomorphism

L⊗k(
∧−(N))∗ ∼−−!∧+(N)(3.4.2)

to be treated as the identification; the sign minus being needed for balancing some
calculations, cf. Section 3.8. Accordingly, the assignment (g, t) �!t⊗g∗−1 is con-
sidered to be a homomorphism from GL(

∧−(N))×k× to GL(
∧+(N)). In fact,
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considering functorially and singling the component g out, we shall pay attention
to the homomorphism

ι : GL(
∧−(N))×Gmk −!GL(

∧+(N))×GL(
∧−(N)),(3.4.3)

ι(g, t) := (t⊗g∗−1, g),

of k-group schemes, which is clearly monomorphic and has GL(2)(
∧−(N)) (resp.

SΓ(H(N))) as a subgroup of the source (resp. the target). Our ultimate goal is
to prove that between these subgroups ι induces an isomorphism GL(2)(

∧−(N)) ∼!
SΓ(H(N)) whose inverse is what Theorem 1.5 states to exist (Proposition 3.6).
This will be done by working with big cells, and at present we continue to fix some
more isomorphisms.

3.5. The ‘hat’ isomorphisms

Following (1.2.1) we consider
∧3(N∗) dual to

∧3(N)=L and settle an analo-
gous isomorphism

v �−! v̂ : Hom(L, N)∼=N⊗kL∗−!∧2(N∗), ̂(x⊗τ) := x� τ,(3.5.1)

to (3.4.1). Both (3.4.1) and (3.5.1) are now to be used as identifications of sources
of the homomorphisms T± (3.3.3) and Y± (1.7.1). As for T0 and Y0, we distinguish
the source GL(N)×Gmk of T0 from the source Gmk×GL(N) of Y0, cf. (3.3.4)
and (1.7.2), and call attention to the homomorphism

·̂ : GL(N)×Gmk −!Gmk×GL(N),(3.5.2)

̂(h, t) := (t2 det(h)−1, t det(h)−1h),

which, N being of rank three, is in fact an ‘involution’ in the sense that actually
the same formula (t1, h1) �!(t1 det(h1)−1h1, t

2
1 det(h1)−1) gives the inverse. It is our

purpose to have these isomorphisms all subsumed under ι. Namely, we shall prove
the following result.

Proposition 3.6. One has

ι(T+(u))= Y+(û) and ι(T−(v))= Y−(v̂),(3.6.1)

ι(T0(h, t))= Y0(̂(h, t)).(3.6.2)

In particular, every point s=(s+, s−) of SΓ(H(N)) has components, relative to the
half-spin representations in

∧±(N), related by s+=µ(s)⊗(s−)∗−1 with µ(s) being
the norm. Moreover one has det(s+)=det(s−)=µ(s)2.
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Note that the last two statements on s=(s+, s−) are immediate consequences
of (3.6.1) and (3.6.2), since their right-hand sides generate SΓ(H(N)) as an fppf
group sheaf. Also since the second of them, det(s+)=det(s−)=µ(s)2, amounts to
the commutativity of the diagram (1.5.1) and the first to ι��=Id for the � intro-
duced in (1.5.2), they are actually sufficient for proving the statement at the end
of Section 3.4, a fortori, Theorem 1.5. Therefore, we have only to prove (3.6.1)
and (3.6.2). Furthermore, to do so it is harmless to restrict ourselves to k-points.
We notice also that the identification (3.4.2) is to be now involved intimately. To
avoid confusion, besides (3.3.2) we shall employ for elements of End(

∧+(N)) the
matrix notation of type

[
k

∧2(N∗)
∧2(N) End(

∧2(N))

]

(3.6.3)

acting on
∧+(N)=k⊕∧2(N) from the left. Though the outline is the same, we

begin with the proof of (3.6.2) which is more straightforward.
Easy computation using the definitions (1.7.2) and (3.5.2) describes Y0(̂(h, t))

as the pair (α, β) of matrices

α :=
[
t−1 det(h) 0

0 t det(h)−1
∧2(h)

]

and β :=
(

h 0
0 t2 det(h)−1

)

,(3.6.4)

which compared to (3.4.3), together with (3.3.4), reduces the proof of (3.6.2) to
that of α=t⊗β∗−1. Now taking ω0∈L, f0∈N∗ and τ0∈L∗ arbitrary we let

Z0 := ω0⊗(f0, τ0)∈L⊗k (
∧−(N))∗ = L⊗k(N∗⊕L∗)(3.6.5)

which, under (3.4.2), corresponds to

Z+
0 := 〈ω0, τ0〉⊕(−f0� ω0)∈

∧+(N)= k⊕∧2(N).(3.6.6)

The problem being then to have (t⊗β∗−1)·Z0 corresponding to α·Z+
0 , we are in-

deed done by deducing (t⊗β∗−1)·Z0=tω0⊗(h∗ ·f0, t
−2 det(h)τ0) from (3.6.4) and

by bearing the obvious formula (h∗−1 ·f0)� ω0=det(h)−1
∧2(h)·(f0� ω0) in mind.

In order to proceed along the same lines for proving (3.6.1), we need some addenda
to the constructions (3.4.1) and (3.5.1).

3.7. Basic identities

Let x∈N , f∈N∗, ω∈L and τ∈L∗ be arbitrary. The formula x∧(f� ω)=〈x, f〉ω
read in the notation of (3.4.1) implies that any u∈Hom(N, L) takes value x∧û at x,
namely

û∧x= u(x).(3.7.1)
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The similar formula f∧(x� τ)=〈x, f〉τ acted upon the coupling with ω equates
〈(x� τ)� ω, f〉 to 〈(x⊗τ)(ω), f〉, in which x⊗τ is clearly replaceable by a general
v∈Hom(L, N). Thus, in the notation of (3.5.1),

v̂� ω = v(ω).(3.7.2)

Note that (3.7.2) again coupled with f gives 〈ω, f∧v̂〉=〈v(ω), f〉 also, which we
shall record in the form

〈f� ω, v̂〉= 〈ω, v∗(f)〉.(3.7.3)

As a similar formula, relating u∗ with û, we shall prove

u∗(τ)� ω = 〈ω, τ〉û.(3.7.4)

Indeed, introducing another ω′∈L we may harmlessly suppose that u=ω′⊗f , in
which case u∗(τ)� ω equals 〈ω′, τ〉f� ω, while since 〈ω′, τ〉ω=〈ω, τ〉ω′, L being of
rank one, this amounts to the wanted relation, cf. (3.4.1).

3.8. Proof of (3.6.1)

Note that Y+(û) and Y−(v̂) are now the transformations Z �!Z+û∧Z and
Z �!Z+v̂� Z, respectively. Both actions are apparent on

∧+(N) and as for those on
∧−(N), we use (3.7.1) and (3.7.2) to conclude that Y+(û)=(α1, β1), Y−(v̂)=(α2, β2),
where

α1 :=
[
1 0
û 1

]

, β1 :=
(

1 0
u 1

)

, α2 :=
[
1 v̂

0 1

]

and β2 :=
(

1 v

0 1

)

.

Hence, by (3.4.3) and (3.3.3), we are reduced to proving that αi=1⊗β∗
i for i=1, 2.

Now, in the notations of (3.6.5) and (3.6.6), we have
{

(1⊗β∗−1
1 )·Z0 =ω0⊗(f0−u∗(τ0), τ0),

α1 ·Z ′
0 =〈ω0, τ0〉⊕(〈ω0, τ0〉û−f0� ω0),

{
(1⊗β∗−1

2 )·Z0 =ω0⊗(f0,−v∗(f0)+τ0),
α2 ·Z ′

0 =(〈ω0, τ0〉−〈f0� ω0, v̂〉)⊕(−f0� ω0),

and due to the sign convention made in (3.4.2), as well as to the previous identi-
ties (3.7.3) and (3.7.4), both pairs are indeed identified, q.e.d.

Acknowledgements. I am grateful to the referee for many suggestions based
on a very thorough reading of the original manuscript, which largely improved my
awkward exposition in the English language.
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Études Sci., 1963/64), Fasc. 5b, Exposé 18, Inst. Hautes Études Sci., Paris,
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