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Universality and fine zero spacing
on general sets

Vilmos Totik

Abstract. A recent approach of D. S. Lubinsky yields universality in random matrix theory

and fine zero spacing of orthogonal polynomials under very mild hypothesis on the weight function,

provided the support of the generating measure µ is [−1, 1]. This paper provides a method with

which analogous results can be proven on general compact subsets of R. Both universality and

fine zero spacing involves the equilibrium measure of the support of µ. The method is based on

taking polynomial inverse images, by which results can be transferred from [−1, 1] to a system of

intervals, and then to general sets.

1. Introduction

In [12] D. Lubinsky found a stunningly simple approach to universality limits.
His technique has completely reshaped the subject, and its importance is hard to
overestimate. Among the highlights of this new approach is universality under the
sole continuity of the weight [12] (previously analyticity was required!), fine spacing
of zeros of orthogonal polynomials by Levin and Lubinsky in [10], and universality
for exponential weights in [11]. The present work was motivated by these results,
and it would not have been possible without them.

Let µ be a positive finite Borel measure with compact support E on the real
line. We assume that E consists of infinitely many points, and then we can form
the orthonormal polynomials pn(µ; x)=γn(µ)xn+... with respect to µ.

We shall denote by cap(E) the logarithmic capacity of E. For the leading
coefficients γn(µ) of pn(µ; x) it is known ([18, Corollary 1.1.7]) that

lim inf
n!∞ γn(µ)1/n ≥ 1

cap(E)
,
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and the measure µ is called regular (from the point of view of orthogonal poly-
nomials) if

lim
n!∞ γn(µ)1/n =

1
cap(E)

(1.1)

and the right-hand side is finite. This is a rather mild assumption, and it holds
under fairly general conditions on µ (see [18]). For various properties of orthogonal
polynomials with respect to regular measures see [18]. In particular, if ν and µ have
the same support, ν≥µ and µ is regular, then so is ν (since then γn(ν)≤γn(µ)).

Let xn,1<xn,2<...<xn,n be the zeros of pn(µ; x), and

Kn(µ; x, y)=
n−1∑

j=0

pj(µ; x)pj(µ; y)(1.2)

be the associated reproducing kernel. It has been known that some universal-
ity questions in random matrix theory can be expressed in terms of orthogonal
polynomials, in particular in the off-diagonal behavior of the reproducing kernel
(see [3], [4], [9] and [13]). When E=[−1, 1] and dµ(x)=w(x) dx, a form of univer-
sality in random matrix theory can be stated as

lim
n!∞

Kn

(
x+

a

w(x)Kn(x, x)
, x+

b

w(x)Kn(x, x)

)

Kn(x, x)
=

sin π(a−b)
π(a−b)

(1.3)

(with Kn(x, y)=Kn(µ; x, y)). This had first been proven under strong conditions
on w by various authors (the first rigorous proofs seem to have been given in [4], [3]
and [9]; see [12] for a discussion), and more recently by Lubinsky [12] under conti-
nuity of w. More precisely, Lubinsky proved that (1.3) holds uniformly in x∈S and
locally uniformly in a, b∈R provided µ is a regular measure with support [−1, 1],
S⊂(−1, 1) is a compact set, µ is absolutely continuous in a neighborhood of S

and its density (i.e. Radon–Nikodym derivative) w is positive and continuous on S.
E. Levin and D. Lubinsky [10] used this to prove the following strong asymptotics
for the spacing of zeros: under the previous conditions if dist(xn,k, S)=O(n−1),
then

lim
n!∞(xn,k+1−xn,k)

n

π
√

1−x2
n,k

= 1.(1.4)

See [10] for predecessor results as well as for similar zero spacing at ±1 and for
exponential weights on R.
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M. Findley [6] proved a local version of (1.3) and (1.4) under the condition
that log w∈L1 in a neighborhood of x and x is a Lebesgue point for both w and its
local outer function (see below for a precise formulation).

The main objective of this paper is to extend all these results to the case
when the support E of µ is an arbitrary compact subset of the real line (of posi-
tive capacity). As we shall see, in this case the role of 1/π

√
1−x2 is assumed by

the equilibrium density of E (of course, 1/π
√

1−x2 is the equilibrium density for
[−1, 1]).

2. Results

Let E be a compact subset of the real line of positive capacity, and let µE be
its equilibrium measure (see e.g. [18]). In what follows Int(E) denotes the interior
of E in R.

Let, as before, µ be a finite Borel measure with compact support E⊂R. We
shall always assume that µ is regular in the sense of (1.1), hence E is of positive
capacity. If µ is absolutely continuous with respect to Lebesgue measure on an in-
terval I⊂Int(E), then we call its Radon–Nikodym derivative dµ(x)/dx with respect
to Lebesgue measure its density, and we denote it by w(x). We shall denote the
density of the equilibrium measure µ of E by ωE . It exists (with the choice (2.3))
everywhere on Int(E) (and it is continuous – actually C∞ – there).

Theorem 2.1. Let µ be a regular measure of compact support E⊂R, S⊂
Int(E) be a compact subset of the interior of E, and assume that µ is absolutely
continuous in a neighborhood of S and its density w(x) is continuous and positive
on S. Then for any L have

lim
n!∞n(xn,k+1−xn,k)ωE(x)= 1(2.1)

uniformly in x∈S and |xn,k−x|≤L/n.

Thus, the spacing of zeros is

xn,k+1−xn,k =
1+o(1)
nωE(x)

in any L/n-neighborhood of x∈S, and this spacing is uniform in x. It will also
follow from the proof that for all large n there are zeros xn,k with |x−xn,k|≤L/n

(as long as L>1/2ωE(x)).
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Theorem 2.2. Under the conditions of Theorem 2.1 we have

lim
n!∞

1
n

Kn

(
µ; x+

a

n
, x+

b

n

)
=

sinπωE(x)(a−b)
π(a−b)w(x)

(2.2)

uniformly in x∈S and locally uniformly in a, b∈R.

The last clause means that if L is any number, then the convergence is uniform
in x∈S and a, b∈[−L, L].

Since Kn(µ; x, x)/n!ωE(x)/w(x) as n!∞ (see Theorem 3.1), this is equiva-
lent to the universality limit (1.3) (with Kn(x, y)=Kn(µ; x, y)).

Since for E=[−1, 1] the equilibrium density is ω[−1,1](x)=1/π
√

1−x2, in this
case these theorems give back the original theorems of Lubinsky [12] and Levin and
Lubinsky [10] on [−1, 1].

The following local result uses even less conditions on µ. To formulate it we
introduce the following terminology. It is known that

w(x0) := lim
t!0

µ([x0−t, x0+t])
2t

(2.3)

exists almost everywhere on R, and it coincides a.e. with the Radon–Nikodym
derivative (with respect to Lebesgue measure) of the absolutely continuous part of
µ ([14, Theorem 7.14]). For simplicity we call this w the Radon–Nikodym derivative,
or density of µ. We shall also assume that in a neighborhood I of a point this w

satisfies the local Szegő property, i.e. log w∈L1(I). Then

Hw(z)= exp
(

i

2π

∫

I

1
z−t

log w(t) dt

)
, Im z > 0,

differs from the local outer function (see [8, p. 133]) associated with the restriction
w1/2|I of w1/2 to I on the upper half-plane only in a constant multiple of modulus 1,
therefore the nontangential limit Hw(x) of Hw(z) exists at almost every x∈R as
z!x∈R. Furthermore |Hw(x)|2=w(x) for almost every x∈I, and almost all points
x0∈I are Lebesgue points for Hw:

lim
h!0

1
h

∫ h

−h

|Hw(x0+t)−Hw(x0)| dt = 0.(2.4)

The function Hw is also closely related to the local Szegő function associated
with w|I (see [6]); in particular, they have the same Lebesgue points in I (see [6,
Lemma 12]).
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Theorem 2.3. Let µ be a regular measure of compact support E⊂R, and let
x0∈Int(E) be a Lebesgue point for the Radon–Nikodym derivative w(x)=dµ(x)/dx

of µ. Assume further that w(x0)>0, log w is integrable in a neighborhood I of x0

and (2.4) is satisfied at x0. Then (2.2) holds at x=x0 locally uniformly in a, b∈R.
Furthermore, for any L>2ωE(x0) and sufficiently large n, there are zeros xn,k of
pn(µ; z) in [x0−L/n, x0+L/n] and (2.1) holds at x=x0 uniformly in |xn,k−x0|≤
L/n.

Implicit among the conditions of this theorem is that the limit (2.3) exists
at x0.

While preparing this work, we learned about a simultaneous parallel paper by
B. Simon [17]. Simon proves Theorem 2.2 for his regular sets (in the terminology
of [17] this means that the essential support has absolutely continuous equilibrium
measure), and as a consequence obtains Theorem 2.1 in this case. Originally he
had also planned a local extension in the spirit of Theorem 2.3, but having learned
about Findley’s manuscript [6] (which is basically Theorem 2.3 for E=[−1, 1]), he
generously abandoned that direction. The author is grateful to him for pointing out
a subtle point regarding the local version Theorem 2.3. The method of the present
paper and that of Simon [17] are so vastly different (modulo the background work
of Lubinsky), that it would not have made much sense to unite them. But we
believe that both methods are worth publishing and will produce further results in
the future.

3. Outline of the proof

A crucial role will be played by the Christoffel functions

λn(µ; x)=
1

Kn(x, x)
=

( n−1∑

j=0

pj(x)2
)−1

.(3.1)

It is well known that λn(x) is the minimum value in the following extremal problem:

λn(µ; x)= inf
Pn−1(x)=1

∫

R

P 2
n−1 dµ,

where the infimum is taken over all polynomials Pn−1 of degree at most n−1. Thus,
λn(µ; x) is a monotone function both in µ and in n, and this will be our standard
tool below.

Lubinsky’s proof was based on the following result (see [12, (3.5)]).
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Lubinsky’s inequality. If σ≤σ∗, then

λm(σ; u)|Km(σ; u, v)−Km(σ∗; u, v)| ≤
(

λm(σ; u)
λm(σ; v)

)1/2[
1− λm(σ; u)

λm(σ∗; u)

]1/2

.(3.2)

The point in this inequality is that the Christoffel functions λn(µ; x) behave
much more nicely than the orthogonal polynomials or the reproducing kernels be-
cause they are monotonic in the measure µ. In particular, they have strong localiza-
tion, which, in turn of Lubinsky’s inequality, yields some kind of localization (in x)
on Kn(µ; x+a/n, x+b/n)/n ([12, Theorem 3.1]). This easily allows one to deduce
universality for general measures if one knows it for a single measure, and Lubinsky
used the Legendre weight for this comparison. This approach works on [−1, 1].

When the measure is supported on more general sets, then localization still
holds, but there does not seem to be any easy measure around which could be used
for comparison. But, as we shall see – and this is the essence of our method – there
is no need to have one, for in this case we essentially transform Lubinsky’s theorem
from [−1, 1] to general sets. This transformation is done by applying polynomial
mappings, properties of which have been established in the paper [7] by Geronimo
and Van Assche. The polynomial inverse image method has been applied to transfer
polynomial inequalities in [20], but it seems to be quite a bit of luck that it works
in our present case, as well.

The method is the following: start from the result on [−1, 1], and apply it to
a polynomial mapping y=TN(x) with a polynomial TN (of degree N) with some
special properties (see the next section). This results in a statement on the inverse
image F :=T−1

N [−1, 1]. In this step the interval splits up into more than one part.
With such polynomial inverse images one can approximate arbitrary sets of finite
intervals (see [19]), and this sometimes allows one to prove the statement for general
subsets of the real line.

In the present case let ν0 be a measure on [−1, 1] and let ν be its pull-back
on F =T−1

N [−1, 1] under the mapping y=TN(x). This pull-back transformation pre-
serves the equilibrium measure (this was one of the crucial observations of Geronimo
and Van Assche in [7]). Some of the orthogonal polynomials also transform nicely:
pnN (ν; x)=pn(ν0; TN (x)). For other indices, i.e. for pnN+j(ν; z) with j=1, ..., N−1,
there is also a relation, but it is rather implicit and it is not possible to use. So
we rely on this relation only for the indices nN . Note that here ν is not our given
measure µ (which may not be a pull-back of anything), but we can make µ and ν

coincide on some small interval by appropriately prescribing ν0. Unfortunately, the
reproducing kernels do not seem to transform in a manageable way. Note however,
that if one argument of the mth reproducing kernel is a zero of the mth orthogonal
polynomial, then the formula for the reproducing kernel is greatly simplified, so we
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fix one of the arguments to be a zero. This needs to be done both for the origi-
nal measure µ, as well as for the pull-back measure ν, so the points that are fixed
are different in these two cases, which necessitates an additional shift. With this
transform technique and with Lubinsky’s localization we obtain something close to
what we want but only for the sequence {nN}∞n=1 of indices. To cover the full
sequence, i.e. indices of the form nN +j with some j, we factor out j zeros of the
(nN +j)-th orthogonal polynomial, and note that then the rest is the nNth orthog-
onal polynomial but with respect to a measure that varies with n and that includes
the factored zeroes. Then we shall do the previous transform but for these varying
measures, and we get the result for the full sequence.

Levin and Lubinsky derived zero spacing from universality limits, but we have
found it more convenient to deal first directly with Theorem 2.1 on zero spacing
and then proving Theorem 2.2.

On the other hand, when proving Theorem 2.3 we already have lots of measures
for comparison at our disposition (this is the content of Theorem 2.2), so we can
directly apply Lubinsky’s localization technique in this case.

Just as in [12], the proofs are based on asymptotics for Christoffel functions,
more precisely on the following results.

Theorem 3.1. With the assumptions of Theorem 2.1 we have

lim
n!∞nλn

(
µ; x+

a

n

)
=

w(x)
ωE(x)

(3.3)

uniformly in x∈S and locally uniformly in a∈R.

Theorem 3.2. With the assumptions of Theorem 2.3 we have (3.3) at x=x0

locally uniformly in a∈R.

4. Preliminaries

It is known that the orthonormal polynomials satisfy a three-term recurrence
relation

xpn(µ; x)= an(µ)pn+1(µ; x)+bn(µ)pn(µ; x)+an−1(µ)pn−1(µ; x),

and with these numbers an(µ)>0 we have the Christoffel–Darboux formula

Kn(µ; x, y)= an(µ)
pn(µ; x)pn−1(µ; y)−pn−1(µ; x)pn(µ; y)

x−y
(4.1)

for the nth reproducing kernel.
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One of the best ways to think about orthogonal polynomials is the following:
if pn(µ; x)=γn(µ)xn+..., then the monic orthogonal polynomials pn(µ; x)/γn(µ)
uniquely solve the following extremal problem with, 1/γn(µ)2 being the extremum
value,

inf
Pn(x)=xn+...

∫

R

|Pn|2 dµ =
∫

R

(
pn(µ; x)
γn(µ)

)2

dµ(x)=
1

γn(µ)2
.(4.2)

We shall use the following lemmas several times. To the content of the lemmas
note that if H is a compact subset of the real line, then its equilibrium measure µH

is absolutely continuous in Int(H), and its density ωH(x) is continuous there.

Lemma 4.1. If H⊂H ′ are compact subsets of R of positive capacity, then
µH′ |H≤µH, and, as a consequence, if I⊂Int(H) is an interval, then ωH′(x)≤ωH(x)
for all x∈I.

This is so because µH is the balayage of µH′ out of C\H , see e.g. [16, The-
orem IV.1.6(e)].

Lemma 4.2. Let H and Hk, k=1, 2, ..., be compact subsets of the real line
lying in some fixed interval. Let furthermore O be an open set that is contained
in all Hk and H. Assume that cap(Hk)!cap(H), and either Hk⊆H for all k, or
H⊆Hk for all k. Then, as k!∞, we have ωHk

(x)!ωH(x) locally uniformly in O.

Proof. When H⊂Hk for all k this is [19, (30)] (local uniformity follows from
the proof and was actually stated on the top of p. 296). When Hk⊂H the proof is
just the same. �

We shall use Markov’s inequality
k−1∑

j=1

λm(µ; xm,j)≤
∫ xm,j

−∞
dµ≤

k∑

j=1

λm(µ; xm,j).(4.3)

If we apply this with the index k and the index i, then subtraction gives
k−1∑

j=i+1

λm(µ; xm,j)≤
∫ xm,k

xm,i

dµ≤
k∑

j=i

λm(µ; xm,j).(4.4)

In particular,

λm(µ; xm,k)≤
∫ xm,k+1

xm,k−1

dµ,(4.5)

and
∫ xm,k

xm,k−1

dµ≤λm(µ; xm,k−1)+λm(µ; xm,k).(4.6)
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Lemma 4.3. Suppose that µ is a regular measure with compact support E, and
that I and I ′ are two closed subintervals of Int(E) such that I lies in the interior
of I ′. Let us assume that µ is absolutely continuous on I ′ and for its density w(x)
we have M1≤w(x)≤M2 on I ′ with some positive constants M1 and M2. Let further
B1 and B2 be positive lower and upper bounds for ωE(x) on I ′. Then there is an m0

such that for m≥m0,
(i) no subinterval of I of length <M1/2M2B2m contains more than two zeros

of pm(µ; z);
(ii) any subinterval of I of length >4M2/M1B1m contains at least one zero of

pm(µ; z).

Proof. Let I ′′⊂Int(I ′) be another closed interval that contains I in its inte-
rior. Let µ1 and µ2 be the measures that agree with µ outside I ′, but on I ′ they
have densities M1 and M2, respectively. These measures are regular (see the local-
ization theorem of [18, Theorem 5.3.3]), so we can apply Theorem 3.1 (the proof
of which does not use the present lemma) to deduce that mλm(µ1; x)!M1/ωE(x)
and mλm(µ2; x)!M2ωE(x), as m!∞, and the convergence is uniform on I ′′. Since
λm(µ; x) lies in between λm(µ1; x) and λm(µ2; x), it follows that there is an m1 such
that for m≥m1 we have

M1

2B2m
≤λm(µ; x)≤ 2M2

B1m
, x∈ I ′′.

Now suppose that J⊂I contains at least three zeros, say xm,k−1, xm,k, xm,k+1.
Apply (4.5) to them, and notice that the right-hand side is at most |J |M2, while,
as we have just seen, the left-hand side is at least M1/2B2m. These are compatible
only for |J |≥M1/2M2B2m, and this proves (i).

In proving (ii) we note first of all that all parts of the support of µ attract
zeros of pm(µ; z) for large m (see e.g. [15]), which implies that for some m2 and
m≥m2 there is at least one-one zero in the two subintervals of I ′′\I. Thus, if
for m≥max{m1, m2} there is no zero in a J⊂I, and xm,k−1 is the largest zero of
pm(µ; z) lying to the left of J , then xm,k−1, xm,k∈I ′′. So (4.6) gives that

2
2M2

B1n
≥λm(µ; xm,k−1)+λm(µ; xm,k)≥

∫ xm,k

xm,k−1

dµ≥
∫

J

dµ≥ |J |M1,

which is impossible for |J |>4M2/M1B1n, and this is (ii). �

Lemma 4.4. Let L>0 be a fixed number. With the assumptions of The-
orem 2.3 there is an n0 such that for n≥n0,

(i) no subinterval of [x0−L/n, x0+L/n] of length <1/3nωE(x0) contains more
than two zeros of pn(µ; z);

(ii) [x0−9/nωE(x0), x0+9/nωE(x0)] contains at least one zero of pn(µ; z).
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The content of (ii) in the lemma is to guarantee at least one zero. Then it
follows from Theorem 2.3 that any subinterval of [x0−L/n, x+L/n] of length ∆/n

with ∆>1/ωE(x0) contains at least one zero of pn(µ; z).

Proof. The proof is along the same lines as the preceding proof. By Theorem 3.2
we have

w(x0)
2mωE(x0)

≤λm

(
x+

a

m

)
≤ 2w(x0)

mωE(x0)
(4.7)

for |a|≤L/m and m≥m0. Assume now that for some large n there is no zero of
pn(µ; z) in [x0−K/n, x0+K/n]. Let xn,k−1<x0−K/n be the largest zero to the left
of this interval. Then xn,k>x0+K/n, and xn,k−xn,k−1>2K/n. Let m be selected
so that

1
m

≤ xn,k−xn,k−1 <
2
m

.

Then m<n/K, but for large n we have m≥m0 (recall that in any interval which
intersects the support of µ in an infinite number of points there is at least one zero
of pn(µ; z) for large n). Then

xn,k−1, xn,k ∈
[
x0−

2
m

, x0+
2
m

]
,

and so from (4.6), (4.7) and the monotonicity of Christoffel functions we can infer
∫ xn,k

xn,k−1

dµ≤λn(µ; xn,k−1)+λn(µ; xn,k)

≤λ[Km](µ; xn,k−1)+λ[Km](µ; xn,k)≤ 2
2w(x0)

[Km]ωE(x0)
.

But the left-hand side is at least
∫ xn,k+1

xn,k

w(x) dx≥min
{∫ x0

x0−1/2m

w(x) dx,

∫ x0+1/2m

x0

w(x) dx

}
=

w(x0)+o(1)
2m

,

where, in the last step, we used that x0 is a Lebesgue point for w. The last two
inequalities contradict each other for large m (which is the same as large n) if K is
a fixed number >8/ωE(x0), and this proves (ii).

Now suppose that J⊂[x0−L/n, x0+L/n] contains at least three zeros, say
xm,k−1, xm,k, xm,k+1. Apply (4.5) to them. The right-hand side is at most
∫ x0+L/n

x0−L/n

dµs+
∫

J

w(x) dx≤
∫ x0+L/n

x0−L/n

dµs+w(x0)|J |+
∫ x0+L/n

x0−L/n

|w(t)−w(x0)| dt,
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where µs is the singular part of µ with respect to Lebesgue measure. By the
existence of the Radon–Nikodym derivative in (2.3) and from the Lebesgue point
property of x0 we can conclude

λn(µ; xn,k)≤w(x0)|J |+o

(
1
n

)
.

Now (4.7) can be applied to the left-hand side of (4.5), and we obtain

w(x0)
2nωE(x0)

≤w(x0)|J |+o

(
1
n

)
,

which is impossible for large n if |J |<1/3nωE(x0), and this is (i). �

Next we introduce admissible polynomials that will be our aid to transform
results from [−1, 1] to general sets. Let T =TN be a polynomial of degree N≥2
with real and simple zeros X1<X2<...<XN . Let Y1<Y2<...<YN−1 be the zeros
of T ′, and assume that |T (Yj)|≥1, j=1, ..., N−1 (note that T (Yj) are the local
extrema of T ). Then (see [7, Lemma 1]) there exists a unique sequence of closed
intervals F1, ..., Fn such that for all 1≤i≤N we have T (Fi)=[−1, 1], Xi∈Fi, and
for 1≤i≤N−1 the set Fi∩Fi+1 contains at most one point. We call any such
polynomial admissible, and we are interested in the inverse image F =T−1[−1, 1]=⋃N

i=1 Fi. We denote by T−1
i the branch of T−1 that maps [−1, 1] into Fi.

If ν0 is a Borel measure on [−1, 1], then we set

ν(H) :=
1
N

ν(T (H)) for H ⊂Fi, i = 1, ..., N.

This generates a Borel measure on F , which we call the pull-back of ν0 under the
polynomial mapping y=T (x). For example, if

dν0(y)=
dy

π
√

1−y2

is the equilibrium measure on [−1, 1], then its pull-back

dν(x)=
1

Nπ

|T ′(x)|√
1−T 2(x)

(4.8)

is the equilibrium measure of F =T−1[−1, 1] (see the first formula on p. 577 of [7]).
Polynomial inverse images of intervals, i.e. sets of the form T−1[−1, 1] with

admissible T , and pull-back measures on them have many interesting properties,
see the paper [7] by J. Geronimo and W. Van Assche and the paper [19]. What will
be relevant to us is that pnN (ν; x)=pn(ν0; T (x)) for all n=0, 1, ....
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5. Proof of Theorem 2.1 for a subsequence

Below oε(1) denotes a quantity that tends to zero together with ε. Instead of
o1/n(1) we shall simply write the usual o(1).

Select a small ε>0 such that dist(S,R\Int(E))>2ε and such that µ is ab-
solutely continuous in the 2ε-neighborhood of S. Hence w(x) exists whenever
dist(x, S)<2ε. By the regularity of the logarithmic capacity (see [2]) there is an
open set containing E with capacity arbitrarily close to cap(E), and by compactness
of E we may assume that this open set consists of finitely many intervals. Thus, for
every η1 there is a set E′=

⋃l
j=1[α

′
j , β

′
j ] consisting of finitely many disjoint intervals

such that E⊂Int(E′), and cap(E′)≤cap(E)+η1. We may assume that η1 is so small
that

ωE′(x)≤ωE(x)≤ωE′(x)+ε(5.1)

uniformly for dist(x, S)≤ε (see Lemmas 4.1 and 4.2).
Let 3η<dist(E,R\Int(E′)), η<η1. By [20] there is an admissible polynomial

T =TN of some degree N such that F :=T−1[−1, 1] consists of l intervals: F =⋃l
j=1[αj , βj ] such that for each j we have [αj , βj ]⊂[α′

j+η, β′
j−η],

|(α′
j +η)−αj| ≤ η and |(β′

j−η)−βj| ≤ η.

Then for all 0≤s≤η the translated sets F s :=F−s satisfy E⊆F s⊆E′, and hence,
in view of Lemma 4.1 and (5.1),

ωF s(x)≤ωE(x)≤ωE′(x)+ε≤ωF s(x)+ε(5.2)

uniformly for dist(x, S)≤ε.
Let also T s(x)=T (x+s). Then

F s = (T s)−1[−1, 1] and (Fi)s = (T s)−1
i [−1, 1].

Let Z∗∈S be a fixed point. Without loss of generality we may assume that for some
i∗ the point Z∗ lies in the interior of Fi∗ . In fact, if this is not the case, then Z∗

is an endpoint of some Fi∗ , and then consider, for some small 0<s<η/2, the set
F s=F−s instead of F (and the mapping T s instead of T ), and use η/2 instead of η

everywhere below. Let I⊂I ′⊂Int(Fi∗) be two closed intervals such that I⊂Int(I ′)
and Z∗ lies in the interior of I. Without loss of generality we may assume that Fi∗

lies in the ε-neighborhood of S. Indeed, let Tm(x)=cos(m arccosx) be the classical
Chebyshev polynomials. Note that together with TN the polynomials TN(Tm) are
also admissible and for them the inverse image of [−1, 1] is again F . Now for large
m for this polynomial all the Fi’s that intersect S lie in the ε-neighborhood of S.
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Using the continuity and positivity of w on S, with the same reasoning we may
assume that there are two constants 0<M1<M2 such that

M1 ≤w(x)≤M2 for all x∈Fi∗ .(5.3)

Now define a measure ν0 on [−1, 1] by stipulating

ν0(H)= µ(T−1
i∗ (H))N(5.4)

for all Borel sets H⊂[−1, 1], and then define a measure ν on F by setting

ν(H)=
1
N

N∑

i=1

ν0(Ti(H∩Fi))(5.5)

for all Borel subsets H of F (see [7]). We say that ν and ν0 are associated with µ

through Ti∗ . Clearly, ν≡µ on Fi∗ . The crucial property that we shall use is that
the orthonormal polynomials pnN (ν; x) are just pn(ν; T (x)) (see [7], and for more
on this see the discussion below). This is how we transfer information from [−1, 1]
(where ν0 and pn(ν0; · ) live) to F (where ν and pnN (ν; · ) live).

But first we prove the following result.

Lemma 5.1. Let 0≤sm≤L/m with some fixed L. Then

lim
m!∞

1
m

(
Km

(
ν; x+

a

m
, x+

b

m

)
−Km

(
ν; x+

a

m
−sm, x+

b

m
−sm

))
= 0

uniformly in x∈S∩I and a and b lying in compact subsets of R.

Proof. First note that

Km(ν; u−sm, v−sm)= Km(νsm ; u, v)(5.6)

where νs is the translated measure νs(H)=ν(H−s) (which is not the measure
associated with µ and (T s)i∗ !).

By Theorem 3.1,

lim
m!∞mλn

(
νsm ; x+

a

m

)
= lim

m!∞mλn

(
ν; x+

a

m
−sm

)
=

w(x)
ωF (x)

(5.7)

uniformly in x∈S∩I and bounded a∈R.
T ′

N has N−1 distinct zeros, which implies that T ′′
N has N−2 distinct zeros in

between them. Hence, at the endpoints τ of Fj that lie in the interior of F , and
where then necessarily T (τ)=±1, T ′(τ)=0, and the second derivative T ′′(τ) does
not vanish. Thus, in this neighborhood, on Fj the polynomial T (t) is of the form

T (t)= 1−c(t−τ)2+o(t−τ)2 or T (t)=−1+c(t−τ)2+o(t−τ)2.

In particular, this is true when τ is either of the endpoints of Fi∗ .
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These easily imply that the mapping hj(t):=T−1
i∗ (Tj) is continuously differen-

tiable with positive derivative around τ . When τ is also an endpoint of one of the
subintervals of F (i.e. τ is one of the αj or βj), then the derivative of T at τ is
not zero, so in this case hj(t)=T−1

i∗ (Tj) is of the form const±c
√
|t−τ | and |h′

j(t)|
is of the form c/2

√
|t−τ | for t lying close to τ . Since on Fj the measure ν is the

pull-back of w(x) dx on Fi∗ under these mappings hj(t), it follows that if v(x) is
the density of ν, then on Fj ,

v(t)= w(hj(t))|h′
j(t)|.

Since w has a positive lower bound on Fi∗ , it follows that the density v has a positive
lower bound, say, m# on F . Of course, v=w in Fi∗ .

With some small θ>0 consider the function

x 
−! inf
[x−θ,x+θ]∩F

v.

It is ≥m#, and it is close to w on S∩I because v=w is continuous on S∩I. There-
fore, we can can find a continuous w# on F such that w#≥m#,

w#(x)≤ inf
[x−θ,x+θ]∩F

v(x), x∈F,

and

w#(x)= w(x)+oθ(1) on S∩I.(5.8)

Let now dν#(x)=w#(x) dx, on Fθ :=
⋃l

j=1[αj+θ, βj+θ] (recall that F =
⋃l

j=1[αj , βj ]). For large m the sets F sm =F−sm contain Fθ, and, by the con-
struction, νsm ≥ν# on Fθ, hence νsm ≥ν#. Theorem 3.1 gives

lim
m!∞mλm

(
ν#; x+

a

m

)
=

w#(x)
ωFθ

(x)
(5.9)

uniformly in x∈S∩I and bounded a∈R. Now we can apply Lubinsky’s inequal-
ity (3.2), to νsm≥ν#, um=x+a/m and vm=x+b/m to conclude from (5.7) and (5.9)
that

lim sup
m!∞

1
m
|Km(ν#; um, vm)−Km(νsm ; um, vm)| ≤ ωFθ

(x)
w#(x)

(
1−w#(x)ωF (x)

w(x)ωFθ
(x)

)1/2

uniformly in S∩I and locally uniformly in a, b∈R. This same inequality holds with
ν in place of νsm (note that if sm≡0 then νsm =ν), and hence

lim sup
m!∞

1
m
|Km(ν; um, vm)−Km(νsm ; um, vm)| ≤ 2

ωFθ
(x)

w#(x)

(
1−w#(x)ωF (x)

w(x)ωFθ
(x)

)1/2

.
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Here, on S∩I, the right-hand side is (recall Lemma 4.2 and (5.8))

2(1+oθ(1))
ωF (x)
w(x)

(
1− (w(x)+oθ(1))ωF (x)

w(x)(ωF +oθ(1))

)1/2

,

which tends to 0 uniformly on S∩I as θ!0. Therefore,

lim
m!∞

1
m

(Km(ν; um, vm)−Km(νsm ; um, vm))= 0,

which, in view of (5.6), is precisely the statement in the lemma. �

Next we prove the following result.

Lemma 5.2.

1
m

(
Km

(
µ; x+

a

m
, x+

b

m

)
−Km

(
ν; x+

a

m
, x+

b

m

))
= oε(1)+o(1)

uniformly in x∈S∩I and a and b in compact subsets of R.

This is basically the localization theorem [12, Theorem 3.1] of Lubinsky, though
here the bound on the right depends also on ε. Since the proof is short, we include
it here.

Proof. We follow the argument of [12, Theorem 3.1] of Lubinsky that was also
used in the preceding proof. In fact, we can apply Theorem 3.1 to both µ and ν, and
then use the comparison inequality (3.2). Let µ∗ be equal to µ=ν on I ′ and equal
to µ+ν on R\I ′. By the localization theorem [18, Theorem 5.3.3] (applied to some
K1 an K2, the interiors of which intersect the real line in Int(I ′) and in Int(F )\I)
it follows that µ∗ is regular. Thus, we get from Lubinsky’s inequality (3.2) (applied
to σ=µ and σ∗=µ∗) and from

mλm

(
µ∗; x+

a

m

)
! w(x)

ωF (x)
and mλm

(
µ; x+

a

m

)
! w(x)

ωE(x)

(see Theorem 3.1) that

lim sup
m!∞

1
m

∣∣∣∣Km

(
µ∗; x+

a

m
, x+

b

m

)
−Km

(
µ; x+

a

m
, x+

b

m

)∣∣∣∣

≤ ωE(x)
w(x)

(
1−ωF (x)

ωE(x)

)1/2

uniformly on S∩I and locally uniformly in a, b∈R. We can here replace µ by ν

and the right-hand side then becomes 0 (the common support of ν∗ and ν is F ),
hence the statement in Lemma 5.2 follows if we note that 1−ωF (x)/ωE(x)=oε(1)
uniformly on I. �
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After this let us return to the proof of Theorem 2.1. First we prove the asymp-
totics for the zero spacing only for indices of the form nN .

Lemmas 5.1 and 5.2 give that if 0≤sm≤L/m with some fixed L, then

1
m

(
Km

(
µ; x+

a

m
, x+

b

m

)
−Km

(
ν; x+

a

m
−sm, x+

b

m
−sm

))
= oε(1)+o(1)

(5.10)

uniformly in x∈S∩I and a and b in compact subsets of R. We here set m=nN

and choose a=am and sm in such a way that x+a/n is a zero of pnN (µ; z), while
x+a/nN−snN is a zero of pnN (ν; z)=pn(ν0; T (z)). By Lemma 4.3 this is possible
with 0≤a≤L/n and 0≤sn≤L/n for some L (and large n).

Using the Christoffel–Darboux formula (4.1), after multiplication by a−b the
preceding relation goes into:

−anN (µ)pnN−1

(
µ; x+

a

nN

)
pnN

(
µ; x+

b

nN

)
(5.11)

+anN (ν)pnN−1

(
ν; x+

a

nN
−snN

)
pnN

(
ν; x+

b

nN
−snN

)
= oε(1)+o(1).

Here, according to [7, (2.13)], on the right

pnN−1(ν; z)=
N

T ′(z)
an(ν0)

a(n−1)N+1(ν)

(
a(n−1)N+1(ν)

anN (ν)
p
(nN)
0 (ν0; z)pn−1(ν0; T (z))

+p
((n−1)N+1)
N−2 (ν; z)pn(ν0; T (z))

)
,

where p
(k)
j (ν; z) are the associated polynomials for which the recurrence relation is

xpj(ν; x)= aj+k+1(ν)p(k)
j+1(ν; x)+bj+k(ν)p(k)

j (ν; x)+aj+k(ν)p(k)
j−1(ν; x),

and p
(k)
0 ≡1 and p

(k)
−1≡0. Recalling that x+a/nN−snN is a zero of pnN (ν; z)=

pn(ν0; T (z)), for z=x+a/nN−snN the formula for pnN−1(ν; z) takes the form

pnN−1(ν; z)=
N

T ′(z)
an(ν0)
anN (ν)

p(n−1)N (ν; z).

Plugging this into (5.11) we obtain

−anN(µ)pnN−1

(
µ; x+

a

nN

)
pnN

(
µ; x+

b

nN

)
(5.12)

+an(ν0)
N

T ′(z)
p(n−1)N (ν; z)pnN (ν; z′)= oε(1)+o(1),

where z=x+a/nN−snN and z′=x+b/nN−snN.
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We set S0=T (S∩I) and I0=T (I), which are compact subsets of (−1, 1), T (I)
being an interval, and let w0 be the density of ν0 (on [−1, 1]). For simpler notation
we also set ω0=ω[−1,1]. Thus, the subscript 0 indicates that the corresponding object
lives on [−1, 1]. Let us recall Lubinsky’s theorem [12, Therorem 1.1] according to
which

λn(ν0; y)Kn

(
ν0; y+

αλn(ν0; y)
w0(y)

, y+
βλn(ν0; y)

w0(y)

)
− sin π(α−β)

π(α−β)
= o(1)

uniformly in y∈S0 and locally uniformly in α, β∈R. Theorem 3.1 gives that

nλn(ν0; y)! w0(y)
ω0(y)

, as n!∞,

hence the preceding relation can be written as

1
n

Kn

(
ν0; y+

α

nω0(y)
, y+

β

nω0(y)

)
− sin π(α−β)

π(α−β)
ω0(y)
w0(y)

= o(1)(5.13)

uniformly in y∈S0 and locally uniformly in α, β∈R. Let

T (x)= y, T
(
x+

a

nN
−snN

)
= y+

α

nω0(y)

and

T (x+b/nN−snN)= y+
β

nω0(y)
.

Since

T
(
x+

a

nN
−snN

)
= T (x)+T ′(x)

( a

nN
−snN

)
+O(n−2),

it follows from

ωF (x)=
|T ′(x)|

N
ω0(T (x))=

|T ′(x)|
N

ω0(y)

(see the discussion of (4.8)) that

α =±ωF (x)(a−nNsnN )+O(n−1),(5.14)

and a similar reasoning gives

β =±ωF (x)(b−nNsnN )+O(n−1).(5.15)

Here the sign ±=T ′(x)/|T ′(x)| is independent of x∈S∩I.
Recall now that u=y+α/nω0(y)=T (x+a/nN−snN) is a zero of the poly-

nomial pn(ν0; z) (indeed this amounts to the same as x+a/nN−snN being a zero
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of pnN (ν; z)=pn(ν0; T (z))). Hence (5.13) and the Christoffel–Darboux formula (4.1)
for u=y+α/nω0(y) and v=y+β/nω0(y) gives (after multiplication through by
α−β)

an(ν0)pn−1(ν0; u)pn(ν0; v)+
sin π(α−β)

πw0(y)
= o(1).(5.16)

In view of the fact that pnN (ν; x)=pn(ν0; T (x)), and u=T (x+a/nN−snN), v=
T (x+b/nN−snN) and y=T (x), and the expressions for α and β from (5.14) and
(5.15), this takes the form

an(ν0)p(n−1)N

(
ν; x+

a

nN
−snN

)
pnN

(
ν; x+

b

nN
−snN

)
(5.17)

+
sin(±πωF (x)(a−b))

πw0(T (x))
= o(1)

uniformly in x∈S∩I and locally uniformly in b∈R.
Substituting this into (5.12) and recalling that with z=x+a/nN−snN we have

T ′(z)=T ′(x)+O(n−1) and

w(x)=± 1
N

w0(T (x))T ′(x).

Finally we obtain

anN (µ)pnN−1

(
µ; x+

a

nN

)
pnN

(
µ; x+

b

nN

)
+

sin πωE(x)(a−b)
πw(x)

= oε(1)+o(1)

(5.18)

uniformly for x∈S∩I and b lying in compact subsets of R. This formula was
deduced under the assumption that x+a/nN is a zero of pnN(µ; z), and that
dist(x, x+a/nN)≤L/n with some fixed L. The oε(1) term is related to the choice
of F =T−1[−1, 1], and also N depends on ε.

Let now δ>0 be a fixed small number, and set b=a+1/ωF(x)±δ into (5.18).
There is a ∆>0 such that

sin(−π−δπωE(x))
πw(x)

> ∆,

while

sin(−π+δπωE(x))
πw(x)

<−∆

uniformly in x∈S∩I. We may assume that ε>0 is so small and n is so large that
the (oε(1)+o(1))-term in (5.18) is, in absolute value, less than ∆/2. Thus, the
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first term on the left-hand side must change sign as b runs through the interval
[a+1/ωE(x)−δ, a+1/ωE(x)+δ], which means that pnN (µ; z) has a zero in

x+
1

nN

[
a+

1
ωE(x)

−δ, a+
1

ωE(x)
+δ

]
.(5.19)

It also follows from the same argument that it cannot have a zero in

x+
1

nN

[
a+δ, a+

1
ωE(x)

−δ

]
.

Furthermore, if pnN (µ; z) has an additional zero on the interval (5.19) then it must
have at least three zeros there (it is of different signs at the endpoints), which is
impossible for small δ by Lemma 4.3.

The same argument gives that pnN(µ; z) has a single zero on

x+
1

nN

[
a− 1

ωE(x)
−δ, a− 1

ωE(x)
+δ

]
.

Finally, choosing this single zero instead of x+a/nN above, it follows that pnN(µ; z)
has a single zero on x+(1/nN)[a−δ, a+δ] (which then must be x+a/nN). We can
conclude that the smallest zero of pnN (µ; z) that is larger than x+a/nN lies in the
interval (5.19), and for large n this property uniformly holds in x∈S∩I and a lying
in a compact subset of R (assuming still that x+a/nN is a zero of pnN (µ; z)).

Here I was a small neighborhood of any point Z∗ of S. Therefore, by com-
pactness, we can conclude the same uniformly on S.

In summary, so far we have proved that if δ>0 is arbitrary, then there is an N

such that

|nN(xnN,k+1−xnN,k)ωE(x)−1| ≤ 2δ(5.20)

for all large n, and this relation is uniform in x∈S and |xNn,k−x|≤L/nN for any
fixed L.

6. Proof of Theorem 2.1 for the full sequence

Let F and T =TN be selected as before for an ε>0. In the preceding section we
proved (5.20); and now we show that for each j=0, ..., N−1 the analogous relation

|nN(xnN+j,k+1−xnN+j,k)ωE(x)−1| ≤ 2δ(6.1)

holds for all large n, and this relation is uniform in x∈S and |xNn+j,k−x|≤L/nN .
This proves Theorem 2.1.
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Let z0 be the smallest accumulation point of E=supp(µ). It is known that
any part of the support attract zeros of the orthogonal polynomials for large n (see
e.g. [15]), hence in any neighborhood of z0 the number of zeros of pm+j(µ; z) tends to
infinity as m!∞. Thus, for large m, there are at least j zeros, say zm+j,1, ..., zm+j,j

in that neighborhood. If Zm :=(zm+j,1, ..., zm+j,j) and Z0=(z0, ..., z0), then the
vectors Zm can be selected so that Zm!Z0 as m!∞. Our proof of (6.1) is based
on the following simple folklore fact: if

dµZm(x)=
j∏

k=1

(x−zm+j,k)2 dµ(x),(6.2)

and qm(µ; z)=pm(µ; z)/γm(µ) are the monic orthogonal polynomials, then

qm+j(µ; z)=
( j∏

k=1

(x−zm+j,k)
)

qm(µZm ; z).(6.3)

In fact, the polynomial qm(µZm ; z) on the right is the unique polynomial that min-
imizes the integral

∫

R

Pm(x)2 dµZm(x)=
∫

R

Pm(x)2
j∏

k=1

(x−zm,k)2 dµ(x)(6.4)

among all monic polynomials Pm of degree m (see (4.2)). The right-hand side is
clearly at least as large as the infimum of

∫

R

Qm+j(x)2 dµ(x)

for all monic polynomials of degree m+j, for which the infimum is attained for
Qm+j=qm+j(µ; · ). Finally, the right-hand side of (6.4) equals

∫
R

qm+j(µ; · )2 dµ

for Pm(x)=qm+j(µ; x)/
∏j

k=1(x−zm+j,k), therefore (6.3) follows.
Now we insert m=nN into (6.3), hence our task is to find asymptotics for

the zeros of qnN (µZnN ; z). So we are back in the case considered in the preceding
section, but now the measure µ is replaced by the varying measure µZnN . Still, we
follow the same proof with µ replaced everywhere by µZnN ; in particular, in the
present case the measure νZm associated with µZnN through Ti∗ also changes with
n. Note however, that Zm!Z0 and Z0 is outside of S, therefore, the densities

dµZm(x)
dx

= wZm(x)=
( j∏

k=1

(x−zm+j,k)
)2

w(x)(6.5)

are uniformly equicontinuous on S and are uniformly bounded away from 0 and
infinity in a neighborhood of S. Furthermore, in this neighborhood they uniformly
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converge to

wZ0(x)= (x−z0)2jw(x),(6.6)

as m!∞.
The proof in the preceding section was based on (5.13) and on (5.10). If we

can show that these are valid uniformly when µ is replaced by µZm , then the rest
of the proof goes through word by word.

For clearer discussion, let νZm and ν0,Zm be the measures ν and ν0 associated
with µZm via Ti∗ (see (5.4) and (5.5)). The fixed measure µZ0 is just like µ, so
we certainly have (5.13) when µ is replaced by µZ0 and ν0 is replaced by ν0,Z0 .
Therefore, for the validity of (5.13) for µZm it is enough to show that with u=
y+α/mω0(y) and v=y+β/mω0(y),

1
m
|Km(ν0,Zm ; u, v)−Km(ν0,Z0 ; u, v)|= o(1).(6.7)

With some small θ>0 consider the measure

dµ∗
Z0

(x)= ((x−z0)2j +θ) dµ(x),(6.8)

and let ν∗
Z0

and ν∗
0,Z0

be the associated measures (through Ti∗). This µ∗
Z0

is larger
than µZm for large m, and is larger than µZ0 , hence ν∗

0,Z0
is larger than ν0,Zm for

large m, and is larger than ν0,Z0 . We can apply Theorem 3.1 to the measures ν∗
0,Z0

and ν0,Z0 . Since, as m!∞, we have for the densities on [−1, 1] the limit relation
w0,Zm(y)!w0,Z0(y) uniformly in y∈[−1, 1], it easily follows from Theorem 3.1 and
from the monotonicity (in the measure) of the Christoffel functions that

lim
m!∞mλm

(
ν0,Zm ; y+

α

m

)
= lim

m!∞mλm

(
ν0,Z0 ; y+

α

m

)
=

w0,Z0(y)
ω0(y)

(with ω0(y)=ω[−1,1](y)=1/π
√

1−y2) and

lim
m!∞mλm

(
ν∗
0,Z0

; y+
α

m

)
=

w∗
0,Z0

(y)
ω0(y)

uniformly in y∈T (S∩I) and α lying in some compact subset of R. Now insert into
Lubinsky’s inequality (3.2) first ν0,Zm≤ν∗

0,Z0
and then ν0,Z0≤ν∗

0,Z0
to conclude for

u=y+α/mω0(y) and v=y+β/mω0(y) that

1
m
|Km(ν0,Zm ; u, v)−Km(ν∗

0,Z0
; u, v)|= oθ(1)+o(1)

and
1
n
|Kn(ν0,Z0 ; u, v)−Kn(ν∗

0,Z0
; u, v)|= oθ(1)+o(1),

and these prove (6.7) since θ>0 is arbitrarily small.
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As for the analogue of (5.10) for the measures µZm , i.e. for

1
m

(Km(µZm ; u, v)−Km(νZm ; u−sm, v−sm))= oε(1)+ω(1)(6.9)

with u=x+a/m and v=x+b/m, we use the same argument. In fact,

1
m

(Km(µZm ; u, v)−Km(µZ0 ; u, v))= o(1)

is obtained by comparing both terms on the left with Km(µ∗
Z0

; u, v) (see (6.8) for
the definition of µ∗

Z0
) via (3.2) (this produces an error term oθ(1) on the right but

θ>0 is arbitrarily small and the left-hand side is independent of θ), and

1
m

(Km(νZm ; u−sm, v−sm)−Km(νZ0 ; u−sm, v−sm))= oε(1)+o(1)

is obtained by comparing the two terms on the left with Km(ν∗
Z0

; u−sm, v−sm)
via (3.2). This is possible because all the appearing Christoffel functions converge
to the appropriate limits. Indeed, for the convergence of the Christoffel func-
tions with fixed weight just apply Theorem 3.1, and for λm(µZm ; x+a/m) and
λm(νZm ; x+a/m) this is the content of Lemma 6.1 below. Finally, (6.9) is ob-
tained from these and from (5.10) applied to the fixed measures µZ0 and νZ0 . This
completes the proof of Theorem 2.1 pending the proof of Lemma 6.1 below.

Lemma 6.1.

lim
m!∞mλm

(
µZm ; x+

a

m

)
=

w(x)(x−z0)2k

ωE(x)
(6.10)

and

lim
m!∞mλm

(
νZm ; x+

a

m

)
=

w(x)(x−z0)2k

ωF (x)
(6.11)

uniformly in S∩I.

Proof. Let E1 be what we obtain from E by omitting a small interval around z0.
If this interval is small enough, then

ωE(x)≤ωE1(x)≤ωE(x)+θ, x∈ I,

whatever θ>0 is given (see Lemmas 4.1 and 4.2). Let µ1 be the restriction of
(1−θ)µZ0 to E1 (see (6.2) and (6.6) for the definition of the measure µZ0). Then,
for large m, we have µZm ≥µ1, so

lim inf
m!∞ mλm

(
µZm ; x+

a

m

)
≥ lim

m!∞mλm

(
µ1; x+

a

m

)
=

(1−θ)wZ0(x)
ωE1(x)
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uniformly in x∈S and locally uniformly in a∈R, where we used Theorem 3.1 for µ1

at the equality (the measure µ1 is automatically regular). Now for θ!0 we obtain
that

lim inf
m!∞ mλm

(
µZm ; x+

a

m

)
≥ wZ0(x)

ωE(x)
.

Next let

dµ∗
Z0

(x)= dµZ0(x)+θ dµ(z)= ((x−z0)2j +θ) dµ(x)

be the measure (6.8). For large m we have µZm≤µ∗
Z0

, hence

lim sup
m!∞

mλm

(
µZm ; x+

a

m

)
≤ wZ0(x)

ωE(x)

follows if we apply Theorem 3.1 to µ∗
Z0

and let θ!0. All these relations are uniform
in x∈S and locally uniform in a∈R, and therefore (6.10) follows.

In a completely similar way, from the uniform convergence of wZm to wZ0

on Fi∗ it follows that (1−θ)νZ0≤νZm≤(1+θ)νZ0, for large m, and so (6.11) is
a consequence of

lim
m!∞mλm

(
νZ0 ; x+

a

m

)
=

wZ0(x)
ωF (x)

(see Theorem 3.1) by comparison. �

7. Proof of Theorem 2.2

For x∈S it follows from (5.18) that

pnN

(
µ; x+

b

nN

)

has the form

cnN (x)[sin(πωE(x)b+σnN (x))+oε(1)+o(1)]

with some cnN (x)=cnN,ε(x) and σnN (x)=σnN,ε(x) and with oε(1)+o(1) uniform
in x∈S and |b|≤B for any fixed B. For a fixed j=0, 1, ..., N−1 using the analogous
argument from the preceding section with µZnN we similarly obtain that

pnN+j

(
µ; x+

b

nN

)
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is
( j∏

k=1

(x−znN+j,k)
)

c
(j)
nN (x)[sin(πωE(x)b+σ

(j)
nN (x))+oε(1)+o(1)]

with some c
(j)
nN (x)=c

(j)
nN,ε(x) and σ

(j)
nN (x)=σ

(j)
nN,ε(x), and with oε(1)+o(1) uniform

in x∈S and |b|≤B. We can simply write all these as

pm

(
µ; x+

b

m

)
= cm(x)[sin(πωE(x)b+σm(x))+oε(1)+o(1)]

with the same uniformity range for oε(1)+o(1) as before. Note however, that here
cm(x) and σm(x) depend on ε>0 (via the choice T =TN). Simple trigonometry
shows that then for any a, b∈[−B, B],

1
m

Km

(
µ; x+

a

m
, x+

b

m

)

= am(µ)
pm

(
x+

a

m

)
pm−1

(
x+

b

m

)
−pm−1

(
x+

a

m

)
pm

(
x+

b

m

)

a−b

with pm(z)=pm(µ; z) of the form

am(µ)cm(x)cm−1(x)
[
sin πωE(x)(a−b)

a−b
sin(σm−1(x)−σm(x))+

oε(1)+o(1)
a−b

]
.

Let here m=nN . When x+a/m is a zero of pm(µ; z), then

(b−a)Km

(
µ; x+

a

m
, x+

b

m

)

m
= am(µ)pm−1

(
µ; x+

a

m

)
pm

(
µ; x+

b

m

)
,

for which we have another asymptotic formula in (5.18). These two asymptotic
formulae give (note that b is still a free variable)

am(µ)cm(x)cm−1(x) sin(σm−1(x)−σm(x))=
1

πw(x)
+oε(1)+o(1),

and hence

1
nN

KnN

(
µ; x+

a

nN
, x+

b

nN

)
− sinπωE(x)(a−b)

π(a−b)
1

w(x)
=

oε(1)+o(1)
a−b

,(7.1)

which is essentially what we want to prove but only for the indices nN .
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Next we show that (7.1) implies the same for all other indices. Using the
Cauchy–Schwarz inequality we get for 1≤j<N from the definition of Kn and λn

in (1.2) and (3.1) that

|KnN+j(µ; u, v)−KnN(µ; u, v)|

=
∣∣∣∣

nN+j∑

k=nN+1

pk(µ; u)pk(µ; v)
∣∣∣∣

≤
( nN+j∑

k=nN+1

p2
k(µ; u)

)1/2( nN+j∑

k=nN+1

p2
k(µ; uv)

)1/2

=
(
λ−1

nN+j+1(µ; u)−λ−1
nN+1(µ; u)

)1/2(
λ−1

nN+j+1(µ; v)−λ−1
nN+1(µ; v)

)1/2
.

Setting here u=x+a/(nN +j) and v=x+b/(nN +j), it follows from the limit rela-
tions (see Theorem 3.1) that

lim
n!∞nNλnN+j+1(µ; u)= lim

n!∞nNλnN+1(µ; u)=
w(x)
ωE(x)

and from similar relations for v that the difference

1
nN

KnN+j

(
µ; x+

a

nN +j
, x+

b

nN +j

)
− 1

nN
KnN

(
µ; x+

a

nN +j
, x+

b

nN +j

)

is o(1) (as n!∞) uniformly in x∈S and a, b lying in compact subsets of R. Here
we can apply for the second term on the right the asymptotic formula in (7.1)
(with a and b there replaced by a′ and b′ for which a′/nN =a/(nN +j) and b′/nN =
b/(nN +j)) and we can conclude (7.1) for the indices nN +j instead of nN .

In summary, we have for all indices n as n!∞,

1
n

Kn

(
µ; x+

a

n
, x+

b

n

)
− sin πωE(x)(a−b)

π(a−b)
1

w(x)
=

oε(1)+o(1)
a−b

.(7.2)

Here oε(1)+o(1) is uniform in x∈S and a and b lying in compact subsets of R. The
left-hand side is independent of ε, so the (oε(1)+o(1))-term is simply o(1). This is
Theorem 2.2 when a−b stays away from 0.

Next we deduce the statement in Theorem 2.2 from Theorem 3.1 when a−b is
close to zero. Indeed, consider the polynomials

Qn(u)= Qn,x(u)=
1
n

Kn

(
µ; x+

a

n
, x+u

)
.
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From the definition of Kn and λn in (1.2) and (3.1) and from Cauchy’s inequality
we can infer that

|Qn(u)| ≤ 1
n

λn

(
µ; x+

a

n

)−1/2

λn(µ; x+u)−1/2,

so there are a d, D>0 such that if x∈S then |Qn(u)|≤D for all u∈[−d, d] (recall that
in a neighborhood of S the density w is bounded away from 0, hence the claimed
boundedness follows from the monotonicity in the weight of the Christoffel functions
and from Theorem 3.1 – applied to some minorizing measure that is constant on
the neighborhood in question). By Bernstein’s inequality on the derivative of poly-
nomials (see e.g. [5, Corollary 4.1.2]) we then have |Q′

n(u)|≤2nD/d for |u|≤d/2,
hence

1
n

∣∣∣∣Kn

(
µ; x+

a

n
, x+

b

n

)
−Kn

(
µ; x+

a

n
, x+

a

n

)∣∣∣∣≤
2D

d
|b−a|(7.3)

uniformly in x∈S and locally uniformly in a, b∈R and for large n for which we have
|b−a|/n<d/2.

Given ε>0 we have by Theorem 3.1,
∣∣∣∣
1
n

Kn

(
µ; x+

a

n
, x+

a

n

)
−ωE(x)

w(x)

∣∣∣∣ < ε(7.4)

for n≥n0 with some n0, uniformly in the aforementioned range. Finally, there is
a δ>0 such that for |b−a|<δ we have

∣∣∣∣
ωE(x)
w(x)

− sinπωE(x)(a−b)
π(a−b)

1
w(x)

∣∣∣∣< ε(7.5)

uniformly in x∈S. The inequalities (7.3)–(7.5) show that if |b−a|<min{δ, εd/2D}
and n≥n0 then

∣∣∣∣
1
n

Kn

(
µ; x+

a

n
, x+

b

n

)
− sinπωE(x)(a−b)

π(a−b)
1

w(x)

∣∣∣∣ < 3ε

provided x∈S and a is lying in some compact subset of the real line.
For |b−a|≥min{δ, εd/2D} we can use (7.2) to deduce for all large n, say n≥n1,

the same inequality with 3ε replaced by oε(1)+ε. Thus,

1
n

Kn

(
µ; x+

a

n
, x+

b

n

)
! sin πωE(x)(a−b)

π(a−b)
1

w(x)

uniformly in the specified range.
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8. Proof of Theorem 3.1

It was proved in [19] that if ν is a regular measure with support E⊂R, E is
regular with respect to the Dirichlet problem (in R\E) and O is an open subset
of E on which µ is absolutely continuous and its density w is continuous, then

lim
n!∞nλn(ν; x)=

w(x)
ωE(x)

(8.1)

locally uniformly in O. In [19] the emphasis was on proving (8.1) a.e. in an interval I,
provided log w∈L1(I) (and µ is regular), but the proof gives the (easier) limit (8.1)
under a continuity condition, and also the local uniformity of this limit within O.

Next we get rid of the regularity of E. Let ε>0 and let H, H ′, H⊂Int(H ′) be
compact subsets of O consisting of finitely many intervals. By Ancona’s theorem [1]
for every ε>0 there is an E1⊂E which is regular with respect to the Dirichlet
problem and cap(E1)>cap(E)−η. We may clearly assume that H ′⊂Int(E1). This
implies for small η that (see Lemmas 4.1 and 4.2)

ωE(x)≤ωE1(x)≤ωE(x)+ε

uniformly on H ′. If ν1 is the restriction of ν to E1, then we can apply (8.1) to E1,
and hence

lim inf
n!∞ nλn(ν; x)≥ lim

n!∞ nλn(ν1; x)=
w(x)

ωE1(x)
≥ w(x)

ωE(x)+ε

uniformly on H , which, for ε!0, gives

lim inf
n!∞ nλn(ν; x)≥ w(x)

ωE(x)
.(8.2)

Next, let E⊂E2, where E2 consists of finitely many intervals and is such that
cap(E2)≤cap(E)+η. Then for small η (see Lemmas 4.1 and 4.2)

ωE(x)−ε≤ωE2(x)≤ωE(x)

uniformly in H ′. Extend w from H ′ to a continuous function on E2 such that it is
positive on E2\H ′. Then w2(x) dx is a regular measure, hence

dν2(x)= w2(x) dx+dν|E2\H′

is also regular, and bigger than ν. On applying (8.1) to ν2 it follows that

lim sup
n!∞

nλn(ν; x)≤ lim
n!∞nλn(ν2; x)=

w(x)
ωE2(x)

≤ w(x)
ωE(x)−ε

,
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and on letting ε!0 we get

lim sup
n!∞

nλn(ν; x)≤ w(x)
ωE(x)

uniformly on H . Since here H⊂O is arbitrary, this and (8.2) show that, indeed,
in (8.1), E need not be regular.

Finally, we turn to the proof of the theorem. By the continuity of w on S

there are positive continuous functions w1 and w2 on some open neighborhood O

of S such that w=w1=w2 on S and w1≤w≤w2 on O. We may also suppose that
O consists of finitely many intervals and its closure O is part of an open set where
µ is absolutely continuous. By the localization theorem [18, Theorem 5.3.3] the
measures µ|O and µ|E\O are regular, and of course w1(x) dx and w2(x) dx are also
regular on O. Hence, again by the localization theorem of [18], µ1=w1(x) dx+µ|E\O

and µ2=w2(x) dx+µ|E\O are regular measures with support E, and µ1≤µ≤µ2.
According to what we have shown above, as n!∞,

nλn(µ1; y)! w1(y)
ωE(y)

and nλn(µ2; y)! w2(y)
ωE(y)

uniformly on any H , where S⊂Int(H) and H is a compact subset of O. If a∈
[−A, A] with some A and x∈S, then for large n the point y=x+a/n belongs to H .
Therefore, with some n0, for n≥n0 we have

nλn

(
µ1; x+

a

n

)
≥

w1

(
x+

a

n

)

ωE

(
x+

a

n

)−ε≥ w1(x)
ωE(x)

−2ε,

and similarly

nλn

(
µ2; x+

a

n

)
≤

w2

(
x+

a

n

)

ωE

(
x+

a

n

) +ε≤ w2(x)
ωE(x)

+2ε.

Now the claim in the theorem follows from these inequalities, the fact that w1(x)=
w2(x)=w(x), x∈S, and from

λn(µ1; z)≤λn(µ; z)≤λn(µ2; z).

9. Proof of Theorem 3.2

This is much like the proof of Theorem 3.1 if one uses the result of Findley [6,
Theorem 11] on asymptotics of Christoffel functions for regular measures on [−1, 1]
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under local Szegő condition. One uses polynomial mappings and appproximation
exactly as in [19] (together with the fact that the polynomial maps – actually
C1-maps – in question preserve Lebesgue points). We skip the details.

10. Proof of Theorem 2.3

Let µ0 be a measure that is w(x0) dx in a small neighborhood I of x0 and
agrees with µ outside this neighborhood. This is a regular measure in view of the
localization theorem of [18, Theorem 5.3.3].

Then, by Theorems 2.1 and 2.2 the statements in the theorem hold with µ0

in place of µ (note that µ0 has constant density in I). We shall use this µ0

and Lubinsky’s comparison method to deduce the conclusion for µ. First we deal
with (2.2).

Let µ∗=max{w(x0), w(x)} dx+dµs in the aforementioned neighborhood I of x0

and let µ∗=µ outside this neighborhood. Then µ≤µ∗ and µ0≤µ∗, and clearly x0

is a Lebesgue point for the Radon–Nikodym derivative w∗(x)=max{w(x0), w(x)}
of µ∗. This µ∗ is automatically regular since µ≤µ∗ and µ and µ∗ have equal support.

For either of σ=µ, µ0, µ
∗ we can apply Theorem 3.2:

lim
n!∞nλn

(
σ; x0+

a

n

)
=

w(x0)
ωE(x0)

.

If we substitute this for µ0≤µ∗ and µ≤µ∗ into Lubinsky’s inequality (3.2), then we
get

1
n

Kn

(
µ; x0+

a

n
, x0+

b

n

)
− 1

n
Kn

(
µ0; x0+

a

n
, x0+

b

n

)
= o(1)

uniformly in a∈[−L/n, L/n] for any fixed L. Now we can deduce (2.2) since, as we
have just mentioned, it holds for µ0.

Once (2.2) is established, (2.1) is easy to deduce if we set a=an into (2.2) so
that x0+a/n is a zero of pn(µ; z) (which is the original argument of [10]). Lemma 4.4
tells us that this is possible for some |an|≤9/ωE(x0) provided n is sufficiently large.
In this case (2.2) takes the form

an(µ)
pµ;n−1

(
x0+

a

n

)
pn

(
µ; x0+

b

n

)

a−b
+

sin πωE(x0)(a−b)
π(a−b)w(x0)

= o(1),

so with the argument applied after (5.18) we obtain that for any fixed δ>0 there is
a zero of pn(µ; z) in

x0+
1
n

[
a+

1
ωE(x0)

−δ, a+
1

ωE(x0)
+δ

]
.
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Lemma 4.4(i) gives that there is only one zero in this interval for small δ and then
this is the smallest zero lying to the right of x0+a/n. In a similar fashion, the
largest zero lying to the left of x0+a/n lies in the interval

x0+
1
n

[
a− 1

ωE(x0)
−δ, a− 1

ωE(x0)
+δ

]
.

Repeating the same argument with any zero x0+a/n of pn(µ; z) lying in the interval
[x0−L/n, x0+L/n], the limit (2.1) follows, since δ>0 is arbitrary here.
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