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Two separation theorems of
Andreotti–Vesentini type

Viorel Vâjâitu

1. Introduction

Let X be a complex space with countable topology. Let F be a coherent
analytic sheaf on X . By ν(F) we denote the largest non-negative integer m such
that prof Fx≥m for every point x outside a compact subset of X ; see also Section 2.

It is a standard fact that for each positive integer i, the cohomology module
Hi(X,F) becomes in a natural way a topological complex vector space. Also it is
known that this topology is separated whenever Hi(X,F) has finite dimension. Al-
though in general this is not the case, there are certain settings when the separation
still holds. See [7], [4], [15], [21], and especially [19].

In this paper we give two situations when separation holds (for definitions see
Section 2).

Theorem 1. Let q be a positive integer. If X equals an increasing union of
q-concave open subsets, then the space Hi(X,F) is separated for all non-negative
integers i≤ν(F)−q.

In particular, if X is a complex manifold of pure dimension n and F is locally
free, then ν(F)=n so that the Dolbeault cohomology groups H �,s(X,F) are separ-
ated for s≤n−q. We remark that this has been considered in [18] under restrictive
conditions, namely for q<n/2.

Theorem 2. Let p and q be positive integers with p+q≤m:=prof∂K(F) and
K⊂X be a compact set. Then the following statements hold.

(a) If X is cohomologically p-convex and K admits a base of q-convex open
sets, then the space Hi(X\K,F) is separated for p≤i≤m−q.

(b) If X is cohomologically p-complete and K admits a base of q-complete open
sets, then Hi(X\K,F)=0 for p≤i<m−q.
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A brief account of the proofs is as follows. First we need a separation criterion
for cohomology with coefficients in a coherent sheaf for an increasing union of open
subspaces (viz., Theorem 4). Then we shall prove the separation theorems for
q-concave and q-convex spaces, see Theorems 5 and 6, respectively. Theorem 2 is
more involved and here we need two more facts which we now briefly recall.

Let i and j be non-negative integers. From a standard exact sequence in
cohomology we retain the exact portion

Hi(X,F)−!Hi(X\K,F) αi−!Hi+1
K (X,F).

Also there is a canonical morphism (given by restriction)

βj : Hj
K(X,F)−! lim←−

U⊃K

Hj
c (U,F).(∗)

Due to the hypothesis, the projective limit may be indexed over a countable base
of relatively compact q-convex neighborhoods U of K. Now the key points in proof
are:

� Let i≥p. The subsequent Lemma 2 reduces the separation of Hi(X\K,F)
to the existence of a separated topology on Hi+1

K (X,F) for which αi is continuous.
� Take j≤m−q+1. Then we show, viz. Proposition 8, that βj is injective and

the projective limit in (∗) admits a separated topology so that the induced topology
on Hj

K(X,F) is separated.

2. Preliminaries

Let X=(X,OX) be a complex space with countable topology and F be a co-
herent analytic sheaf on X . For any point x∈X there exists an embedding ι : U!
̂U⊂Cm(x) of an open neighborhood U�x into the Zariski tangent space Cm(x) of
X at x. Let ̂F be the trivial extension of ι�(F|U ); it is a coherent analytic sheaf
on ̂U . Let

0−!Opd −!Opd−1 −! ...−!Op0 −! ̂F −! 0

be a resolution of ̂F on a neighborhood of ι(x) of minimal length. It can be shown
that d≤m(x) and the number profx(F):=m(x)−d does not depend on the em-
bedding ι. Moreover, the function from X to N given by x �!profx(F) is lower
semi-continuous.

If A⊂X is a set, we put

profA(F) := min
x∈A

prof(Fx).
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An open set U⊂X is called a neighborhood of the boundary ofX ifX\U is compact.
Then we denote

ν(F) := sup{profU (F) ;U neighborhood of the boundary of X}.

Obviously profX(F)≤ν(F). For instance, if X is a complex manifold of pure di-
mension n and F is locally free outside a compact set of X , then ν(F)=n so that
profX(F) could be less than n.

Now let ϕ : X!R be a continuous function and q be a positive integer. Then
ϕ is said to be q-convex (in the sense of Andreotti–Grauert [3]) if there exists
a covering of X by open patches Aλ isomorphic to closed analytic sets in open sets
Dλ⊂CNλ , λ∈Λ, such that each restriction ϕ|Aλ

admits a smooth extension ϕ̂λ to
Dλ which is q-convex, i.e. i∂∂ϕ̂λ has at most q−1 negative or zero eigenvalues at
each point of Dλ. The q-convexity property is easily shown not to depend on the
covering nor on the embeddings Aλ ↪!Dλ.

We say that X is q-convex (resp., q-concave) if there exists a proper function
ϕ : X![0,∞) (resp., ϕ : X!(0, 1]) which is q-convex on X\K, for a compact set
K⊂X . The space X is called q-complete if X is q-convex and the corresponding
compact set is empty. (Note that in the definition of q-concavity we cannot take
the special compact set to be empty; at least if q≤dim(X) with X irreducible).

On the other hand, in the above definitions for q=1 it is sufficient to require
that “ϕ is continuous on X and strictly plurisubharmonic on X\K” instead of “ϕ
is smooth on X and 1-convex on X\K”.

By a (p, q)-corona(1) we mean a complex spaceX on which there exists a smooth
proper function ϕ : X!(0,∞) with the following property:

(	) There exist positive numbers ε0 and M0 such that the function ϕ is p-convex
on {x;ϕ(x)<ε0} and is q-convex on {x;M0<ϕ(x)}.

If in (	) we can choose M0<ε0, then X is called a complete (p, q)-corona. For
practical purposes, we shall employ the term “corona” instead of “(1, 1)-corona”.

We remark that if X has pure dimension n and X is a complete (p, q)-corona,
then p+q≤n+1. This can be easily verified using the maximum principle for q-
convex functions.

A standard example of a (p, q)-corona can be obtained in the following way.
Let Z be a q-convex space and K⊂Z be a compact set. Then X :=Z\K is a (p, q)-
corona if K is strictly p-convex in the sense that there exist an open set U⊃K and
ψ∈C∞(U,R+) with K={x;ψ(x)=0} and ψ being p-convex on U \K. On the other
hand, if K admits a fundamental system of p-complete neighborhoods, then X is

(1) Sometimes the more suggestive label (p, q)-concave-convex space term is used. Besides
one also requires that 0=infX ϕ and supX ϕ=∞. See, for instance [21].
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merely an increasing union of (p, q)-coronae. (We leave the simple verification as
an exercise!)

Theorem 3. Assume that X is a (p, q)-corona. Then the space Hi(X,F) has
finite dimension (a fortiori it is separated) for q≤i<ν(F)−p.

The proof is a straightforward application of the bumping method from [3].
Notice that the separation of Hi(X,F) for i=ν(F)−p is stated by Ramis [21].
However, it seems that his proofs have some gaps. See the note in [19] in which it
is shown that the example due to Rossi of a complex smooth surface X , which is
a complete corona X and cannot be “filled in”, has H1(X,OX) non-separated.

3. A separation criterion for increasing unions

Before stating the separation criterion due to Cassa [9] for an increasing union
of open subsets in complex spaces, let us recall a few of his definitions.

Let F={Fn, ρm,n} be a projective system of locally convex topological vector
spaces and continuous linear maps. We say that F satisfies a topological Mittag-
Leffler condition (or, briefly, that F is a tML-system) if, for every n≥1 and for every
convex, circled neighborhood U of 0∈Fn, there exists an integer n∗≥n (n∗ depends
on U and n) such that, for any k≥n∗ we have

ρk,n(Fk)
U

= ρn∗,n(Fn∗)
U
,

where the closure is taken in the topology of Fn defined by the Minkowski seminorm
of U .

The system F satisfies a closed Mittag-Leffler condition (or F is a cML-system)
if, for any n≥1, there exists an integer n∗≥n such that, for any k≥n∗ we have

ρk,n(Fk)= ρn∗,n(Fn∗) in Fn.

A special case of cML-system is what is usually called a Runge system, i.e. a projec-
tive system F={Fn, ρm,n} such that, for every m and n with m≥n the map ρm,n

has dense image in Fn.
Obviously, a cML-system is a tML-system. (Note that for a projective system

of normed spaces these two conditions coincide, since by definition the topology is
generated by exactly one seminorm.)

As a straightforward but useful observation we mention the following: If each
Fn has finite dimension (as a vector space), then the projective system F is a cML-
system. Indeed, fix n0≥1. Since for k≥m≥n0 we have ρk,n0(Fk)⊆ρm,n0(Fm)⊆Fn0 ,
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and Fn0 has finite dimension, there exists n1>n0 such that, for all k,m≥n1 we have
ρk,n0(Fk)=ρm,n0(Fm).

Similarly, if each of the canonical mappings

lim←−
n�!∞

Fn−!Fk, k= 0, 1, ...,

has finite codimension, then the projective system F is a cML-system.
For the rest of this section we consider the following setting: X is a complex

space which is exhausted by an increasing sequence of open sets {Xn}n,

X0⊂ ...⊂Xn⊂Xn+1⊂ ...,
and F is a coherent sheaf on X . Fix an integer q≥1. One has canonical restrictions

ρm,n : Hq−1(Xm,F)−!Hq−1(Xn,F), m≥n.
Here is the separation theorem due to Cassa [9].

Theorem 4. Suppose that each space Hq(Xn,F) is separated. Then Hq(X,F)
is separated if and only if the projective system {Hq−1(Xn,F), ρm,n} satisfies the
topological Mittag-Leffler condition.

Now we say a few more words when q=1. The projective system {F(Xn), ρm,n}
fulfils the topological Mittag-Leffler condition if and only if for any compact set
K⊂X there exists a positive integer j with K⊂Xj such that F(X) approximates
F(Xj) uniformly on K (cf. [25], p. 190).

It is important to observe that for F=OX the above topological Mittag-Leffler
condition can be reformulated by saying that

X0⊂ ...⊂Xn⊂Xn+1⊂ ...
is a Runge family according to [20], p. 118; see also [16].

To give an example we consider a non-Stein complex manifold Z of dimension
N≥2 which is an increasing union of Stein open subsets Zn, n=0, 1, ... (see [12]).
By [20] and [25] it follows that {Zn}n is not a Runge family. Now fix a point z0∈Z0.
Put Xn :=Zn\{z0}. Obviously each Xn is a complete corona. It is not difficult to
check that {Xn}n is not a Runge family. Obviously X :=Z\{z0} is exhausted by
the increasing family {Xn}n. Then the space H1(X,OX) is not separated (use the
separation theorem presented in (i) below).

In this circle of ideas we give the following result.

Proposition 1. Suppose that each Xn is a complete corona, ν(OX)≥3, and
F [1]=F , where F [1] is the 1st-absolute gap sheaf of F . Then H1(X,F) is separated
if and only if {F(Xn), ρm,n} satisfies the topological Mittag-Leffler condition.
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Proof. Recall that for a non-negative integer p, the pth-absolute gap sheaf of
F is defined as the canonical sheaf associated to the presheaf

U �−! lim−→F(U \A),

where the inductive limit is taken over all analytic sets A⊂U of dimension ≤p. The
equality F [p]=F means that the canonical morphism F!F [p] is an isomorphism.

Then the proof of the proposition concludes readily in a standard way from
Theorem 4 and the following facts:

(i) Let Y be a Stein space, K⊂Y be a holomorphically convex compact set,
and G be a coherent analytic sheaf on Y . Then H �(Y \K,G) are separated. See [8].

(ii) Let Y be a complete corona defined by a function ϕ : Y!(0,∞). Suppose
that prof(OX)≥3 on {x;ϕ(x)<ε0} for some ε0>0. Then there exists a Stein space ˜Y

containing Y as an open set such that, for any ε>0 the setKε :={x;ϕ(x)≤ε}∪(˜Y \Y )
is compact; in fact it is even holomorphically convex. Such a space ˜Y is called
a Stein completion of Y (see [5]). Furthermore, if G is a coherent analytic sheaf on
Y with G[1]=G, then there exists a coherent sheaf ˜G on ˜Y that extends G, that is
˜G|Y =G. Then, using (i), for any ε>0 sufficiently small, the spaces H �({ϕ<ε},G)
are separated. �

4. Proof of Theorem 1

This is a straightforward consequence of the discussion in the previous section
and the following theorem.

Theorem 5. Let X be a q-concave space and F be a coherent analytic sheaf
on X. Then the space Hi(X,F) has finite dimension if 0≤i<ν(F)−q, and it is
separated if i=ν(F)−q.

Proof. The finiteness part is standard (by the bumping method of [3]). The
separation in question is proved in [4], p. 240, for a complex manifold X with
methods specific to the smooth case. The more general singular case is a standard
consequence of spectral sequences arguments and the following proposition, which
is a particular case of a theorem in [2], p. 1040. More concretely we proceed as
follows.

Proposition 2. Let X be a complex space of finite dimension. Then for each
coherent analytic sheaf F on X there exists a spectral sequence {Ei,j

r }r with

Ei,−j
2 =Hi

c(X,DjF)⇒Hj−i(X,F�).
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Note. Here F� denotes the dual sheaf of F (see [4], pp. 207–208) and H
�
(X,F�)

the homology groups with closed supports and coefficients in F�. The sheaf DjF
is defined as the canonical sheaf associated with the presheaf defined on the fam-
ily of all open subsets U�X such that U is Stein and its closure U has a Stein
neighborhood basis by the rule:

U �−!DjF := Homcont(Hi
c(U,F),C).

By [4], Proposition 18, DjF are coherent sheaves on X which have compact (ana-
lytic) support for j<ν(F).

Now we return to the proof of Theorem 5. From [4] (see Theorem II and the
remark on pp. 214–215) one has that, if Y is a complex space and G a coherent
sheaf on Y , then Hr+1(Y,G) is separated provided that Hr(Y,G�) is separated.

On the other hand, again by [4] (see Theorem 8) it follows that Hi
c(X,F) has

finite dimension (as a complex vector space) for all i>q. Therefore, by Proposition
2 we obtain that the homology group Hl(X,F�) has finite dimension for l<ν(F)−q.

Finally, granting the open mapping theorem for continuous surjections of
Souslin(2) spaces and the way the topology of Hj(X,F�) is defined (see [4]), we
deduce that Hj(X,F�) is separated whenever it has finite dimension. The proof of
the theorem concludes immediately. �

In the remaining part of this section we say a few more words on q-concavity.
As a simple consequence of [30] one shows that a finite union of 1-concave open
subsets of X is still 1-concave.

Now we give a positive result for an increasing union.

Proposition 3. Let X be the union of an increasing sequence of 1-concave
open subsets Xn. Let ϕn define the 1-concavity of Xn and Kn be the exceptional
compact set. If Kn+1⊂Xn for all n, then X is 1-concave.

Proof. Clearly, we may arrange things such that Kn+1(⊂Xn) is a neighborhood
of Kn and {Kn}n exhausts X . Then select a sequence of positive numbers {εn}n
strictly decreasing to 0 such that εnϕn+1<εn−1ϕn on Kn+1 (with ε0=1). For x∈X ,
put N(x):={n;x∈Xn+1}. Define a function ϕ : X!(0, 1) by setting

ϕ(x)= sup{εnϕn+1(x) ;n∈N(x)}, x∈X.
It can be checked that ϕ is continuous and exhaustive from below. To conclude
the proposition, we show that ϕ is strictly plurisubharmonic on X\K1. Indeed,

(2) A Souslin space is a topological space which is the continuous image of a complete, metric,
separable space. See [4], p. 191.
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let x0∈X\K1, and let j be maximal such that x0∈Kj+1. Then, on a suitable
neighborhood W of x0 in the definition of ϕ|W only functions from ε0ϕ1, ..., εj−1ϕj

appear and, moreover, those involved are strictly plurisubharmonic. �

A class of examples of 1-concave spaces is obtained by removing special Stein
compact sets from a given 1-concave space. Toward this aim, let us recall a few
notions. Let X be a complex space and K be a compact set in X . Then

� the set K is called Stein if K admits a fundamental system of Stein open
neighborhoods;

� the set K is called pseudoconvex if there exist an open set U⊃K and a non-
negative plurisubharmonic function ψ on U vanishing precisely on K and such that
ψ is strictly plurisubharmonic on U \K.

It follows easily that if X is Stein, then a compactK⊂X is pseudoconvex if and
only if there exists a Stein open neighborhood U ofK such thatK is holomorphically
convex with respect to O(U) (see [30]); a fortiori pseudoconvex compact sets in Stein
spaces are Stein. It is worth noticing that, while any compact set in C is Stein, there
are examples of non-pseudoconvex compact sets. For instance, using the maximum
principle for subharmonic functions we show easily that the compact set M⊂C is
not pseudoconvex, where

M := {0}∪
∞
⋃

n=1

∂∆(1/n).

Here ∆(r):={z∈C;|z|<r} for r>0 and ∆=∆(1). Furthermore, if Ki, i=1, ..., n,
are compact sets in C, then their product K1×...×Kn is pseudoconvex in Cn if
and only if each Ki is pseudoconvex in C.

By [29] we get a slight improvement of [30], Proposition 4.1.

Proposition 4. Let X be a 1-concave space. Then, for any pseudoconvex
compact set K⊂X, the complement X\K is 1-concave.

Let K⊂Cn be a compact set and consider K⊂Pn via the standard open em-
bedding Cn⊂Pn. Taking into account the well-known fact (see [13] and [26]) that
a locally Stein proper open subset of Pn is Stein, we obtain the following result.

Proposition 5. The space Pn\K is an increasing union of 1-concave open
subsets (resp., Pn\K is 1-concave) if and only if K is a Stein (resp., pseudoconvex)
compact set.

It is important to notice that every irreducible complex space of dimension n

is n-concave [11] so that maximal concavity is not very interesting.
Examples of q-concave spaces can be obtained by removing analytic sets in

compact complex spaces, more precisely we have: If Z is a compact complex space
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and A⊂Z is an analytic set of dimension k, then Z\A is (k+1)-concave. (See [29],
Proposition 9.)

Now we show the following result.

Proposition 6. For each pair (n, q) of integers with 1≤q<n there exists
a complex manifold X of dimension n such that :

(i) X is an increasing union of q-concave open subsets ;
(ii) X is not q-concave.

Proof. We consider X :=Pn\K for K=M×∆n−q, where

M := {0}∪
∞
⋃

n=1

∂∆q(1/n).

Since an arbitrary open set in Cq is q-complete (see [14]), K admits a fundamen-
tal system of q-complete open neighborhoods. From this we infer readily that X
satisfies (i). By using the maximum principle for q-convex functions, one derives
property (ii). �

Remark. For q=1 one gets another kind of example using the “discrete hat”
in C2, namely

K =
( ∞

⋃

n=1

{1/n}×∂∆
)

∪({0}×∆).

Observe thatK is not pseudoconvex (as follows readily using the maximum principle
for plurisubharmonic functions) but K is Stein. For this it suffices to show that
K is meromorphically convex (see [22], p. 479); this condition is a straightforward
consequence of the fact that C2\K is a union of complex lines. (For instance, if
z0=(1/n,w0) with |w0|<1, then we consider L given by {(1/n+t, w0+λt);t∈C} for
λ∈C. We shall require |w0−λ/n|<1 and |w0+λ(1/m−1/n)| �=1 for all m=1, 2, ... .
Clearly this can be satisfied if |λ| �=0 is small enough. The other cases are done in
a similar way and we omit their simple verification.)

In the circle of ideas presented here, we relate q-concavity with pseudoconcavity
in the sense of Andreotti [1]. Let X be a complex space and Ω⊂X be an open set.
A point x0∈∂Ω is a pseudoconcave boundary point of Ω if x0 has a fundamental
system of neighborhoods {Uν}ν in X such that for each ν,

x0 ∈ int ( ̂Uν∩Ω),

where the hull of Uν∩Ω is with respect to O(Uν). We say that X is pseudoconcave if
a non-empty, relatively compact open subset Ω⊂X is given such that the following
properties hold:
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� Ω meets any irreducible component of X (hence X has finitely many irre-
ducible components);

� each point of ∂Ω is a pseudoconcave boundary point (i.e. Ω has a pseudo-
concave boundary).

The relation with q-concavity is as follows (we cite Proposition 10 from [1]).

Proposition 7. Let X be an irreducible complex space of dimension n. If X
is (n−1)-concave, then X is pseudoconcave.

Note that pseudoconcavity of X does not guarantee (n−1)-concavity of X . To
exhibit a counterexample, let a∈Pn (n≥2) and consider a sequence {ξν}ν⊂Pn\{a}
that converges to a. Let π : X!Pn\{a} be the blowing-up of this sequence. It
follows easily that X is pseudoconcave; in fact, if B is a small ball around a in Pn

such no ξν lies on ∂B, then Ω:=X\π−1(B\{a}) displays the pseudoconcavity of X .
On the other hand, if X would be (n−1)-concave, then there would exist a function
ϕ : X!(0,∞), exhaustive from below, and (n−1)-convex on {x;0<ϕ(x)<c} for
a suitable c>0; hence for sufficiently large ν, ϕ would be (n−1)-convex on π−1(ξν)
which is false by the maximum principle. Therefore X is not (n−1)-concave, as
desired.

5. Proof of Theorem 2

First we prepare a few general facts.

Lemma 1. Let T be a paracompact space with countable basis, K⊂T be a com-
pact set and G be a sheaf of abelian groups on T . Then the canonical morphism

Hr(T \K,G)−! lim←−
U⊃K

Hr(T \U,G)

is an epimorphism, for any non-negative integer r. If, moreover, we assume that
there exists a decreasing sequence {Uν}ν to K of open subsets of T such that the
restrictions

Hr−1(T \Uν+1,G)−!Hr−1(T \Uν,G)
are surjective, then that morphism is an isomorphism.

The proof is based on considering a resolution C� of G by injective sheaves which
allow us to compute the invariants H �(X\K,F) and H �(X\U,G), open neighbor-
hoods U of K. The applications Γ(X\Uν+1,G)!Γ(X\Uν,G) are surjective, ν≥1.
The conclusion of the lemma follows elementarly by a standard argument on pro-
jective systems and suitable diagrams.
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Lemma 2. Let X be a complex space and F be a coherent analytic sheaf on
X. Let q be a positive integer. If the closure of {0}⊂Hq(X,F) has finite dimension
(over C), then the space Hq(X,F) is separated.

Proof. Let U={Ui}i be a locally finite Stein open covering of X . It is known
that the canonical map Hq(U ,F)!Hq(X,F) is a topological isomorphism. Now
consider the natural surjection ρ : Zq(U ,F)!Hq(U ,F). Then ρ is continuous (and
open).

Let ξ(1), ..., ξ(m)∈Zq(U ,F) be such that ρ(ξ(1)), ..., ρ(ξ(m)) form a basis for
the closure {0} of {0} in Hq(U ,F). Let G⊂Zq(U ,F) be the complex subspace
spanned by ξ(1), ..., ξ(m). Note that G∩Bq(U ,F)={0}. Let T :=ρ−1({0}). Then T
is a Fréchet space (because it is a closed subspace of the Fréchet space Zq(U ,F)).
Note that T=Bq(U ,F)⊕G. Consider the continuous surjective map

θ : Cq−1(U ,F)×Cm−!T,

(ξ, g) �−! δ(ξ)+λ1ξ
(1)+...+λmξ

(m),

where δ is the ordinary coboundary map. By the open mapping theorem, θ is an
open map. This gives easily that Bq(U ,F) is closed in T because it equals the
complement in T of the open set θ(Cq−1(U ,F)×(Cm\{0})). Therefore Hq(U ,F)
is separated, whence the lemma. �

We shall employ this lemma in the following setting. Let X be a complex space
and F be a coherent analytic sheaf on X . Let K⊂X be a compact set. Suppose
that there is a positive integer j such that Hj(X,F) has finite dimension and we
can endow Hj+1

K (X,F) with a topology for which the canonical map

Hj(X\K,F)−!Hj+1
K (X,F)

is continuous. Then Hj(X\K,F) is separated. (This follows readily by the above
lemma if we consider the exact sequence

Hj(X,F)−!Hj(X\K,F)−!Hj+1
K (X,F).)

Below we recall some facts concerning the topology of cohomology groups with
compact supports. Let X be a complex space and F a coherent analytic sheaf
on X . By a “special covering” of X we mean a locally finite Stein open covering
U={Ui}i∈I (hence I is an at most countable set of indices so there is no loss in
generality to take I=N) such that each U i is a Stein compactum (that is it admits
a neighborhood system of Stein open sets). It is clear that for each open covering
V of X there exists a finer special covering. Now let U be a special covering of X .
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The cohomology of the topological complex of finite cochains

Cq
�(U ,F) :=

⊕

i0,...,q

F(Ui0∩...∩Uiq), q≥ 0,

endowed with the direct sum topology becomes a complex of topological vector
spaces of LF -type, whose cohomology is Hi

c(U ,F). If V is another special covering
of X , finer than U , then we get a canonical topological isomorphism H �

c(V ,F)!
H �

c(U ,F). In this way we get the canonical topology on H �

c(X,F). It is not difficult
to see that Hq

c (X,F) is separated if it has finite dimension.

Lemma 3. Let D be a relatively compact open subset of X. Then the natural
connecting morphisms

δq : Hq(∂D,F)−!Hq+1
c (D,F), q= 0, 1, ...,

are continuous.

Proof. Recall that if A⊂X is a closed set, then on

Hi(A,F) := lim←−
U⊃A

Hi(U,F).

we put the inductive limit topology.
Now fix a non-negative integer q. One has to show that, for every open neigh-

borhood U of ∂D, the morphism ηq : Hq(U,F)!Hq+1
c (D,F) obtained by compos-

ing δq and the restriction Hq(U,F)!Hq(∂D,F) is continuous. In order to check
this, choose special coverings U={Ui}i and D={Dj}j of U and D respectively both
indexed over the set N of non-negative integers and such that, for some n0∈N
there is a function ρ : {n0, n0+1, ...}!N with Dj⊂Uρ(j) for all j≥n0. The desired
continuity follows now simply from the following description. There is a natural
morphism θq for which the next diagram commutes:

Zq(U ,F) θq
��

r

��

Zq+1
c (D,F)

��

Hq(U,F)
ηq

�� Hq+1
c (D,F),

where the vertical arrows are the canonical (open) surjections. Now, to define θq,
we let ξ∈Zq(U ,F); then set ξ̃∈Cq(D,F) by

ξ̃j0...jq = ξρ(j0)...ρ(jq)|Dj0∩...∩Djq
,

if all j0, ..., jq≥n0, and 0 otherwise. Then put θq(ξ)=δ(ξ̃), where δ : Cq(D,F)!
Cq+1(D,F) is the coboundary map. We have that θq(ξ) belongs to Zq+1

c (D,F).
Indeed, for some N∈N large enough, Dj∩Dl=∅ for j≥N and l<n0. Thus N≥n0.
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Let (j0, ..., jq+1) be in the nerve of D such that at least one index is ≥N ; then the
remaining indices are≥n0. Obviously θq(ξ)j0...jq+1 =0.Therefore θq(ξ)∈Cq+1

c (D,F)
and thus it belongs also to Zq+1

c (D,F). Finally, it is straightforward but a little
bit tedious to check that θq induces ηq

�γ assuring the commutativity of the above
diagram. �

Now fix for the moment a non-negative integer j. Let U be a relatively compact
open neighborhood of K. There exists a canonical commutative diagram

Hj(X\K,F) α ��

βU
�������������� Hj+1

K (X,F)

γU
�������������

Hj+1
c (U,F)

with βU continuous by the above lemma. Let {Uν}ν be a countable base of relatively
compact open neighborhoods of K. From the above diagram, we obtain another
commutative diagram

Hj(X\K,F) α ��

β �������������� Hj+1
K (X,F)

γ
�������������

lim←−
ν

Hj+1
c (Uν ,F),

where β=lim←−ν
βν is continuous and γ=lim←−ν

γν .
Suppose we may choose the base {Uν}ν such that each Hj+1

c (Uν ,F) is sepa-
rated; then the projective limit inherits a separated topology as a closed subspace
of the product of Hj+1

c (Uν ,F). If, moreover, γ is injective, then we may put a sep-
arated topology on Hj+1

K (X,F) such that α becomes continuous. Therefore, if
Hj(X,F) has finite dimension, then the space Hj(X\K,F) is separated. This idea
is used for the proof of Theorem 2. To reach this setting we prepare a few more
facts.

Theorem 6. Let X be a complex space and F be a coherent analytic sheaf
on X. Then the following statements hold :

(a) If X is q-convex, then Hi
c(X,F) is separated for i≤ν(F)−q+1 and has

finite dimension for i≤ν(F)−q.
(b) If X is q-complete, then Hi

c(X,F)=0 for i≤ν(F)−q.

Proof. For the definition of ν(F) see the beginning of Section 2. We consider
only the q-convex case. Let ϕ : X!R be the function displaying the q-convexity
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of X . The bumping method from [3] gives the following. For each λ∈R put X(λ)=
{x;ϕ(x)<λ}. Let c0∈R be so large that ϕ is q-convex on {x;ϕ(x)>c0} and for all
x∈X one has profx(F)≥ν(F). Then for all λ, µ∈R with c0≤λ<µ the extension
mappings

Hj
c (X(λ),F)−!Hj

c (X(µ),F)

are bijective for j≤ν(F)−q and injective for j=ν(F)−q+1. Now the theorem
follows easily from the following closeness criterion due to Ramis–Ruget–Verdier
(see [2], p. 1012). �

Theorem 7. Let X be a complex space with countable topology, F be a coher-
ent analytic sheaf on X and q be an integer. Then Hq

c (X,F) is separated provided
that the following condition is fulfilled : For every compact set K⊂X, there is a com-
pact set K ′⊃K such that

Ker(Hq
K(X,F)!Hq

c (X,F))= Ker(Hq
K(X,F)!Hq

K′(X,F)).

Proposition 8. Let Z be a complex space and K⊂Z be a compact set for
which there exists a smooth function ϕ : Z!R such that K={x∈Z ;ϕ(x)≤0} and
ϕ is q-convex on Z\K. Let F be a coherent analytic sheaf F on Z. Then the
canonical map

Hj
K(Z,F)−! lim←−

W⊃K

Hj
c (W,F)

is injective for j≤prof∂K(F)−q+1.

Proof. Put m=prof∂K(F)−q. Then let U and V be open neighborhoods of K
of the form U={x∈Z ;ϕ(x)<ε′} and V ={x∈Z ;ϕ(x)<ε′′} with 0<ε′<ε′′ such that
profV (F)≥m. The bumping method of [3] gives that the extension

Hj
c (U,F)−!Hj

c (V,F)

is bijective for j≤m and injective for j=m+1. Then, for each integer l≥0 there is
a canonical commutative diagram with exact rows

H l(Z,F)

��

�� H l(Z\U,F)

��

�� H l+1
c (U,F)

��

�� H l+1(Z,F)

��

H l(Z,F) �� H l(Z\V,F) �� H l+1
c (V,F) �� H l+1(Z,F)

which, granting the five lemma, implies the bijectivity of the restrictions

Hj(Z\V,F)−!Hj(Z\U,F), j <m.
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Thus applying Lemma 1 we obtain the bijectivity of the canonical morphisms

Hj(Z\K,F)−! lim←−
W⊃K

Hj(Z\W,F), j≤m−q.(�)

Now there exists the following natural commutative diagram with exact rows

Hj−1(Z,F)

��

�� Hj−1(Z\K,F)

��

�� Hj
K(Z,F)

��

�� Hj(Z,F)

��

Hj−1(Z,F) �� Hj−1(Z\U,F) �� Hj
c (U,F) �� Hj(Z,F)

from which we infer readily the injectivity ofHj
K(Z,F)!Hj

c (U,F) for j≤m, whence
the proposition for j≤prof(F)−q.

Now we treat the case j=m+1. First note the exact sequence (as follows by
standard algebraic facts on projective systems)

lim←−
W⊃K

Hm
c (W,F)−!Hm(Z,F)−! lim←−

W⊃K

Hm(Z\W,F)−! lim←−
W⊃K

Hm+1
c (W,F).

Then, by (�), a natural commutative diagram, and the five lemma again we derive
the injectivity of

Hm+1
K (Z,F)−! lim←−

W⊃K

Hm+1
c (W,F),

which concludes the proof of the proposition. �

Remark. Keeping the notation as in Proposition 8, Hi
K(Z,F) has finite dimen-

sion (resp., vanishes if ϕ is q-convex on Z) for j≤prof∂K(F)−q.

End of the proof of Theorem 2. Let {Zν}ν be a decreasing sequence of q-convex
open neighborhoods of K. Let ϕν : Zν![0,∞) be the function displaying the q-
convexity of Zν such that ϕν is q-convex on Zν \Sν, where Sν :={x;ϕν(x)≤0} con-
tains K. There is no loss in generality to assume that Sν+1 is contained in the
interior of Sν .

Now fix an integer j, p≤j≤prof∂K(F)−q. Granting the above proposition and
the discussion preceding Theorem 6, we derive that

Hj(X\Sν ,F)

is separated. Furthermore, by the above remark, the image of

Hj−1(X,F)−!Hj−1(X\Sν ,F)
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has finite codimension, for all ν. This in turn gives that the projective system

{Hj−1(X\Sν,F)}ν
with the canonical restriction maps satisfies the cML-condition. Finally we conclude
applying Theorem 4. The additional case when X is cohomologically p-complete
and K admits a base of open q-complete neighborhoods is to be treated similarly
(much easier) so we omit the proof. �

Corollary 1. Let X be a Stein space and K be a compact set admitting a base
of q-complete open sets. Then for each coherent analytic sheaf F on X, the space
Hi(X\K,F) vanishes for 1≤i<prof∂K(F)−q and is separated for i=prof∂K(F)−q.

This generalizes a result from [10] where the case X smooth, F locally free and
q=1 has been considered.
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