Two separation theorems of Andreotti-Vesentini type

Viorel Vâjâitu

1. Introduction

Let X be a complex space with countable topology. Let \mathcal{F} be a coherent analytic sheaf on X. By $\nu(\mathcal{F})$ we denote the largest non-negative integer m such that prof $\mathcal{F}_x \geq m$ for every point x outside a compact subset of X; see also Section 2.

It is a standard fact that for each positive integer i, the cohomology module $H^i(X, \mathcal{F})$ becomes in a natural way a topological complex vector space. Also it is known that this topology is separated whenever $H^i(X, \mathcal{F})$ has finite dimension. Although in general this is not the case, there are certain settings when the separation still holds. See [7], [4], [15], [21], and especially [19].

In this paper we give two situations when separation holds (for definitions see Section 2).

Theorem 1. Let q be a positive integer. If X equals an increasing union of q-concave open subsets, then the space $H^i(X,\mathcal{F})$ is separated for all non-negative integers $i \leq \nu(\mathcal{F}) - q$.

In particular, if X is a complex manifold of pure dimension n and \mathcal{F} is locally free, then $\nu(\mathcal{F})=n$ so that the Dolbeault cohomology groups $H^{\bullet,s}(X,\mathcal{F})$ are separated for $s \leq n-q$. We remark that this has been considered in [18] under restrictive conditions, namely for q < n/2.

Theorem 2. Let p and q be positive integers with $p+q \le m := \operatorname{prof}_{\partial K}(\mathcal{F})$ and $K \subset X$ be a compact set. Then the following statements hold.

- (a) If X is cohomologically p-convex and K admits a base of q-convex open sets, then the space $H^i(X \setminus K, \mathcal{F})$ is separated for $p \le i \le m q$.
- (b) If X is cohomologically p-complete and K admits a base of q-complete open sets, then $H^i(X \setminus K, \mathcal{F}) = 0$ for $p \le i < m q$.

A brief account of the proofs is as follows. First we need a separation criterion for cohomology with coefficients in a coherent sheaf for an increasing union of open subspaces (viz., Theorem 4). Then we shall prove the separation theorems for q-concave and q-convex spaces, see Theorems 5 and 6, respectively. Theorem 2 is more involved and here we need two more facts which we now briefly recall.

Let i and j be non-negative integers. From a standard exact sequence in cohomology we retain the exact portion

$$H^{i}(X,\mathcal{F}) \longrightarrow H^{i}(X \backslash K,\mathcal{F}) \xrightarrow{\alpha_{i}} H_{K}^{i+1}(X,\mathcal{F}).$$

Also there is a canonical morphism (given by restriction)

(*)
$$\beta_j \colon H_K^j(X, \mathcal{F}) \longrightarrow \varprojlim_{U \supset K} H_c^j(U, \mathcal{F}).$$

Due to the hypothesis, the projective limit may be indexed over a countable base of relatively compact q-convex neighborhoods U of K. Now the key points in proof are:

- Let $i \ge p$. The subsequent Lemma 2 reduces the separation of $H^i(X \setminus K, \mathcal{F})$ to the existence of a separated topology on $H^{i+1}_K(X, \mathcal{F})$ for which α_i is continuous.
- Take $j \le m q + 1$. Then we show, viz. Proposition 8, that β_j is injective and the projective limit in (*) admits a separated topology so that the induced topology on $H_K^j(X, \mathcal{F})$ is separated.

2. Preliminaries

Let $X = (X, \mathcal{O}_X)$ be a complex space with countable topology and \mathcal{F} be a coherent analytic sheaf on X. For any point $x \in X$ there exists an embedding $\iota \colon U \to \widehat{U} \subset \mathbf{C}^{m(x)}$ of an open neighborhood $U \ni x$ into the Zariski tangent space $\mathbf{C}^{m(x)}$ of X at x. Let $\widehat{\mathcal{F}}$ be the trivial extension of $\iota_{\star}(\mathcal{F}|_{U})$; it is a coherent analytic sheaf on \widehat{U} . Let

$$0 \longrightarrow \mathcal{O}^{p_d} \longrightarrow \mathcal{O}^{p_{d-1}} \longrightarrow \dots \longrightarrow \mathcal{O}^{p_0} \longrightarrow \widehat{\mathcal{F}} \longrightarrow 0$$

be a resolution of $\widehat{\mathcal{F}}$ on a neighborhood of $\iota(x)$ of minimal length. It can be shown that $d \leq m(x)$ and the number $\operatorname{prof}_x(\mathcal{F}) := m(x) - d$ does not depend on the embedding ι . Moreover, the function from X to \mathbf{N} given by $x \mapsto \operatorname{prof}_x(\mathcal{F})$ is lower semi-continuous.

If $A \subset X$ is a set, we put

$$\operatorname{prof}_{A}(\mathcal{F}) := \min_{x \in A} \operatorname{prof}(\mathcal{F}_{x}).$$

An open set $U \subset X$ is called a neighborhood of the boundary of X if $X \setminus U$ is compact. Then we denote

 $\nu(\mathcal{F}) := \sup \{ \operatorname{prof}_{U}(\mathcal{F}) ; U \text{ neighborhood of the boundary of } X \}.$

Obviously $\operatorname{prof}_X(\mathcal{F}) \leq \nu(\mathcal{F})$. For instance, if X is a complex manifold of pure dimension n and \mathcal{F} is locally free outside a compact set of X, then $\nu(\mathcal{F}) = n$ so that $\operatorname{prof}_X(\mathcal{F})$ could be less than n.

Now let $\varphi \colon X \to \mathbf{R}$ be a continuous function and q be a positive integer. Then φ is said to be q-convex (in the sense of Andreotti–Grauert [3]) if there exists a covering of X by open patches A_{λ} isomorphic to closed analytic sets in open sets $D_{\lambda} \subset \mathbf{C}^{N_{\lambda}}$, $\lambda \in \Lambda$, such that each restriction $\varphi|_{A_{\lambda}}$ admits a smooth extension $\widehat{\varphi}_{\lambda}$ to D_{λ} which is q-convex, i.e. $i\partial \overline{\partial} \widehat{\varphi}_{\lambda}$ has at most q-1 negative or zero eigenvalues at each point of D_{λ} . The q-convexity property is easily shown not to depend on the covering nor on the embeddings $A_{\lambda} \hookrightarrow D_{\lambda}$.

We say that X is q-convex (resp., q-concave) if there exists a proper function $\varphi \colon X \to [0, \infty)$ (resp., $\varphi \colon X \to (0, 1]$) which is q-convex on $X \setminus K$, for a compact set $K \subset X$. The space X is called q-complete if X is q-convex and the corresponding compact set is empty. (Note that in the definition of q-concavity we cannot take the special compact set to be empty; at least if $q \le \dim(X)$ with X irreducible).

On the other hand, in the above definitions for q=1 it is sufficient to require that " φ is continuous on X and strictly plurisubharmonic on $X \setminus K$ " instead of " φ is smooth on X and 1-convex on $X \setminus K$ ".

By a (p,q)-corona(1) we mean a complex space X on which there exists a smooth proper function $\varphi \colon X \to (0,\infty)$ with the following property:

(#) There exist positive numbers ε_0 and M_0 such that the function φ is p-convex on $\{x; \varphi(x) < \varepsilon_0\}$ and is q-convex on $\{x; M_0 < \varphi(x)\}$.

If in (\sharp) we can choose $M_0 < \varepsilon_0$, then X is called a *complete* (p,q)-corona. For practical purposes, we shall employ the term "corona" instead of "(1,1)-corona".

We remark that if X has pure dimension n and X is a complete (p,q)-corona, then $p+q \le n+1$. This can be easily verified using the maximum principle for q-convex functions.

A standard example of a (p,q)-corona can be obtained in the following way. Let Z be a q-convex space and $K \subset Z$ be a compact set. Then $X := Z \setminus K$ is a (p,q)-corona if K is strictly p-convex in the sense that there exist an open set $U \supset K$ and $\psi \in C^{\infty}(U, \mathbf{R}_+)$ with $K = \{x; \psi(x) = 0\}$ and ψ being p-convex on $U \setminus K$. On the other hand, if K admits a fundamental system of p-complete neighborhoods, then X is

⁽¹⁾ Sometimes the more suggestive label (p,q)-concave-convex space term is used. Besides one also requires that $0=\inf_X \varphi$ and $\sup_X \varphi=\infty$. See, for instance [21].

merely an increasing union of (p,q)-coronae. (We leave the simple verification as an exercise!)

Theorem 3. Assume that X is a (p,q)-corona. Then the space $H^i(X,\mathcal{F})$ has finite dimension (a fortiori it is separated) for $q \le i < \nu(\mathcal{F}) - p$.

The proof is a straightforward application of the bumping method from [3]. Notice that the separation of $H^i(X,\mathcal{F})$ for $i=\nu(\mathcal{F})-p$ is stated by Ramis [21]. However, it seems that his proofs have some gaps. See the note in [19] in which it is shown that the example due to Rossi of a complex smooth surface X, which is a complete corona X and cannot be "filled in", has $H^1(X,\mathcal{O}_X)$ non-separated.

3. A separation criterion for increasing unions

Before stating the separation criterion due to Cassa [9] for an increasing union of open subsets in complex spaces, let us recall a few of his definitions.

Let $F = \{F_n, \rho_{m,n}\}$ be a projective system of locally convex topological vector spaces and continuous linear maps. We say that F satisfies a topological Mittag-Leffler condition (or, briefly, that F is a tML-system) if, for every $n \ge 1$ and for every convex, circled neighborhood U of $0 \in F_n$, there exists an integer $n^* \ge n$ (n^* depends on U and n) such that, for any $k \ge n^*$ we have

$$\overline{\rho_{k,n}(F_k)}^U = \overline{\rho_{n^*,n}(F_{n^*})}^U,$$

where the closure is taken in the topology of F_n defined by the Minkowski seminorm of U.

The system F satisfies a closed Mittag-Leffler condition (or F is a cML-system) if, for any $n \ge 1$, there exists an integer $n^* \ge n$ such that, for any $k \ge n^*$ we have

$$\overline{\rho_{k,n}(F_k)} = \overline{\rho_{n^*,n}(F_{n^*})}$$
 in F_n .

A special case of cML-system is what is usually called a *Runge system*, i.e. a projective system $F = \{F_n, \rho_{m,n}\}$ such that, for every m and n with $m \ge n$ the map $\rho_{m,n}$ has dense image in F_n .

Obviously, a cML-system is a tML-system. (Note that for a projective system of normed spaces these two conditions coincide, since by definition the topology is generated by exactly one seminorm.)

As a straightforward but useful observation we mention the following: If each F_n has finite dimension (as a vector space), then the projective system F is a cML-system. Indeed, fix $n_0 \ge 1$. Since for $k \ge m \ge n_0$ we have $\rho_{k,n_0}(F_k) \subseteq \rho_{m,n_0}(F_m) \subseteq F_{n_0}$,

and F_{n_0} has finite dimension, there exists $n_1 > n_0$ such that, for all $k, m \ge n_1$ we have $\rho_{k,n_0}(F_k) = \rho_{m,n_0}(F_m)$.

Similarly, if each of the canonical mappings

$$\lim_{\substack{n \to \infty \\ n \to \infty}} F_n \longrightarrow F_k, \quad k = 0, 1, ...,$$

has finite codimension, then the projective system F is a cML-system.

For the rest of this section we consider the following setting: X is a complex space which is exhausted by an increasing sequence of open sets $\{X_n\}_n$,

$$X_0 \subset ... \subset X_n \subset X_{n+1} \subset ...,$$

and \mathcal{F} is a coherent sheaf on X. Fix an integer $q \geq 1$. One has canonical restrictions

$$\rho_{m,n}: H^{q-1}(X_m, \mathcal{F}) \longrightarrow H^{q-1}(X_n, \mathcal{F}), \quad m \ge n.$$

Here is the separation theorem due to Cassa [9].

Theorem 4. Suppose that each space $H^q(X_n, \mathcal{F})$ is separated. Then $H^q(X, \mathcal{F})$ is separated if and only if the projective system $\{H^{q-1}(X_n, \mathcal{F}), \rho_{m,n}\}$ satisfies the topological Mittag-Leffler condition.

Now we say a few more words when q=1. The projective system $\{\mathcal{F}(X_n), \rho_{m,n}\}$ fulfils the topological Mittag-Leffler condition if and only if for any compact set $K \subset X$ there exists a positive integer j with $K \subset X_j$ such that $\mathcal{F}(X)$ approximates $\mathcal{F}(X_j)$ uniformly on K (cf. [25], p. 190).

It is important to observe that for $\mathcal{F} = \mathcal{O}_X$ the above topological Mittag-Leffler condition can be reformulated by saying that

$$X_0 \subset ... \subset X_n \subset X_{n+1} \subset ...$$

is a Runge family according to [20], p. 118; see also [16].

To give an example we consider a non-Stein complex manifold Z of dimension $N \ge 2$ which is an increasing union of Stein open subsets $Z_n, n=0,1,...$ (see [12]). By [20] and [25] it follows that $\{Z_n\}_n$ is not a Runge family. Now fix a point $z_0 \in Z_0$. Put $X_n := Z_n \setminus \{z_0\}$. Obviously each X_n is a complete corona. It is not difficult to check that $\{X_n\}_n$ is not a Runge family. Obviously $X := Z \setminus \{z_0\}$ is exhausted by the increasing family $\{X_n\}_n$. Then the space $H^1(X, \mathcal{O}_X)$ is not separated (use the separation theorem presented in (i) below).

In this circle of ideas we give the following result.

Proposition 1. Suppose that each X_n is a complete corona, $\nu(\mathcal{O}_X) \geq 3$, and $\mathcal{F}^{[1]} = \mathcal{F}$, where $\mathcal{F}^{[1]}$ is the 1st-absolute gap sheaf of \mathcal{F} . Then $H^1(X,\mathcal{F})$ is separated if and only if $\{\mathcal{F}(X_n), \rho_{m,n}\}$ satisfies the topological Mittag-Leffler condition.

Proof. Recall that for a non-negative integer p, the p^{th} -absolute gap sheaf of \mathcal{F} is defined as the canonical sheaf associated to the presheaf

$$U \longmapsto \varinjlim \mathcal{F}(U \backslash A),$$

where the inductive limit is taken over all analytic sets $A \subset U$ of dimension $\leq p$. The equality $\mathcal{F}^{[p]} = \mathcal{F}$ means that the canonical morphism $\mathcal{F} \to \mathcal{F}^{[p]}$ is an isomorphism.

Then the proof of the proposition concludes readily in a standard way from Theorem 4 and the following facts:

- (i) Let Y be a Stein space, $K \subset Y$ be a holomorphically convex compact set, and \mathcal{G} be a coherent analytic sheaf on Y. Then $H^{\bullet}(Y \setminus K, \mathcal{G})$ are separated. See [8].
- (ii) Let Y be a complete corona defined by a function $\varphi \colon Y \to (0, \infty)$. Suppose that $\operatorname{prof}(\mathcal{O}_X) \geq 3$ on $\{x; \varphi(x) < \varepsilon_0\}$ for some $\varepsilon_0 > 0$. Then there exists a Stein space \widetilde{Y} containing Y as an open set such that, for any $\varepsilon > 0$ the set $K_\varepsilon := \{x; \varphi(x) \leq \varepsilon\} \cup (\widetilde{Y} \setminus Y)$ is compact; in fact it is even holomorphically convex. Such a space \widetilde{Y} is called a Stein completion of Y (see [5]). Furthermore, if \mathcal{G} is a coherent analytic sheaf on Y with $\mathcal{G}^{[1]} = \mathcal{G}$, then there exists a coherent sheaf $\widetilde{\mathcal{G}}$ on \widetilde{Y} that extends \mathcal{G} , that is $\widetilde{\mathcal{G}}|_Y = \mathcal{G}$. Then, using (i), for any $\varepsilon > 0$ sufficiently small, the spaces $H^{\bullet}(\{\varphi < \varepsilon\}, \mathcal{G})$ are separated. \square

4. Proof of Theorem 1

This is a straightforward consequence of the discussion in the previous section and the following theorem.

Theorem 5. Let X be a q-concave space and \mathcal{F} be a coherent analytic sheaf on X. Then the space $H^i(X,\mathcal{F})$ has finite dimension if $0 \le i < \nu(\mathcal{F}) - q$, and it is separated if $i = \nu(\mathcal{F}) - q$.

Proof. The finiteness part is standard (by the bumping method of [3]). The separation in question is proved in [4], p. 240, for a complex manifold X with methods specific to the smooth case. The more general singular case is a standard consequence of spectral sequences arguments and the following proposition, which is a particular case of a theorem in [2], p. 1040. More concretely we proceed as follows.

Proposition 2. Let X be a complex space of finite dimension. Then for each coherent analytic sheaf \mathcal{F} on X there exists a spectral sequence $\{E_r^{i,j}\}_r$ with

$$E_2^{i,-j} = H_c^i(X, \mathcal{D}^j \mathcal{F}) \Rightarrow H_{j-i}(X, \mathcal{F}_{\star}).$$

Note. Here \mathcal{F}_{\star} denotes the dual sheaf of \mathcal{F} (see [4], pp. 207–208) and $H_{\bullet}(X, \mathcal{F}_{\star})$ the homology groups with closed supports and coefficients in \mathcal{F}_{\star} . The sheaf $\mathcal{D}^{j}\mathcal{F}$ is defined as the canonical sheaf associated with the presheaf defined on the family of all open subsets $U \subseteq X$ such that U is Stein and its closure \overline{U} has a Stein neighborhood basis by the rule:

$$U \longmapsto \mathcal{D}^j \mathcal{F} := \operatorname{Homcont}(H^i_c(U, \mathcal{F}), \mathbf{C}).$$

By [4], Proposition 18, $\mathcal{D}^{j}\mathcal{F}$ are coherent sheaves on X which have compact (analytic) support for $j < \nu(\mathcal{F})$.

Now we return to the proof of Theorem 5. From [4] (see Theorem II and the remark on pp. 214–215) one has that, if Y is a complex space and \mathcal{G} a coherent sheaf on Y, then $H^{r+1}(Y,\mathcal{G})$ is separated provided that $H_r(Y,\mathcal{G}_{\star})$ is separated.

On the other hand, again by [4] (see Theorem 8) it follows that $H_c^i(X, \mathcal{F})$ has finite dimension (as a complex vector space) for all i>q. Therefore, by Proposition 2 we obtain that the homology group $H_l(X, \mathcal{F}_{\star})$ has finite dimension for $l<\nu(\mathcal{F})-q$.

Finally, granting the open mapping theorem for continuous surjections of Souslin(2) spaces and the way the topology of $H_j(X, \mathcal{F}_{\star})$ is defined (see [4]), we deduce that $H_j(X, \mathcal{F}_{\star})$ is separated whenever it has finite dimension. The proof of the theorem concludes immediately. \square

In the remaining part of this section we say a few more words on q-concavity. As a simple consequence of [30] one shows that a finite union of 1-concave open subsets of X is still 1-concave.

Now we give a positive result for an increasing union.

Proposition 3. Let X be the union of an increasing sequence of 1-concave open subsets X_n . Let φ_n define the 1-concavity of X_n and K_n be the exceptional compact set. If $K_{n+1} \subset X_n$ for all n, then X is 1-concave.

Proof. Clearly, we may arrange things such that $K_{n+1}(\subset X_n)$ is a neighborhood of K_n and $\{K_n\}_n$ exhausts X. Then select a sequence of positive numbers $\{\varepsilon_n\}_n$ strictly decreasing to 0 such that $\varepsilon_n\varphi_{n+1}<\varepsilon_{n-1}\varphi_n$ on K_{n+1} (with $\varepsilon_0=1$). For $x\in X$, put $N(x):=\{n;x\in X_{n+1}\}$. Define a function $\varphi\colon X\to (0,1)$ by setting

$$\varphi(x) = \sup \{ \varepsilon_n \varphi_{n+1}(x) ; n \in N(x) \}, \quad x \in X.$$

It can be checked that φ is continuous and exhaustive from below. To conclude the proposition, we show that φ is strictly plurisubharmonic on $X \setminus K_1$. Indeed,

⁽²⁾ A Souslin space is a topological space which is the continuous image of a complete, metric, separable space. See [4], p. 191.

let $x_0 \in X \setminus K_1$, and let j be maximal such that $x_0 \in K_{j+1}$. Then, on a suitable neighborhood W of x_0 in the definition of $\varphi|_W$ only functions from $\varepsilon_0 \varphi_1, ..., \varepsilon_{j-1} \varphi_j$ appear and, moreover, those involved are strictly plurisubharmonic. \square

A class of examples of 1-concave spaces is obtained by removing special Stein compact sets from a given 1-concave space. Toward this aim, let us recall a few notions. Let X be a complex space and K be a compact set in X. Then

- ullet the set K is called Stein if K admits a fundamental system of Stein open neighborhoods;
- the set K is called pseudoconvex if there exist an open set $U \supset K$ and a non-negative plurisubharmonic function ψ on U vanishing precisely on K and such that ψ is strictly plurisubharmonic on $U \setminus K$.

It follows easily that if X is Stein, then a compact $K \subset X$ is pseudoconvex if and only if there exists a Stein open neighborhood U of K such that K is holomorphically convex with respect to $\mathcal{O}(U)$ (see [30]); a fortiori pseudoconvex compact sets in Stein spaces are Stein. It is worth noticing that, while any compact set in \mathbf{C} is Stein, there are examples of non-pseudoconvex compact sets. For instance, using the maximum principle for subharmonic functions we show easily that the compact set $M \subset \mathbf{C}$ is not pseudoconvex, where

$$M := \{0\} \cup \bigcup_{n=1}^{\infty} \partial \Delta(1/n).$$

Here $\Delta(r) := \{z \in \mathbb{C}; |z| < r\}$ for r > 0 and $\Delta = \Delta(1)$. Furthermore, if K_i , i = 1, ..., n, are compact sets in \mathbb{C} , then their product $K_1 \times ... \times K_n$ is pseudoconvex in \mathbb{C}^n if and only if each K_i is pseudoconvex in \mathbb{C} .

By [29] we get a slight improvement of [30], Proposition 4.1.

Proposition 4. Let X be a 1-concave space. Then, for any pseudoconvex compact set $K \subset X$, the complement $X \setminus K$ is 1-concave.

Let $K \subset \mathbf{C}^n$ be a compact set and consider $K \subset \mathbf{P}^n$ via the standard open embedding $\mathbf{C}^n \subset \mathbf{P}^n$. Taking into account the well-known fact (see [13] and [26]) that a locally Stein proper open subset of \mathbf{P}^n is Stein, we obtain the following result.

Proposition 5. The space $\mathbf{P}^n \setminus K$ is an increasing union of 1-concave open subsets (resp., $\mathbf{P}^n \setminus K$ is 1-concave) if and only if K is a Stein (resp., pseudoconvex) compact set.

It is important to notice that every irreducible complex space of dimension n is n-concave [11] so that maximal concavity is not very interesting.

Examples of q-concave spaces can be obtained by removing analytic sets in compact complex spaces, more precisely we have: If Z is a compact complex space

and $A \subset Z$ is an analytic set of dimension k, then $Z \setminus A$ is (k+1)-concave. (See [29], Proposition 9.)

Now we show the following result.

Proposition 6. For each pair (n,q) of integers with $1 \le q < n$ there exists a complex manifold X of dimension n such that:

- (i) X is an increasing union of q-concave open subsets;
- (ii) X is not q-concave.

Proof. We consider $X := \mathbf{P}^n \setminus K$ for $K = M \times \overline{\Delta^{n-q}}$, where

$$M := \{0\} \cup \bigcup_{n=1}^{\infty} \partial \Delta^{q}(1/n).$$

Since an arbitrary open set in \mathbb{C}^q is q-complete (see [14]), K admits a fundamental system of q-complete open neighborhoods. From this we infer readily that X satisfies (i). By using the maximum principle for q-convex functions, one derives property (ii). \square

Remark. For q=1 one gets another kind of example using the "discrete hat" in \mathbb{C}^2 , namely

$$K = \left(\bigcup_{n=1}^{\infty} \{1/n\} \times \partial \Delta\right) \cup (\{0\} \times \overline{\Delta}).$$

Observe that K is not pseudoconvex (as follows readily using the maximum principle for plurisubharmonic functions) but K is Stein. For this it suffices to show that K is meromorphically convex (see [22], p. 479); this condition is a straightforward consequence of the fact that $\mathbb{C}^2 \setminus K$ is a union of complex lines. (For instance, if $z_0 = (1/n, w_0)$ with $|w_0| < 1$, then we consider L given by $\{(1/n+t, w_0 + \lambda t); t \in \mathbb{C}\}$ for $\lambda \in \mathbb{C}$. We shall require $|w_0 - \lambda/n| < 1$ and $|w_0 + \lambda(1/m - 1/n)| \neq 1$ for all m = 1, 2, Clearly this can be satisfied if $|\lambda| \neq 0$ is small enough. The other cases are done in a similar way and we omit their simple verification.)

In the circle of ideas presented here, we relate q-concavity with pseudoconcavity in the sense of Andreotti [1]. Let X be a complex space and $\Omega \subset X$ be an open set. A point $x_0 \in \partial \Omega$ is a pseudoconcave boundary point of Ω if x_0 has a fundamental system of neighborhoods $\{U_{\nu}\}_{\nu}$ in X such that for each ν ,

$$x_0 \in \operatorname{int}(\widehat{U_{\nu} \cap \Omega}),$$

where the hull of $U_{\nu} \cap \Omega$ is with respect to $\mathcal{O}(U_{\nu})$. We say that X is pseudoconcave if a non-empty, relatively compact open subset $\Omega \subset X$ is given such that the following properties hold:

- Ω meets any irreducible component of X (hence X has finitely many irreducible components);
- each point of $\partial\Omega$ is a pseudoconcave boundary point (i.e. Ω has a pseudoconcave boundary).

The relation with q-concavity is as follows (we cite Proposition 10 from [1]).

Proposition 7. Let X be an irreducible complex space of dimension n. If X is (n-1)-concave, then X is pseudoconcave.

Note that pseudoconcavity of X does not guarantee (n-1)-concavity of X. To exhibit a counterexample, let $a \in \mathbf{P}^n$ $(n \geq 2)$ and consider a sequence $\{\xi_\nu\}_\nu \subset \mathbf{P}^n \setminus \{a\}$ that converges to a. Let $\pi \colon X \to \mathbf{P}^n \setminus \{a\}$ be the blowing-up of this sequence. It follows easily that X is pseudoconcave; in fact, if B is a small ball around a in \mathbf{P}^n such no ξ_ν lies on ∂B , then $\Omega := X \setminus \pi^{-1}(B \setminus \{a\})$ displays the pseudoconcavity of X. On the other hand, if X would be (n-1)-concave, then there would exist a function $\varphi \colon X \to (0,\infty)$, exhaustive from below, and (n-1)-convex on $\{x; 0 < \varphi(x) < c\}$ for a suitable c > 0; hence for sufficiently large ν , φ would be (n-1)-convex on $\pi^{-1}(\xi_\nu)$ which is false by the maximum principle. Therefore X is not (n-1)-concave, as desired.

5. Proof of Theorem 2

First we prepare a few general facts.

Lemma 1. Let T be a paracompact space with countable basis, $K \subset T$ be a compact set and \mathcal{G} be a sheaf of abelian groups on T. Then the canonical morphism

$$H^r(T \backslash K, \mathcal{G}) \longrightarrow \varprojlim_{U \supset K} H^r(T \backslash U, \mathcal{G})$$

is an epimorphism, for any non-negative integer r. If, moreover, we assume that there exists a decreasing sequence $\{U_{\nu}\}_{\nu}$ to K of open subsets of T such that the restrictions

$$H^{r-1}(T \setminus U_{\nu+1}, \mathcal{G}) \longrightarrow H^{r-1}(T \setminus U_{\nu}, \mathcal{G})$$

are surjective, then that morphism is an isomorphism.

The proof is based on considering a resolution \mathcal{C}^{\bullet} of \mathcal{G} by injective sheaves which allow us to compute the invariants $H^{\bullet}(X \setminus K, \mathcal{F})$ and $H^{\bullet}(X \setminus U, \mathcal{G})$, open neighborhoods U of K. The applications $\Gamma(X \setminus U_{\nu+1}, \mathcal{G}) \to \Gamma(X \setminus U_{\nu}, \mathcal{G})$ are surjective, $\nu \geq 1$. The conclusion of the lemma follows elementarly by a standard argument on projective systems and suitable diagrams.

Lemma 2. Let X be a complex space and \mathcal{F} be a coherent analytic sheaf on X. Let q be a positive integer. If the closure of $\{0\} \subset H^q(X,\mathcal{F})$ has finite dimension (over \mathbb{C}), then the space $H^q(X,\mathcal{F})$ is separated.

Proof. Let $\mathcal{U} = \{U_i\}_i$ be a locally finite Stein open covering of X. It is known that the canonical map $H^q(\mathcal{U}, \mathcal{F}) \to H^q(X, \mathcal{F})$ is a topological isomorphism. Now consider the natural surjection $\rho \colon Z^q(\mathcal{U}, \mathcal{F}) \to H^q(\mathcal{U}, \mathcal{F})$. Then ρ is continuous (and open).

Let $\xi^{(1)},...,\xi^{(m)}\in Z^q(\mathcal{U},\mathcal{F})$ be such that $\rho(\xi^{(1)}),...,\rho(\xi^{(m)})$ form a basis for the closure $\overline{\{0\}}$ of $\{0\}$ in $H^q(\mathcal{U},\mathcal{F})$. Let $G\subset Z^q(\mathcal{U},\mathcal{F})$ be the complex subspace spanned by $\xi^{(1)},...,\xi^{(m)}$. Note that $G\cap B^q(\mathcal{U},\mathcal{F})=\{0\}$. Let $T:=\rho^{-1}(\overline{\{0\}})$. Then T is a Fréchet space (because it is a closed subspace of the Fréchet space $Z^q(\mathcal{U},\mathcal{F})$). Note that $T=B^q(\mathcal{U},\mathcal{F})\oplus G$. Consider the continuous surjective map

$$\theta \colon C^{q-1}(\mathcal{U}, \mathcal{F}) \times \mathbf{C}^m \longrightarrow T,$$

$$(\xi, g) \longmapsto \delta(\xi) + \lambda_1 \xi^{(1)} + \dots + \lambda_m \xi^{(m)},$$

where δ is the ordinary coboundary map. By the open mapping theorem, θ is an open map. This gives easily that $B^q(\mathcal{U},\mathcal{F})$ is closed in T because it equals the complement in T of the open set $\theta(C^{q-1}(\mathcal{U},\mathcal{F})\times(\mathbf{C}^m\setminus\{0\}))$. Therefore $H^q(\mathcal{U},\mathcal{F})$ is separated, whence the lemma. \square

We shall employ this lemma in the following setting. Let X be a complex space and \mathcal{F} be a coherent analytic sheaf on X. Let $K \subset X$ be a compact set. Suppose that there is a positive integer j such that $H^j(X,\mathcal{F})$ has finite dimension and we can endow $H^{j+1}_K(X,\mathcal{F})$ with a topology for which the canonical map

$$H^{j}(X \setminus K, \mathcal{F}) \longrightarrow H^{j+1}_{K}(X, \mathcal{F})$$

is continuous. Then $H^j(X \setminus K, \mathcal{F})$ is separated. (This follows readily by the above lemma if we consider the exact sequence

$$H^{j}(X,\mathcal{F}) \longrightarrow H^{j}(X \setminus K,\mathcal{F}) \longrightarrow H^{j+1}_{K}(X,\mathcal{F}).)$$

Below we recall some facts concerning the topology of cohomology groups with compact supports. Let X be a complex space and \mathcal{F} a coherent analytic sheaf on X. By a "special covering" of X we mean a locally finite Stein open covering $\mathcal{U}=\{U_i\}_{i\in I}$ (hence I is an at most countable set of indices so there is no loss in generality to take $I=\mathbb{N}$) such that each \overline{U}_i is a Stein compactum (that is it admits a neighborhood system of Stein open sets). It is clear that for each open covering \mathcal{V} of X there exists a finer special covering. Now let \mathcal{U} be a special covering of X.

The cohomology of the topological complex of finite cochains

$$C^q_{\star}(\mathcal{U},\mathcal{F}) := \bigoplus_{i_0,\ldots,q} \mathcal{F}(U_{i_0} \cap \ldots \cap U_{i_q}), \quad q \ge 0,$$

endowed with the direct sum topology becomes a complex of topological vector spaces of LF-type, whose cohomology is $H_c^i(\mathcal{U}, \mathcal{F})$. If \mathcal{V} is another special covering of X, finer than \mathcal{U} , then we get a canonical topological isomorphism $H_c^{\bullet}(\mathcal{V}, \mathcal{F}) \to H_c^{\bullet}(\mathcal{U}, \mathcal{F})$. In this way we get the canonical topology on $H_c^{\bullet}(X, \mathcal{F})$. It is not difficult to see that $H_c^{\bullet}(X, \mathcal{F})$ is separated if it has finite dimension.

Lemma 3. Let D be a relatively compact open subset of X. Then the natural connecting morphisms

$$\delta^q: H^q(\partial D, \mathcal{F}) \longrightarrow H_c^{q+1}(D, \mathcal{F}), \quad q = 0, 1, ...,$$

are continuous.

Proof. Recall that if $A \subset X$ is a closed set, then on

$$H^{i}(A,\mathcal{F}) := \underset{U \supset A}{\varprojlim} H^{i}(U,\mathcal{F}).$$

we put the inductive limit topology.

Now fix a non-negative integer q. One has to show that, for every open neighborhood U of ∂D , the morphism $\eta^q \colon H^q(U,\mathcal{F}) \to H^{q+1}_c(D,\mathcal{F})$ obtained by composing δ^q and the restriction $H^q(U,\mathcal{F}) \to H^q(\partial D,\mathcal{F})$ is continuous. In order to check this, choose special coverings $\mathcal{U} = \{U_i\}_i$ and $\mathcal{D} = \{D_j\}_j$ of U and D respectively both indexed over the set \mathbf{N} of non-negative integers and such that, for some $n_0 \in \mathbf{N}$ there is a function $\rho \colon \{n_0, n_0 + 1, \ldots\} \to \mathbf{N}$ with $\overline{D}_j \subset U_{\rho(j)}$ for all $j \geq n_0$. The desired continuity follows now simply from the following description. There is a natural morphism θ^q for which the next diagram commutes:

$$\begin{split} Z^q(\mathcal{U},\mathcal{F}) & \xrightarrow{\quad \theta^q \quad} Z_c^{q+1}(\mathcal{D},\mathcal{F}) \\ \downarrow & \qquad \qquad \downarrow \\ H^q(U,\mathcal{F}) & \xrightarrow{\quad \eta^q \quad} H_c^{q+1}(D,\mathcal{F}), \end{split}$$

where the vertical arrows are the canonical (open) surjections. Now, to define θ^q , we let $\xi \in Z^q(\mathcal{U}, \mathcal{F})$; then set $\tilde{\xi} \in C^q(\mathcal{D}, \mathcal{F})$ by

$$\tilde{\xi}_{j_0...j_q} = \xi_{\rho(j_0)...\rho(j_q)}|_{D_{j_0}\cap...\cap D_{j_q}},$$

if all $j_0, ..., j_q \ge n_0$, and 0 otherwise. Then put $\theta^q(\xi) = \delta(\tilde{\xi})$, where $\delta \colon C^q(\mathcal{D}, \mathcal{F}) \to C^{q+1}(\mathcal{D}, \mathcal{F})$ is the coboundary map. We have that $\theta^q(\xi)$ belongs to $Z_c^{q+1}(\mathcal{D}, \mathcal{F})$. Indeed, for some $N \in \mathbb{N}$ large enough, $D_j \cap D_l = \emptyset$ for $j \ge N$ and $l < n_0$. Thus $N \ge n_0$.

Let $(j_0,...,j_{q+1})$ be in the nerve of \mathcal{D} such that at least one index is $\geq N$; then the remaining indices are $\geq n_0$. Obviously $\theta^q(\xi)_{j_0...j_{q+1}} = 0$. Therefore $\theta^q(\xi) \in C_c^{q+1}(\mathcal{D}, \mathcal{F})$ and thus it belongs also to $Z_c^{q+1}(\mathcal{D}, \mathcal{F})$. Finally, it is straightforward but a little bit tedious to check that θ^q induces $\eta^q \circ \gamma$ assuring the commutativity of the above diagram. \square

Now fix for the moment a non-negative integer j. Let U be a relatively compact open neighborhood of K. There exists a canonical commutative diagram

with β_U continuous by the above lemma. Let $\{U_\nu\}_\nu$ be a countable base of relatively compact open neighborhoods of K. From the above diagram, we obtain another commutative diagram

where $\beta = \varprojlim_{\nu} \beta_{\nu}$ is continuous and $\gamma = \varprojlim_{\nu} \gamma_{\nu}$.

Suppose we may choose the base $\{U_{\nu}\}_{\nu}$ such that each $H_{c}^{j+1}(U_{\nu}, \mathcal{F})$ is separated; then the projective limit inherits a separated topology as a closed subspace of the product of $H_{c}^{j+1}(U_{\nu}, \mathcal{F})$. If, moreover, γ is injective, then we may put a separated topology on $H_{K}^{j+1}(X, \mathcal{F})$ such that α becomes continuous. Therefore, if $H^{j}(X, \mathcal{F})$ has finite dimension, then the space $H^{j}(X \setminus K, \mathcal{F})$ is separated. This idea is used for the proof of Theorem 2. To reach this setting we prepare a few more facts.

Theorem 6. Let X be a complex space and \mathcal{F} be a coherent analytic sheaf on X. Then the following statements hold:

- (a) If X is q-convex, then $H_c^i(X,\mathcal{F})$ is separated for $i \leq \nu(\mathcal{F}) q + 1$ and has finite dimension for $i \leq \nu(\mathcal{F}) q$.
 - (b) If X is q-complete, then $H^i_c(X,\mathcal{F})=0$ for $i \leq \nu(\mathcal{F})-q$.

Proof. For the definition of $\nu(\mathcal{F})$ see the beginning of Section 2. We consider only the q-convex case. Let $\varphi \colon X \to \mathbf{R}$ be the function displaying the q-convexity

of X. The bumping method from [3] gives the following. For each $\lambda \in \mathbf{R}$ put $X(\lambda) = \{x; \varphi(x) < \lambda\}$. Let $c_0 \in \mathbf{R}$ be so large that φ is q-convex on $\{x; \varphi(x) > c_0\}$ and for all $x \in X$ one has $\operatorname{prof}_x(\mathcal{F}) \geq \nu(\mathcal{F})$. Then for all $\lambda, \mu \in \mathbf{R}$ with $c_0 \leq \lambda < \mu$ the extension mappings

$$H_c^j(X(\lambda), \mathcal{F}) \longrightarrow H_c^j(X(\mu), \mathcal{F})$$

are bijective for $j \le \nu(\mathcal{F}) - q$ and injective for $j = \nu(\mathcal{F}) - q + 1$. Now the theorem follows easily from the following closeness criterion due to Ramis-Ruget-Verdier (see [2], p. 1012). \square

Theorem 7. Let X be a complex space with countable topology, \mathcal{F} be a coherent analytic sheaf on X and q be an integer. Then $H^q_c(X,\mathcal{F})$ is separated provided that the following condition is fulfilled: For every compact set $K \subset X$, there is a compact set $K' \supset K$ such that

$$\operatorname{Ker}(H^q_K(X,\mathcal{F}) \to H^q_c(X,\mathcal{F})) = \operatorname{Ker}(H^q_K(X,\mathcal{F}) \to H^q_{K'}(X,\mathcal{F})).$$

Proposition 8. Let Z be a complex space and $K \subset Z$ be a compact set for which there exists a smooth function $\varphi \colon Z \to \mathbf{R}$ such that $K = \{x \in Z; \varphi(x) \leq 0\}$ and φ is q-convex on $Z \setminus K$. Let \mathcal{F} be a coherent analytic sheaf \mathcal{F} on Z. Then the canonical map

$$H^j_K(Z,\mathcal{F}) \longrightarrow \varprojlim_{W\supset K} H^j_c(W,\mathcal{F})$$

is injective for $j \leq \operatorname{prof}_{\partial K}(\mathcal{F}) - q + 1$.

Proof. Put $m = \operatorname{prof}_{\partial K}(\mathcal{F}) - q$. Then let U and V be open neighborhoods of K of the form $U = \{x \in Z; \varphi(x) < \varepsilon'\}$ and $V = \{x \in Z; \varphi(x) < \varepsilon''\}$ with $0 < \varepsilon' < \varepsilon''$ such that $\operatorname{prof}_V(\mathcal{F}) \ge m$. The bumping method of [3] gives that the extension

$$H_c^j(U,\mathcal{F}) \longrightarrow H_c^j(V,\mathcal{F})$$

is bijective for $j \le m$ and injective for j = m+1. Then, for each integer $l \ge 0$ there is a canonical commutative diagram with exact rows

which, granting the five lemma, implies the bijectivity of the restrictions

$$H^{j}(Z \setminus V, \mathcal{F}) \longrightarrow H^{j}(Z \setminus U, \mathcal{F}), \quad j < m.$$

Thus applying Lemma 1 we obtain the bijectivity of the canonical morphisms

$$(\flat) \hspace{1cm} H^{j}(Z \backslash K, \mathcal{F}) \longrightarrow \varprojlim_{W \supset K} H^{j}(Z \backslash W, \mathcal{F}), \quad j \leq m - q.$$

Now there exists the following natural commutative diagram with exact rows

from which we infer readily the injectivity of $H_K^j(Z,\mathcal{F}) \to H_c^j(U,\mathcal{F})$ for $j \leq m$, whence the proposition for $j \leq \operatorname{prof}(\mathcal{F}) - q$.

Now we treat the case j=m+1. First note the exact sequence (as follows by standard algebraic facts on projective systems)

$$\varprojlim_{W\supset K} H^m_c(W,\mathcal{F}) \longrightarrow H^m(Z,\mathcal{F}) \longrightarrow \varprojlim_{W\supset K} H^m(Z\backslash W,\mathcal{F}) \longrightarrow \varprojlim_{W\supset K} H^{m+1}_c(W,\mathcal{F}).$$

Then, by (b), a natural commutative diagram, and the five lemma again we derive the injectivity of

$$H_K^{m+1}(Z,\mathcal{F}) \longrightarrow \varprojlim_{W \supset K} H_c^{m+1}(W,\mathcal{F}),$$

which concludes the proof of the proposition. \Box

Remark. Keeping the notation as in Proposition 8, $H_K^i(Z,\mathcal{F})$ has finite dimension (resp., vanishes if φ is q-convex on Z) for $j \leq \operatorname{prof}_{\partial K}(\mathcal{F}) - q$.

End of the proof of Theorem 2. Let $\{Z_{\nu}\}_{\nu}$ be a decreasing sequence of q-convex open neighborhoods of K. Let $\varphi_{\nu} \colon Z_{\nu} \to [0, \infty)$ be the function displaying the q-convexity of Z_{ν} such that φ_{ν} is q-convex on $Z_{\nu} \setminus S_{\nu}$, where $S_{\nu} := \{x; \varphi_{\nu}(x) \leq 0\}$ contains K. There is no loss in generality to assume that $S_{\nu+1}$ is contained in the interior of S_{ν} .

Now fix an integer j, $p \le j \le \operatorname{prof}_{\partial K}(\mathcal{F}) - q$. Granting the above proposition and the discussion preceding Theorem 6, we derive that

$$H^j(X \backslash S_{\nu}, \mathcal{F})$$

is separated. Furthermore, by the above remark, the image of

$$H^{j-1}(X,\mathcal{F}) \longrightarrow H^{j-1}(X \setminus S_{\nu},\mathcal{F})$$

has finite codimension, for all ν . This in turn gives that the projective system

$$\{H^{j-1}(X \setminus S_{\nu}, \mathcal{F})\}_{\nu}$$

with the canonical restriction maps satisfies the cML-condition. Finally we conclude applying Theorem 4. The additional case when X is cohomologically p-complete and K admits a base of open q-complete neighborhoods is to be treated similarly (much easier) so we omit the proof. \square

Corollary 1. Let X be a Stein space and K be a compact set admitting a base of q-complete open sets. Then for each coherent analytic sheaf \mathcal{F} on X, the space $H^i(X \setminus K, \mathcal{F})$ vanishes for $1 \le i < \operatorname{prof}_{\partial K}(\mathcal{F}) - q$ and is separated for $i = \operatorname{prof}_{\partial K}(\mathcal{F}) - q$.

This generalizes a result from [10] where the case X smooth, \mathcal{F} locally free and q=1 has been considered.

References

- 1. Andreotti, A., Théorèmes de dépendance algébrique sur les espaces complexes pseudo-concaves, *Bull. Soc. Math. France* **91** (1963), 1–38.
- Andreotti, A. and Bănică, C., Relative duality on complex spaces. I, Rev. Roumaine Math. Pures Appl. 20 (1975), 981–1041.
- 3. Andreotti, A. and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, *Bull. Soc. Math. France* **90** (1962), 193–259.
- Andreotti, A. and Kas, A., Duality on complex spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 27 (1973), 187–262.
- 5. And Siu, Y.-T., Projective embedding of pseudoconcave spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci. 24 (1970), 231–278.
- Andreotti, A. and Tomassini, G., A remark on the vanishing of certain cohomology groups, Compos. Math. 21 (1969), 417–430.
- Andreotti, A. and Vesentini, E., Carleman estimates for the Laplace-Beltrami equation on complex manifolds, *Publ. Math. Inst. Hautes Études Sci.* 25 (1965), 81–130.
- 8. BĂNICĂ, C. and STĂNĂŞILĂ, O., Méthodes algébriques dans la théorie globale des espaces complexes, 3rd ed., Gauthier-Villars, Paris, 1977. Traduit du roumain, Collection "Varia Mathematica".
- CASSA, A., The cohomology of an exhaustible complex analytic space, Boll. Unione Mat. Ital. 4-B (1985), 321-341.
- CHIRKA, E.-M. and STOUT, E.-L., Removable singularities in the boundary, Aspects Math. E 26 (1994), 43–104.
- 11. Colţoiu, M., n-concavity of d-dimensional complex spaces, Math. Z. 210 (1992), 203–206
- FORNÆSS, J.-E., 2 dimensional counterexamples to generalizations of the Levi problem, Math. Ann. 230 (1977), 169–173.

- FUJITA, R., Domaines sans point critique intérieur sur l'espace projectif complexe,
 J. Math. Soc. Japan 15 (1963), 443–473.
- 14. Greene, R.-E. and Wu, H., Embedding of open Riemannian manifolds by harmonic functions, *Ann. Inst. Fourier (Grenoble)* **25**:1 (1975), 215–235.
- Henkin, G. and Leiterer, J., Andreotti-Grauert Theory by Integral Formulas, Prog. Math., 74, Birkhäuser, Boston, MA, 1988.
- Laufer, H.-B., On Serre duality and envelopes of holomorphy, Trans. Amer. Math. Soc. 128 (1967), 414–436.
- 17. LAURENT-THIÉBAUT, C. and LEITERER, J., The Andreotti-Vesentini separation theorem and global homotopy representation, *Math. Z.* **227** (1998), 711–727.
- 18. Laurent-Thiébaut, C. and Leiterer, J., On Serre duality, Bull. Sci. Math. 124 (2000), 93–106.
- LAURENT-THIÉBAUT, C. and LEITERER, J., A separation theorem and Serre duality for the Dolbeault cohomology, Ark. Mat. 40 (2002), 301–321.
- MARKOE, A., Runge families and inductive limit of Stein spaces, Ann. Inst. Fourier (Grenoble) 27:3 (1977), 117–127.
- RAMIS, J.-P., Théorèmes de séparation et de finitude pour l'homologie et la cohomologie des espaces (p, q) convexes-concaves, Ann. Sc. Norm. Super. Pisa Cl. Sci. 27 (1973), 933-997.
- Rossi, H., Holomorphically convex sets in several complex variables, Ann. of Math. 74
 (1961), 470–493.
- ROSSI, H., Attaching analytic spaces to an analytic space along a pseudoconcave boundary, in *Proceedings of the Conference on Complex Analysis* (Minneapolis, 1964), pp. 242–256, Springer, Berlin, 1965.
- 24. Serre, J.-P., Un théorème de dualité, Comment. Math. Helv. 29 (1955), 9–26.
- 25. SILVA, A., Rungescher Satz and a condition for Steinness for the limit of an increasing sequence of Stein spaces, Ann. Inst. Fourier (Grenoble) 28:2 (1978), 187–200.
- 26. Takeuchi, A., Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, *J. Math. Soc. Japan* **16** (1964), 159–181.
- TOMASSINI, G., Inviluppo d'olomorfia e spazi pseudoconcavi, Ann. Mat. Pura Appl. 87 (1970), 59–86.
- 28. Trèves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
- VÂJÂITU, V., Some convexity properties of morphisms of complex spaces, Math. Z. 217 (1994), 215–245.
- 30. Vâjâitu, V., q-completeness and q-concavity of the union of open spaces, $Math.\ Z.\ 221$ (1996), 217–229.

Viorel Vâjâitu

Institute of Mathematics "Simion Stoilow" of the

Romanian Academy

P. O. Box 1-764

RO-014700 Bucharest

Romania

Viorel.Vajaitu@imar.ro

Received October 12, 2004

published online November 24, 2006