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Boundedness for pseudodifferential operators
on multivariate a-modulation spaces

Lasse Borup and Morten Nielsen

[e3

Abstract. The a-modulation spaces Mg (RY), a€[0,1], form a family of spaces that
contain the Besov and modulation spaces as special cases. In this paper we prove that a pseudo-
differential operator o(z, D) with symbol in the Hormander class S;?,o extends to a bounded oper-
ator o(z, D): My¢(RY)— M ."* (R?) provided 0<a<p<1, and 1<p, g<oo. The result extends
the well-known result that pseudodifferential operators with symbol in the class S?,o maps the
Besov space B;,q(Rd) into B;fqb(Rd).

1. Introduction

In this paper we study pseudodifferential operators on the so-called a-modu-
lation spaces. It was proved by Yamazaki [23] that any pseudodifferential operator
o(x,D) in the Hérmander class Op(S} ) extends uniquely to a bounded operator
from the Besov space B; , to Bf,;]b when s€R and 1<p, ¢<oco. The main result of
the present paper is to generalize this result to the full scale of a-modulation spaces
My (R%). We prove that for a€[0,1], any pseudodifferential operator o(x, D) in
the class Op(S[iO(Rd xR%)), with 1>p>a, extends to a bounded operator

(1.1) o(z,D): M3¢(RY) — My P*(RY), 1<p,q< o,
where o(z, D) is defined in terms of the symbol o(x,&) by

1

o D)f(w) = iy [ oo Of(©e ¢ de S,

The precise definition of the Hérmander class S/f’ s(R¥xRY) is given in Sec-
tion 4. For p<1, we have a strict inclusion S{”O(Rded)CS/io(Rded) so the

This work was done while the second author was at Aalborg University.



242 Lasse Borup and Morten Nielsen

estimate (1.1) holds for symbols not covered by the corresponding result for Besov
spaces. An example of a symbol UGSi’/ZO(RXR)\Si’,O(RXR) is the symbol asso-
ciated with the convolution kernel K (x)=e"/!#l|z|~7, y>0. Tt can be shown that
K(£)€S¥/§’63/4(R2), see [18, Chapter VII].

The family of a-modulation spaces was introduced by Grobner [9]. Grébner
used the general framework of decomposition type Banach spaces considered by
Feichtinger and Grobner in [7] and [8] to build the a-modulation spaces. The
parameter o determines a specific type of decomposition of the frequency space R¢
used to define the space M (R?), the precise definition will be given in Section 2.
The a-modulation spaces contain the Besov spaces and the modulation spaces,
introduced by Feichtinger [6], as special cases. The choice a=0 corresponds to the
classical modulation spaces M;!q(Rd), and a=1 corresponds to the Besov scale of
spaces. The family of coverings used to construct the a-modulation spaces was
considered independently by Péivirinta and Somersalo in [15]. Péivédrinta and
Somersalo used the partitions to extend the Calderén—Vaillancourt boundedness
result for pseudodifferential operators to the local Hardy spaces.

Pseudodifferential operators on a-modulation spaces has been considered by
Nazaret and Holschneider in [14]. Their results are based on a continuous wavelet-
type decomposition and can be seen as an extension of the fundamental results by
Cérdoba and Fefferman [5]. Pseudodifferential operators on a-modulation spaces
have also been studied by one of the present authors in [4]. The results in [4]
are weaker than the corresponding results in the present paper and they apply
only to the univariate case. It is used in [4] that nice orthonormal brushlet bases
can be found for M;(R). At present, there is no construction of nice bases for
the multivariate c-modulation spaces. Pseudodifferential operators on modulation
spaces were first studied by Tachizawa [19], and later by a number of authors, see
e.g. (1], [2], [10], [11], [13], [20] and [21]. Extensions of Tachizawa’s results to the
case of ultramodulation spaces and pseudodifferential operators with symbols which
might grow faster than polynomials have been done by Pilipovié and Teofanov [16]
and [17].

The structure of the paper is as follows. In Section 2 we give the precise defini-
tion of the a-modulation spaces based on a so-called bounded admissible partition
of unity (BAPU). The spaces are independent of the specific choice of BAPU, which
we exploit to construct a partition with “nice” functions from the Schwartz space
S(R?). The construction of the BAPU is done in Section 2.1. In Section 3 we
make preparations for the main result in Section 4 by proving boundedness re-
sults for multiplier operators on a-modulation spaces. The main result is proved
in Section 4 using the multiplier result from Section 3. Since we do not have an
atomic decomposition of M;;g‘(Rd), d>1, the idea of the proof is to expand the
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symbol o(z,£) in a Taylor series in x, and then estimate each contributing factor.
Hypoelliptic pseudodifferential operators on the a-modulation spaces are consid-
ered in Section 5. Finally, there is an appendix where we prove certain facts about
a-coverings needed for the construction of the BAPU in Section 2.1.

2. Modulation spaces

In this section we define the a-modulation spaces. The a-modulation spaces,
first introduced by Grébner in [9], are a family of spaces that contain the classical
modulation and Besov spaces as special “extremal” cases. The spaces are defined
by a parameter «, belonging to the interval [0, 1]. This parameter determines a seg-
mentation of the frequency domain from which the spaces are built.

Definition 2.1. A countable set Q of subsets QCR? is called an admissible
covering if Rd:UQEQ Q@ and there exists ng<oo such that #{Q € Q:QNQ'#2} <
no for all Q€ Q. An admissible covering is called an a-covering, 0<a<1, of R% if
|Q|=(2)*¢ (uniformly) for all z€Q and for all Q€Q where (z):=(1+|z|?)'/? for
r€RY.

We let F(f)(€):=f(&):=(2m) 42 Jra f(@)e ™ dz, feLi(R%), denote the
Fourier transform.

Definition 2.2. Let Q be an a-covering of R%. A corresponding bounded ad-
missible partition of unity (BAPU) {¢g}geco is a family of functions satisfying

supp(¥Q) CQ, Y Yo(€)=1 and sup|F gL, <oo.
QeQ Q
Definition 2.3. Given 1<p,q<oc0, seR, and 0<a<1, let Q be an a-covering of
R? and let {¢¢}geo be a BAPU. Then we define the a-modulation space M5 (R?)
as the set of distributions f€S5'(R?) satisfying

1/q
(2.1) 1F N sgeg = (Z <£Q>qsuf1(waf>llip) <00,
QeEQ

with {{g}oeo being a sequence satisfying {o€@Q. For g=oo we have the usual
change of the sum to sup over Q€ Q.

It is proved in [9] that the definition of MS5(R?) is independent of the
a-covering and of the BAPU, see also [8, Theorem 2.3]. In Section 2.1 below we
construct a BAPU {9, }recza\ {0} CS(RY), satistying |0y (€)| < Cs(€) =18l for every
multi-index 3€Ng. We will use this particular BAPU to simplify the proof of our
main result in Section 4.
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2.1. Bounded admissible partitions of unity and their properties

The a-modulation spaces are defined using a bounded admissible partition of
unity, but the spaces are actually independent of the specific choice. The results in
Sections 3 and 4 rely on the fact that it is possible to construct a smooth BAPU
with certain “nice” properties. We have the following construction.

Proposition 2.4. For a€[0,1), there exists an a-covering of R with a cor-
responding BAPU {wk}kezd\{o}CS(Rd) satisfying
0% 4i ()] < Cale) ™71,
for every multi-index 3 and k€ Z4\ {0}.
Proof. For r>0, and k€Z?\ {0} we define the ball
B = {¢eR%: | &~k Yk | <p|k|/ 0}

By Lemma A.1, there exists 71 >0 such that { B}z (o} is an a-covering of R<.
There also exists 0<ry<rj, such that {BZ2}kEzd\{O} are pairwise disjoint.

Fix r>r1. We now take ®c€C*>(RY) satisfying infee p(o,r,) [®(£)]:=c>0 and
supp(®)C B(0,r). Let

ge(€) = P(jex| (€~ cr)), ke Z\{0},

where cj:=|k|*/ (1= k. Clearly, we have g€ C°°(R?) with supp(gx)C Bj. In fact,
{supp(gk)} ez {0} is an a-covering of R?. The covering is admissible (see Lemma
A1) since { B, }peze\ {0}, With B> Csupp(gx), are pairwise disjoint. It is easy to
see that the partition has “finite height”, i.e., Zkezd\{o} Xsupp(gr) (§) <ni for some
uniform constant n;.

Notice that

107 G1(€)] = lexl 18] (99 (| (6—cx))| < Ciples| =19,
and since |cx|>1 for all k€Z4\ {0}, we have
107 g1 ()] < Cly(er) 1Pl < (€)=l for all € € By,

Since we want a BAPU, we consider the sum g({):zzkezd\{o} gk (&). Now,
{supp(gr)}reza\ (o} has finite height, so g is well defined, and the finite overlap
ensures that |8ﬁg(£)|§C/’3<§>*|’8‘a. Recall that gp(§)>c for all £€B;', and since
{B} Ykeza\ (o} covers R?, we have g(¢)>c. Thus, we can define

— gn(f)
¥nld): Zkezd\{o} 9i(§)
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By Lemma B.2 in Appendix B, |851/1k(§)|§05<£>"5|0‘.~ In order to conclude, we
need to verify that supgeza qoy [|[F "k llz, <oo. Let ¢y(§)=vr(|ck|*E4cx). By
a simple substitution in each of the following integrals, we obtain

| F Ve, = (2) 2 /

Rd‘ Rd

= (2m)~/2 /R .
<Cu X 107l ) [ @t

|B]<d+1

Py (€)eiE df‘ dx

Vg (&)e’™s d{‘ dx

SCéy

where we have used Lemmas B.1 and B.3 for the last estimate. We conclude that
{¥k} ez (o} is @ BAPU corresponding to the a-covering {supp(gx)}reza\f0}- O

Let us briefly return to Definition 2.3. We rewrite (2.1) in terms of the BAPU
from Proposition 2.4, using the multiplier operators ¥ (D),

1 llagzzg = R =) (D), N, -

We need the following result proved in [8, Theorem 2.3]. Define Wy:=>",, 9y,
where the sum is taken over all k'€ Z?\ {0} with B}, NB;#@. Then

(2.2) 1 gz = <RI E=) 2 1R (D) I,

Recall that the definition of M7 (R?) does not depend on the particular choice
of BAPU, see [9]. It is easy to see, using the BAPU above, that S(R?) is dense in
Mse(R?), 1<p, g<oc.

3. Differential operators on a-modulation spaces

In this section we consider a special class of pseudodifferential operators, namely
Fourier multipliers, and show that this class is well behaved on Mg:g‘(Rd). One
important example of such an operator is the Bessel potential Jb:=(I—A)"? de-
fined by fﬁ(g):@ﬁf(g). It is well known that for the Besov spaces J'B5  (R%)=
B;;Zb(Rd), and it is perhaps surprising that .J® has exactly the same lifting property
when considered on M3%(R%), a>0.
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Proposition 3.1. Let L=[d/2]. Suppose that the function o€ Ct(R?) satis-
fies |0Pa ()| <CE)Y~1PIP for |B|<L, beR and 0<p<1. Let T be the Fourier mul-
tiplier given by ﬂ:zof, Then T extends to a bounded operator T': M;;g‘(Rd)%
M;;b’a(Rd) for 0<a<p, seR, 1<p<oo, and 1<q<00, i.e.,

ITfllygsve < Cllfllagzs for all f € M2 (R,
Proof. For a=1 (i.e., in the Besov space case) the result is well known, see
e.g. [22, Chapter 2]. Suppose a<1. Let {¥}rcza\ (0} be the BAPU from Proposi-
tion 2.4, and let ¢y =k|k|*/(1=®) be the center of the ball By, see Section 2.1. Define

Wy:=>",, ¥, where the sum is taken over all k'€Z?\ {0} with By, NBL#2. By
Proposition 2.4,

07w, (8)] < (&)=,
with C independent of k€Z?\{0}. Define
ok (€)= (cx) P (&) Wk (E).
Since a<p, we have

@l < X (7)leratolor e

v<B
<Cle)™" ) (ﬁ ) S N O T (T
v<p N
Moreover, for £€supp(¥y) we have (c;)=(£), and [€—cx|?<C|B}*|=(£)*, which
implies that (£)~#1<C|¢ —cy| 1Pl Therefore,
0701, (€)] < C'(€) 1 < C" e —en| 717,

Now, by the Hérmander—Mikhlin multiplier theorem (applied to the multiplier
7k (€):=0k(£+ck)) we deduce that oy extends to a bounded multiplier on L,(R?),
1<p<oo, with bound independent of k€ Z4\ {0}. Since ¥ (&)=1 for £ Esupp(¥y),
this implies that

1F Wwo Pz, < Clen) I F W)L,
with C' independent of k. The result now follows from Definition 2.3,
ITF 1= S () |17 oG,
keZd\{0}

<C Y () CINFE DI =N e O
keZ4\ {0}
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Remark 3.2. Related results in the case of modulation spaces have been ob-
tained by Tachizawa [19] and by Toft [21].

As a corollary, we deduce the following result about J®=(1—A)%2, which will
be used to simplify the proof of our main result, Theorem 4.1.

Corollary 3.3. Given beR, let J*=(1—A)"2. Then for 0<a<1, s€R, 1<
p<oo, and 1<g<oo we have JbMZf;g‘(Rd):M;’;b’a(Rd), in the sense that

1 llagze = 1% Fll oo for all f € Me(R?).

Proof. The result follows by Proposition 3.1 using the identity (J*)~'=J-° O

4. Pseudodifferential operators on a-modulation spaces

This section contains the main result. Recall that the Hormander class
Spb’(;(Rd x R4) is the family of functions o€ C> (R x R?) satisfying

b — —
loliar = max, sup (€)1 0g000 (€, a)] < o0
=V z,LeR*
|BI<M

for M, NeN.

Theorem 4.1. Suppose beR, a€]0,1], UES’?’O(RdXRd), a<p<l, seR, pe
(1,00), and g€[l,00). Then

o(z,D): M3&(RY) — My P*(RY).

The proof of Theorem 4.1 in the case a=1 [i.e., M3 ¢(R*) =B (R?)] is rela-
tively easy since it is possible to use wavelet bases to reduce the proof to a matrix
estimate. However, we do not have this option in the general case since no nice
bases are known for M;’(?(Rd) when d>1. In the case d=1, so-called brushlet
bases for M *(R) are available and it is indeed possible to use discrete methods
as demonstrated by one of the authors in [4]. Therefore, our proof of Theorem 4.1
is more in the spirit of the analytic methods used to prove the Besov space case
before wavelets and other atomic decompositions became available (see [23]).

Before we give the proof of Theorem 4.1, let us state and prove a technical
lemma. We let f denote the inverse Fourier transform of f.

Lemma 4.2. Suppose 0’65270, a<p<l. Then for |y|<K and m>0, we have

= / sup (@20 (2, )8n)" ()| ()™ da < Clo| Py,
R4 zcRd

where LEN satisfies L>m++d, and C does not depend on k€ Z4\{0}.
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Proof. Let o) (x,£):=070/o(,§).
We have the equality

I:/ sup
R? zeR4

Let ¢y (€):=tr(|cx|*€+¢x). Then a substitution in each integral gives

et [ s
R4 zeR?

By using Lemma B.1 in the inner integral we get

(x)™ dax.

[ o e oozt de

()™ dx.

/ ™07 (2, |ek| €+ i) OE i (€) d€
Rd

IO | swp D /R 02107 (2. lenl*€-er) O U (€))| dé ) ~H T d

d d
REZER51<L

and by Leibniz’s rule, we obtain

I<c’ Z sup/ |Ck|a\n‘|ag(2,|Ck|a§—|—ck)||ag+,87n1]}k(§)|d§ (@)~ I gy

BI<L *€R
0<n<p
0 +B-mn,] X
<" X lolfo [ 1@ ds < 0l
BI<L '
0<n<p

where we have used Lemma B.3, «<§, and the fact that for fesupp(@k),
0 _ 0 _
o7 24 erl €+ < o) e flexl €)= < Clo (%) ooy~ O

Proof of Theorem 4.1. From the facts that J’“M;;(‘;‘:M;fq“’a, o(x,D)J%e
Op SZ?B“, and J%(z, D)€Op Szi')“ when 065;7,0, it follows that it is no restriction
to assume that s>3d and b=0. Moreover, it suffices to prove that |[o(z, D) f|[pr5:a <
Cl fllarz:e for feS(RY) since S(RY) is dense in M3 (R).

Fix feS(R?). We need to estimate the L,-norm of 1 (D)o (z, D)f. Notice
that for ge S(R?),

(4.1) [x(D)g)(x) = (2m) /2 /

e (y)a(y) dy= 2m)~" | i(y)g(z+y) dy.
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Letting o (v,£):=070{ o (x, &), we obtain

o(a-+9.D)f(x+y)
— (2m) 2 / SV g (ay, €) F(€) de
Rd

—en Y L[ @ o) de

[v|<K-1

1 ~
+oen~2 Y kL / i(xﬂ/)i/ (L=7)" o7 (w+1y, ) F(€) dr dé
0

lvI=K
(4.2) =T(z,y)+R(z,y),

where we have expanded o(x+y,¢) in a Taylor series around x. The order K is
chosen such that K a>min{0, s+(1—«)(1+3d)}. Using (4.2) in (4.1), we obtain

(4.3)
Yi(D)o(z, D) f(x)=(2m) d/2/ wk T(x,y)dy+(2m) d/2/ 1/’1@ VR(x,y) dy.

We estimate each of the two terms separately. For the first term we have

()T (z,y) dy

R4
GO SRS D /R €T (@,€)f(€) de dy
| |<K-1
=em Y, /R @O [ b dye
|v\<K 1
(4.4) - ¥ = / €07 (, )07 Y (§) £ (£) dE.

[v|<K-1

We apply the L, norm to (4.4). Define W;:=>",, 1/, where the sum is taken over
all k'€Z9\{0} with B, NB;#@. Using Minkowski’s inequality and the fact that

Ui, (§)=1 on supp(v), we get

" R

Rd

p 1/p
dm)

e (2, )0 i (§) f(€) dé
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1 i Y R P L/P
3 izl f e oo o)
— 1 i vy Y A P L/P
—ﬂ;ﬁ(/R sl [ e 0O B0 ) dx) .

We now use the relation (f§)Y=(27)"%2fxg to estimate the right-hand side with

1 5 Y p 1/p
3 (sl e oo winose-af «)
p\l/P
< 2l st oo o] o)

< > ,|| sup (07 (2, )07 V()" ||, Ve (D) £,

lv|<K—1 zER

where we used standard norm estimates for convolutions in the last estimate. Hence,
by Lemma 4.2 we may conclude that

(4.5) ( /R d

Now we turn to the second term in (4.3). We let u(§)=1vr(ar), where aj:=
(|k|*/(1=2)) Notice that

) p\l/P
Be)T (2, y) dy dx) < Clo|®), WD) flr,

Rd

Ur(y)R(z,y) dy = / [k (y) R(z, ap ' y) dy.
Rd Rd,

We have,

—-K

1 ~
Z ak! /R Y g y)/ eilztay, ") / (l—T)K_la“’(;r—i-a,:lTy,§)f(§)defdy‘

[v|=K

ccq® ¥ [ Rl [[a-nf [ e 0 g (@) dear|

[vI=K

Using Lemma B.4 with m=K +d+1460d for a fixed 1<60<2 we obtain the following
estimate for the right-hand side,

~ —d—1
o™ 3 [ T sup [l D)ot ) dy

=K ' R? W) .cra

o F Y [t sy GO,

Rd zeR4 <y>9d
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|lo7(z, D) fl(x+n)|
ak hz:K / z nERd <akn>9d dy
_ c(z,D)fl(x
<C%K|Z / 2 RdH ( <ni£( 2y
V=K "e
[o7(z, D) f](z+n)|

<Cla ¥ sup
F hZ::K z,nER? <77>9d ’

where K=Ka—(140d)(1—a)>Ka—(1+2d)(1—a)>s+d(1—a) and we have used
that ax>1 in the last but one inequality. Now,

q \1/q
( / Ve(y)R(z,y) dy )
LP

g(c 3 a,g”?”(z

keZ\{0} lv|I=K

kEZd\{O}

oy DA+
n,2€R4 <77>0d

"

P

Since L1:=C'} ) cza\ (0} a,(:fK)qSCEkezd\{o} |k|=?=1 is finite, we estimate the
right-hand side with

25 | 107G DNG+)
ly|=KImzERA )% Lp(dz)
I sup HU"Y(z,D) Zkezd\{o} wk(D)f] (w+n)
ly|=K n,z€R? <77>9d Ly(dx)
o (z,D D) fl(x+
> wp [EDMOE)
V=K keza\ {0y ER! g Ly(da)

We estimate the term Ay:=|[07(z, D)¢Yr(D)fl(x+n)|. Let fi(x):=[V(D)f](z).
We have

A= [ 07000 -t o

< / (07 (2, (€)Y (w+n—1)| | 5(v)| dy
R4

< sup | f(u )Gld Rd|(U'y(z,f)wk(g))v(x—l-??—y”<$—y>9ddy.

ueR? <{E 7.L>
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Now, by Petree’s inequality, (x—y)?¢<2'/2%(z—y+1)4(n)??, so
Ay | fx(z—n)l / v 0d
sup 57 <C sup = sup [ |(67 (2, &)¢x(§))" (u)[{w)" du
z,nER? <77>0d neRd <77>0d zeR4 JRY
|fre(z—n)
<’ sup s
HER4 <77> 3d+1,K
where we used Lemma 4.2 and the fact that §<2. Hence,
D [0 (2, D)Yx (D) fl(z+n)
0d
|y1=K kezd\{o}" e ) Lyp(dz)
-y Y |[07 (2, D)¢w(D) fl(x+n)
Iy =K kezé\{0} n, zERd azd<77>0d L,(dz)
| fx(z—n)
<CI|J|3d+1 K aZd sup W
kEZd\{O} T’]eRd a‘kn »

Let

(&) = af fr(arg) = af Wi (ard) f (arf),

and notice that supp(gr)CB(0,¢) for some ¢>0 independent of k. The following
maximal inequality is proved in Triebel [22, p. 16]

sup 22 < crpigepro ).
zeR4 <Z>
Expressing this in terms of fj, we get
|fr(x—2)]| 1/0
sup <C[(M]fx ,
sup BT < ClMIA ) @)

where C does not depend on k. We apply L,-norms and use the maximal inequality
to obtain

‘ |fu(z—2)|

<akz>0d

) < CIMIfrl ) @) N2y @y = CHLSR ) @, o a0

06
<CNlN, oty = C M il
Putting these estimates together yields

DS |[07 (2, D)¢r (D) fl(z+n)]

et ners ()™

Ly (dz)

0
<ColSix Y. alllV(D)fllL,,

keZ\{0}
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and consequently

(>

¢\ ) 9d
/.
) <ol 1 a0 (D)1,
keZ4\{0}

keza\{0}

<C"loliir s lak (D)1, ],

br(y)R(z,y) dy

Rd

Lp

since s>3d>(1+0)d. Finally, we can put the estimates together to close the case
b=0 and s>3d. We have

lo(z, D) fllasz:e
= ||a11||1/)k(D)0(% D)fHLp ||lq(zd\{0})
<c(|at] [ iwrenal,
< Cl(|0|d+1 KHaz”\I'k )L, Hz +|0|3d+1 K||a}i||‘lfk(D)f||L,,qu)

< C”|U|3d+1 K||f||M;';;‘-

Hat] [ dwre

)

Ly(dx) p(dz)||;

This concludes the proof of the theorem. [

Remark 4.3. A closer examination of the arguments used in the proof reveals
that there exist M, N>0 (depending on s,q, and p) such that the norm of the
operator

o(z, D): M3&(RY) — M3 (R

is bounded by C|O’|M ~» With C a constant.

5. Hypoelliptic pseudodifferential operators

In this final section we consider an application of the result in the previous
section to hypoelliptic pseudodifferential operators, see [3] and [12]. Let us introduce
some notation. Let

S S b —oo,__ b
5= Shs and S :i= () S,
meR meR

Assume that by, b€R such that by<b. An element 0'65’?’5(Rd xR?) is called hypo-
elliptic with parameters by and b if there are positive constants ¢ and a such that

a(@)™ <lo(z,€)l, (&) >c,
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and
08080 (2,€)| < Caplo (@, &)|(&) ~FIIHIBL (&) >

Let HSI;’,ZZ;O (R%xR?) the family of all such symbols. We have the following result,
see [12, Theorem 22.1.3].

Theorem 5.1. Suppose UEHSZ:ZO, with 6<p. Then there erists TEHS;SO’_I’
such that I—o(z, D)7(x, D) and I—7(z, D)o(z, D) are both in Op(S,5°).

Let M 2*(RY)=J,cg M3&(RY). Using Theorem 5.1 and the result from the

previous section we have the following result.

Theorem 5.2. Suppose UEHSZ:ZO, with 6<p and p>a«, and fEMp_,(‘;o’a(Rd).
Ifo(-,D)feMs2(R?) for some s€R, then feMjtto(RY).

Proof. Let S=o(-,D), and let T=7(-, D) be as in Theorem 5.1. Notice that
_ s, d s+b, d
f=T(Sf)+(I—TS)f. By Theorem 4.1, T maps My (R?) to M;t"*(R?) and
(I—TS) maps M, 2*(R%) to Mzte(R4). O

The following example will conclude the paper.
Example 5.3. Consider the heat operator L given by

M = %u
=17

The symbol of L is given by
U1, &)= (it+]¢]?), (1,§)eRxRY,

and one can easily verify that € H Sfé We consider an approximate inverse P to
L with symbol

a(r, &) = (it+[£*)"'n(7,€), (7,6)eRxRY,

where 7 is a smooth cut-off function that vanishes near the origin and is equal to 1
for large (7,€). It is easy to check that a(r, f)EHSié’Q(RdH xR*1). There-
fore, if ue M, >>*(R*1), 1<p,q<oo, a€l0,1], and P(u)e M (R*1), then ue
M;:]l,a(Rd-i-l).

Acknowledgement. The authors would like to thank the reviewer for several
constructive comments, which greatly improved the presentation of this paper.
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A. Admissible coverings

In this section we discuss a general construction of an a-covering of R%. This
type of covering was considered in [9] and in [15]. A proof of Lemma A.1 below
can be found in [9], but since Grébner’s work has never been published, we have
included a proof for the sake of completeness. Construction of a-coverings are also
considered (from another perspective) in [15].

Notice that the set of balls {B(z,\/a)}zezd\{o} is an admissible 0-covering
of R?. Define for some 3€(—1,00), the bijection 65 on R? by §5(&):=¢[£]° (with
inverse og, f'=—F/(1+3)). Since the set {B(z, R)}.cz 0} is admissible for
R>V/d, so is {03(B(z, R))}.cza\ (o} Moreover, we have the following result.

Lemma A.1. Suppose 3>0. Given R>0, there exists an r>0, such that
(A1) 65(B(z,R)) C B(65(2),7|2|°)  for all z€ R%, with |2 > 1.
Likewise, given r>0 there exists an R>0, such that
(A.2) B(05(2),7|2|?) C65(B(2,R))  for all z€ R,

Proof. The proof is based on the following observation. For two points z, z€ R?
and f€(—1,00), we have

165(2) =05 (2)| = |z|z|” —2|21°| < |2]2)° —|2)°| +]a]2]” ~ 2|2
(A-3) = || [l2]” ~|21°| + 2’|z 2| = (18] || |27~ +217) |z~ ]

for some Z€ L(x, z), by the mean-value theorem.

Given R>0, suppose 7€ B(z, R). Then (A.3) yields |65(x)—d3(2)|<r|2|? for
some >0 depending only on 8 and R. Now, take any y€dg(B(z, R)), i.e., y=0d3(z)
for some € B(z, R). Then |y—ds(2)|<r|z|?, which proves (A.1).

We turn to (A.2). Suppose first that |z|<K for some K >7r'*5. Then it is
easy to verify that there exists a radius P>0 such that B(ds(z),r|2|?)C B(0, P) for
all z. Likewise, there exists a radius R such that B(0, P)Cdg(B(z, R)) for all z.
This proves (A.2) for |z|<K.

Suppose now that |z|>7'*7. Recall that 551205/, where §':=—8/(6+1).
Thus, to show the inclusion (A.2) is equivalent to show that

(A.4) 05 (B(z, 72| 7)) € B(og (2), R).
Suppose z€ B(z,7]z| ") for some ' >—1, then

(L=rlz|~+)|z| < Ja| < (1|2~ 2],
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Since 14+3=(1+3)"1, (A.3) yields
105/ () = 0p/ (2)| < Rl2|7 2|77 =R
for some R>0 depending only on 7 and 3. Now, take any y€dz (B(z, r|z|’ﬁ')), ie.,
y=0p(z) for some z€B(z,7|z|~%"). Then, |y—dz (2)| <R, which proves (A.4). O
Remark A.2. By (A.1) there exists a radius r; such that
Ric |J B(Os(2),rl=l”)
2€Z9\{0}
for all r>r;. Fix such an 7 and let R:=R(r) be given such that (A.2) holds. Then,
since {5(B(z, R(r)))}.eza\ {0y is an admissible covering of R?, so is
{B(35(2), 7121") breza\ (0

Suppose 3>0, and let a=(/(3+1). Then it is easy to see that |B(5s(z), r|z|?)]
=(y)? for all yeB(6s(2),7|2|?) independent of 2€Z?\{0}. Therefore, by Re-
mark A.2,

(A.5) {B(05(2),7121") Y heza\ 10y

is an a-covering for any r>ry.

B. Some technical lemmas

In this brief section, we have included some of the technical lemmas used in Sec-
tion 2.1. The first two lemmas follow by standard computations. We let W :1(R?)
denote the Sobolev space of functions with derivatives of order up to K in Li(R?).

Lemma B.1. Let KeN and suppose he WE-L(RY). Then there exists a con-
stant Cx <oo such that

OFIEI<C Y 10°hz, <Clhllwra.

IBISK

Lemma B.2. Let f,gcC>(R?) and yER. Suppose that for each multi-index
B there exists a constant Cz<oo such that |0° f(x)],|0%g(z)|<Ca(x)1Pl. If 0<c<
lg(z)|<C'<oo, then there exists constants Cl such that

#(t)o

SC&(@WIB\.
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The final two lemmas give estimates on the BAPU after each function has

been dilated to have support near the origin. The estimates are used in the proof
of Theorem 4.1.

Lemma B.3. Define zﬁk(f)zwk(|ck|a§+ck), Then for every BEN? there ex-
ists a constant Cg independent of k€Z\ {0} such that

|8?1/~)k () < Csxpo.r)()-

Proof. Notice that

. B(¢)
)= S S enlalen |- E—en) Ten)

Thus, the result follows by Lemma B.2 [

Lemma B.4. Let cp:=k[k|*/0=) keZN\{0}, and define pg(€)=1v(arf),
where ax:={ck). Then for every meN there exists a constant C,, independent
of k such that

i ()] < o™~ D0 gy,

Proof. By Proposition 2.4 we have for any 3€N¢,

107 ()| = al| (0% i) (@) | < Call ™y e (6),

since X pr (akf):XB(La;“*"))(f)' By Lemma B.1 we get

W)™ i) < Cn Y 110 kI,

|B|<m
< C:na];(lfa)d Z a}(clfa)\ﬁl < C&a;(lfa)dal(:,a)m. 0
|B|<m
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