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A contractible Levi-flat hypersurface which is
a determining set for pluriharmonic functions

Franc Forstnerič

Abstract. We find a real analytic Levi-flat hypersurface in C2 containing a bounded con-

tractible domain which is a determining set for pluriharmonic functions.

1. The main result

A real hypersurface M in an n-dimensional complex manifold is Levi-flat if it
is foliated by complex manifolds of dimension n−1; this Levi foliation is as smooth
as M itself according to Barrett and Fornæss [2]. If M is real analytic, it is locally
near every point defined by a pluriharmonic function v satisfying ddcv=2i∂∂̄v=
0. One might expect that an oriented real analytic Levi-flat hypersurface admits
a pluriharmonic defining function on any topologically simple relatively compact
domain, perhaps under an additional analytic assumption such as the existence of
a fundamental system of Stein neighborhoods (see e.g. Theorem 2 in [10], p. 298).
Here we show that, on the contrary, even a most simple domain in a real analytic
Levi-flat hypersurface may be a determining set for pluriharmonic functions.

Theorem 1.1. There exist an ellipsoid B⊂C2 and a real analytic Levi-flat
hypersurface M⊂C2 intersecting the boundary bB transversely such that the Levi
foliation of M has trivial holonomy and A=M∩B satisfies the following conditions :

(i) Ā is diffeomorphic to the three-ball and admits a Stein neighborhood basis.
(ii) Any real analytic function on A which is constant on Levi leaves is constant.
(iii) Any pluriharmonic function in a connected open neighborhood of A in C2

which vanishes on A is identically zero.

The Levi foliation of M in our proof is a simple foliation ([6], p. 79) whose
leaves are complex discs. Likely one can also obtain a similar example in the ball
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of C2. On the other hand, for any compact subset A in a real analytic simply
connected Levi-flat hypersurface M there is a smooth defining function v for M
such that ddcv is flat on A; this suffices for the construction of Stein neighborhood
basis of certain compact subsets of M [4].

We mention that D. Barrett gave an example of a compact real analytic Levi-
flat hypersurface with trivial holonomy and without a global pluriharmonic defining
function (Theorem 3 in [1]). His example is the quotient of S1×C∗ by (θ, z) �!
(φ(θ), 2z), where φ is a real analytic diffeomorphism of the circle S1 which is topo-
logically but not diffeomorphically conjugate to a rotation.

2. A real analytic foliation of R2 without analytic first integrals

Our construction of the hypersurface M in Theorem 1.1 is based on the fol-
lowing result.

Proposition 2.1. Let D be the open unit disc in R2. There exists a real
analytic foliation F of R2 by closed lines such that any real analytic function on
D which is constant on every leaf of the restricted foliation F|D is constant.

Remark 2.2. While we cannot exclude the possibility that an example of this
kind is contained in the vast literature on the subject, we could not find a precise
reference in some of the standard sources concerning foliations of the plane ([3], [5],
[6], [7] and [8]). It is known that every smooth foliation of R2 by lines has a global
continuous first integral but in general not one of class C1, not even in the analytic
case (Wazewsky [11]); however, there exists a smooth first integral without critical
points on any relatively compact subset (Kamke [9]).

Proof. Let (x, y) be coordinates on R2. Define subsets E1, E2⊂R2 by

E1 = {(x, y)∈R2 :x<−1 or y > 0} and E2 = {(x, y)∈R2 :x> 1 or y > 0}.
Let Fj denote the restriction of the foliation {(x, y):y=c}c∈R to Ej , j=1, 2. Let ψ
be a real analytic orientation preserving diffeomorphism of the half-line (0,+∞), so
limt#0 ψ(t)=0. (We do not require that ψ extends analytically to a neighborhood of
0.) Then φ(x, y)=(x, ψ(y)) is a real analytic diffeomorphism of the upper half-plane
E1,2=E1∩E2={(x, y)∈R2 :y>0} onto itself which maps every leaf of F1|E1,2 to
a leaf of F2|E1,2 . Let E be the quotient of the topological (disjoint) sum E1�E2 ob-
tained by identifying a point (x, y)∈E1 belonging to E1,2 with the point φ(x, y)∈E2.
The foliations Fj , j=1, 2 amalgamate into a real analytic foliation F on E.

By construction E is a real analytic manifold homeomorphic to R2, and hence
there exists a real analytic diffeomorphism of E onto R2. (This follows in partic-
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ular from the classification theorem for simply connected Riemann surfaces.) We
identify E with R2 and denote the resulting real analytic foliation of R2 by F=Fψ.
Let π : R2!Q=R2/F denote the projection onto the space of leaves. Q admits the
structure of a non-Hausdorff real analytic manifold such that π is a real analytic
submersion. (The real analytic structure on Q is obtained by declaring the restric-
tion of π to any local analytic transversal l to F to be a diffeomorphism of l onto
the open set π(l)⊂Q. For the details see [7] and [8].) In our case Q is the quotient
of the topological sum R1�R2 of two copies of the real axis obtained by identifying
a point t>0 in R1 with the point ψ(t)∈R2 (no identifications are made for points
t≤0). The only pair of branch points in Q (i.e., points without a pair of disjoint
neighborhoods) are those corresponding to 0∈R1 and 0∈R2.

Lemma 2.3. If ψ is flat at origin (i.e. limt#0 ψ(k)(t)=0 for k∈N) then every
real analytic function on R2 which is constant on every leaf of Fψ is constant.

Proof. A real analytic function f on R2 which is constant on the leaves of
the foliation Fψ is of the form f=h�π for some real analytic function h : Q!R,
where Q is the space of leaves. From our construction of the foliation it follows
that h is given by a pair of real analytic functions hj : R!R, j=1, 2, satisfying
h1(t)=h2(ψ(t)) for t>0. As t#0, the flatness of ψ at 0 implies that the derivative
h′1 is flat at 0. Hence h1, and therefore also h2, are constant. �

Fix ψ and consider the following pair of subsets of E1 resp. E2:

D1 = {(x, y)∈R2 :−3<x<−2 and −1<y< 2},
D2 = {(x, y)∈R2 : 2<x< 3 and −1<y<ψ(2)}

∪ {(x, y)∈R2 :−3<x< 3 and ψ(1)<y<ψ(2)}.
Let D be the quotient of the disjoint sum D1�D2 obtained by identifying any
point (x, y)∈D1 such that 1<y<2 with the point φ(x, y)=(x, ψ(y))∈D2. Clearly
D is a simply connected domain with compact closure in E	R2, and the space
of leaves QD=D/F is a non-Hausdorff manifold with a simple branch at t=1∈R1

resp. ψ(1)∈R2.

Lemma 2.4. If ψ is flat at the origin then every real analytic function f on
D which is constant on every leaf of Fψ|D is constant.

Proof. As in Lemma 2.3 such an f is of the form f=h�π for some real analytic
function h on QD=D/Fψ. Such an h is given by a pair of real analytic functions
h1 : (−1, 2)!R and h2 : (−1, ψ(2))!R satisfying h1(t)=h2(ψ(t)) for 1<t<2. By
analyticity this relation persists on the largest interval on which both sides are de-
fined, which is (0, 2). By flatness of ψ at 0 we conclude as in Lemma 2.3 that h1

and h2 must be constant. �
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Let F=Fψ be the foliation of R2 constructed above with the diffeomorphism
ψ(t)=te−1/t of (0,+∞) (which is flat at 0). Let D�R2 satisfy the conclusion of
Lemma 2.4. Choose a disc containing D; clearly Lemma 2.4 still holds for this disc,
and by an affine change of coordinates on R2 we may assume this to be the unit
disc. This completes the proof of Proposition 2.1. �

Remark 2.5. Proposition 2.1 holds for any foliation Fψ constructed above for
which the diffeomorphism ψ of (0,+∞) is such that h�ψ does not extend as a real
analytic function to a neighborhood of 0 for any real analytic function h near 0.
An example is tα for an irrational α>0. The foliation of R2 determined by the
algebraic 1-form ω=(α−x)(1+x) dy−xdx has the space of leaves C1-diffeomorphic
to the ‘simple branch’ Q determined by ψ(t)=tα ([5], p. 120); hence it might be
possible to find a disc D⊂R2 satisfying Proposition 2.1 for this foliation. These
examples indicate that a real analytic foliation of R2 only rarely admits real analytic
first integrals on large compact subsets.

3. Proof of Theorem 1.1

Let F be a real analytic foliation of R2 furnished by the Proposition 2.1 such
that any real analytic function on D={(x1, x2):x2

1+x2
2<1}⊂R2 which is constant

on the leaves of F|D is constant. Denote by (x1+iy1, x2+iy2) the coordinates
on C2 and identify R2 with the plane {(x1+iy1, x2+iy2):y1=0 and y2=0}⊂C2.
Complexifying the leaves of F we obtain the Levi foliation of a closed real ana-
lytic Levi-flat hypersurface M in an open tubular neighborhood Ω⊂C2 of R2. Set
B={(x1+iy1, x2+iy2):x2

1+x2
2+c(y2

1+y2
2)<1} where c>0 is chosen so large that

�B⊂Ω. Note that B∩R2=D. A generic choice of c insures that M intersects bB
transversely (since transversality holds along bD∩M). Set A=M∩B�M . If B is
sufficiently thin (which is the case if c is sufficiently large) then clearly Ā is diffeo-
morphic to the closed ball in R3. If a real analytic function u∈Cω(A) is constant on
every Levi leaf of A then u|D is constant on every leaf of F|D and hence is constant.
Thus A satisfies property (ii) in Theorem 1.1.

The foliation F of R2 is transversely orientable and hence admits a transverse
real analytic vector field ν. Its complexification is a holomorphic vector field w in
a neighborhood of R2 in C2 such that iw is transverse to M in a neighborhood
of �B, provided that B is chosen sufficiently thin. Moving M off itself to either side
by a short time flow of iw in a neighborhood of �B we obtain thin neighborhoods
of Ā with two Levi-flat boundary components; intersecting these with rB for r>1
close to 1 gives a fundamental system of Stein neighborhoods of Ā.

Suppose that v is a real pluriharmonic function in a connected open neigh-
borhood of A such that v|A=0. For every point x∈A there is an open connected
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neighborhood Ux⊂B and a pluriharmonic function ux on Ux, determined up to
a real constant, such that ux+iv is holomorphic on Ux. Since A is contractible,
H1(A,R)=0 and hence the collection {ux}x∈A can be assembled into a plurihar-
monic function u in a neighborhood of A such that u+iv is holomorphic. Since
v|A=0, u is constant on every Levi leaf on A and hence constant by property (ii)
of A. Thus v is constant and hence identically zero. This proves Theorem 1.1.
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