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1. Introduction

If P is a univariate or multivariate polynomial with real coefficients and strictly positive
constant term, and β is a positive real number, it is sometimes of interest to know whether
P−β has all non-negative (or even strictly positive) Taylor coefficients. A problem of this
type arose in the late 1920s in Friedrichs and Lewy’s study of the discretized time-
dependent wave equation in two space dimensions: they needed the answer for the case
P (y1, y2, y3)=(1−y1)(1−y2)+(1−y1)(1−y3)+(1−y2)(1−y3) and β=1. Lewy contacted
Gabor Szegő, who proceeded to solve a generalization of this problem: Szegő [113] showed
that for any n>1, the polynomial

Pn(y1, ..., yn) =
n∑

i=1

∏
j 6=i

(1−yj) (1.1)

has the property that P−β
n has non-negative Taylor coefficients for all β> 1

2 . (The cases
n=1, 2 are of course trivial; the interesting problem is for n>3.) Szegő’s proof was sur-
prisingly indirect, and exploited the Gegenbauer–Sonine addition theorem for Bessel func-
tions together with Weber’s first exponential integral.(1) Shortly thereafter, Kaluza [72]
provided an elementary (albeit rather intricate) proof, but only for n=3 and β=1. In
the early 1970s, Askey and Gasper [8] gave a partially alternative proof, using Jacobi
polynomials in place of Bessel functions. Finally, Straub [112] has very recently produced
simple and elegant proofs for the cases n=3, 4 and β=1, based on applying a positivity-
preserving operator to another rational function whose Taylor coefficients are known (by
a different elementary argument) to be non-negative (indeed strictly positive).

Askey and Gasper, in discussing both Szegő’s problem and a related unsolved prob-
lem of Lewy and Askey, expressed the hope that “there should be a combinatorial in-
terpretation of these results” and observed that “this might suggest new methods” [8,
p. 340]. The purpose of the present paper is to provide such a combinatorial interpreta-
tion, together with new and elementary (but we think powerful) methods of proof. As a
consequence we are able to prove a far-reaching generalization of Szegő’s original result,
which includes as a special case an affirmative solution to the problem of Lewy and Askey.
Indeed, we give two different proofs for the Lewy–Askey problem, based on viewing it

(1) These formulae for Bessel functions can be found in [122, p. 367, eq. 11.41 (17)] and [122, p. 394,
eq. 13.3 (4)], respectively. For the special case n=3, Szegő also gave a version of the proof using Sonine’s
integral for the product of three Bessel functions [122, p. 411, eq. 13.46 (3)]. Szegő commented in his
introduction [113, p. 674] that “Die angewendeten Hilfsmittel stehen allerdings in keinem Verhältnis zu
der Einfachheit des Satzes.” (“The tools used are, however, disproportionate to the simplicity of the
result.”)

Szegő in fact proved the strict positivity of the Taylor coefficients for all n when β=1, and for
n>4β/(2β−1) when β> 1

2
[113, Sätze I–III]. In this paper we shall concentrate on non-negativity and

shall not worry about whether strict positivity holds or not. But see Remark 1 after Theorem 2.2.
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as a member of two different families of generalizations of the n=3 Szegő problem. Our
methods turn out to be closely connected with harmonic analysis on Euclidean Jordan
algebras (or equivalently on symmetric cones) [52].

1.1. Spanning-tree polynomials and series-parallel graphs

From a combinatorial point of view, one can see that Szegő’s polynomial (1.1) is simply
the spanning-tree generating polynomial TG(x) for the n-cycle G=Cn,

TCn(x1, ..., xn) =
n∑

i=1

∏
j 6=i

xj , (1.2)

after the change of variables xi=1−yi. This suggests that an analogous result might
hold for the spanning-tree polynomials of some wider class of graphs.(2) This conjecture
is indeed true, as we shall show. Moreover (and this will turn out to be quite important
in what follows), the change of variables xi=1−yi can be generalized to xi=ci−yi for
constants ci>0 that are not necessarily equal. We shall prove the following result.

Theorem 1.1. Let G=(V,E) be a connected series-parallel graph, and let TG(x)
be its spanning-tree polynomial in the variables x={xe}e∈E. Then, for all β> 1

2 and
all choices of strictly positive constants c={ce}e∈E , the function TG(c−y)−β has non-
negative Taylor coefficients in the variables y.

Conversely, if G is a connected graph and there exists β∈(0, 1)\
{

1
2

}
such that

TG(c−y)−β has non-negative Taylor coefficients (in the variables y) for all c>0, then
G is series-parallel.

The proof of the direct half of Theorem 1.1 is completely elementary (and indeed
quite simple). The converse relies on a deep result from harmonic analysis on Euclidean
Jordan algebras [58], [52, Chapter VII], [70], for which, however, there now exist two
different elementary proofs [106], [31], [110].

Let us recall that a C∞ function f(x1, ..., xn) defined on (0,∞)n is termed completely
monotone if its partial derivatives of all orders alternate in sign, i.e.

(−1)k ∂kf

∂xi1 ... ∂xik

> 0 (1.3)

everywhere on (0,∞)n, for all k>0 and all choices of indices i1, ..., ik. Theorem 1.1 can
then be rephrased as follows.

(2) See (1.5) and (7.1) below for the general definition of the spanning-tree polynomial TG(x) for
a connected graph G [37], [109].



326 a. d. scott and a. d. sokal

Theorem 1.1.′ Let G=(V,E) be a connected series-parallel graph, and let TG(x)
be its spanning-tree polynomial. Then T−β

G is completely monotone on (0,∞)E for all
β> 1

2 .

Conversely, if G=(V,E) is a connected graph and there exists β∈(0, 1)\
{

1
2

}
such

that T−β
G is completely monotone on (0,∞)E , then G is series-parallel.

Allowing arbitrary constants c>0 thus allows the result to be formulated in terms
of complete monotonicity, and leads to a characterization that is both necessary and
sufficient. Szegő’s result (or rather, its generalization to arbitrary c) extends to series-
parallel graphs and no farther.

1.2. Determinants

But this is not the end of the matter: we can go far beyond series-parallel graphs if
we relax our demands about the set of β for which T−β

G is asserted to be completely
monotone. The key here is Kirchhoff’s matrix-tree theorem [74], [28], [86], [83], [35],
[34], [33], [126], [84], [1], which shows how spanning-tree polynomials can be written as
determinants. This line of thought suggests that complete monotonicity of P−β might
hold more generally for the homogeneous multiaffine polynomials arising from determi-
nants of the type studied in [37, §8.1]. This too is true; in fact, such a result holds for a
slightly more general class of polynomials that need not be multiaffine. We shall prove,
once again by elementary methods, the following result.

Theorem 1.2. Let A1, ..., An, n>1, be m×m real or complex matrices or Hermitian
quaternionic matrices, and let us form the polynomial

P (x1, ..., xn) =det
( n∑

i=1

xiAi

)
(1.4)

in the variables x=(x1, ..., xn). (In the quaternionic case, det denotes the Moore deter-
minant ; see [105, Appendix A].) Assume further that there exists a linear combination
of A1, ..., An that has rank m (so that P 6≡0).

(a) If A1, ..., An are real symmetric positive-semidefinite matrices, then P−β is com-
pletely monotone on (0,∞)n for β=0, 1

2 , 1,
3
2 , ... and for all real β> 1

2 (m−1).
(b) If A1, ..., An are complex Hermitian positive-semidefinite matrices, then P−β is

completely monotone on (0,∞)n for β=0, 1, 2, 3, ... and for all real β>m−1.
(c) If A1, ..., An are quaternionic Hermitian positive-semidefinite matrices, then

P−β is completely monotone on (0,∞)n for β=0, 2, 4, 6, ... and for all real β>2m−2.
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These curious conditions on β are not just an artifact of our method of proof; they
really are best possible. They can be better understood if we take a slightly more general
perspective, and define complete monotonicity for functions on an arbitrary open convex
cone C in a finite-dimensional real vector space V (see §2). We then have the following
result that “explains” Theorem 1.2.

Theorem 1.3. (a) Let V be the real vector space Sym(m,R) of real symmetric
m×m matrices, and let C⊂V be the cone Πm(R) of positive-definite matrices. Then
the map A 7!(detA)−β is completely monotone on C if and only if β∈

{
0, 1

2 , 1,
3
2 , ...

}
∪[

1
2 (m−1),∞

)
. Indeed, if β /∈

{
0, 1

2 , 1,
3
2 , ...

}
∪

[
1
2 (m−1),∞

)
, then the map A 7!(detA)−β

is not completely monotone on any non-empty open convex subcone C ′⊆C.
(b) Let V be the real vector space Herm(m,C) of complex Hermitian m×m ma-

trices, and let C⊂V be the cone Πm(C) of positive-definite matrices. Then the map
A 7!(detA)−β is completely monotone on C if and only if β∈{0, 1, 2, 3, ... }∪[m−1,∞).
Indeed, if β /∈{0, 1, 2, 3, ... }∪[m−1,∞), then the map A 7!(detA)−β is not completely
monotone on any non-empty open convex subcone C ′⊆C.

(c) Let V be the real vector space Herm(m,H) of quaternionic Hermitian m×m
matrices, and let C⊂V be the cone Πm(H) of positive-definite matrices. Then the map
A 7!(detA)−β is completely monotone on C if and only if β∈{0, 2, 4, 6, ... }∪[2m−2,∞).
Indeed, if β /∈{0, 2, 4, 6, ... }∪[2m−2,∞), then the map A 7!(detA)−β is not completely
monotone on any non-empty open convex subcone C ′⊆C.

In particular, if the matrices A1, ..., An together span Sym(m,R), Herm(m,C) or
Herm(m,H) (so that the convex cone they generate has non-empty interior), then the
determinantal polynomial (1.4) has P−β completely monotone on (0,∞)n if and only if
β belongs to the set enumerated in Theorem 1.2.(3)

The proof of the “if” part of Theorem 1.3 is completely elementary, but the “only
if” part again relies on a deep result from harmonic analysis on Euclidean Jordan al-
gebras, namely, the characterization of parameters for which the Riesz distribution is a
positive measure (Theorem 4.8 below; but see [106], [31], [110] and [105, Appendix B]
for elementary proofs). In fact, when Theorem 1.3 is rephrased in this latter context, it
takes on the following unified form.

Theorem 1.4. Let V be a simple Euclidean Jordan algebra of dimension n and rank
r, with n=r+ 1

2dr(r−1), let Ω⊂V be the positive cone and let ∆:V!R be the Jordan
determinant. Then the map x 7!∆(x)−β is completely monotone on Ω if and only if

(3) Brändén [25] has recently used this latter fact to determine the exact set of α∈R for which
the α-permanent [116] is non-negative on real symmetric (resp. complex Hermitian) positive-semidefinite
matrices.
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β∈
{
0, 1

2d, ...,
1
2d(r−1)

}
or β> 1

2d(r−1). Indeed, if

β /∈
{
0, 1

2d, ...,
1
2d(r−1)

}
∪

(
1
2d(r−1),∞

)
,

then the map x 7!∆(x)−β is not completely monotone on any non-empty open convex
subcone Ω′⊆Ω.

We shall see that Theorem 1.4 is essentially equivalent to the characterization of
parameters for which the Riesz distribution is a positive measure. The set of values of β
described in Theorem 1.4 is known as the Gindikin–Wallach set and arises in a number
of contexts in representation theory [16], [58], [101], [121], [77], [50], [51], [52].

A special case of the construction (1.4) arises [37, §8.1] when B is an m×n real or
complex matrix of rank m, and we set P (x)=det(BXB∗), where X=diag(x1, ..., xn) and
∗ denotes Hermitian conjugate. Then the matrix Ai in (1.4) is simply the outer product
of the ith column of B with its complex conjugate, and so is of rank at most 1; as a
consequence, the polynomial P is multiaffine (i.e., of degree at most 1 in each variable
separately).(4)

In particular, let G=(V,E) be a connected graph, and define its spanning-tree poly-
nomial TG(x) by

TG(x) =
∑

T∈T (G)

∏
e∈T

xe, (1.5)

where x={xe}e∈E is a family of indeterminates indexed by the edges of G, and T (G)
denotes the family of edge sets of spanning trees in G. Now let B be the directed
vertex-edge incidence matrix for an arbitrarily chosen orientation of G, with one row
(corresponding to an arbitrarily chosen vertex ofG) deleted; then the matrix-tree theorem
[74], [28], [86], [83], [35], [34], [33], [126], [84], [1], [37] tells us that TG(x)=det(BXBT).
Applying Theorem 1.2 (a), we obtain the following result.

Corollary 1.5. Let G=(V,E) be a connected graph with p vertices, and let TG(x)
be its spanning-tree polynomial. Then T−β

G is completely monotone on (0,∞)E for β=
0, 1

2 , 1,
3
2 , ... and for all real β> 1

2 (p−2).

Likewise, we can apply Theorem 1.2 (b) to the elementary symmetric polynomial

E2,4(x1, x2, x3, x4) =x1x2+x1x3+x1x4+x2x3+x2x4+x3x4, (1.6)

which can be represented in the form (1.4) with

A1 =
(

1 0
0 0

)
, A2 =

(
0 0
0 1

)
, A3 =

(
1 1
1 1

)
and A4 =

(
1 e−iπ/3

eiπ/3 1

)
, (1.7)

(4) See Proposition 4.3 below.
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or equivalently as E2,4(x)=det(BXB∗) with

B=
(

1 0 1 1
0 1 1 eiπ/3

)
.

We obtain the following result.

Corollary 1.6. The function E−β
2,4 is completely monotone on (0,∞)4 if and only

if β=0 or β>1. In particular, the function

( ∑
16i<j64

(1−yi)(1−yj)
)−β

(1.8)

has non-negative Taylor coefficients for all β>1.

Indeed, the “if” part can be corroborated by an explicit Laplace-transform formula
for E−β

2,4 for β>1; see (4.18) below. The “only if” follows from the observation made
after Theorem 1.3, since the matrices A1, ..., A4 in (1.7) span Herm(2,C).

The second sentence of Corollary 1.6 answers in the affirmative a question posed long
ago by Lewy [8, p. 340], of which Askey remarks that it “has caused me many hours of
frustration” [7, p. 56].(5) (See also the recent discussion in [73].) Indeed, Lewy’s question
concerned only β=1, and made the weaker conjecture that the function (1.8) multiplied
by (4−y1−y2−y3−y4)−1 has non-negative Taylor coefficients. This latter factor is now
seen to be unnecessary.(6)

Similarly, Theorem 1.2 (c) applied to the quaternionic determinant

det
(
a q

q̄ b

)
= ab−qq̄

(5) Askey [7, p. 56] comments that, in his view, “So far the most powerful method of treating
problems of this type is to translate them into another problem involving special functions and then use
the results and methods which have been developed for the last two hundred years to solve the special
function problem. So far I have been unable to make a reduction in [Lewy’s problem] and so have no
place to start.” But he immediately adds, wisely, that “it is possible to solve some problems without
using special functions, so others should not give up on [Lewy’s problem]”.

(6) Ismail and Tamhankar [71, p. 483] mistakenly asserted that “the early coefficients in the power
series expansion of

[(1−r)(1−s)+(1−r)(1−t)+(1−r)(1−u)+(1−s)(1−t)+(1−s)(1−u)+(1−t)(1−u)]−1

are positive but the later coefficients do change sign”, arguing that this is “because Huygen’s [sic]
principle holds in three-space”. Huygens’ principle indeed suggests that the coefficients approach zero,
as Askey and Gasper [8, p. 340] observed; but this in no way contradicts the non-negativity of those
coefficients.
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for a, b∈R and q∈H, with A1, ..., A4 as above, and(7)

A5 =
(

1 q5

q̄5 1

)
, A6 =

(
1 q6

q̄6 1

)
, (1.9)

q5 =
1
2
−
√

3
6
i−
√

6
3
j, q6 =

1
2
−
√

3
6
i−
√

6
12
j−

√
10
4
k, (1.10)

yields an analogous result for the elementary symmetric polynomial

E2,6(x1, ..., x6) =x1x2+x1x3+...+x5x6 (1.11)

of degree 2 in six variables.(8)

Corollary 1.7. The function E−β
2,6 is completely monotone on (0,∞)6 if and only

if β=0 or β>2.

Corollaries 1.5 and 1.6 are in fact special cases of a much more general result con-
cerning the basis generating polynomials BM (x) of certain classes of matroids. (We
stress that no knowledge of matroid theory is needed to understand the main arguments
of this paper; readers allergic to matroids, or simply unfamiliar with them, can skip all
references to them without loss of logical continuity. Still, we think that the matroidal
perspective is fruitful and we would like to make some modest propaganda for it.(9)) So
let M be a matroid with ground set E, and let B(M) be its set of bases; then the basis
generating polynomial of M is, by definition,

BM (x) =
∑

S∈B(M)

xS ,

where x={xe}e∈E is a family of indeterminates indexed by the elements of M , and we
have used the shorthand xS =

∏
e∈S xe.

(7) Here i, j and k are the quaternionic units.

(8) If we define q3=1 and q4=e−iπ/3 (cf. (1.7)), then q3, q4, q5 and q6 are quaternions satisfying

Re(qiq̄j)=

{
1, if i = j,
1
2
, if i 6= j,

or equivalently |qi|2=1 and |qi−qj |2=1 for all i 6=j. From this it easily follows that

det

(
x1+x3+x4+x5+x6 x3q3+x4q4+x5q5+x6q6

x3q̄3+x4q̄4+x5q̄5+x6q̄6 x2+x3+x4+x5+x6

)
= E2,6(x1, ..., x6).

(9) See [90] for background on matroid theory, and [37] for background on basis generating poly-
nomials. In interpreting Corollary 1.8 below, please note that if G=(V, E) is a graph with k connected
components, then the graphic matroid M(G) has rank |V |−k, while the cographic matroid M∗(G) has
rank |E|−|V |+k. Note also that the equivalence of “complex-unimodular matroid” with “sixth-root-of-
unity matroid” is proven in [37, Theorem 8.9].
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Now let B be an arbitrary m×n real or complex matrix of rank m, and define
P (x)=det(BXB∗). Then, as discussed previously, Theorem 1.2 ((a) or (b)) applies to P
and gives a sufficient condition for P−β to be completely monotone. On the other hand,
the Cauchy–Binet formula gives

P (x) =det(BXB∗) =
∑

S⊆[n]

|S|=m

|detB?S |2xS , (1.12)

where B?S denotes the submatrix of B with columns S. Since detB?S 6=0 if and only
if the columns S of B are linearly independent, we see that P is a weighted version
of the basis generating polynomial for the matroid M=M [B] that is represented by
B (this matroid has rank m). In particular, a matroid is said to be real-unimodular
(resp. complex-unimodular) if it has a real (resp. complex) representing matrix B, with
a number of rows equal to its rank, such that |detB?S |2∈{0, 1} for all S.(10) In this case
the basis generating polynomial is precisely BM (x)=det(BXB∗). We thereby obtain
from Theorem 1.2 (a) and (b) the following result.

Corollary 1.8. Let M be a matroid of rank r on the ground set E, and let BM (x)
be its basis generating polynomial.

(a) If M is a regular (i.e. real-unimodular) matroid, then B−β
M is completely mono-

tone on (0,∞)E for β=0, 1
2 , 1,

3
2 , ... and for all real β> 1

2 (r−1). (This holds in particular
if M is a graphic or cographic matroid, i.e. for the spanning-tree or complementary-
spanning-tree polynomial of a connected graph.)

(b) If M is a complex-unimodular matroid (equivalently, a sixth-root-of-unity ma-
troid), then B−β

M is completely monotone on (0,∞)E for β=0, 1, 2, 3, ... and for all real
β>r−1.

In particular, by specializing (a) to a graphic matroidM(G) we recover Corollary 1.5,
and by specializing (b) to the uniform matroid U2,4 we recover Corollary 1.6.

We have also proven a (very) partial converse to Corollary 1.8, which concerns the
cases of rank-r n-element simple matroids in which the matrices A1, ..., An together span
Sym(r,R) or Herm(r,C); see Proposition 7.9 below.

Remark. There is also an analogue of Corollary 1.8 in the quaternionic case. Re-
call first the quaternionic analogue of the Cauchy–Binet formula (1.12) [105, Proposi-
tion A.3 (g)]: if B is an m×n quaternionic matrix, then

P (x1, ..., xn) =det(BXB∗) =det
( n∑

i=1

xiAi

)
(10) This is not the usual definition of real-unimodular/complex-unimodular, but it is equivalent to

the usual definition by virtue of [37, Proposition 8.6].
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is well defined for X=diag(x1, ..., xn) with x1, ..., xn real, and equals the polynomial

∑
S⊆[n]

|S|=m

det[B?S(B?S)∗]xS .

(Note, by contrast, that detB?S is in general meaningless because B?S need not be Her-
mitian.) We can then define a matroid M to be quaternionic-unimodular if its basis gen-
erating polynomial can be represented in this way, i.e. if it has a quaternionic representing
matrix B, with a number of rows equal to its rank, such that det[B?S(B?S)∗]∈{0, 1} for
all S. For such matroids M , Theorem 1.2 (c) implies that B−β

M is completely monotone
on (0,∞)E for β=0, 2, 4, 6, ... and for all real β>2r−2.

A deeper study of quaternionic-unimodular matroids would be of interest. For in-
stance, is the class of quaternionic-unimodular matroids closed under duality? Or even
under contraction? (The class is obviously closed under deletion.) Which uniform ma-
troids Ur,n are quaternionic-unimodular?

A different notion of “quaternionic-unimodular matroid” has been introduced re-
cently by Pendavingh and van Zwam [96]. It is not clear to us what is the relation
between their notion and ours.

1.3. Quadratic forms

Of course, E2,4 and E2,6 are quadratic forms in the variables x, as is the polynomial E2,3

arising in the n=3 Szegő problem. This suggests that it might be fruitful to study more
general quadratic forms. We shall prove, by elementary methods, the following result.

Theorem 1.9. Let V be a finite-dimensional real vector space, let B be a symmetric
bilinear form on V having inertia (n+, n−, n0), and define the quadratic form Q(x)=
B(x, x). Let C⊂V be a non-empty open convex cone with the property that Q(x)>0 for
all x∈C. Then n+>1, and moreover the following are true:

(a) If n+=1 and n−=0, then Q−β is completely monotone on C for all β>0. For
all other values of β, Q−β is not completely monotone on any non-empty open convex
subcone C ′⊆C.

(b) If n+=1 and n−>1, then Q−β is completely monotone on C for β=0 and for
all β> 1

2 (n−−1). For all other values of β, Q−β is not completely monotone on any
non-empty open convex subcone C ′⊆C.

(c) If n+>1, then Q−β is not completely monotone on any non-empty open convex
subcone C ′⊆C for any β 6=0.
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Theorem 1.9 follows fairly easily from the classic work of Marcel Riesz [99] (see also
[47] and [52, Chapter VII]) treating the case in which B is the Lorentz form on Rn,

B(x, y) =x1y1−x2y2−...−xnyn, (1.13)

and C is the Lorentz cone (that is, forward light cone)
{
x∈Rn :x1>

√
x2

2+...+x2
n

}
. We

are able to give a completely elementary proof of both the sufficiency and the necessity;
and we are able to give in case (b) an explicit Laplace-transform formula for Q−β (see
Proposition 5.6).

Specializing Theorem 1.9 with V =Rn and C=(0,∞)n to the degree-2 elementary
symmetric polynomials

E2,n(x1, ..., xn) =
∑

16i<j6n

xixj , (1.14)

we obtain the following result.

Corollary 1.10. The function E−β
2,n is completely monotone on (0,∞)n if and only

if β=0 or β> 1
2 (n−2).

By this method we obtain alternative proofs of Corollaries 1.6 and 1.7—hence in
particular a second solution to the Lewy–Askey problem—as well as of Szegő’s [113]
original result in the case n=3.(11) We also obtain an explicit Laplace-transform formula
for E−β

2,n (see Corollary 5.8).

Remark. It is easy to see that E2,n is the spanning-tree polynomial of a graph only
if n=2 or n=3: a connected graph G whose spanning-tree polynomial is of degree 2 must
have precisely three vertices; if G has multiple edges, then TG 6=E2,n because monomials
corresponding to pairs of parallel edges are absent from TG; so G must be either the
3-vertex path or the 3-cycle, corresponding to E2,2 or E2,3, respectively. But this fact
can also be seen from our results: Corollary 1.5 says that T−1/2

G is completely monotone
for all graphs G, while Corollary 1.10 says that E−1/2

2,n is not completely monotone when
n>3.

(11) In fancy language—which is, however, completely unnecessary for understanding our proofs—
our “determinantal” proof of Corollary 1.6 is based on harmonic analysis on the cone of positive-definite
m×m complex Hermitian matrices specialized to m=2, while our “quadratic form” proof is based on
harmonic analysis on the Lorentz cone in Rn specialized to n=4. The point here is that the Jordan
algebra Herm(2, C)'R×R3 can be viewed as a member of two different families of Jordan algebras:
Herm(m, C) and R×Rn−1 [52, p. 98]. Likewise, our “determinantal” proof of Corollary 1.7 is based on
harmonic analysis on the cone of positive-definite m×m quaternionic Hermitian matrices specialized
to m=2, while our “quadratic form” proof is based on harmonic analysis on the Lorentz cone in Rn

specialized to n=6; and we have the isomorphism of Jordan algebras Herm(2, H)'R×R5 [52, p. 98]. And
finally, our “determinantal” proof of the n=3 Szegő result is based on harmonic analysis on the cone of
positive-definite m×m real symmetric matrices specialized to m=2, while our “quadratic form” proof is
based on harmonic analysis on the Lorentz cone in Rn specialized to n=3; and we have Sym(2, R)'R×R2

[52, p. 98].
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Corollaries 1.6, 1.7 and 1.10 lead naturally to the following question: If we write
Er,n for the elementary symmetric polynomial of degree r in n variables,

Er,n(x1, ..., xn) =
∑

16i1<i2<...<ir6n

xi1xi2 ... xir (1.15)

(where we set E0,n≡1), then for which β>0 is E−β
r,n completely monotone on (0,∞)n?

The cases r=0, r=1 and r=n are trivial: we have complete monotonicity for all β>0.
Our results for the cases r=n−1 (Theorem 1.1′ specialized to cycles Cn) and r=2
(Corollary 1.10), as well as numerical experiments for (r, n)=(3, 5), (r, n)=(3, 6) and
(r, n)=(4, 6), suggest the following conjecture.

Conjecture 1.11. Let 26r6n. Then E−β
r,n is completely monotone on (0,∞)n if

and only if β=0 or β> 1
2 (n−r).

However, we have been unable to find a proof of either the necessity or the sufficiency.
We remark that the elementary symmetric polynomial Er,n is the basis generating

polynomial of the uniform matroid Ur,n. So Corollary 1.10 and Conjecture 1.11 concern
the same general subject as Corollary 1.8, namely, complete monotonicity for inverse
powers of the basis generating polynomials of matroids.

1.4. Discussion

In summary, we have two ab-initio methods for proving, given a polynomial P and a
positive real number β, that P−β is completely monotone on (0,∞)n (or more generally
on a convex cone C):

(a) The determinantal method (Theorems 1.2–1.4; see §4).
(b) The quadratic-form method (Theorem 1.9; see §5).

Interestingly, these two methods can be viewed as versions of the same construction,
involving the determinant on a Euclidean Jordan algebra and the Laplace-transform
representation of its inverse powers [52, Chapters II–VII]. We discuss this connection in
§4.3 and §5.2.

In addition to these two ab-initio methods, we have a variety of constructions that,
given such polynomials, can create other ones with the same property (see §3). Among
these are algebraic analogues of the graph (or matroid) operations of deletion, contrac-
tion, direct sum(12), parallel connection, series connection and 2-sum (but not duality).
By combining these operations with our ab-initio proofs, we are able to prove the com-
plete monotonicity of T−β

G for some values of β beyond those covered by Corollary 1.5;
we do it in the following proposition.

(12) By “direct sum” of graphs we mean either disjoint union (“0-sum”) or gluing at a cut vertex
(“1-sum”). Both of these operations correspond to the direct sum of matroids.



complete monotonicity for inverse powers of some polynomials 335

Proposition 1.12. Fix p>2, and let G=(V,E) be any graph that can be obtained
from copies of the complete graph Kp by parallel connection, series connection, direct
sum, deletion and contraction. Then T−β

G is completely monotone on (0,∞)E for β=
0, 1

2 , 1,
3
2 , ... and for all real β> 1

2 (p−2).

In particular, the case p=3 covers series-parallel graphs; this is essentially our proof
of the direct half of Theorem 1.1′. We also have versions of this proposition for ma-
troids: see Propositions 7.14 and 7.15 below. Finally, in Propositions 7.16 and 7.17
we give excluded-minors characterizations of the class of graphs/matroids handled by
Propositions 1.12 and 7.14, respectively.

But even in the graphic case, we are still far from having a complete answer to the
following fundamental problem.

Problem 1.13. Given a graph G=(V,E), for which real numbers β>0 is the function
T−β

G completely monotone on (0,∞)E?

This question can be rephrased usefully as follows:

Problem 1.13.′ For each β>0, characterize the class Gβ of graphs for which T−β
G is

completely monotone on (0,∞)E .

We will show in §7.1 that the class Gβ is closed under minors—so that it can be char-
acterized by listing the excluded minors—and under parallel connection. Furthermore,
it is closed under series connection when (but only when) β> 1

2 .
In this paper we have solved Problem 1.13′ in a few cases:
(i) For β∈

{
1
2 , 1,

3
2 , ...

}
, Gβ={all graphs}. See Corollary 1.8 (a).

(ii) For β∈
(
0, 1

2

)
, Gβ=graphs obtained from forests by parallel extension of edges

(that is, graphs with no K3 minor). See Theorem 7.10.
(iii) For β∈( 1

2 , 1), Gβ={series-parallel graphs} (that is, graphs with no K4 minor).
See Theorems 1.1′ and 7.12.

So the first unsolved cases are β∈
(
1, 3

2

)
: Might it be true that Gβ={all graphs with

no K5 minor}? Or might there exist, alternatively, other excluded minors? We have been
thus far unable to determine the complete monotonicity of T−β

G for the cases G=W4 (the
wheel with four spokes) and G=K5−e (the complete graph K5 with one edge deleted).
Indeed, for k>2 we do not even know the answer to the following question.

Question 1.14. Fix an integer k>0. Must we have Gβ=Gβ′ whenever

β, β′ ∈
(

1
2k,

1
2 (k+1)

)
?

Let us mention, finally, an alternative approach to “converse” results that we have
not pursued, for lack of competence. When P−β does not have all non-negative Taylor
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coefficients, this fact should in most cases be provable either by explicit computation
of low-order coefficients or by asymptotic computation of suitable families of high-order
coefficients (computer experiments can usually suggest which families to focus on). This
type of multivariate asymptotic calculation has been pioneered recently by Pemantle
and collaborators [93], [94], [95], [92], [15] and involves some rather non-trivial algebraic
geometry/topology. In fact, Baryshnikov and Pemantle [15, §4.4] have recently used
their method to study the asymptotics of the Taylor coefficients of P−β

n for the Szegő
polynomial (1.1) with n=3, but thus far only for β> 1

2 .(13) It would be interesting to
know whether this analysis can be extended to the case β< 1

2 , thereby providing an
explicit proof that some of the Taylor coefficients are asymptotically negative. More
generally, one might try to study the elementary symmetric polynomials Er,n: after the
n=3 Szegő case E2,3, the next simplest would probably be the Lewy–Askey case E2,4

(i.e., (1.8)).

1.5. Some further remarks

The half-plane property. Let us recall that a polynomial P with complex coefficients
is said to have the half-plane property [37], [36], [117], [24], [23], [120], [26], [119] if
either P≡0 or else P (x1, ..., xn) 6=0 whenever x1, ..., xn are complex numbers with strictly
positive real part.(14) We shall show (Corollary 2.3 below) that if P is a polynomial
with real coefficients that is strictly positive on (0,∞)n and such that P−β is completely
monotone on (0,∞)n for at least one β>0, then P necessarily has the half-plane property
(but not conversely). The complete monotonicity of P−β can therefore be thought of as
a strong quantitative form of the half-plane property. In particular, it follows that the
determinantal polynomials considered in Theorem 1.2 have the half-plane property—a
fact that can easily be proven directly (Corollary 4.5 below). The same is true for the
quadratic polynomials considered in Theorem 1.9; see [37, Theorem 5.3] and Theorem 5.4
below.

The Rayleigh property. Complete monotonicity is also connected with the Rayleigh
property [38] for matroids and, more generally, for multiaffine polynomials. Let us say
that a function f is completely monotone of order K if the inequalities (1.3) hold for
06k6K. Thus, a function is completely monotone of order 0 (resp. 1) if and only if it is
non-negative (resp. non-negative and decreasing). A function is completely monotone of

(13) The formula in their Theorem 4.4 has a misprint: the power − 1
2

should be β− 3
2
.

(14) A polynomial P 6≡0 with the half-plane property is also termed Hurwitz stable.
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order 2 if, in addition, ∂2f/∂xi∂xj >0 for all i and j. Specializing this to f=P−β , where
P is a polynomial, we obtain

P
∂2P

∂xi∂xj
6 (β+1)

∂P

∂xi

∂P

∂xj
for all i and j. (1.16)

If P is multiaffine, then ∂2P/∂x2
i =0, so it suffices to consider the cases i 6=j. The in-

equality (1.16) is then a generalization of the Rayleigh (or negative-correlation) inequality
in which an extra constant C=β+1 is inserted on the right-hand side. (The ordinary
Rayleigh property corresponds to β#0, and hence to taking f=− logP and omitting
the k=0 condition.) It would be interesting to know whether the combinatorial conse-
quences of the Rayleigh property—such as the matroidal-support property [118]—extend
to the C-Rayleigh property for arbitrary C<∞. It would also be interesting to extend
the results of the present paper, which address complete monotonicity of order ∞, to
complete monotonicity of finite orders K. In what way do the conditions on β become
K-dependent?

Connected-spanning-subgraph polynomials. Let us remark that the literature
contains some other examples of multivariate polynomials P for which P−β has all non-
negative Taylor coefficients, for some specified set of numbers β. For instance, Askey and
Gasper [9] showed that this is the case for

P (x, y, z) = 1− 1
2 (x+y+z)+ 1

2xyz (1.17)

whenever β> 1
2 (
√

17−3)≈0.561553; Gillis, Reznick and Zeilberger [57] later gave an ele-
mentary proof. Likewise, Koornwinder [75] proved this for

P (x, y, z, u) = 1− 1
2 (x+y+z+u)+ 1

2 (xyz+xyu+xzu+yzu)−xyzu (1.18)

whenever β>1; an elementary proof later emerged from the combined work of Ismail and
Tamhankar [71] and Gillis–Reznick–Zeilberger [57].

It turns out that these two examples also have a combinatorial interpretation: not
in terms of the spanning-tree polynomial TG(x), but rather in terms of the connected-
spanning-subgraph polynomial [102], [109]

CG(v) =
∑
A⊆E

(V,A) connected

∏
e∈A

ve, (1.19)

which has TG(x) as a limiting case:

TG(x) = lim
λ!0

λ−(|V |−1)CG(λx). (1.20)
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If we specialize to G=Cn and make the change of variables vi=−λ(1−zi) with 0<λ<n,
thus defining PG,λ(z)=TG(−λ(1−z))/TG(−λ1), it then turns out that the Askey–Gasper
polynomial (1.17) corresponds to the case n=3, λ=1, while the Koornwinder polynomial
(1.18) corresponds to the case n=4, λ=2. On the other hand, in the limit λ!0 we
recover a multiple of the Szegő polynomial (1.1); this is simply a special case of (1.20).

In the same way that the complete monotonicity of T−β
G is a strong quantitative form

of the half-plane property, it turns out that the non-negativity of Taylor coefficients of
P−β

G,λ in these examples is a strong quantitative form of the multivariate Brown–Colbourn
property (or more precisely, the multivariate property BCλ) discussed in [102], [109]. But
it seems to be a difficult problem to determine the set of pairs (λ, β) for which P−β

G,λ has
non-negative Taylor coefficients, even in the simplest case G=C3. We have some partial
results on this problem, but we leave these for a future paper.

1.6. Plan of this paper

The plan of this paper is as follows: In §2 we define complete monotonicity on cones and
recall the Bernstein–Hausdorff–Widder–Choquet theorem; we also prove a general result
showing that complete monotonicity of P−β on a cone C⊂V implies the non-vanishing of
P in the complex tube C+iV .(15) In §3 we discuss some general constructions by which
new completely monotone polynomials P with P−β can be obtained from old ones. In §4
we present the determinantal construction and prove Theorems 1.2–1.4. In §5 we present
the quadratic-form construction and prove Theorem 1.9. In §6 we present briefly the
theory of positive-definite functions (in the semigroup sense) on convex cones—which
is a close relative of the theory of completely monotone functions—and its application
to the class of cones treated here. Finally, in §7 we apply the results of §§2–5 to the
spanning-tree polynomials of graphs and the basis generating polynomials of matroids;
in particular we analyze the series-parallel case and prove Theorem 1.1.

In the arXiv version of this paper [105] we include two appendices that are being
omitted from this journal version due to space constraints: Appendix A reviewing the
definition and main properties of the Moore determinant for Hermitian quaternionic
matrices, and Appendix B explaining an elementary proof of Gindikin’s characterization
of parameters for which the Riesz distribution is a positive measure.

We have tried hard to make this paper comprehensible to the union (not the inter-
section!) of combinatorialists and analysts. We apologize in advance to experts in each
of these fields for boring them every now and then with overly detailed explanations of
elementary facts.

(15) Here, and in similar situations, i denotes the imaginary unit.
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2. Complete monotonicity on cones

In the introduction we defined complete monotonicity for functions on (0,∞)n. For our
later needs (see §4 and §5), it turns out to be natural to consider complete monotonicity
on more general open convex cones C⊂Rn. This is a genuine generalization, because
for n>3, an open convex cone is not necessarily the affine image of a (possibly higher-
dimensional) orthant, i.e. it need not have “flat sides”: an example is the Lorentz cone{
x∈Rn :x1>

√
x2

2+...+x2
n

}
in dimension n>3.

Definition 2.1. Let V be a finite-dimensional real vector space, and let C be an open
convex cone in V . Then a C∞ function f :C!R is termed completely monotone if for
all k>0, all choices of vectors u1, ...,uk∈C, and all x∈C, we have

(−1)kDu1 ... Duk
f(x) > 0, (2.1)

where Du denotes a directional derivative. A function f is termed conditionally com-
pletely monotone if the inequality (2.1) holds for all k>1 but not necessarily for k=0.(16)

Of course, if the inequality (2.1) holds for all u1, ...,uk in some set S, then by
linearity and continuity it holds also for all u1, ...,uk in the closed convex cone generated
by S. This observation also shows the equivalence of Definition 2.1, specialized to the
case V =Rn and C=(0,∞)n, with the definition given in the introduction.

If T : (V1, C1)!(V2, C2) is a positive linear map (i.e., a linear map T :V1!V2 sat-
isfying T [C1]⊆C2) and f :C2!R is completely monotone, then it is easily seen that
f �T :C1!R is completely monotone. Conversely, if f �T is completely monotone for all
positive linear maps T : (Rn, (0,∞)n)!(V2, C2) for arbitrarily large n, then f is com-
pletely monotone: for if (2.1) fails for some k, then we can take n=k and Tei=ui

(where ei is the ith coordinate unit vector in Rn) and f �T will fail one of the kth-order
complete-monotonicity inequalities.

Let us next recall some elementary facts. If f is completely monotone, then f(0+)=
limx!0,x∈C f(x) exists and equals supx∈C f(x), but it might be +∞. The product of two

(16) The terminology “conditionally completely monotone” is new, but we think it felicitous: it is
chosen by analogy with “conditionally positive-definite matrix” [18], [14], with which this concept is in
fact closely related [66], [67], [68], [18], [17]. (Warning: The book [18] uses the term “negative-definite”
for what we would call “conditionally negative-definite”.)

Please note that if f is bounded below, then f is conditionally completely monotone if and only
if there exists a constant c such that f+c is completely monotone. But there also exist conditionally
completely monotone functions that are unbounded below (and hence for which such a constant c cannot
exist): examples on (0,∞) are f(x)=−(a+x)α and f(x)=− log(a+x) with a>0 and 0<α61.

Of course, it follows immediately from the definition that f is conditionally completely monotone if
and only if −Duf is completely monotone for all vectors u∈C. In the multidimensional case this seems
rather difficult to work with; but in the 1-dimensional case C=(0,∞) it says that f is conditionally
completely monotone if and only if −f ′ is completely monotone.
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completely monotone functions is completely monotone. If f is completely monotone and
Φ: [0,∞)![0,∞) is absolutely monotone (i.e. its derivatives of all orders are everywhere
non-negative), then Φ�f is completely monotone. If f is conditionally completely mono-
tone and Φ: (−∞,∞)![0,∞) is absolutely monotone, then Φ�f is completely monotone.
(In particular, this occurs when Φ is the exponential function.) Finally, a locally uniform
limit of a sequence of completely monotone functions is completely monotone.

The fundamental fact in the theory of completely monotone functions on (0,∞)
is the Bernstein–Hausdorff–Widder theorem [124]: A function f defined on (0,∞) is
completely monotone if and only if it can be written in the form

f(x) =
∫ ∞

0

e−tx dµ(t), (2.2)

where µ is a non-negative Borel measure on [0,∞). We shall need a multidimensional
version of the Bernstein–Hausdorff–Widder theorem, valid for arbitrary cones. Such a
result was proven by Choquet [39].(17)

Theorem 2.2. (Bernstein–Hausdorff–Widder–Choquet theorem) Let V be a finite-
dimensional real vector space, let C be an open convex cone in V, and let

C∗ = {`∈V ∗ : 〈`, x〉> 0 for all x∈C}

be the closed dual cone. Then a function f :C!R is completely monotone if and only if
there exists a positive measure µ on C∗ satisfying

f(x) =
∫

C∗
e−〈`,x〉 dµ(`). (2.3)

In this case, µ(C∗)=f(0+); in particular, µ is finite if and only if f is bounded.
Consequently, if f is completely monotone on C, then it is extendible (using (2.3))

to an analytic function on the complex tube C+iV satisfying

|Du1 ... Duk
f(x+iy)|6 (−1)kDu1 ... Duk

f(x) (2.4)

for all k>0, x∈C, y∈V and u1, ...,uk∈C.

Remarks. (1) Since C is non-empty and open, it is not hard to see that `∈C∗\{0}
implies 〈`, x〉>0 for all x∈C. It then follows from (2.3) that either

(a) µ is supported on {0}, in which case f is constant, or else
(b) we have the strict inequality

(−1)kDu1 ... Duk
f(x)> 0 (2.5)

for all k>0, all u1, ...,uk∈C, and all x∈C.

(17) See also Nussbaum [87], Devinatz and Nussbaum [43], Hirsch [64, §VII.2], Glöckner [59, §16]
and Thomas [115].
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Furthermore, for u1, ...,uk in the closure of C, the left-hand side of (2.5) is either strictly
positive for all x∈C or else identically zero on C. Of course, the latter case can occur:
e.g. f(x1, x2)=e−x1 on (0,∞)2.

(2) In our definition of complete monotonicity, the cone C plays two distinct roles:
it is the domain on which f is defined, and it provides the direction vectors ui for which
the inequalities (2.1) hold. Choquet [39] elegantly separates these roles, and considers
functions on an arbitrary open set Ω⊆V that are completely monotone with respect
to the cone C. He then proves the integral representation (2.3) under the hypothesis
Ω+C⊆Ω. This is a beautiful generalization, but we shall not need it.

By virtue of Theorem 2.2, one way to test a function f for complete monotonicity is to
compute its inverse Laplace transform and ask whether it is non-negative and supported
on C∗. Of course, this procedure is not necessarily well defined, because the inverse
Laplace transform need not exist; moreover, if it does exist, it may need to be understood
as a distribution in the sense of Schwartz [104] rather than as a pointwise-defined function.
But we can say this: If f :C!R is the Laplace transform of a distribution T on V ∗, then
f is completely monotone if and only if T is positive (and hence a positive measure) and
supported on C∗. This follows from the injectivity of the Laplace transform on the space
D′(Rn) of distributions [104, p. 306]. Note that the complete monotonicity of f can fail
either because T fails to be positive, or because T fails to be supported on C∗. In the
former case, we can conclude that f is not completely monotone on any non-empty open
convex subcone C ′⊆C. In the latter case, T might possibly be supported on some larger
proper cone; but if it is not (e.g. if the smallest convex cone containing the support of T
is all of V ∗), then once again we can conclude that f is not completely monotone on any
non-empty open convex subcone C ′⊆C. And finally, if f is not the Laplace transform
of any distribution on V ∗, then it is certainly not the Laplace transform of a positive
measure, and hence is not completely monotone on any non-empty open convex subcone
C ′⊆C.

In the applications to be made in this paper, the functions f will typically be of the
form F−β , where F is a function (usually a polynomial) that is strictly positive on the
cone C and has an analytic continuation to the tube C+iV (for polynomials this latter
condition of course holds trivially). The following corollary of Theorem 2.2 shows that
the complete monotonicity of F−β on the real cone C implies the absence of zeros of F
in the complex tube C+iV .

Corollary 2.3. Let V be a finite-dimensional real vector space and let C be an
open convex cone in V. Let F be an analytic function on the tube C+iV that is real
and strictly positive on C. If F−β is completely monotone on C for at least one β>0,
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then F is non-vanishing on C+iV . (In particular, when V =Rn and C=(0,∞)n, the
function F has the half-plane property.)

Proof. Suppose that G=F−β is completely monotone on C; then by Theorem 2.2 it
has an analytic continuation to C+iV (call it also G). Now suppose that

S= {z ∈C+iV :F (z) = 0}

is non-empty. Choose a simply connected domainD⊂(C+iV )\S such thatD∩C 6=∅ and

D∩S 6=∅.(18) Then H=F−β is a well-defined analytic function on D (we take the branch
that is real and positive on D∩C). On the other hand, H coincides with G on the real
environment D∩C, so it must coincide with G everywhere in D. But limz!z0 |H(z)|=∞
for all z0∈
D∩S, which contradicts the analyticity of G on C+iV .

Remarks. (1) It also follows that the analytic function G=F−β defined on C+iV
is non-vanishing there.

(2) The hypothesis that F have an analytic continuation to C+iV is essential; it
cannot be derived as a consequence of the complete monotonicity of F−β on C. To see
this, take V =R and C=(0,∞) and consider F (x)=

(
1+ 1

2e
−x

)−1/β with any β>0.
(3) The converse of Corollary 2.3 is easily seen to be false: for instance, the uni-

variate polynomial P (x)=1+x2 has the half-plane property (i.e. is non-vanishing for
Rex>0), but P−β is not completely monotone on (0,∞) for any β>0. The same holds
for the bivariate multiaffine polynomial P (x1, x2)=1+x1x2. So the complete monotonic-
ity of P−β for some β>0 is strictly stronger than the half-plane property. It would be
interesting to know whether similar counterexamples can be found if P is required to be
homogeneous, or homogeneous and multiaffine.

In this paper we will typically consider a polynomial P that is strictly positive on an
open convex cone C, and we will ask for which values of β the function P−β is completely
monotone. We begin with a trivial observation: If P is a non-constant polynomial, then
P−β cannot be completely monotone on any non-empty open convex cone for any β<0
(because P grows at infinity in all directions except at most a variety of codimension 1);
and P−β is trivially completely monotone for β=0. So we can restrict attention to β>0.

(18) For instance, let Ω be a simply connected open subset of C whose closure is a compact subset
of C and which satisfies (Ω+iV )∩S 6=∅, fix a norm ‖ · ‖ on V and let

R = inf
x∈Ω
y∈V

x+iy∈S

‖y‖.

By compactness we must have R>0 (for otherwise we would have 	Ω∩S 6=∅, contrary to the hypothesis
that F >0 on C). Now take D=Ω+iBR, where BR={y∈V :‖y‖<R}.
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Given a function F :C!(0,∞)—for instance, a polynomial—we can ask about the
set

BF = {β > 0 :F−β is completely monotone on C}. (2.6)

Clearly BF is a closed additive subset of (0,∞). In particular, we either have BF⊆[ε,∞)
for some ε>0 or else BF =(0,∞). The following easy lemma [66], [17] characterizes the
latter case.

Lemma 2.4. Let V be a finite-dimensional real vector space, let C be an open convex
cone in V, and let F :C!(0,∞). Then the following are equivalent :

(a) F−β is completely monotone on C for all β>0;
(b) F−βi is completely monotone on C for a sequence {βi}∞i=1 of strictly positive

numbers converging to 0;
(c) − logF is conditionally completely monotone on C.

Proof. (a)⇒ (b) is trivial, and (b)⇒ (c) follows from

−logF = lim
β#0

F−β−1
β

(2.7)

and its derivatives with respect to x. Finally, (c)⇒ (a) follows from F−β=exp(−β logF )
and the fact that exp is absolutely monotone (i.e. has all derivatives non-negative) on
(−∞,∞).

Already for C=(0,∞) it seems to be a difficult problem to characterize in a useful
way the functions F described in Lemma 2.4, or even the subclass consisting of polynomi-
als P .(19) For polynomials P (x)=

∏
i(1+x/xi), a necessary condition from Corollary 2.3

is that P have the half-plane property, i.e. Rexi>0 for all i. A sufficient condition is
that all xi be real and positive; and for quadratic polynomials this condition is necessary
as well. But already for quartic polynomials the situation becomes more complicated:
for instance, we can take x1=a+bi, x2=a−bi and x3=x4=c with 0<c6a and b∈R, and
it is not hard to see that − logP is conditionally completely monotone on (0,∞).(20)

It also seems to be a difficult problem to characterize the closed additive subsets
S⊆(0,∞) that can arise as S=BF .

Example 2.5. Fix a>0, and let F (x)=(1+ae−x)−1. Then the function F (x)−β=
(1+ae−x)β is obviously completely monotone on (0,∞) whenever β∈{0, 1, 2, 3, ... }. On

(19) Functions f=F−1 for which fβ is completely monotone for all β>0 are sometimes called
logarithmically completely monotone [17].

(20) The function − log P is conditionally completely monotone on (0,∞) if and only if (log P )′=∑
i(x+xi)

−1 is completely monotone on (0,∞); and this happens if and only if its inverse Laplace

transform, which is g(t)=
∑

i e−txi , is non-negative on [0,∞).
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the other hand, if β /∈{0, 1, 2, 3, ... } we claim that F−β is not completely monotone.
Indeed, for 0<a61 the convergent binomial expansion

F (x)−β =
∞∑

k=0

ak

(
β

k

)
e−kx (2.8)

shows that F−β is the Laplace transform of the signed measure

∞∑
k=0

ak

(
β

k

)
δk,

which is non-negative if and only if β∈{0, 1, 2, 3, ... }. On the other hand, for a>1
the function F−β has singularities in the right half-plane at x=log a±iπ whenever
β /∈{0, 1, 2, 3, ... }, so it is not the Laplace transform of any distribution.

Example 2.6. It is an interesting problem [6], [10], [54], [56], [81], [125] to determine
the pairs (µ, λ)∈R2 for which the function

Fµ,λ(x) =x−µ(x2+1)−λ (2.9)

is completely monotone on (0,∞). It is easy to show that there is a function µ?(λ) such
that Fµ,λ is completely monotone if and only if µ>µ?(λ); furthermore, the function µ?

is subadditive. The state of current knowledge about µ? seems to be:

µ?(λ) =−2λ for λ6 0, (2.10)

λ<µ?(λ) 6min{2λ, 1} for 0<λ< 1, (2.11)

µ?(λ) = 2λ+o(λ) for λ # 0 (2.12)

µ?(λ) =λ for λ> 1. (2.13)

It seems to be an open problem even to prove that µ? is continuous.

3. Constructions

In this section we discuss some general constructions by which new polynomials P with
P−β completely monotone can be obtained from old ones. In the situations we have in
mind, the vector space V decomposes as a direct sum V =V1⊕V2 and the cone C is a
product cone C=C1×C2 (with C1⊂V1 and C2⊂V2). Since we shall be using the letters
A, B, C and D in this section to denote functions, we shall write our cones as C.

Let us begin with a trivial fact: a function f(x, y) that is completely monotone on
C1×C2 can be specialized by fixing y to a specific point in C2, and the resulting function
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will be completely monotone on C1. In particular, this fixed value can then be taken to
zero or infinity, and if the limit exists—possibly with some rescaling—then the limiting
function is also completely monotone on C1. Rather than stating a general theorem of
this kind, let us just give the special case that we will need, which concerns functions of
the form

f(x, y) = [A(x)+B(x) y]−β (3.1)

with V2=R and C2=(0,∞).

Lemma 3.1. Let V be a finite-dimensional real vector space and let C be an open
convex cone in V. Fix β>0, and let A,B: C!(0,∞). If (A+By)−β is completely
monotone on C×(0,∞), then A−β and B−β are completely monotone on C.

Proof. Restrict to fixed y∈(0,∞) and then take y#0; this proves that A−β is com-
pletely monotone. Restrict to fixed y∈(0,∞), multiply by yβ and then take y"∞; this
proves that B−β is completely monotone.

As we shall see later, this trivial lemma is an analytic version of deletion (y!0) or
contraction (y!∞) for graphs or matroids.

Let us also observe a simple but important fact about complete monotonicity for
functions defined on a product cone C1×C2.

Lemma 3.2. For i=1, 2, let Vi be a finite-dimensional real vector space and let Ci

be an open convex cone in Vi. Let f : C1×C2!R. Then the following are equivalent :
(a) f is completely monotone on C1×C2.
(b) For all k>0, all y∈C2, and all choices of vectors u1, ...,uk∈C2, the function

Fk,y,u1,...,uk
(x)≡ (−1)k ∂k

∂t1 ... ∂tk
f(x, y+t1u1+...+tkuk)

∣∣∣∣
t1=...=tk=0

(3.2)

is completely monotone on C1.
(c) For all k>0, all y∈C2, and all choices of vectors u1, ...,uk∈C2, there exists a

positive measure µk,y,u1,...,uk
on C∗1 such that

Fk,y,u1,...,uk
(x) =

∫
C∗1
e−〈`,x〉 dµk,y,u1,...,uk

(`). (3.3)

In particular, when V2=R and C2=(0,∞), (b) reduces to the statement that the
functions Fk,y(x)=(−1)k∂kf/∂yk are completely monotone on C1 for all k>0 and all
y>0, and (c) reduces analogously.

Proof. The equivalence (a)⇔ (b) is a trivial consequence of the definition (2.1),
while (b)⇔ (c) follows immediately from the the Bernstein–Hausdorff–Widder–Choquet
theorem (Theorem 2.2).
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Statement (c) can be rephrased loosely as saying that the inverse Laplace transform
of f(x, y) with respect to x is a completely monotone function of y∈C2. (To make
this more precise, one should add the same qualifications as in the paragraph after
Theorem 2.2.)

One important application of this lemma concerns functions of the form (3.1).

Lemma 3.3. Let V be a finite-dimensional real vector space and let C be an open
convex cone in V . Fix β>0, and let A,B: C!(0,∞). Then the following are equivalent :

(a) (A+By)−β is completely monotone on C×(0,∞).
(b) B−β exp(−tA/B) is completely monotone on C for all t>0.
(c) B�(A+zB)−(β+�) is completely monotone on C for all �>−β and all z>0.
(d) Bk(A+zB)−(β+k) is completely monotone on C for all integers k>0 and all

z>0.

Proof. We have the Laplace-transform formula

(A+By)−β =
∫ ∞

0

e−ty t
β−1

Γ(β)
B−β exp

(
− tA
B

)
dt. (3.4)

Therefore, Lemma 3.2 (a)⇔ (c) with C1=(0,∞) and C2=C proves the equivalence of (a)
and (b).

Now assume that B−β exp(−tA/B) is completely monotone on C for all t>0. Then
we can multiply by e−zttp−1/Γ(p) for any p>0 and integrate over t∈(0,∞), and the
result will be completely monotone. This (together with a trivial evaluation at t=0 to
handle p=0) shows that (b)⇒ (c).

(c)⇒ (d) is trivial.
The equivalence of (a) and (d) follows from Lemma 3.2 (a)⇔ (b), used with C1=C

and C2=(0,∞).

Corollary 3.4. Let V be a finite-dimensional real vector space, let C be an open
convex cone in V , and let A,B: C!(0,∞). Define

BB = {β > 0 :B−β is completely monotone on C}, (3.5)

BA+By = {β > 0 : (A+By)−β is completely monotone on C×(0,∞)}. (3.6)

Then BA+By+BB⊆BA+By.
In particular, if BB=(0,∞), then BA+By is either the empty set or all of (0,∞) or

a closed interval [β0,∞) with β0>0.

Proof. This follows immediately from Lemma 3.3 (a)⇔ (b): for if β∈BA+By and
λ∈BB , then B−β exp(−tA/B) and B−λ are both completely monotone on C, hence so is
their product, and thus β+λ∈BA+By.
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Lemma 3.3 leads to the following extremely important result, which (as we shall see
later) is an analytic version of parallel connection for graphs or matroids.

Proposition 3.5. Let V be a finite-dimensional real vector space and let C be an
open convex cone in V . Fix β>0, and let A,B,C,D: C!(0,∞). Suppose that

(A+By)−β and (C+Dy)−β

are completely monotone on C×(0,∞). Then the same is true of (AD+BC+BDy)−β.

Proof. By Lemma 3.3, we have that B−β exp(−tA/B) and D−β exp(−tC/D) are
completely monotone on C for all t>0. Hence the same is true of their product, which
is (BD)−β exp[−t(AD+BC)/BD]. But then using Lemma 3.3 again (this time in the
reverse direction), we conclude that (AD+BC+BDy)−β is completely monotone on
C×(0,∞).

We also have an analytic version of series connection for graphs or matroids, but
only for β> 1

2 .

Proposition 3.6. Let V be a finite-dimensional real vector space and let C be an
open convex cone in V . Fix β> 1

2 , and let A,B,C,D: C!(0,∞). Suppose that

(A+By)−β and (C+Dy)−β

are completely monotone on C×(0,∞). Then the same is true of [AC+(AD+BC)y]−β.

To prove Proposition 3.6, we begin with a lemma that we think is of independent
interest; both the sufficiency and the necessity will play important roles for us.

Lemma 3.7. For β∈R and λ>0, the function

Fβ,λ(u, v) = (u+v)−β exp
(
−λ uv

u+v

)
(3.7)

is completely monotone on (0,∞)2 if and only if β> 1
2 .

In particular, for β> 1
2 there exists a positive measure µβ,λ on [0,∞)2 such that

(u+v)−β exp
(
−λ uv

u+v

)
=

∫
[0,∞)2

e−t1u−t2v dµβ,λ(t1, t2). (3.8)

Proof. “If”: Since (u+v)−(β−1/2) is completely monotone when β> 1
2 , it suffices to

prove the complete monotonicity for β= 1
2 . But this follows immediately from the identity

(u+v)−1/2 exp
(
−λ uv

u+v

)
=

1√
π

∫ ∞

−∞
exp

[
−

(
s+

√
λ

2

)2

u−
(
s−

√
λ

2

)2

v

]
ds, (3.9)
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which is easily verified by completing the square in the Gaussian integral. The statement
about the measure µβ,λ then follows from the Bernstein–Hausdorff–Widder–Choquet
theorem (Theorem 2.2).

“Only if”: If Fβ,λ is completely monotone, then so is Fβ′,λ for all β′>β; so it suffices
to prove the failure of complete monotonicity for 0<β< 1

2 . Now, by Lemma 3.2, Fβ,λ is
completely monotone on (0,∞)2 if and only if the functions

Fβ,λ;k,v(u) = (−1)k ∂k

∂vk
Fβ,λ(u, v) (3.10)

are completely monotone on (0,∞) for all k>0 and all v>0, or equivalently if their
inverse Laplace transforms with respect to u,

Gβ,λ;k,v(t) = (−1)k ∂k

∂vk

[(
t

λ

)(β−1)/2

e−(t+λ)vv1−βIβ−1

(
2v
√
λt

)]
(3.11)

(see [48, p. 245, eq. 5.6(35)]), are non-negative for all k>0 and all t, v>0 (here Iβ−1 is
the modified Bessel function). For k=0 this manifestly holds for all β>0; but let us now
show that for k=1 it holds only for β> 1

2 . We have

Gβ,λ;1,v(t) =
(
t

λ

)(β−1)/2

e−(t+λ)vv1−β

×
[(
t+λ+

β−1
v

)
Iβ−1

(
2v
√
λt

)
−2
√
λtI ′β−1

(
2v
√
λt

)]
,

(3.12)

and we need the term in square brackets to be non-negative for all t, v>0. Write x=2v
√
λt

and eliminate v in favor of x; we need

t+2
√
λt

[
β−1
x

−
I ′β−1(x)
Iβ−1(x)

]
+λ> 0 (3.13)

for all t, x>0. This quadratic in
√
t is non-negative for all t>0 if and only if

β−1
x

−
I ′β−1(x)
Iβ−1(x)

>−1. (3.14)

But using the large-x asymptotic expansion

d

dx
log Iβ−1(x) = 1− 1

2x
+O

(
1
x2

)
, (3.15)

we see that
β−1
x

−
I ′β−1(x)
Iβ−1(x)

=−1+
β− 1

2

x
+O

(
1
x2

)
, (3.16)

which is <−1 for all sufficiently large x whenever β< 1
2 .
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Remarks. (1) It is obvious by rescaling of u and v that, for any given β, the functions
Fβ,λ are either completely monotone for all λ>0 or for none.

(2) The appeal to Bernstein–Hausdorff–Widder–Choquet’s theorem can be avoided:
for β= 1

2 , the integral representation (3.9) already provides the desired measure µ1/2,λ;
and for β> 1

2 , (3.9) together with

(u+v)−(β−1/2) =
∫ ∞

0

tβ−3/2

Γ
(
β− 1

2

)e−t(u+v) dt (3.17)

represents µβ,λ as the convolution of two positive measures. Indeed, multiplying (3.9)
by (3.17), one obtains after a straightforward change of variables the explicit formula

µβ,λ(t1, t2) =
(4λ)1−β

Γ
(

1
2

)
Γ
(
β− 1

2

)P (t1, t2, λ)β−3/2χ(t1, t2, λ), (3.18)

where
P (t1, t2, λ) = 2(t1t2+λt1+λt2)−(t21+t22+λ2) (3.19)

and

χ(t1, t2, λ) =
{

1, if t1, t2 > 0 and |
√
t1−

√
t2|6

√
λ6

√
t1+

√
t2,

0, otherwise.
(3.20)

The constraint χ(t1, t2, λ) 6=0 states simply that
√
t1,

√
t2 and

√
λ form the sides of

a triangle; and P (t1, t2, λ) is precisely 16 times the square of the area of this triangle
(Heron’s formula [41, §3.2]).(21) In view of these explicit formulae, the proof of Lemma 3.7
is in fact completely elementary.

(3) It would be interesting to know whether Lemma 3.7 can be generalized to
other ratios of elementary symmetric polynomials, e.g. E−β

r,n exp(−λEr+1,n/Er,n). By
Lemma 3.3 this would determine the complete monotonicity of E−β

r+1,n+1.

Proof of Proposition 3.6. By Lemma 3.3, B−β exp(−t1A/B) andD−β exp(−t2C/D)
are completely monotone on C for all t1, t2>0. Hence the same is true of their product for
any choice of t1, t2>0. We now use the identity (3.8), multiplied on both sides by (BD)−β ,
with u=A/B and v=C/D. This shows that (AD+BC)−β exp[−λAC/(AD+BC)] is
completely monotone on C for all λ>0. But then using Lemma 3.3 again (this time in
the reverse direction), we conclude that [AC+(AD+BC)y]−β is completely monotone
on C×(0,∞).

(21) It is curious that similar expressions, involving the area of a triangle in terms of its sides, arise
also in Sonine’s integral for the product of three Bessel functions [122, p. 411, eq. 13.46 (3)], [7, p. 36,
eq. (4.39) and p. 40]—a formula that Szegő [113] employed in one version of his non-negativity proof for
(1.1) in the case n=3. Probably this is not an accident; it would be interesting to understand the precise
connection between Sonine’s formula and (3.8)/(3.18) (cf. also (3.21) below).
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Using Lemma 3.7 we can also show that the spanning-tree polynomial of the 3-cycle
— or equivalently, the elementary symmetric polynomial of degree 2 in three variables—
has the property that P−β is completely monotone on (0,∞)3 if and only if β> 1

2 .

Proposition 3.8. The function F (x1, x2, x3)=(x1x2+x1x3+x2x3)−β is completely
monotone on (0,∞)3 if and only if β=0 or β> 1

2 .

Proof. As always, F is completely monotone for β=0 and not completely monotone
for β<0, so it suffices to consider β>0. Using Lemma 3.3 with A=x1x2, B=x1+x2 and
y=x3, we see that F is completely monotone on (0,∞)3 if and only if the function Fβ,λ

defined in (3.7) is completely monotone for all λ>0. But by Lemma 3.7, this occurs if
and only if β> 1

2 .

Remarks. (1) We shall later give two further independent proofs of Proposition 3.8:
one based on harmonic analysis on the cone of positive-definite m×m real symmetric
matrices specialized to m=2 (Corollary 1.5, which follows from results to be proved in
§4, together with Proposition 7.9 (a)), and one based on harmonic analysis on the Lorentz
cone in Rn specialized to n=3 (Corollary 1.10, which follows from results to be proved
in §5). The point here is that the Jordan algebra Sym(2,R)'R×R2 can be viewed as a
member of two different families of Jordan algebras: Sym(m,R) and R×Rn−1 [52, p. 98].

(2) Proposition 3.8 implies that the property stated in Proposition 3.6 does not
hold for 0<β< 1

2 . Indeed, it suffices to take C=(0,∞)2, A=x1, B=1, C=x2 and D=1,
leading to the function (x1x2+x1y+x2y)−β .

(3) Proposition 3.8 is, of course, just Theorem 1.1′ restricted to the 3-cycle G=K3.
In particular it implies Szegő’s [113] result (except the strict positivity) for the polynomial
(1.1) in the special case n=3.

(4) Combining (3.4) with (3.8)/(3.18), we obtain for β> 1
2 the formula

(x1x2+x1x3+x2x3)−β =
41−β

Γ
(

1
2

)
Γ
(

1
2

)
Γ(β)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

e−t1x1−t2x2−t3x3P (t1, t2, t3)
β−3/2
+ dt1 dt2 dt3,

(3.21)

which provides an explicit elementary proof of the direct (“if”) half of Proposition 3.8.
See also Remark 1 in §4.3 for an alternative derivation of (3.21), and see Corollary 5.8
for a generalization from E2,3 to E2,n.

The following generalization of Lemma 3.7 is an analytic version of series extension
of a single edge.
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Lemma 3.9. Let V be a finite-dimensional real vector space and let C be an open
convex cone in V. Let f be completely monotone on C×(0,∞), and let β> 1

2 . Then the
function

f#
β (x, y, z) = (y+z)−βf

(
x,

yz

y+z

)
(3.22)

is completely monotone on C×(0,∞)2.

Proof. By the Bernstein–Hausdorff–Widder–Choquet theorem (Theorem 2.2) and
linearity, it suffices to prove the lemma for f(x, y)=exp(−〈`, x〉−λy) with `∈C∗ and
λ>0. The variable x now simply goes for the ride, so that the claim follows immediately
from Lemma 3.7.

4. Determinantal polynomials

In this section we consider polynomials defined by determinants as in (1.4). We begin
with some preliminary algebraic facts about such determinantal polynomials. After this,
we turn to the analytic results that are our principal concern. We first prove a simple
abstract version of the half-plane property for determinantal polynomials. Then we turn
to the main topic of this section, namely, the proofs of Theorems 1.2–1.4.

4.1. Algebraic preliminaries

First, some notation: We write [m]={1, ...,m}. If A=(aij)m
i,j=1 is an m×m matrix and

I, J⊆[m], we denote by AIJ the submatrix of A corresponding to the rows I and the
columns J , all kept in their original order. We write Ic to denote the complement of I in
[m]. Then ε(I, J)=(−1)

∑
i∈I i+

∑
j∈J j is the sign of the permutation that takes IIc into

JJc.

We begin with a simple formula for the determinant of the sum of two matrices,
which ought to be found in every textbook of matrix theory but seems to be surprisingly
little known.(22)

(22) This formula can be found in [78, pp. 162–163, Exercise 6] and [76, pp. 221–223]. It can also
be found—albeit in an ugly notation that obscures what is going on—in [78, pp. 145–146 and 163–164]
[103, pp. 31–33] [97, pp. 281–282]; and in an even more obscure notation in [3, p. 102, item 5]. We
would be grateful to readers who could supply additional references. The proof here is taken from [29,
Lemma A.1].

We remark that, by the same method, one can prove a formula analogous to (4.1) in which all three
occurrences of determinant are replaced by permanent and the factor ε(I, J) is omitted.
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Lemma 4.1. Let A and B be m×m matrices with elements in a commutative ring
R. Then(23)

det(A+B) =
∑

I,J⊆[m]

|I|=|J|

ε(I, J)(detAIJ)(detBIcJc). (4.1)

Proof. Using the definition of determinant and expanding the products, we have

det(A+B) =
∑

π∈Sm

sgn(π)
∑

I⊆[m]

∏
i∈I

aiπ(i)

∏
i′∈Ic

bi′π(i′), (4.2)

where the outermost sum runs over all permutations π of [m]. Define now J=π[I]. Then
we can interchange the order of summation:

det(A+B) =
∑

I,J⊆[m]

|I|=|J|

∑
π∈Sm

π[I]=J

sgn(π)
∏
i∈I

aiπ(i)

∏
i′∈Ic

bi′π(i′). (4.3)

Suppose now that |I|=|J |=k, and let us write I={i1, ..., ik} and J={j1, ..., jk} where
the elements are written in increasing order, and likewise Ic={i′1, ..., i′m−k} and J=
{j′1, ..., j′m−k}. Let π′∈Sk and π′′∈Sm−k be the permutations defined so that

π′(α) =β !π(iα) = jβ , (4.4)

π′′(α) =β !π(i′α) = j′β . (4.5)

It is easy to see that sgn(π)=sgn(π′) sgn(π′′)ε(I, J). The formula (4.1) then follows by
using twice again the definition of determinant.

The following special case is frequently useful.

Corollary 4.2. Let A and B be m×m matrices with elements in a commutative
ring R, with at least one of them being a diagonal matrix. Then

det(A+B) =
∑

I⊆[m]

(detAII)(detBIcIc). (4.6)

Proof. If A is diagonal, then detAIJ =0 whenever I 6=J , and likewise for B.

Remark. We show in [105, Appendix A] that Corollary 4.2 generalizes to quater-
nions, but Lemma 4.1 does not; see [105, Proposition A.5] and the following remark.

(23) The determinant of an empty matrix is of course defined to be 1. This makes sense in the
present context even if the ring R lacks an identity element: the term I=J=∅ contributes det B to the
sum (4.1), while the term I=J=[m] contributes det A.
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Iterating Lemma 4.1, we obtain a formula for the determinant of a sum of n matrices:

det
( n∑

k=1

Ak

)
=

∑
I,J

ε(I,J)
n∏

k=1

det[(Ak)IkJk
], (4.7)

where the sum runs over ordered partitions I=(I1, ..., In) and J=(J1, ..., Jn) of [m] into
n possibly empty blocks satisfying |Ik|=|Jk| for all k; here ε(I,J) is the sign of the
permutation taking I1I2 ... In into J1J2 ... Jn.

We can now say something about determinantal polynomials of the type (1.4). Recall
that if A is a (not necessarily square) matrix with elements in a commutative ring R,
then the (determinantal) rank of A is defined to be the largest integer r such that A has
a non-zero r×r minor; if no such minor exists (i.e., A=0), we say that A has rank 0.

Proposition 4.3. Let A1, ..., An be m×m matrices with elements in a commutative
ring R, and let x1, ..., xn be indeterminates. Then

P (x1, ..., xn) =det
( n∑

i=1

xiAi

)
(4.8)

is a homogeneous polynomial of degree m with coefficients in R. Furthermore, the degree
of P in the variable xi is 6rank(Ai). (In particular, if each Ai is of rank at most 1,
then P is multiaffine.)

Proof. Both assertions about P are immediate consequences of (4.7).

We are grateful to Andrea Sportiello for drawing our attention to Lemma 4.1 and
its proof, and for showing us this elegant proof of Proposition 4.3.

An analogue of Proposition 4.3 holds for Hermitian quaternionic matrices, albeit
with a different proof: here the determinant is the Moore determinant, and “rank”
means left row rank (= right column rank); moreover, the polynomial P (x1, ..., xn) is
defined initially by letting x1, ..., xn be real numbers. See [105, Proposition A.8].

4.2. The half-plane property

Now we take an analytic point of view, so that the commutative ring R will be either R
or C.

In this subsection we make a slight digression from our main theme, by showing that
if the Ai are complex Hermitian positive-semidefinite matrices (this of course includes
the special case of real symmetric positive-semidefinite matrices), then the determinantal
polynomial (4.8) has the half-plane property. This turns out to be an easy extension of
the proof of [37, Theorem 8.1 (a)]. Indeed, we can go farther, by first stating the result in
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a clean abstract way, and then deducing the half-plane property for (4.8) as an immediate
corollary.

Proposition 4.4. Let V be the real vector space Herm(m,C) of complex Hermitian
m×m matrices, and let C⊂V be the cone Πm(C) of positive-definite matrices. Then the
polynomial P (A)=detA is non-vanishing on the tube C+iV .

(Of course, by restriction the same result holds when V is the real vector space
Sym(m,R) of real symmetric m×m matrices and C⊂V is the cone Πm(R) of positive-
definite matrices.)

Corollary 4.5. Let A1, ..., An be complex Hermitian positive-semidefinite m×m
matrices. Then the polynomial

P (x1, ..., xn) =det
( n∑

i=1

xiAi

)
(4.9)

has the half-plane property, that is, either P≡0 or P (x1, ..., xn) 6=0 whenever Rexi>0
for all i.

First proof of Proposition 4.4. Let A∈C+iV , and let ψ be a non-zero vector in Cm.
Then the Hermitian form ψ∗Aψ=

∑m
j,k=1 ψ̄jAjkψk has strictly positive real part, and in

particular is non-zero; it follows that Aψ 6=0. Since this is true for every non-zero ψ∈Cm,
we conclude that kerA={0}, i.e. A is non-singular; and this implies that (and is in fact
equivalent to) detA 6=0.

Second proof of Proposition 4.4. [24, Lemma 4.1]. Write A=P+iQ with P positive-
definite and Q Hermitian. Then P has a positive-definite square root P 1/2, and we have

det(P+iQ) =det[P 1/2(I+iP−1/2QP−1/2)P 1/2] (4.10)

= (detP ) det(I+iP−1/2QP−1/2). (4.11)

This is non-zero because all the eigenvalues of I+iP−1/2QP−1/2 have real part equal
to 1.

Proof of Corollary 4.5. If at least one of the matrices A1, ..., An is strictly positive-
definite, then

∑n
j=1 xjAj lies in C+iV whenever Rexj>0 for all j. Proposition 4.4 then

implies that P (x1, ..., xn) 6=0.

The general case can be reduced to this one by replacing Aj by Aj +εI (ε>0) and
taking ε#0. By Hurwitz’s theorem, the limiting function is either non-vanishing on the
product of open right half-planes or else is identically zero.
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Remarks. (1) The first proof of Proposition 4.4 is an abstraction of the proof of
Choe, Oxley, Sokal and Wagner [37, Theorem 8.1 (a)]; it can also be found in Faraut and
Korányi [52, Lemma X.1.2] and, for V =Sym(m,R), in Hörmander [65, p. 85]. Faraut and
Korányi furthermore observe that A 7!A−1 is an involutive holomorphic automorphism
of the tube C+iV , having I as its unique fixed point; and these facts hold not only for
Herm(m,C) but in fact for any simple Euclidean Jordan algebra [52, Theorem X.1.1].

(2) It is natural to ask whether there is an analogous result for permanents, which
would extend [37, Theorem 10.2] in the same way that Proposition 4.4 extends [37,
Theorem 8.1 (a)]. The most obvious such extension would be: Let V be the vector space
Rm×n of real m×n matrices (m6n) and let C⊂V be the cone (0,∞)m×n of matrices
with strictly positive entries. Then the polynomial Q(A)=perA is non-vanishing on the
tube C+iV . But this is simply false: for instance, for m=n=2 we have

per
(

1+i 1−i
1−i 1+i

)
=0.

4.3. Proofs of Theorems 1.2–1.4

Let us now turn to the main results of this section, namely, Theorems 1.3 and 1.4 and
their consequence, Theorem 1.2. The proof of all these results turns out to be surprisingly
easy; and all but the “only if” part of Theorems 1.3 and 1.4 is completely elementary.

In order to make the elementary nature of the proof as transparent as possible, we
proceed as follows: First we prove the direct (“if”) half of Theorem 1.3 (a) and (b) by
completely elementary methods, without reference to Euclidean Jordan algebras. Then
we prove Theorem 1.4: we will see that the proof of the direct half of this theorem is a
straightforward abstraction of the preceding elementary proof in the concrete cases; only
the converse (“only if”) half is really deep.

Proof of the direct half of Theorem 1.3 (a) and (b). Let us begin with the real case
and β= 1

2 . We use the Gaussian integral representation

(detA)−1/2 =
∫

Rm

exp(−xTAx)
m∏

j=1

dxj√
π
, (4.12)

where A is a real symmetric positive-definite m×m matrix and we have written x=
(x1, ..., xm)∈Rm. This exhibits (detA)−1/2 as the Laplace transform of a positive mea-
sure on Πm(R)∗=Πm(R), namely, the push-forward of Lebesgue measure dx/πm/2 on
Rm by the map x 7!xxT. (We remark that this measure is supported on positive-
semidefinite matrices of rank 1.) Alternatively, one can see directly, by differentiating
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under the integral sign in (4.12), that the k-fold directional derivative of (detA)−1/2

in directions B1, ..., Bk∈Πm(R) has sign (−1)k, because each derivative brings down a
factor −xTBix60.

Since a product of completely monotone functions is completely monotone, it follows
immediately that (detA)−N/2 is completely monotone for all positive integers N . We
remark that this can alternatively be seen from the Gaussian integral representation

(detA)−N/2 =
∫

(Rm)N

exp
(
−

N∑
α=1

x(α)TAx(α)

) N∏
α=1

m∏
j=1

dx
(α)
j√
π
, (4.13)

where we have introduced vectors x(α)∈Rm for α=1, ..., N . If we assemble these vectors
into an m×N matrix X, then we have exhibited (detA)−N/2 as the Laplace transform of
a positive measure on Πm(R), namely, the push-forward of Lebesgue measure dX/πmN/2

on Rm×N by the map X 7!XXT. This measure is supported on positive-semidefinite
matrices of rank min(N,m).

Finally, for real values of β> 1
2 (m−1), we use the integral representation(24)

(detA)−β =
[
πm(m−1)/4

m−1∏
j=0

Γ
(
β− j

2

)]−1 ∫
B>0

e− tr(AB)(detB)β−(m+1)/2 dB, (4.14)

where the integration runs over real symmetric positive-definite m×m matrices B, with
measure dB=

∏
16i6j6m dBij . This exhibits (detA)−β as the Laplace transform of a

positive measure on Πm(R).
The proof in the complex case is completely analogous. For β=1 we use the Gaussian

integral representation

(detA)−1 =
∫

Cm

exp(−z̄TAz)
m∏

j=1

(dRe zj)(d Im zj)
π

, (4.15)

where A is a complex Hermitian positive-definite matrix, z=(z1, ..., zm)∈Cm and ¯ de-
notes complex conjugation. For real values of β>m−1, we use the integral representa-
tion(25)

(detA)−β =
[
πm(m−1)/2

m−1∏
j=0

Γ(β−j)
]−1 ∫

B>0

e− tr(AB) (detB)β−m dB, (4.16)

(24) See e.g. [69], [108, pp. 585–586], [114, p. 41], [49, Lemma 1], or [5, Theorem 7.2.2 and Corol-
lary 7.2.4].

(25) See e.g. [60, eqq. (5.13)–(5.40)]. Please note that [5, Problem 7.9] and [61, eq. (1.2)] appear to
contain errors in the normalization constant.
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where the integration runs over complex Hermitian positive-definite m×m matrices B,
with measure

dB=
( m∏

i=1

dBii

) ∏
16i<j6m

(dReBij)(d ImBij). (4.17)

Remarks. (1) By applying (4.14) for the case m=2 to

A=
(
x1+x3 x3

x3 x2+x3

)
,

we obtain after a bit of algebra an alternative derivation of the formula (3.21) for

(x1x2+x1x3+x2x3)−β ,

valid for β> 1
2 . In particular it implies the direct (“if”) half of Proposition 3.8, and

hence also Szegő’s [113] result (except the strict positivity) for the polynomial (1.1) in
the special case n=3.

(2) Similarly, by combining (4.16)/(4.17) for the case m=2 with (1.6)/(1.7), we
obtain after some algebra an explicit formula for E2,4(x)−β , valid for β>1,

(x1x2+x1x3+x1x4+x2x3+x2x4+x3x4)−β =
33/2−β

2πΓ(β−1)Γ(β)

×
∫ ∞

0

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−t1x1−t2x2−t3x3−t4x4Q(t1, t2, t3, t4)
β−2
+ dt1 dt2 dt3 dt4,

(4.18)

where

Q(t1, t2, t3, t4) = (t1t2+t1t3+t1t4+t2t3+t2t4+t3t4)−(t21+t22+t23+t24). (4.19)

This formula provides an explicit elementary proof of the direct half of Corollary 1.6—
and in particular solves the Lewy–Askey problem—in the same way that (3.21) provides
an explicit elementary proof of the direct half of Proposition 3.8. Note also that by
setting x4=0 in (4.18) and performing the integral over t4, we obtain (3.21). Finally, see
Corollary 5.8 for a generalization from E2,3 and E2,4 to E2,n.

As preparation for the proof of Theorem 1.4, let us review some facts from the theory
of harmonic analysis on Euclidean Jordan algebras (see [52] for definitions and further
background).

Let V be a simple Euclidean (real) Jordan algebra of dimension n and rank r,
with Peirce subspaces Vij of dimension d; recall that n=r+ 1

2dr(r−1). It is illuminating
(though not logically necessary) to know that there are precisely five cases [52, p. 97]:

(a) V =Sym(m,R), the space of m×m real symmetric matrices (d=1, r=m);
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(b) V =Herm(m,C), the space of m×m complex Hermitian matrices (d=2, r=m);
(c) V =Herm(m,H), the space of m×m quaternionic Hermitian matrices (d=4,

r=m);
(d) V =Herm(3,O), the space of 3×3 octonionic Hermitian matrices (d=8, r=3);

and
(e) V =R×Rn−1 (d=n−2, r=2).

We denote by (x|y)=tr(xy) the inner product on V , where tr is the Jordan trace and xy
is the Jordan product.(26)

Let Ω⊂V be the positive cone (i.e. the interior of the set of squares in V , or equiva-
lently the set of invertible squares in V ); it is open, convex and self-dual.(27) We denote
by ∆(x) the Jordan determinant on V : it is a homogeneous polynomial of degree r on V ,
which is strictly positive on Ω and vanishes on ∂Ω.(28) We have the following fundamental
Laplace-transform formula [52, Corollary VII.1.3]: for y∈Ω and Reα>(r−1) 1

2d=n/r−1,∫
Ω

e−(x|y)∆(x)α−n/r dx=ΓΩ(α)∆(y)−α, (4.20)

where(29)

ΓΩ(α) = (2π)(n−r)/2
r−1∏
j=0

Γ
(
α−j d

2

)
. (4.21)

Thus, for Reα>(r−1) 1
2d, the function ∆(x)α−n/r/ΓΩ(α) is locally integrable on 	Ω

and polynomially bounded; it therefore defines a tempered distribution Rα on V by the

(26) In cases (a) and (b), we have (A|B)=tr(AB); in case (c) we have (A|B)= 1
2

tr(AB+BA); and

in case (e) we have ((x0,x)|(y0,y))=2(x0y0+x·y).
(27) In cases (a)–(d) the positive cone Ω is the cone of positive-definite matrices; in case (e) it is

the Lorentz cone {(x0,x):x0>
√

x2}.
(28) In cases (a) and (b), the Jordan determinant is the ordinary determinant; in case (c) it is the

Moore determinant (see [105, Appendix A]); in case (d) it is the Freudenthal determinant [55], [45], [13],
[82]; and in case (e) it is the Lorentz quadratic form ∆(x0,x)=x2

0−x2.
(29) Here dx is Lebesgue measure on the Euclidean space V with inner product ( · | ·). Thus in

case (a) we have (B |B)=
∑m

i=1 B2
ii+2

∑
16i<j6m B2

ij , so that

dx =

( m∏
i=1

dBii

) ∏
16i<j6m

√
2dBij =2m(m−1)/4 dB,

showing that (4.20)/(4.21) agrees with (4.14). Likewise, in case (b) we have

(B |B)=
m∑

i=1

B2
ii+2

∑
16i<j6m

|Bij |2,

so that

dx =

( m∏
i=1

dBii

) ∏
16i<j6m

(
√

2d Re Bij)(
√

2d Im Bij)= 2m(m−1)/2 dB,

showing that (4.20)/(4.21) agrees with (4.16).
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usual formula

Rα(ϕ) =
1

ΓΩ(α)

∫
Ω

ϕ(x) ∆(x)α−n/r dx for ϕ∈S(V ). (4.22)

Using (4.20), a beautiful argument—which is a special case of I. Bernstein’s general
method for analytically continuing distributions of the form Pλ

Ω [19], [20]—shows that
the distributions Rα can be analytically continued to the whole complex α-plane, leading
to the following result.

Theorem 4.6. ([52, Theorem VII.2.2 et seq.]) The distributions Rα can be ana-
lytically continued to the whole complex α-plane as a tempered-distribution-valued entire
function of α. The distributions Rα have support contained in 	Ω and have the following
properties:

R0 = δ, (4.23)

Rα∗Rβ =Rα+β , (4.24)

∆(∂/∂x)Rα =Rα−1, (4.25)

∆(x)Rα =
( r−1∏

j=0

(
α−j d

2

))
Rα+1 (4.26)

(here δ denotes the Dirac measure at 0). Finally, the Laplace transform of Rα is

(LRα)(y) =∆(y)−α (4.27)

for y in the complex tube Ω+iV .(30)

The distributions {Rα}α∈C constructed in Theorem 4.6 are called the Riesz distri-
butions on the Euclidean Jordan algebra V .

It is fairly easy to find a sufficient condition for a Riesz distribution to be a positive
measure, as is stated in the following proposition.

Proposition 4.7. ([52, Proposition VII.2.3]; see also [77], [22] and [63, §3.2])
(a) For α= 1

2kd with k=0, 1, ..., r−1, the Riesz distribution Rα is a positive measure
that is supported on the set of elements of 	Ω of rank exactly k (which is a subset of ∂Ω).

(b) For α> 1
2 (r−1)d, the Riesz distribution Rα is a positive measure that is sup-

ported on Ω and given there by a density (with respect to Lebesgue measure) that lies in
L1

loc(	Ω).

(30) The property (4.26) is not explicitly stated in [52], but for Re α> 1
2
(r−1)d it is an immediate

consequence of (4.21) and (4.22), and then for other values of α it follows by analytic continuation (see
also [63, Proposition 3.1 (iii) and Remark 3.2]).
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Indeed, part (b) is immediate from the definition (4.22), while part (a) follows by
reasoning that abstracts the constructions given in (4.12)/(4.13) and (4.15) above for the
special cases of real symmetric and complex Hermitian matrices.(31)

It is a highly non-trivial fact that the converse of Proposition 4.7 also holds.

Theorem 4.8. ([52, Theorem VII.3.1]) The Riesz distribution Rα is a positive mea-
sure if and only if α=0, 1

2d, ...,
1
2 (r−1)d or α> 1

2 (r−1)d.

This fundamental fact was first proven by Gindkin [58] (see also [16] and [70]) and
is generally considered to be deep. However, there now exist two elementary proofs: one
that is a fairly simple but clever application of Theorem 4.6 and Proposition 4.7 [106],
[31], [110, Appendix], and another that analyzes the integrability of ∆(x)α−n/r near ∂Ω
and characterizes those α∈C for which Rα is a locally finite complex measure [110]. In
[105, Appendix B] we give the first of these proofs; it is amazingly short.

Using Proposition 4.7 for the case d=4, we can prove the direct half of Theo-
rem 1.3 (c) [i.e. the quaternionic case] by complete analogy with the elementary proofs
given above for the real and complex cases. Moreover, with Theorem 4.8 in hand, the
proof of Theorem 1.4 (and hence also of the converse half of Theorem 1.3) becomes
utterly trivial.

Proof of Theorem 1.4. Equation (4.27) writes ∆(y)−α as the Laplace transform of
the distribution Rα, which is supported on 	Ω (this is the closed dual cone of Ω since
Ω is self-dual). By the Bernstein–Hausdorff–Widder–Choquet theorem (Theorem 2.2),
it follows that the map y 7!∆(y)−α is completely monotone on Ω if and only if Rα is
a positive measure; moreover, if Rα is not a positive measure, then this map is not
completely monotone on any non-empty open convex subcone Ω′⊆Ω. So Theorem 1.4 is
an immediate consequence of Theorem 4.8.

Remark. The formulae in this section arise in multivariate statistics in connection
with the Wishart distribution [85], [5, Chapter 7]; in recent decades some statisticians
have introduced the formalism of Euclidean Jordan algebras as a unifying device [22],
[31], [79], [32], [80]. These formulae also arise in quantum field theory in studying the
analytic continuation of Feynman integrals to “complex space-time dimension” [111],
[21], [49], [30].

(31) Thus, for integer N>0 in the real symmetric (resp. complex Hermitian) case, the positive mea-
sure RN/2 is supported on the positive-semidefinite matrices of rank min(N, m) [52, Proposition VII.2.3]

and is nothing other than the push-forward of Lebesgue measure on Rm×N (resp. Cm×N ) by the map
X 7!XXT (resp. X 7!XX∗), as discussed above during the proof of the direct half of Theorem 1.3 (a).
For N>m this is a straightforward calculation [111], [21], [85], [49], [5, Chapter 7], which shows the
equivalence of (4.13) and (4.14) (or the corresponding formulae in the complex case); for 06N6m−1
it follows by comparing (4.13) with (4.27) and invoking the injectivity of the Laplace transform on the
space of distributions [104, p. 306]; see [52, Proposition VII.2.4].
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Theorem 1.3 is an immediate consequence of Theorem 1.4, once we use the fact
that the Jordan determinant coincides with the ordinary determinant on Sym(m,R) and
Herm(m,C) and with the Moore determinant (see [105, Appendix A]) on Herm(m,H).
Theorem 1.2 is in turn an easy consequence of Theorem 1.3.

Proof of Theorem 1.2. If A1, ..., An are strictly positive-definite, Theorem 1.2 is an
immediate corollary of Theorem 1.3 and the definition of complete monotonicity on cones
(Definition 2.1). The general case is reduced to this one by replacing Ai by Ai+εI (ε>0)
and taking ε#0.

Conversely, if β does not lie in the set described in Theorem 1.3, then the map
A 7!(detA)−β is not completely monotone on any non-empty open convex subcone of
the cone of positive-definite matrices. This means, in particular, that if the matrices
A1, ..., An span Sym(m,R) or Herm(m,C) (so that the convex cone they generate is
open), then the determinantal polynomial (4.9) does not have P−β completely monotone
on (0,∞)n. See §7.3 for an application of this idea to graphs and matroids.

5. Quadratic forms

In this section we consider quadratic forms (= homogeneous polynomials of degree 2).
We begin by proving an abstract theorem giving a necessary and sufficient condition
for a quadratic form to be non-vanishing in a complex tube C+iV ; in the special case
C=(0,∞)n this corresponds to the half-plane property. We then employ these results as
one ingredient in our proof of Theorem 1.9.

5.1. The half-plane property

In this subsection we proceed in three steps. First we study the analytic geometry
associated with a symmetric bilinear form B on a finite-dimensional real vector space
V (Lemma 5.1). Next we extend the quadratic form Q(x)=B(x, x) to the complexified
space V +iV and study the values it takes (Proposition 5.2). Finally we introduce the
additional structure of an open convex cone C⊆V on which Q is assumed strictly positive
(Corollary 5.3 and Theorem 5.4).

So let V be a finite-dimensional real vector space, and let B:V ×V!R be a sym-
metric bilinear form having inertia (n+, n−, n0). Define S+={x:B(x, x)>0} and S−=
{x:B(x, x)<0}. Clearly S+ and S− are open cones (not in general convex or even con-
nected). Indeed, S+ and S− are never convex (except when they are empty) because
x∈S± implies −x∈S± but manifestly 0 /∈S±.
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Many of our proofs will involve choosing a basis in V (and hence identifying V with
Rn) in such a way that B takes the form

B(x, y) =
n+∑
i=1

xiyi−
n++n−∑
i=n++1

xiyi. (5.1)

Moreover, whenever S+ 6=∅ we can choose the basis in this construction such that the first
coordinate direction lies along any desired vector x∈S+: that this can be done follows
from the standard Gram–Schmidt proof of the canonical form (5.1).

Elementary analytic geometry gives the following result.

Lemma 5.1. Let V be a finite-dimensional real vector space, and let B be a sym-
metric bilinear form on V having inertia (n+, n−, n0).

(a) If n+=0, then S+=∅.
(b) If n+=1, then S+ is a non-empty disconnected open non-convex cone, and there

is a non-empty open convex cone C such that S+=C∪(−C) and C∩(−C)=∅. (Clearly C is
uniquely determined modulo a sign.) Moreover, B(x, y)>B(x, x)1/2B(y, y)1/2>0 when-
ever x, y∈C; and B(x, y)2>B(x, x)B(y, y) whenever x∈ 	S+ and y∈V (or vice versa).

(c) If n+>2, then S+ is a non-empty connected open non-convex cone. Moreover,
for each x∈S+, the set

T+(x) = {y ∈V :B(x, y)2<B(x, x)B(y, y)} (5.2)

is a non-empty open non-convex cone that is contained in S+ and has a non-empty
intersection with every neighborhood of x; moreover we can write

T+(x) = {y ∈V : Rx+Ry is a 2-dimensional subspace contained within S+∪{0}} (5.3)

(that is, it is a 2-dimensional subspace on which B is positive-definite).
Analogous statements hold for S− when n−=0, n−=1 or n−>2.

Proof. (a) This is trivial.
(b) Assume that B takes the canonical form (5.1) with n+=1, and define C to be

the “forward light cone”

C= {x∈Rn :x2
1−x2

2−...−x2
n−+1> 0 and x1> 0}. (5.4)

It is immediate that S+=C∪(−C) and C∩(−C)=∅, and the statements about S+ follow
easily.

Now consider any x, y∈C and define

g(α) =B(x+αy, x+αy) =B(x, x)+2αB(x, y)+α2B(y, y). (5.5)
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We have g(0)=B(x, x)>0; but for the special value α?=−x1/y1 the vector x+α?y has its
first component equal to zero and hence g(α?)=B(x+α?y, x+α?y)60. So the quadratic
equation g(α)=0 has a real solution, which implies that its discriminant is non-negative,
i.e. that B(x, y)2>B(x, x)B(y, y).

Next assume that x∈ 	S+ and y∈V . If B(x, x)=0 or B(y, y)60, the assertion is
trivial; so we may assume that x, y∈S+. By the replacements x 7!±x and y 7!±y (which
do not affect the desired conclusion) we may assume that x, y∈C. But in this case the
desired inequality has already been proven.

Finally, using B(x, y)>0 for x, y∈C it is easily checked that C is convex.

(c) Clearly S+ is non-empty; and as explained earlier it is non-convex. To prove
that S+ is connected, we may assume that B takes the form (5.1) with n+>2. It is now
sufficient to find a path in S+ from an arbitrary vector x∈S+ to the vector e1=(1, 0, ..., 0).
But this is easy: first move coordinates xi with i>n+ monotonically to zero (this increases
B(x, x) monotonically and hence stays in S+); then rotate and scale inside the subspace
spanned by the first n+ coordinates to obtain e1.

Now assume that B takes the canonical form (5.1) with n+>2 and with the given
vector x∈S+ lying along the first coordinate direction. Then an easy computation shows
that y=(y1, y2, ..., yn) belongs to T+(x) if and only if y′≡(0, y2, ..., yn) belongs to S+.
Therefore, the preceding results (b) and (c) applied with n+ replaced by n+−1 show
that T+(x) is a non-empty open non-convex cone, which is obviously contained in S+;
and by taking y′ small we see that T+(x) meets every neighborhood of x. Moreover,
Rx+Ry=Rx+Ry′ is a 2-dimensional subspace if and only if y′ 6=0 (i.e. y /∈Rx); and since
B(x, y′)=0, we have Rx+Ry′⊆S+∪{0} if and only if y′∈S+∪{0}.

Remark. Note the sharp contrast between parts (b) and (c): in the latter case, given
any x∈S+ there is a non-empty open cone of vectors y satisfying the Schwarz inequality
(strictly) with x; while in the former case all vectors y∈V satisfy the reverse Schwarz
inequality with x.

We now consider the quadratic form Q(x)=B(x, x), extended to the complexified
space V +iV in the obvious way: Q(x+iy)=B(x, x)−B(y, y)+2iB(x, y). We want to
study the values taken by Q in the complex tubes S++iV and S−+iV , and in particular
the presence or absence of zeros. We write H to denote the open right half-plane

{ζ ∈C : Re ζ > 0}.

Proposition 5.2. Let V be a finite-dimensional real vector space, let B be a sym-
metric bilinear form on V having inertia (n+, n−, n0), and let Q be the associated qua-
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dratic form extended to V +iV .
(a) If n+=1, then for every x∈S+ we have Q[Hx]=Q[S++iV ]=C\(−∞, 0]. In

particular, Q is non-vanishing on S++iV .
(b) If n+>2, then for every x∈S+ and y∈T+(x) (recall that T+(x) is non-empty)

we have Q[[1,∞)x+i(Rx+Ry)]=C. In particular, for each x∈S+ and y∈T+(x) there
exists z∈Rx+Ry such that Q(x+iz)=0.

Analogous statements hold for S− when n−=1 or n−>2.

Proof. (a) If x∈S+, thenQ(ζx)=ζ2Q(x) can take any value in C\(−∞, 0] as ζ ranges
over H. On the other hand, if x∈S+ and y∈V , then

Q(x+iy) =B(x, x)−B(y, y)+2iB(x, y)

cannot take a value in (−∞, 0], as B(x, y)=0 implies by Lemma 5.1 (b) that y /∈S+, i.e.
B(y, y)60.

(b) Given x∈S+ and y∈T+(x), the vector y′=y+µx with µ=−B(x, y)/B(x, x) sat-
isfies B(x, y′)=0 and Q(y′)>0. Therefore

Q(λx+i(αx+βy′))= (λ+iα)2Q(x)−β2Q(y′), (5.6)

and this is easily seen to take all complex values as λ ranges over [1,∞), α over R, and
β over (0,∞).

Now we introduce the additional structure of an open convex cone C⊆V on which
Q is assumed strictly positive (i.e. C⊆S+). The hypotheses in the following result are
identical to those of Theorem 1.9.

Corollary 5.3. Let V be a finite-dimensional real vector space, let B be a sym-
metric bilinear form on V having inertia (n+, n−, n0), and define the quadratic form
Q(x)=B(x, x). Let C⊂V be a non-empty open convex cone with the property that
Q(x)>0 for all x∈C. Then n+>1, and moreover

(a) if n+=1, then either C⊆C or C⊆−C (where C is defined as in Lemma 5.1 (b)),
and we have B(x, y)>0 for all x, y∈C;

(b) if n+>2, then for every x∈C we have Q[[1,∞)x+iV ]=C, and in particular
there exists z∈V such that Q(x+iz)=0.

Proof. (a) Let us use the canonical form (5.1) with n+=1 and C defined by (5.4).
By hypothesis the cone C is contained within S+=C∪(−C); but since C is convex we
must in fact have either C⊆C or C⊆−C: for otherwise C would contain a point with
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x1=0 and hence B(x, x)60.(32) The remaining statements follow from Lemma 5.1 (b)
and Proposition 5.2 (a).

(b) Since C⊆S+, the statements follow from Lemma 5.1 (c) and Proposition 5.2 (b).

We can also summarize our results in a way that extends [37, Theorem 5.3] from
C=(0,∞)n to general open convex cones C.

Theorem 5.4. Let V be a finite-dimensional real vector space, let B be a symmetric
bilinear form on V having inertia (n+, n−, n0), and define the quadratic form Q(x)=
B(x, x). Let C⊂V be a non-empty open convex cone with the property that Q(x)>0 for
all x∈C. Then n+>1, and the following are equivalent :

(a) n+=1;
(b) Q is non-vanishing on the tube C+iV ;
(c) Q[C+iV ]=C\(−∞, 0];
(d) If x, y∈V with Q(x)>0, then B(x, y)2>B(x, x)B(y, y);
(e) If x, y∈C, then B(x, y)2>B(x, x)B(y, y).

Proof. This follows immediately by putting together the statements in Lemma 5.1,
Proposition 5.2 and Corollary 5.3: if n+=1, then (b)–(e) are all true; and if n+>2, then
(b)–(e) are all false.

Remark. See [37, Remark 1 after the proof of Theorem 5.3] for some of the history
of this result in the traditional case C=(0,∞)n.

5.2. Proof of Theorem 1.9

Proof of Theorem 1.9. We are concerned with the complete monotonicity of Q−β ,
where Q(x)=B(x, x). As always, it suffices to consider β>0, because complete mono-
tonicity trivially holds when β=0 and never holds when β<0 (because Q grows at infin-
ity).

We assume that B takes the canonical form (5.1) on V =Rn, and we consider sepa-
rately the three cases:

(a) The case n+=1, n−=0 is trivial: we have Q(x)=x2
1, and the convex cone C must

be contained in one of the half-spaces {x:x1>0} or {x:x1<0}. The map x 7!Q(x)−β=
x−2β

1 is clearly completely monotone on each of these two half-spaces.

(32) Alternatively, we can argue (assuming for simplicity that n0=0) that a convex set S contained
in 	S+ must either lie on a single line through the origin (which is obviously impossible if S is open) or
else be contained in either �C or −�C. For if we had x∈S∩ �C and y∈S∩−�C with x and y not on the same
line through the origin, then there would exist λ∈(0, 1) such that z=λx+(1−λ)y has z1=0 and z 6=0,
and hence z /∈	S+.
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(b) Next consider the case n+=1, n−>1: here (5.1) is the Lorentz form in one
“timelike” variable and n− “spacelike” variables, and we have S+=C∪(−C), where C is
the forward light cone (5.4). By Corollary 5.3 (a) we have either C⊆C or C⊆−C; let us
suppose the former.

Let us now show that if β> 1
2 (n−−1), then the map x 7!Q(x)−β is completely mono-

tone on C. The variables xn−+2, ..., xn play no role in this, so we may assume without loss
of generality that n0=0, i.e. n=n−+1. For β> 1

2 (n−−1)= 1
2 (n−2), the desired complete

monotonicity then follows from the integral representation [99, pp. 31–34], [47, eqq. (24)–
(28)]

(x2
1−x2

2−...−x2
n)−β =

[
π(n−2)/222β−1Γ(β)Γ

(
β−n−2

2

)]−1

×
∫
C
e−(x1y1−x2y2−...−xnyn)(y2

1−y2
2−...−y2

n)β−n/2 dy

(5.7)

valid for β> 1
2 (n−2), which explicitly represents Q(x)−β as the Laplace transform of a

positive measure supported on the closed forward light cone C∗= �C. For β= 1
2 (n−2) the

result follows by taking limits.
Conversely, let us show that if β /∈{0}∪

[
1
2 (n−−1),∞

)
, then the map x 7!Q(x)−β is

not completely monotone on any non-empty open convex subcone C ′⊆C. For suppose
that this map is completely monotone on C ′ for some such β: then by the Bernstein–
Hausdorff–Widder–Choquet theorem (Theorem 2.2), we must have (assuming again with-
out loss of generality that n0=0)(33)

(x2
1−x2

2−...−x2
n)−β =

∫
(C′)∗

e−(x1y1−x2y2−...−xnyn) dµβ(y) (5.8)

for some positive measure µβ supported on (C ′)∗. Now, any such measure must clearly
be Lorentz-invariant and homogeneous of degree 2β−n (this follows from the injectivity
of the Laplace transform). Furthermore, µβ must be supported on �C, for otherwise
the support would contain a spacelike hyperboloid {y∈Rn :y2

1−y2
2−...−y2

n=λ} for some
λ<0, whose convex hull is all of Rn and hence not contained in the proper cone (C ′)∗.
On the other hand, every Lorentz-invariant locally finite positive measure on Rn that is
supported on �C is of the form [98, Theorem IX.33, pp. 70–76]

µ= cδ0+
∫

m>0

dΩm d%(m), (5.9)

(33) If the map x 7!Q(x)−β is completely monotone on C′, then it is also completely monotone on
the cone C′′ obtained by projecting C′ onto the first n++n− coordinates (since Q(x) is independent of
the last n0 coordinates).
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where c>0, δ0 denotes the point mass at the origin, % is a positive measure on [0,∞), and
dΩm=δ(y2−m2) dy is the unique (up to a constant multiple) Lorentz-invariant measure
on the “mass hyperboloid”

Hm = {y ∈Rn : y2
1−y2

2−...−y2
n =m2 and y1> 0}. (5.10)

(When n=2, we considerm>0 only, as there is no locally finite Lorentz-invariant measure
on R2 that is supported onH0.) A measure µ of the form (5.9) is homogeneous in precisely
three cases:

(i) c=0, d%(m)=const×mλ−1 dm with λ>0: here µ is homogeneous of degree λ−2.
(ii) c=0, %=const×δ0 (for n>2 only): here µ is homogeneous of degree −2.
(iii) c>0, %=0: here µ is homogeneous of degree −n.

This proves that a positive measure µβ can exist only if β=0 or β> 1
2 (n−2).

(c) Finally, consider the case n+>1. By Corollary 5.3 (b), Q has zeros in the tube
C ′+iV for every non-empty open convex subcone C ′⊆S+ (indeed, for every non-empty
subset C ′⊆S+). We conclude by Corollary 2.3 that Q−β cannot be completely monotone
on C ′ for any β>0.

Remark. More can be said about the integral representation (5.7). It turns out that
the quantity(34)

Rβ =
[
π(n−2)/2 22β−1Γ(β)Γ

(
β− 1

2 (n−2)
)]−1(y2

1−y2
2−...−y2

n)β−n/21y∈C , (5.11)

which is initially defined for β> 1
2 (n−2) as a positive measure (or for Reβ> 1

2 (n−2) as a
complex measure) on Rn (and which is of course supported on C), can be analytically con-
tinued as a tempered-distribution-valued entire function of β [47], [52, Theorem VII.2.2]:
this is the Riesz distribution Rβ on the Euclidean Jordan algebra R×Rn−1.(35) The
integral representation

(x2
1−x2

2−...−x2
n)−β =

∫
C
e−(x1y1−x2y2−...−xnyn)Rβ(y) dy, (5.12)

where x∈C, then holds for all complex β, by analytic continuation. However, the distribu-
tion Rβ is a positive measure if and only if either β=0 or β> 1

2 (n−2). This follows from
general results of harmonic analysis on Euclidean Jordan algebras (i.e. Theorem 4.8), but

(34) Here 1p denotes the characteristic function of the proposition p.
(35) A slightly different normalization is used in [52], arising from the fact that the Jordan in-

ner product on R×Rn−1 is ((x0,x)|(y0,y))=2(x0y0+x·y): this has the consequence that dxJordan=

2n/2 dxordinary, and also the Laplace transform is written with an extra factor 2 in the exponential.
The change of sign from x0y0−x·y to x0y0+x·y is irrelevant, because the Riesz distribution Rβ(y) is
invariant under the reflections yi 7!−yi for 26i6n.
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we have given here a direct elementary proof. Indeed, once one has in hand the funda-
mental properties of the Riesz distribution Rβ , one obtains an even simpler elementary
proof by observing that (5.11) is not locally integrable near the boundary of the cone C
when Reβ6 1

2 (n−2) and β 6= 1
2 (n−2), and hence [110, Lemma 2.1] the distribution Rβ is

not a locally finite complex measure in these cases.

5.3. Explicit Laplace-transform formula for inverse powers of a quadratic
form

By a simple change of variables, we can generalize (5.7) to replace the Lorentz matrix
Ln=diag(1,−1, ...,−1) by an arbitrary real symmetric matrix A of inertia (n+, n−, n0)=
(1, n−1, 0). This will provide, among other things, an explicit Laplace-transform formula
for E2,n(x)−β that generalizes the formulae (3.21) and (4.18) obtained previously for
n=3, 4, respectively.

So let A be a real symmetric n×n matrix with one positive eigenvalue, n−1 negative
eigenvalues, and no zero eigenvalues. We first need a slight refinement of Lemma 5.1(b)
to take advantage of the fact that we now have n0=0; for simplicity we state it in the
“concrete” situation V =Rn.

Lemma 5.5. Fix n>2, and let A be a real symmetric n×n matrix with one positive
eigenvalue, n−1 negative eigenvalues, and no zero eigenvalues. Then there exists a non-
empty open convex cone C⊂Rn (which is uniquely determined modulo a sign) such that

C∩(−C) = ∅, (5.13)

�C∩(−�C) = {0}, (5.14)

Ĉ∩(−Ĉ) = ∅, (5.15)

Ĉ∩(−Ĉ) = {0}, (5.16)

{y :yTAy> 0}= C∪(−C), (5.17)

{x :xTA−1x> 0}= Ĉ∪(−Ĉ), (5.18)

where
Ĉ = {x :xTy> 0 for all y∈ �C\{0}} (5.19)

is the open dual cone to C.

Proof. We can write A=STLnS, where S is a non-singular real matrix. Then the
claims follow easily from the corresponding properties of the Lorentz quadratic form.
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Proposition 5.6. Fix n>2, and let A be a real symmetric n×n matrix with one
positive eigenvalue, n−1 negative eigenvalues, and no zero eigenvalues; and let C be the
open convex cone from Lemma 5.5. Then for β> 1

2 (n−2) we have

(xTA−1x)−β =
[
π(n−2)/222β−1Γ(β)Γ

(
β−n−2

2

)]−1

|detA|1/2

∫
C
e−xTy(yTAy)β−n/2 dy

(5.20)
for x∈Ĉ.

Proof. Write A=STLnS, where S is a non-singular real matrix, and make the
changes of variable y=Sy′ and x=LnS

−Tx′ in (5.7). Then dy=|detS| dy′, where
|detS|=|detA|1/2; and the formula (5.20) follows immediately after dropping primes.

Let us now specialize to matrices A of the form A=λEn−µIn, where In is the n×n
identity matrix and En is the n×n matrix with all entries 1. Then A has eigenvalues
nλ−µ,−µ, ...,−µ, and hence has inertia (n+, n−, n0)=(1, n−1, 0) provided that µ>0 and
λ>µ/n; and in that case we have A−1=λ′En−µ′In, where

λ′ =
λ

µ(nλ−µ)
and µ′ =

1
µ
. (5.21)

(The map (λ, µ) 7!(λ′, µ′) is of course involutive.) Furthermore, we have

yTAy =2λE2,n(y)+(λ−µ)‖y‖2, (5.22)

where

E2,n(y) =
∑

16i<j6n

yiyj and ‖y‖2 =
n∑

i=1

y2
i ,

and analogously for xTA−1x.

Corollary 5.7. Fix n>2, µ>0 and λ>µ/n. Then for β> 1
2 (n−2) we have(

2λ
µ(nλ−µ)

E2,n(x)− (n−1)λ−µ
µ(nλ−µ)

‖x‖2
)−β

=
[
π(n−2)/222β−1Γ(β)Γ

(
β−n−2

2

)]−1

µ(n−1)/2(nλ−µ)1/2

×
∫
C
e−xTy(2λE2,n(y)+(λ−µ)‖y‖2)β−n/2 dy

(5.23)

for x∈Ĉ.
Specializing further to the case λ=2/(n−1), µ=2 (corresponding to λ′=µ′= 1

2 ), we
obtain the following result.
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Corollary 5.8. (Laplace-transform formula for E−β
2,n) Fix an integer n>2. Then

for β> 1
2 (n−2) we have

E2,n(x)−β =
(n−1)(n−1)/2−β

(2π)(n−2)/2Γ(β)Γ
(
β− 1

2 (n−2)
) ∫

C
e−xTy

(
E2,n(y)+

n−2
2
‖y‖2

)β−n/2

dy

(5.24)
for x∈Ĉ⊇(0,∞)n.

For n=2 this is elementary; for n=3 it reduces to (3.21); and for n=4 it reduces
to (4.18). The formula (5.24) provides, in particular, an explicit elementary proof of the
direct (“if”) half of Corollary 1.10.

6. Positive-definite functions on cones

In this section we recall briefly the theory of positive-definite functions (in the semigroup
sense) on convex cones, which closely parallels the theory of completely monotone func-
tions developed in §2 and indeed can be considered as a natural extension of it. We then
apply this theory to powers of the determinant on a Euclidean Jordan algebra, and derive
(in Theorem 6.5) a strengthening of Theorem 1.4. As an application of this latter result,
we disprove (in Example 6.6) a recent conjecture of Gurau, Magnen and Rivasseau [62].

This section is not required for the application to graphs and matroids (§7).

6.1. General theory

Here we summarize the basic definitions and results from the theory of positive-definite
functions on convex cones and, more generally, on convex sets. A plethora of useful
additional information concerning positive-definite (and related) functions on semigroups
can be found in the monograph by Berg, Christensen and Ressel [18].

Definition 6.1. Let V be a real vector space, and let C be a convex cone in V. Then
a function f :C!R is termed positive-definite in the semigroup sense if for all n>1 and
all x1, ..., xn∈C, the matrix {f(xi+xj)}n

i,j=1 is positive-semidefinite; or in other words,
if for all n>1, all x1, ..., xn∈C and all c1, ..., cn∈C we have

n∑
i,j=1

c̄icjf(xi+xj) > 0. (6.1)

Similarly, a function f :C+iV!C is termed positive-definite in the involutive-semigroup
sense if for all n>1 and all x1, ..., xn∈C+iV , the matrix {f(xi+x̄j)}n

i,j=1 is positive-
semidefinite.
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Theorem 6.2. Let V be a finite-dimensional real vector space, let C be an open
convex cone in V, and let f :C!R. Then the following are equivalent :

(a) f is continuous and positive-definite in the semigroup sense;
(b) f extends to an analytic function on the tube C+iV that is positive-definite in

the involutive-semigroup sense;
(c) there exists a positive measure µ on V ∗ satisfying

f(x) =
∫

V ∗
e−〈`,x〉 dµ(`) (6.2)

for all x∈C.
Moreover, in this case the measure µ is unique, and the analytic extension to C+iV

is given by (6.2).

Please note that the completely monotone functions (Theorem 2.2) correspond to
the subset of positive-definite functions that are bounded at infinity (in the sense that f
is bounded on the set x+C for each x∈C), or equivalently decreasing (with respect to
the order induced by the cone C), or equivalently for which the measure µ is supported
on the closed dual cone C∗ (rather than on the whole space V ∗ as in Theorem 6.2 (c)).
See [87, Lemma 1, p. 579] for a direct proof that complete monotonicity implies positive-
definiteness.

We remark that the hypothesis of continuity (or at least something weaker, such as
measurability or local boundedness) in Theorem 6.2 (a) is essential, even in the simplest
case V =R and C=(0,∞). Indeed, using the axiom of choice it can easily be shown [2,
pp. 35–36, 39] that there exist discontinuous solutions to the functional equation

%(x+y) = %(x)%(y) for x, y ∈ (0,∞),

and any such function is automatically positive-definite in the semigroup sense. How-
ever, any such function is necessarily non-Lebesgue-measurable and everywhere locally
unbounded [2, pp. 34–35, 37–39].

Theorem 6.2 is actually a special case of a more general theorem for open convex
sets that need not be cones. We begin with the relevant definition [59, p. x].

Definition 6.3. Let V be a real vector space. If C⊆V is a convex set, then a
function f :C!R is termed positive-definite in the convex-set sense if for all n>1 and
all x1, ..., xn∈C, the matrix

{
f
(

1
2 (xi+xj)

)}n

i,j=1
is positive-semidefinite. More generally,

if C⊆V +iV is a conjugation-invariant convex set, then a function f :C!C is termed
positive-definite in the involutive-convex-set sense if for all n>1 and all x1, ..., xn∈C, the
matrix

{
f
(

1
2 (xi+x̄j)

)}n

i,j=1
is positive-semidefinite.
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Note that if C is in fact a convex cone, then a function f :C!R is positive-definite
in the convex-set sense if and only if it is positive-definite in the semigroup sense. So
this concept is a genuine generalization of the preceding one.

Theorem 6.4. Let V be a finite-dimensional real vector space, let C⊆V be an open
convex set, and let f :C!R. Then the following are equivalent :

(a) f is continuous and positive-definite in the convex-set sense;
(b) f extends to an analytic function on the tube C+iV that is positive-definite in

the involutive-convex-set sense;
(c) there exists a positive measure µ on V ∗ satisfying

f(x) =
∫

V ∗
e−〈`,x〉 dµ(`) (6.3)

for all x∈C.
Moreover, in this case the measure µ is unique, and the analytic extension to C+iV

is given by (6.3).

Theorem 6.4 was first proven by Devinatz [42], using the spectral theory of commut-
ing unbounded self-adjoint operators on Hilbert space (he gives details for dimV =2 but
states that the methods work in any finite dimension); see also Akhiezer [4, pp. 229–231]
for the special case in which C is a Cartesian product of open intervals. A detailed
alternative proof, based on studying positive-definiteness on convex sets of rational num-
bers as an intermediate step [11], has been given by Glöckner [59, Proposition 18.7 and
Theorem 18.8], who also gives generalizations to infinite-dimensional spaces V and to
operator-valued positive-definite functions. See also Shucker [107, Theorem 4 and Corol-
lary] and Glöckner [59, Theorem 18.8] for the very interesting extension to convex sets
C that are not necessarily open (but have non-empty interior): in this latter case the
representation (6.3) does not imply the continuity of f on C, but only on line segments
(or more generally, closed convex hulls of finitely many points) within C. But with this
modification the equivalence (a′)⇔ (c) holds.

Surprisingly, we have been unable to find in the literature any complete proof of
Theorem 6.2 except as a corollary of the more general Theorem 6.4. But see [59, Theo-
rem 16.6] for a version of Theorem 6.2 for the subclass of positive-definite functions that
are α-bounded with respect to a “tame” absolute value α.

It would be interesting to try to find simpler proofs of Theorems 6.2 and 6.4.

6.2. Powers of the determinant on a Euclidean Jordan algebra

We can now deduce analogues of Theorems 1.3 and 1.4 in which complete monotonicity
is replaced by positive-definiteness in the semigroup sense. For brevity we state only the
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abstract result in terms of Euclidean Jordan algebras. The “converse” half of this result
constitutes an interesting strengthening of the corresponding half of Theorem 1.4; we
will apply it in Example 6.6.

Theorem 6.5. Let V be a simple Euclidean Jordan algebra of dimension n and
rank r, with n=r+ 1

2dr(r−1); let Ω⊂V be the positive cone; let ∆:V!R be the Jordan
determinant ; and let β∈R. Then the following are equivalent :

(a) the map x 7!∆(x)−β is positive-definite in the semigroup sense on Ω;
(b) the map x 7!∆(x)−β is positive-definite in the semigroup sense on some non-

empty open convex subcone Ω′⊆Ω;
(c) β∈

{
0, 1

2d, ...,
1
2d(r−1)}∪

(
1
2d(r−1),∞

)
.

Theorem 6.5 is a direct consequence of facts about Riesz distributions—namely,
the Laplace-transform formula (4.27) and Theorem 4.8—together with Theorem 6.2.
Indeed, the proof of Theorem 6.5 is essentially identical to that of Theorem 1.4, but
using Theorem 6.2 in place of the Bernstein–Hausdorff–Widder–Choquet theorem. The
point, quite simply, is that our proof of the “converse” half of Theorem 1.4 used only
the failure of positivity of the Riesz distribution, not any failure to be supported on the
closed dual cone (indeed, it is always supported there); so it proves Theorem 6.5 as well.

Example 6.6. Let V be the real vector space Sym(m,R) of real symmetric m×m
matrices, let Πm(R)⊂V be the cone of positive-definite matrices, and let C⊂Πm(R) be
the subcone consisting of matrices that are also elementwise strictly positive. It follows
from Theorem 6.5 that the map A 7!(detA)−β is positive-definite in the semigroup sense
on C if and only if it is positive-definite in the semigroup sense on Πm(R), and this
happens if and only if β∈

{
0, 1

2 , 1,
3
2 , ...

}
∪

[
1
2 (m−1),∞

)
. This disproves the conjecture

of Gurau, Magnen and Rivasseau [62, §7, Conjecture 1] that the map A 7!(detA)−β

would be positive-definite in the semigroup sense on C for all β>0.

7. Application to graphs and matroids

7.1. Graphs

Let G=(V,E) be a finite undirected graph with vertex set V and edge set E; in this
paper all graphs are allowed to have loops and multiple edges unless explicitly stated
otherwise. Now let x={xe}e∈E be a family of indeterminates indexed by the edges of G.
If G is a connected graph, we denote by TG(x) the generating polynomial of spanning
trees in G, namely

TG(x) =
∑

T∈T (G)

∏
e∈T

xe, (7.1)
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where T (G) denotes the family of edge sets of spanning trees in G. If G is disconnected ,
we define TG(x) to be the product of the spanning-tree polynomials of its connected
components. Otherwise put, TG(x) is in all cases the generating polynomial of maximal
spanning forests in G. This is a slightly non-standard definition (the usual definition
would put TG≡0 if G is disconnected), but it is convenient for our purposes and is
natural from a matroidal point of view (see below). In order to avoid any possible
misunderstanding, we have inserted in Theorems 1.1 and 1.1′ and Corollary 1.8 the
word “connected”, so that the claims made in the introduction will be true on either
interpretation of TG. Please note that, in our definition, TG is always strictly positive on
(0,∞)E , because the set of maximal spanning forests is non-empty. Note also that, on
either definition of TG, loops in G (if any) play no role in TG. And it goes without saying
that TG is a multiaffine polynomial, i.e. of degree at most 1 in each xe separately. If e is
an edge of G, the spanning-tree polynomial of G can be related to that of the deletion
G\e and the contraction G/e:

TG(x) =


TG\e(x6=e)+xeTG/e(x6=e), if e is neither a bridge nor a loop,
xeTG\e(x6=e) =xeTG/e(x6=e), if e is a bridge,
TG\e(x6=e) =TG/e(x6=e), if e is a loop,

(7.2)

where x6=e denotes {xf}f∈E\{e}. The fact that TG\e equals TG/e (rather than equalling
zero) when e is a bridge is a consequence of our peculiar definition of TG.

Now let us take an analytic point of view, so that the indeterminates xe will be
interpreted as real or complex variables.

Definition 7.1. For each β>0, we denote by Gβ the class of graphs G for which T−β
G

is completely monotone on (0,∞)E .

The naturality of the classes Gβ is illustrated by the following easy but fundamental
result.

Proposition 7.2. Each class Gβ is closed under taking minors (i.e. under deletion
and contraction of edges and deletion of isolated vertices), under disjoint unions, and
under gluing at a cut vertex.

Proof. Deletion of a non-bridge edge e corresponds to taking xe#0. Contraction
of a non-loop edge e corresponds to dividing by xe and taking xe"∞. Both of these
operations preserve complete monotonicity. Deletion of a bridge has the same effect as
contracting it, in our peculiar definition of TG. Contraction of a loop is equivalent to
deleting it (but loops play no role in TG anyway). Isolated vertices play no role in TG.
This proves closure under taking minors.
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If G is obtained from G1 and G2 either by disjoint union or by gluing at a cut
vertex, then TG=TG1TG2 (on disjoint sets of variables) in our definition of TG; this again
preserves complete monotonicity.

Proposition 7.2 illustrates the principal reason for allowing arbitrary constants c>0
(rather than just c=1) in Theorem 1.1 and subsequent results: it leads to a minor-
closed class of graphs. This, in turn, allows for characterizations that are necessary as
well as sufficient. A similar situation arises in studying the negative-correlation property
for a randomly chosen basis of a matroid. If only the “uniformly-at-random” situation
is considered (i.e., element weights x=1), then the resulting class of matroids is not
minor-closed, and closure under minors has to be added by hand, leading to the class of
so-called balanced matroids [53]. But it then turns out that the class of balanced matroids
is not closed under taking 2-sums [38]. If, by contrast, one demands negative correlation
for all choices of element weights x>0, then the resulting class—the so-called Rayleigh
matroids—is automatically closed under taking minors (by the same xe!0 and xe!∞
argument as in Proposition 7.2). Moreover, it turns out to be closed under 2-sums as
well [38].

The very important property of closure under 2-sums holds also in our context. To
see this, let us first recall the definitions of parallel connection, series connection and
2-sum of graphs [90, §7.1], and work out how TG transforms under these operations.

For i=1, 2, let Gi=(Vi, Ei) be a graph and let ei be an edge of Gi; it is convenient
(though not absolutely necessary) to assume that ei is neither a loop nor a bridge in Gi.
Let us furthermore choose an orientation ~ei=−−→xiyi for the edge ei. (To avoid notational
ambiguity, it helps to assume that the sets V1, V2, E1 and E2 are all disjoint.) Then
the parallel connection of (G1, ~e1) with (G2, ~e2) is the graph (G1, ~e1)‖(G2, ~e2) obtained
from the disjoint union G1∪G2 by identifying x1 with x2, y1 with y2, and e1 with e2.
(Equivalently, it is obtained from the disjoint union (G1\e1)∪(G2\e2) by identifying x1

with x2 (call the new vertex x), y1 with y2 (call the new vertex y), and then adding a
new edge e from x to y.) The series connection of (G1, ~e1) with (G2, ~e2) is the graph
(G1, ~e1)./(G2, ~e2) obtained from the disjoint union (G1\e1)∪(G2\e2) by identifying x1

with x2 and adding a new edge e from y1 to y2. The 2-sum of (G1, ~e1) with (G2, ~e2) is
the graph (G1, ~e1)⊕2(G2, ~e2) obtained from the parallel connection (G1, ~e1)‖(G2, ~e2) by
deleting the edge e that arose from identifying e1 with e2, or equivalently from the series
connection (G1, ~e1)./(G2, ~e2) by contracting the edge e.

To calculate the spanning-tree polynomial of a parallel connection, series connection
or 2-sum, it is convenient to change slightly the notation and suppose that e1 and e2

have already been identified (let us call this common edge e), so that E1∩E2={e}. It is
then not difficult to see [90, Proposition 7.1.13] that the spanning-tree polynomial of a
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parallel connection G1‖eG2 is given by

TG1‖eG2(x) =TG1\eTG2/e+TG1/eTG2\e+xeTG1/eTG2/e, (7.3)

while that of a series connection G1./eG2 is

TG1./eG2(x) =TG1\eTG2\e+xeTG1\eTG2/e+xeTG1/eTG2\e. (7.4)

(All the spanning-tree polynomials on the right-hand sides are of course evaluated at
x6=e.) The spanning-tree polynomial of a 2-sum G1⊕2,eG2 is therefore

TG1⊕2,eG2(x) =TG1\eTG2/e+TG1/eTG2\e. (7.5)

Proposition 7.3. Each class Gβ is closed under parallel connection and under 2-
sums.

Proof. Closure under parallel connection is an immediate consequence of Propo-
sition 3.5 and the formula (7.3) for parallel connection. Since the 2-sum is obtained
from the parallel connection by deletion, closure under 2-sum then follows from Propo-
sition 7.2.

Proposition 7.4. The class Gβ is closed under series connection for β> 1
2 but not

for 0<β< 1
2 .

Proof. For β> 1
2 , closure under series connection is an immediate consequence of

Proposition 3.6 and the formula (7.4) for series connection. For 0<β< 1
2 , non-closure

under series connection follows immediately from the observation that the 2-cycle C2=
K

(2)
2 (a pair of vertices connected by two parallel edges) lies in Gβ for all β>0, but the

series connection of a 2-cycle with another 2-cycle is a 3-cycle, which lies in Gβ only for
β> 1

2 (by Proposition 3.8).

Remarks. (1) Unlike the situation for the half-plane and Rayleigh properties, the
classes Gβ are not in general closed under duality for planar graphs. For instance, the
graph C∗

3 =K(3)
2 (a pair of vertices connected by three parallel edges) lies in Gβ for all

β>0; but its dual C3 lies in Gβ only for β> 1
2 (by Proposition 3.8).

However, the class Gβ is duality-invariant for β∈
(

1
2 , 1

)
, as it consists of all series-

parallel graphs (Theorem 7.12 below). And since Gβ={all graphs} for β∈
{

1
2 , 1,

3
2 , ...

}
,

these classes Gβ∩P (where P={planar graphs}) are also duality-invariant. We do not
know whether Gβ∩P is duality-invariant for β∈(1,∞)\

{
3
2 , 2,

5
2 , ...

}
. In any case, the

duality question is most naturally posed for matroids rather than for graphs.
(2) Since Gβ is closed under 0-sums (disjoint unions), 1-sums (gluing at a cut vertex)

and 2-sums (essentially gluing at an edge), it is natural to ask whether it is also closed
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under 3-sums (gluing along triangles). We do not know the answer. In particular, K4∈Gβ

for all β>1 by Corollary 1.5, but as noted in the discussion after Problem 1.13′, we do
not know whether K5−e=K4⊕3K4 belongs to Gβ for β∈

(
1, 3

2

)
.

It is a well-known (and easy) result that any minor-closed class of graphs is of the
form

Ex(F) = {G :G does not contain any minor from F} (7.6)

for some family F of “excluded minors”; indeed, the minimal choice of F consists of
those graphs that do not belong to the class in question but whose proper minors all do
belong to the class. (Here we consider isomorphic graphs to be identical, or alternatively
take only one representative from each isomorphism class.)

In one of the deepest and most difficult theorems of graph theory, Roberston and
Seymour [100] sharpened this result by proving that any minor-closed class of graphs is
of the form Ex(F) for some finite family F . Therefore, each of our classes Gβ can be
characterized by a finite family of excluded minors. One of the goals of this paper—alas,
incompletely achieved—is to determine these excluded minors.

7.2. Matroids

The foregoing considerations have an immediate generalization to matroids. (Readers
unfamiliar with matroids can skip this subsection without loss of logical continuity.) Let
M be a matroid with ground set E, and let x={xe}e∈E be a family of indeterminates
indexed by the elements of M . We denote by BM (x) the basis generating polynomial of
M , namely

BM (x) =
∑

B∈B(M)

∏
e∈B

xe, (7.7)

where B(M) denotes the family of bases of M . Please note that loops in M (if any) play
no role in BM . Note also that if M is the graphic matroid M(G) associated with a graph
G, we have BM(G)(x)=TG(x). This identity would not hold for disconnected G if we
had taken the standard definition of TG.

Definition 7.5. For each β>0, we denote by Mβ the class of matroids M for which
B−β

M is completely monotone on (0,∞)E .

Once again we have the following result.

Proposition 7.6. Each class Mβ is closed under taking minors (i.e. deletion and
contraction) and direct sums.
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Proof. The proof is identical to that of Proposition 7.2 if one substitutes “element”
for “edge”, “coloop” for “bridge”, and “direct sum” for either form of union.

We refer to [90, §7.1] for the definitions of parallel connection, series connection and
2-sum of matroids, which generalize those for graphs. The upshot [90, Proposition 7.1.13]
is that the formulae (7.3)–(7.5) for the spanning-tree polynomials of graphs extend un-
changed to the basis generating polynomials of matroids. We therefore have the following
result.

Proposition 7.7. Each class Mβ is closed under parallel connection and under
2-sums.

Proposition 7.8. The class Mβ is closed under series connection for β> 1
2 but not

for 0<β< 1
2 .

Since each Mβ is a minor-closed class, we can once again seek a characterization of
Mβ by excluded minors. However, in this case no analogue of the Robertson–Seymour
theorem exists, so we have no a priori guarantee of finiteness of the set of excluded
minors. Indeed, there exist minor-closed classes of matroids having an infinite family of
excluded minors [90, Exercise 6.5.5 (g)]; and in fact, for any infinite field F , the class of
F -representable matroids has infinitely many excluded minors [90, Theorem 6.5.17].

We suspect that the classesMβ are not closed under duality in general. For instance,
Corollary 1.10 shows that U2,5∈Mβ if and only if β> 3

2 ; but we suspect (Conjecture 1.11)
that U3,5∈Mβ if and only if β>1. On the other hand, we shall show in Theorem 7.13 that
Mβ for 1

2<β<1 consists precisely of the graphic matroids of series-parallel graphs—a
class that is closed under duality.

7.3. Partial converse to Corollary 1.8

It was remarked at the end of §4.3 that if β does not lie in the set described in Theo-
rem 1.3, then the map A 7!(detA)−β is not completely monotone on any non-empty open
convex subcone of the cone of positive-definite matrices; and in particular, if the matrices
A1, ..., An span Sym(m,R) or Herm(m,C), then the determinantal polynomial (1.4)/(4.9)
does not have P−β completely monotone on (0,∞)n. The spanning-tree polynomial of
the complete graph Km+1 provides an example of this situation; and it turns out that
there are two other cases arising from complex-unimodular matroids. The following result
thus provides a (very) partial converse to Corollary 1.8, where part (a) concerns regular
(=real-unimodular) matroids and part (b) concerns complex-unimodular matroids.
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Proposition 7.9. Let M be a matroid on the ground set E, and let BM (x) be its
basis generating polynomial.

(a) If M=M(Kp) (the graphic matroid associated with the complete graph Kp)
and β /∈{0, 1

2 , 1,
3
2 , ... }∪

[
1
2 (p−2),∞

)
, then B−β

M is not completely monotone on any non-
empty open convex subcone of (0,∞)E.

(br=2) If M=U2,4 (the uniform matroid of rank 2 on four elements) and β /∈{0}∪
[1,∞), then B−β

M is not completely monotone on any non-empty open convex subcone of
(0,∞)E.

(br=3) If M=AG(2, 3) (the ternary affine plane) and β /∈{0, 1}∪[2,∞), then B−β
M

is not completely monotone on any non-empty open convex subcone of (0,∞)E.

Proof. When M is a real-unimodular (resp. complex-unimodular) matroid of rank r
with n elements, we let B be an r×n real-unimodular (resp. complex-unimodular) matrix
that represents M ; we then define Ai (16i6n) to be the outer product of the ith column
of B with its complex conjugate. We shall show that in the cases enumerated above,
we can choose B so that the matrices A1, ..., An span Sym(r,R) (resp. Herm(r,C)). The
result then follows from Theorem 1.3 and the observation made immediately after it.

(a) Let Hp be the directed vertex-edge incidence matrix for Kp with an arbitrarily
chosen orientation of the edges; it is of size p×

(
p
2

)
and is real-unimodular. Then Kp is

represented over R by the matrix H ′
p obtained from Hp by deleting one of the rows. But

we can reorder the columns of H ′
p to get H ′′

p =(Ip−1 |Hp−1), where Ip−1 is the (p−1)×
(p−1) identity matrix (and Hp−1 is defined using the orientation of Kp−1 inherited from
Kp). The corresponding matrices A1, ..., A(p

2), obtained by taking outer products of the
columns of H ′′

p with their complex conjugates, are easily seen to span Sym(p−1,R).
(br=2) The matrices A1, ..., A4 defined in (1.7) are easily seen to span Herm(2,C).
(br=3) Write ω=e±2πi/3; then the matrix [123, p. 597]

B=

 1 0 0 1 0 1 1 1 1
0 1 0 1 1 0 1+ω 1 1+ω
0 0 1 0 1 ω ω 1+ω 1+ω

 (7.8)

is easily seen to be complex-unimodular and to represent AG(2, 3). A tedious compu-
tation (or an easy one using Mathematica or Maple) now shows that the matrices
A1, ..., A9 are linearly independent, hence span the 9-dimensional space Herm(3,C).

Let us remark that the cases enumerated in Proposition 7.9 exhaust the list of
regular or complex-unimodular matroids (of rank r>2) for which the matrices A1, ..., An

span Sym(r,R) or Herm(r,C), respectively. Indeed, it is known that a simple rank-r
matroid that is regular (or, more generally, is binary with no F7 minor) can have at most
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1
2r(r+1) elements; furthermore, the unique matroid attaining this bound is M(Kr+1)
[90, Proposition 14.10.3]. See also [12] for an intriguing proof that uses the matrices
A1, ..., An (but over GF(2) rather than C). Likewise, it is known [91, Theorem 2.1]
that a simple rank-r matroid that is complex-unimodular can have at most 1

2 (r2+3r−2)
elements if r 6=3, or 9 elements if r=3; furthermore, the unique matroid attaining this
bound is Tr (defined in [91]) when r 6=3, or AG(2, 3) when r=3. The only cases in which
this size reaches dim Herm(r,C)=r2 are thus r=1, 2, 3, yielding T1=U1,1, T2=U2,4 and
AG(2, 3), respectively.

7.4. Series-parallel graphs (and matroids): Proof of Theorem 1.1′

Before proving Theorem 1.1,′ let us prove a similar but simpler theorem concerning the
interval 0<β< 1

2 .

Theorem 7.10. Let G be a graph, and let β∈
(
0, 1

2

)
. Then the following are equiv-

alent :
(a) G∈Gβ ;
(b) G can be obtained from a forest by parallel extensions of edges (i.e., replacing

an edge by several parallel edges) and additions of loops;
(c) G has no K3 minor.
Moreover, these equivalent conditions imply that G∈Gβ′ for all β′>0.

Proof. The equivalence of (b) and (c) is an easy graph-theoretic exercise.
If G is obtained from a forest by parallel extensions of edges and additions of loops,

then TG(x) is a product of factors of the form xe1 +...+xek
(where e1, ..., ek are a set

of parallel edges in G), so that T−β
G is completely monotone on (0,∞)E for all β>0.

Therefore (b)⇒ (a).
Conversely, Proposition 3.8 tells us that K3 /∈Gβ for β∈

(
0, 1

2

)
. Since Gβ is a minor-

closed class, this proves that (a)⇒ (c).

Dave Wagner has pointed out to us that Theorem 7.10 extends easily to matroids,
as we state in the following theorem.

Theorem 7.11. Let M be a matroid, and let β∈
(
0, 1

2

)
. Then the following are

equivalent :
(a) M∈Mβ ;
(b) M is the graphic matroid M(G) for a graph G that can be obtained from a forest

by parallel extensions of edges and additions of loops;
(c) G has no M(K3) or U2,4 minor.
Moreover, these equivalent conditions imply that M∈Mβ′ for all β′>0.
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Proof. Tutte has proven [90, Theorem 10.3.1] that a matroid is graphic if and only
if it has no minor isomorphic to U2,4, F7, F ∗

7 , M∗(K5) or M∗(K3,3). Since M(K3) is a
minor of the last four matroids on this list, the equivalence of (b) and (c) follows from
the graphic case.

(b)⇒ (a) has already been proven in Theorem 7.10.
Finally, Proposition 3.8 tells us that M(K3) /∈Mβ for β∈

(
0, 1

2

)
, and Corollary 1.6

(or Corollary 1.10) tells us that U2,4 /∈Mβ for β∈(0, 1). Since Mβ is a minor-closed class,
this proves that (a)⇒ (c).

Let us now prove the corresponding characterization for 1
2<β<1, which is a rephras-

ing of Theorem 1.1′ and concerns series-parallel graphs. Unfortunately, there seems to
be no completely standard definition of “series-parallel graph”; a plethora of slightly
different definitions can be found in the literature [46], [88], [40], [27], [90]. So let us be
completely precise about our own usage: we shall call a loopless graph series-parallel if
it can be obtained from a forest by a finite sequence of series and parallel extensions of
edges (i.e. replacing an edge by two edges in series or two edges in parallel). We shall
call a general graph (allowing loops) series-parallel if its underlying loopless graph is
series-parallel.(36)

So we need to understand how the spanning-tree polynomial TG(x) behaves under
series and parallel extensions of edges. Parallel extension is easy: if G′ is obtained from
G by replacing the edge e by a pair of edges e1 and e2 in parallel, then

TG′(x6=e, xe1 , xe2) =TG(x6=e, xe1 +xe2). (7.9)

In other words, two parallel edges with weights xe1 and xe2 are equivalent to a single edge
with weight xe1 +xe2 . This is because the spanning trees of G′ are in correspondence
with the spanning trees T of G as follows: if T does not contain e, then leave T as is (it
is a spanning tree of G′); if T does contain e, then adjoin to T \e one but not both of the
edges e1 and e2.

Series extension is only slightly more complicated: if G′ is obtained from G by
replacing the edge e by a pair of edges e1 and e2 in series, then

TG′(x6=e, xe1 , xe2) = (xe1 +xe2)TG

(
x6=e,

xe1xe2

xe1 +xe2

)
. (7.10)

In other words, two series edges with weights xe1 and xe2 are equivalent to a single
edge with weight xe1xe2/(xe1 +xe2) together with a prefactor that clears the resulting

(36) Some authors write “obtained from a tree”, “obtained from K2” or “obtained from C2” in
place of “obtained from a forest”; in our terminology these definitions yield, respectively, all connected
series-parallel graphs, all connected series-parallel graphs whose blocks form a path, or all 2-connected
series-parallel graphs. See [27, §11.2] for a more extensive bibliography.
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denominator. This is because the spanning trees of G′ are in correspondence with the
spanning trees T of G as follows: if T does not contain e, then adjoin to T \e one but not
both of the edges e1 and e2; if T does contain e, then adjoin to T \e both of the edges
e1 and e2. Since TG(x)=TG\e(x6=e)+xeTG/e(x6=e), where TG\e (resp. TG/e) counts the
spanning trees of G that do not (resp. do) contain e (the latter without the factor xe),
this proves (7.10).

Let us remark that the parallel and series laws for TG(x) are precisely the laws for
combining electrical conductances in parallel or series. This is no accident, because as
Kirchhoff [74] showed a century-and-a-half ago, the theory of linear electrical circuits can
be written in terms of spanning-tree polynomials (see e.g. [35] for a modern treatment).
Let us also remark that the parallel and series laws for TG(x) are limiting cases of the
parallel and series laws for the multivariate Tutte polynomial ZG(q,v), obtained when
q!0 and v is infinitesimal; see [109, §§4.4–4.7] for a detailed explanation.

We are now ready to state and prove the main result of this section.

Theorem 7.12. Let G be a graph, and let β∈
(

1
2 , 1

)
. Then the following are equiv-

alent :
(a) G∈Gβ ;
(b) G is series-parallel ;
(c) G has no K4 minor.
Moreover, these equivalent conditions imply that G∈Gβ′ for all β′> 1

2 .

Please note that Theorems 7.10 and 7.12 together imply Theorem 1.1.′

Proof. The equivalence of statements (b) and (c) is a well-known graph-theoretic
result [44, Exercise 7.30 and Proposition 1.7.4] (see also [46] and [88]).

Now let G be a series-parallel graph: this means that G can be obtained from a
forest by series and parallel extensions of edges and additions of loops. As shown in
Theorem 7.10, if G is a forest, then T−β

G is completely monotone for all β>0. Parallel
extension (7.9) obviously preserves complete monotonicity. By Lemma 3.9, series exten-
sion (7.10) preserves complete monotonicity whenever β> 1

2 . Finally, additions of loops
do not affect TG. Therefore, every series-parallel graph G belongs to the class Gβ for all
β> 1

2 .
Conversely, Proposition 7.9 (a) tells us that K4 /∈Gβ for β∈

(
1
2 , 1

)
. Since Gβ is a

minor-closed class, this proves (a)⇒ (c).

Remarks. (1) Instead of using series and parallel extension of edges (equations
(7.9)/(7.10) and Lemma 3.9), we could equally well have written this proof in terms of the
more general concept of series and parallel connection of graphs (equations (7.3)/(7.4)
and Propositions 3.5 and 3.6).
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(2) It ought to be possible to give an “elementary” proof of the fact that K4 /∈Gβ

for β∈
(

1
2 , 1

)
—and more generally of the fact that the derivatives of T−β

K4
at c=1 do

not all have sign (−1)k—by asymptotic calculation of coefficients à la Pemantle–Wilson–
Baryshnikov [93], [94], [95], [92], [15].

Once again, Dave Wagner has pointed out to us that Theorem 7.12 extends imme-
diately to matroids, as we state in the following theorem.

Theorem 7.13. Let M be a matroid, and let β∈
(

1
2 , 1

)
. Then the following are

equivalent :
(a) M∈Mβ ;
(b) M is the graphic matroid M(G) (or equivalently the cographic matroid M∗(G))

of a series-parallel graph G;
(c) G has no M(K4) or U2,4 minor.
Moreover, these equivalent conditions imply that M∈Mβ′ for all β′> 1

2 .

The proof is completely analogous to that of Theorem 7.11 (see also [90, Corol-
lary 12.2.14] for an alternative proof of (b)⇔ (c) in this case).

Remark. Corollary 1.8 (a) implies that G0=G1/2=G1=G3/2=...={all graphs}. But
what is the story for matroids? Does M1/2 contain only regular matroids? Does M1

contain only complex-unimodular matroids? We suspect that the answer to this last
question is no, since we suspect that Un−2,n∈M1 for all n>2 (Conjecture 1.11).

7.5. Combining the determinantal method with constructions

Let us now combine the ab-initio results from the determinantal method (Theorems 1.2–
1.4 and their corollaries) with the constructions from §3, §7.1 and §7.2 (deletion, con-
traction, direct sum, parallel connection and series connection). For graphs we have the
following proof.

Proof of Proposition 1.12. For p=2 the result is trivial, as the graphs concerned are
precisely those that can be obtained from a forest by parallel extensions of edges and
additions of loops (Theorem 7.12). For p>3 (and hence β> 1

2 ), the result is an immediate
consequence of Corollary 1.5 and Propositions 7.2–7.4.

The matroid generalization of Proposition 1.12 is the following result.

Proposition 7.14. Fix r>1, and let M be any matroid (on the ground set E) that
can be obtained from regular matroids of rank at most r by parallel connection, series
connection, direct sum, deletion and contraction. Then B−β

M is completely monotone on
(0,∞)E for β=0, 1

2 , 1,
3
2 , ... and for all real β> 1

2 (r−1).
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The proof is essentially identical to the previous one, but uses Corollary 1.8 (a) in
place of Corollary 1.5 and Propositions 7.6–7.8 in place of Propositions 7.2–7.4.

And we also have the following result.

Proposition 7.15. Fix r>1, and let M be any matroid (on the ground set E) that
can be obtained from regular matroids of rank at most 2r−1 and complex-unimodular
matroids of rank at most r by parallel connection, series connection, direct sum, deletion
and contraction. Then B−β

M is completely monotone on (0,∞)E for β=0, 1, 2, 3, ... and
for all real β>r−1.

The proof is again identical, but uses both parts of Corollary 1.8 instead of only
part (a).

Propositions 1.12, 7.14 and 7.15 give a rather abstract characterization of the class
of graphs or matroids that they handle, and so it is of interest to give a more explicit
characterization. Let us start with the graph case. We say that a graph G is minimally 3-
connected if G is 3-connected but, for all edges e of G, the graph G\e is not 3-connected.
We then have the following result.

Proposition 7.16. Let Gp be the class of graphs obtained from Kp by disjoint union,
gluing at a cut vertex, series and parallel connection, deletion and contraction of edges,
and deletion of vertices. Then, for p>3, Gp is minor-closed, and the minimal excluded
minors for Gp are the minimally 3-connected graphs on p+1 vertices.

Proof. Let Hp be the class of graphs with no minimally 3-connected minor on p+1
vertices. It is clear that Gp is minor-closed, so our aim is prove that Gp=Hp.

We first show that Gp⊆Hp. It is clear that Hp is minor-closed, and is closed under
disjoint union (“0-sum”) and gluing at a cut vertex (“1-sum”). It is easily checked that if
a graph G is obtained by parallel connection of graphs G1 and G2, then any 3-connected
minor of G is a minor of either G1 or G2; it follows that Hp is closed under parallel
connection. Since series connection can be obtained by combining the other operations
(exploiting K3∈Hp), we conclude that Hp is also closed under series connection. Finally,
we note that Kp∈Hp, and as Gp is the closure of {Kp} under these operations, we see
that Gp⊆Hp.

We now show that Hp⊆Gp. For suppose otherwise, and choose G∈Hp\Gp with the
minimal number of vertices. Clearly G is 2-connected and has at least p+1 vertices. If G
is not 3-connected, then G has a cutset {x, y} and there is a decomposition G=G1∪G2,
where G1 and G2 are connected graphs with at least three vertices and V (G1)∩V (G2)=
{x, y}. Now let G′

1 and G′
2 be the graphs obtained from G1 and G2, respectively, by

adding the edge xy if not present. Then G′
1 and G′

2 are both minors of G (obtained by
contracting the other side to a single edge). As Hp is minor-closed, we have G′

1, G
′
2∈Hp.
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Therefore, by minimality of G, we have G′
1, G

′
2∈Gp. But G can be obtained by taking

a parallel connection of G′
1 and G′

2 along xy and then deleting the edge xy if necessary,
yielding G∈Gp, contrary to hypothesis. We conclude that G must be 3-connected.

We now use the fact that every 3-connected graph other than K4 has an edge that
can be contracted to produce another 3-connected graph [44, Lemma 3.2.4]. Contracting
suitable edges, we see that G has a 3-connected minor on p+1 vertices, which in turn
(deleting edges if necessary) contains a minimally 3-connected minor on p+1 vertices.
But this contradicts G∈Hp.

The matroid case is analogous. We refer to [90, Chapter 8] for the definitions of
3-connectedness and minimal 3-connectedness for matroids. The following result and its
proof are due to Oxley [89].

Proposition 7.17. Let F be a class of matroids that is closed under minors, direct
sums and 2-sums. Let r>1, let Fr={M∈F :rank(M)6r}, and let F ′

r denote the class
of matroids that can be obtained from Fr by direct sums and 2-sums. Then F ′

r is closed
under minors (and of course also under direct sums and 2-sums), and it consists of all
matroids in F that have no F �

r+1 minor, where

F �

r+1 = {M ∈F :M is minimally 3-connected and rank(M) = r+1}. (7.11)

Proof. Consider first the case r=1. The unique minimally 3-connected matroid of
rank 2 is U2,3. If U2,3∈F , then the result clearly holds; if U2,3 /∈F , then F ′

1=F and the
result again holds.

Now assume r>2, and let Hr denote the class of matroids in F that have no F �

r+1

minor. Clearly Hr is minor-closed, and our goal is to show that F ′
r=Hr.

We first show that F ′
r⊆Hr. It is easy to see [90, Propositions 4.2.20 and 8.3.5] that

if a matroid M is either a direct sum or a 2-sum of matroids M1 and M2, then any
3-connected minor of M is isomorphic to a minor of either M1 or M2; it follows that Hr

is closed under direct sum and 2-sum. Since Fr⊆Hr, and F ′
r is the closure of Fr under

direct sum and 2-sum, we see that F ′
r⊆Hr.

We now show that Hr⊆F ′
r. For suppose otherwise, and choose M∈Hr\F ′

r with the
minimal number of elements. It is not hard to see that M must be 3-connected.(37) Note
also that rank(M)>r since M∈F\F ′

r.
We now use Tutte’s wheels and whirls theorem [90, Theorem 8.8.4], which says that

every 3-connected matroid N that is not a wheel or a whirl has an element e such that

(37) If M were a direct sum or a 2-sum of matroids M1 and M2, each having at least one element,
then M1 and M2 would be minors of M [90, Proposition 7.1.21], and hence M1, M2∈Hr because Hr

is minor-closed. But M1 and M2 cannot both belong to F ′r because F ′r is closed under direct sum and
2-sum and M /∈F ′r. Therefore M1 or M2 would be a counterexample to the minimality of M .
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either N \e or N/e is 3-connected (or both). On the other hand, if N is a wheel or a
whirl, then by contracting a rim element and deleting one of the spokes adjacent to that
rim element, we obtain a 3-connected minor N ′ of N such that rank(N ′)=rank(N)−1.

So we apply this argument repeatedly to M until we obtain a 3-connected minor
M ′ of M with rank(M ′)=r+1. We then delete elements from M ′ while maintaining
3-connectedness until we arrive at a minimally 3-connected matroid M ′′. Therefore M
has a minor M ′′∈F �

r+1, contradicting the hypothesis that M∈Hr.

Proposition 7.17 with F={regular matroids} gives an excluded-minor characteriza-
tion of the class of matroids handled by Proposition 7.14. We leave it as a problem for
readers more expert in matroid theory than ourselves to provide an analogous character-
ization for Proposition 7.15.
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