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1. Introduction

1.1. Setting of the problem

We consider the L2-critical generalized Korteweg–de Vries (gKdV) equation{
ut+(uxx+u5)x =0, (t, x)∈ [0, T )×R,
u(0, x) =u0(x), x∈R.

(1.1)

The Cauchy problem is locally well posed in the energy space H1 by Kenig, Ponce and
Vega [11], and given u0∈H1, there exists a unique(1) maximal solution u(t) of (1.1) in
C([0, T ),H1) with either T=∞, or T<∞ and then limt!T ‖ux(t)‖L2 =∞. The mass and
the energy are conserved by the flow, for all t∈[0, T ),

M(u(t))=
∫

R
u2(t) dx=M0 and E(u(t))=

1
2

∫
R
u2

x(t) dx− 1
6

∫
R
u6(t) dx=E0,

where M0=M(u0) and E0=E(u0), and the scaling symmetry (λ>0)

uλ(t, x) =λ1/2u(λ3t, λx)

leaves invariant the L2 norm so that the problem is mass critical.

(1) In a certain sense.
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The family of traveling wave solutions (called solitons)

u(t, x) =λ
−1/2
0 Q(λ−1

0 (x−λ−2
0 t−x0)), (λ0, x0)∈R∗

+×R,

with

Q(x) =
(

3
cosh2 2x

)1/4

, Q′′+Q5 =Q and E(Q) = 0, (1.2)

plays a distinguished role in the analysis. From a variational argument [43], H1 initial
data with subcritical mass ‖u0‖L2<‖Q‖L2 generate global and H1 bounded solutions
with T=∞.

For ‖u0‖L2 >‖Q‖L2 , the existence of blow-up solutions has been a long standing
open problem. In particular, unlike for the analogous Schrödinger problem, there exists
no simple obstruction to global existence. The study of singularity formation for small
supercritical mass H1 initial data

‖Q‖L2 6 ‖u0‖L2 < ‖Q‖L2 +α∗, α∗� 1, (1.3)

has been developed in a series of works by Martel and Merle [16]–[19], [26], where two
new sets of tools are introduced:

– a monotonicity formula and L2-type localized virial identities to control the flow
near the solitary wave;

– rigidity Liouville-type theorems to classify the asymptotic dynamics of the flow.
In particular, the first proof of blow up in finite or infinite time is obtained for initial

data
u0 ∈H1 with (1.3) and E(u0)< 0. (1.4)

The proof is indirect and based on a classification argument: the solitary wave is char-
acterized as the unique universal attractor of the flow in the singular regime. If u(t)
blows up in finite or infinite time T with (1.3), then the flow admits near blow-up time
a decomposition

u(t, x) =
1

λ1/2(t)
(Q+ε)

(
t,
x−x(t)
λ(t)

)
, with ε(t)! 0 in L2

loc as t!T . (1.5)

Then, in [18], for well-localized initial data

u0 satisfying (1.4) and
∫

x′>x

u2
0(x

′) dx′<
C

x6
for x> 0, (1.6)

blow up is proved to occur in finite time T with an upper bound on a sequence tn!T :

‖ux(tn)‖L2 6
C(u0)
T−tn

, (1.7)
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by a dynamical proof.(2)
For the critical mass problem ‖u0‖L2 =‖Q‖L2 , assuming in addition the decay∫

x′>x

u2
0(x

′) dx′<
C

x3
for x> 0,

it was proved in [19] that the solution is global and does not blow up in infinite time.

1.2. Generic blow up for critical problems

In the continuation of these works, the program developed by Merle and Raphaël [7],
[27]–[31], [38] for the mass critical non-linear Schrödinger NLS equation(3){

i∂tu+∆u+|u|4/Nu=0,
u|t=0 =u0,

(t, x)∈ [0, T )×RN , (1.8)

in dimensions 16N65, has led to a complete description of the stable blow-up scenario
near the solitary wave Q which is the unique H1 non-negative solution up to translation
to ∆Q−Q+Q1+4/N =0. This problem displays a similar structure as the critical gKdV.
Initial data in H1 with ‖u0‖L2<‖Q‖L2 are global and bounded, [43]. For u0∈H1 with
‖u0‖L2 =‖Q‖L2 , Merle [25] proved that the only blow-up solution (up to the symmetries
of the equation) is

S(t, x) =
1

(T−t)N/2
e−i|x|2/4(T−t)ei/(T−t)Q

( x

T−t

)
. (1.9)

For small supercritical mass H1 initial data

‖Q‖L2 < ‖u0‖L2 < ‖Q‖L2 +α∗, α∗� 1, (1.10)

an H1 open set of solutions is exhibited where solutions blow up in finite time at log-log
speed:

‖∇u(t)‖L2 ∼C∗
√

log |log(T−t)|
T−t

. (1.11)

Moreover, non-positive energy solutions belong to this set of generic blow up. This
double log correction to self-similarity for stable blow up was conjectured from numerics
by Landman, Papanicolou, Sulem and Sulem [15], and a family of such solutions was
rigorously constructed by a different approach by Perelman in dimension N=1, [37].
Blow-up solutions of type (1.9) (‖u(t)‖H1∼1/t), constructed by Bourgain and Wang [1]

(2) Arguing directly on the solution itself.
(3) Here and in (1.9), but not later, i denotes the imaginary unit.
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(see also Krieger and Schlag [13]) correspond to an unstable threshold dynamics as proved
in Merle, Raphaël and Szeftel [33]. Finally, under (1.10), the quantization of the focused
mass at blow up is proved:

|u(t)|2⇀ ‖Q‖2L2δx=x(T )+|u∗|2, u∗ ∈L2. (1.12)

More recently, natural connections have been made between mass critical problems
and energy critical problems. For the energy critical wave map problem, after the work
[42], a complete description of a generic finite-time blow-up dynamics (log correction to
the self-similar speed) was given by Raphaël and Rodnianski [39], while unstable regimes
with different speeds were constructed by Krieger, Schlag and Tataru [14]. See also
Merle, Raphaël and Rodnianski [32] for the treatment of the Schrödinger map system
and Raphaël and Schweyer [40] for the parabolic harmonic heat flow.

The general outcome of these works is twofold.
First the sharp derivation of the blow-up speed in the generic regime relies on a

detailed analysis of the structure of the solution near collapse, and takes in particular
into account slowly decaying tails in the computation of the leading order blow-up profile.
These tails correspond to the leading order dispersive phenomenon which drives the speed
of concentration and the rate of dispersion, both being intimately linked.

Second, a robust analytic approach has been developed in a nowadays more unified
framework. In particular, the control of the solution in the singular regime relies on
mixed energy/Morawetz or virial type estimates adapted to the flow which have been
used in various settings, see in particular [31], [32], [39] and [41].

1.3. Statement of the results

The aim of the paper is to classify the gKdV dynamics for H1 solutions close to the
soliton and with decay on the right. In particular, we aim at recovering the more refined
description of the flow obtained for the L2 critical NLS equation.

More precisely, let us define the L2 modulated tube around the soliton manifold by

Tα∗ =

{
u∈H1 : inf

λ0>0
x0∈R

∥∥∥∥u− 1

λ
1/2
0

Q

(
·−x0

λ0

)∥∥∥∥
L2

<α∗

}
(1.13)

and consider the set of initial data

A=
{
u0 =Q+ε0 : ‖ε0‖H1 <α0 and

∫
y>0

y10ε20 dy < 1
}
.
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Here α0 and α∗ are universal constants with

0<α0�α∗� 1. (1.14)

Our aim is to classify the flow for data u0∈A. First, we fully describe the blow-up
solutions in the tube Tα∗ : there is only one blow-up type, which is stable. We then show
that in fact only three scenarios occur:

– stable blow up with 1/(T−t) speed;
– convergence to a solitary wave in large time;
– stable defocusing behavior (the solution leaves the tube Tα∗ in finite time).
More precisely, we state the following result.

Theorem 1.1. (Blow up near the soliton in A) There exist universal constants
0<α0�α∗�1 such that the following holds. Let u0∈A.

(i) (Non-positive energy blow up) If E(u0)60 and u0 is not a soliton, then u(t)
blows up in finite time T and, for all t∈[0, T ), u(t)∈Tα∗ .

(ii) (Description of blow up) Assume that u(t) blows up in finite time T and that,
for all t∈[0, T ), u(t)∈Tα∗ . Then there exists `0=`0(u0)>0 such that

‖ux(t)‖L2 ∼ ‖Q′‖L2

`0(T−t)
as t!T . (1.15)

Moreover, there exist λ(t), x(t) and u∗∈H1, u∗ 6=0, such that

u(t, x)− 1
λ1/2(t)

Q

(
x−x(t)
λ(t)

)
!u∗ in L2 as t!T , (1.16)

where
λ(t)∼ `0(T−t) and x(t)∼ 1

`20(T−t)
as t!T , (1.17)

and ∫
x>R

(u?)2(x) dx∼
‖Q‖2L1

8`0R2
as R!∞. (1.18)

(iii) (Openness of the stable blow up) Assume that u(t) blows up in finite time T

and that, for all t∈[0, T ), u(t)∈Tα∗ . Then there exists %0=%0(u0)>0 such that, for all
v0∈A with ‖v0−u0‖H1<%0, the corresponding solution v(t) blows up in finite time T (v0)
as in (ii).

Comments on Theorem 1.1.
• Blow-up speed. An important feature of Theorem 1.1 is the derivation of the stable

blow-up speed for u0∈A:

‖ux(t)‖L2 ∼ C

T−t
(1.19)
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which implies that x(t)!∞ as t!T . Such a blow-up rate confirms the conjecture formu-
lated in [18] for E0<0. Recall that, for u0∈A and E0<0, assuming some a-priori global
information on the Ḣ1 norm for all time in [18], one could deduce (1.19). The derivation
of such a bound is the key to the proof of Theorem 1.1. This blow-up speed is very far
above the scaling law ‖ux‖L2∼1/(T−t)1/3 (see [32] and [40] for a similar phenomenon
for energy critical geometrical problems).

• Structure of u∗. The decay of u∗ in L2 described in (1.18) is directly related to
the blow-up speed ‖Q′‖L2/`0(T−t), itself related to the speed of ejection of mass in time
from the rescaled soliton, similarly as for the critical NLS, see [30]. Note that the Cauchy
problem is well-posed in L2, so that the L2 convergence (1.16) is relevant. It is an open
question but very likely that the convergence in (1.16) holds in H1 since the left-hand
side is bounded in H1 and u∗ is in H1. Note that u∗ /∈A.

The fact that u∗∈H1 is in contrast to the stable regime for critical NLS, where the
accumulation of ejected mass from the rescaled soliton implies that u∗ /∈Lp, p>2. Here
we still observe some ejection of mass from the soliton, but since the concentration point
x(t) of the soliton is going to infinity, the mass does not accumulate at a fixed point
and gives the tail of u∗. More generally, the regularity of u∗ is directly connected to the
blow-up speed and the strength of deviation from self-similarity, see [32] and [40].

• On localization on the right. Let us stress the importance of the decay assumption
on the right in space for the initial data which was already essential in [18] and [19].
Indeed, in contrast to the NLS equation, the universal dynamics cannot be seen in H1

since an additional assumption of decay to the right is required:
– In part II of this work [22], we construct a minimal mass blow-up solution with

1/(T−t) blow up. The initial data is in H1 and decays slowly on the right.(4) Thus, the
blow-up set without decay assumption on the right is not open in H1.

– We prove in [23] the existence of H1 blow-up solutions with different blow-up
speeds, in the range 1/(T−t)ν for any ν> 11

13 for initial data with slow decay on the right
(so that Theorem 1.1 and [18] do not apply). We also prove the existence of blow up in
infinite time for H1 data close to the soliton.

These examples justify the existence of a theory in the energy space H1 (see [16],
[20] and [26]), where blow up in finite or infinite time is possible, with a large range of
possible blow-up rates, together with a theory for initial data with decay on the right
([18] and the present paper), where the universal blow up is described in Theorem 1.1.

However, we do not claim sharpness in the y10 weight in Theorem 1.1.
• Dynamical characterization of Q. Recall from the variational characterization

(4) This is mandatory from [19]: there is no minimal mass blow up for data with decay on the
right.
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of Q that E(u0)60 implies ‖u0‖L2>‖Q‖L2 , unless u0≡Q up to scaling and translation
symmetries. Theorem 1.1 therefore recovers the dynamical classification of Q as the
unique global zero-energy solution in A like for the mass critical NLS, see [31]. The
proof of this type of result is delicate, and one needs to rule out a scenario of vanishing
of the energy of the radiation specific to the zero-energy case. Here, we expect this result
to hold without decay assumption (no global H1 zero-energy solution close to Q exists
except Q).

We now state the following rigidity result of the flow for data in A.

Theorem 1.2. (Rigidity of the dynamics in A) There exist universal constants

0<α0�α∗� 1

such that the following holds. Let u0∈A.
Then, one of the following three scenarios occurs:
– (Exit) There exists t∗∈(0, T ) such that u(t∗) /∈Tα∗ .
– (Blow up) For all t∈[0, T ) one has u(t)∈Tα∗ and the solution blows up in finite

time T<∞ in the regime described by Theorem 1.1.
– (Soliton) The solution is global, for all t>0 one has u(t)∈Tα∗ , and there exist

λ∞>0 and x(t) such that

λ1/2
∞ u(t, λ∞ ·+x(t))!Q in H1

loc as t!∞, (1.20)

|λ∞−1|6 oα0!0(1) and x(t)∼ t

λ2
∞

as t!∞. (1.21)

Comments on Theorem 1.2.
• Stable/unstable manifold. All three possibilities are known to occur for an infinite

set of initial data. Moreover, the sets of initial data leading to (Exit) and (Blow up) are
both open in A by perturbation of the data in H1. For

∫
R u

2
0 dx<

∫
R Q

2 dx only the (Exit)
case can occur, and for E0<0 only (Blow up) can occur. From the proof of Theorem 1.2,
the (Soliton) dynamics can be achieved as threshold dynamics between the two stable
regimes (Exit) and (Blow up) as in [3], [8] and [32]. More precisely, given b∈R small,
let Qb be the suitable perturbation of Q built in Lemma 2.4, and ε0 be a suitable small
perturbation satisfying the orthogonality conditions (2.20). Then there exists b0=b(ε0)
such that the solution to gKdV with initial data Qb0 +ε0 satisfies (Soliton). The Lipschitz
regularity of the flow ε0!b(ε0) needed to build a smooth manifold remains to be proved;
see [13] for related constructions. Note also that solutions that scatter to Q in the regime
(Soliton) where constructed dynamically by Côte [2].
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• Classification of the flow in A. Theorem 1.2 is a first step towards a complete clas-
sification of the flow for initial data in A. Its structure is reminiscent from classification
results obtained by Nakanishi and Schlag [34]–[36], for Klein Gordon and supercriti-
cal Schrödinger equations. These results were proved using in particular classification
arguments based on the Kenig–Merle concentration compactness approach [10], the clas-
sification of critical dynamics by Duyckaerts and Merle [5] (see also [6]), and eventually
a no return lemma. In the analogue of the (Exit) regime, this lemma shows that the
solution cannot come back close to solitons and in fact scatters. In the critical situations,
such an analysis is more delicate and incomplete (see Krieger, Nakanishi and Schlag [12]).
Moreover, in [34] and [35], both the blow-up statements and the no return lemma rely
on a specific algebraic structure—the virial identity—which does not exist for gKdV.

In the continuation of Theorem 1.2, what remains to be done to describe the flow
for data u0∈A is to answer the following question:

What happens after t∗ in the (Exit) regime?

In [22], the second part of this work, we propose a new approach to answer this question
related to the understanding of the threshold dynamics. We proceed in two steps:

(1) We prove the existence and uniqueness in H1 of a minimal mass blow-up solution
‖u0‖L2 =‖Q‖L2 . From [19], this solution has slow decay to the right and is global on the
left in time.

(2) We then show that in the (Exit) case of Theorem 1.2, the solution is at time t∗

L2 close to the unique minimal mass blow-up solution.

Having in mind the properties of threshold solutions for H1 critical NLS and wave
equations ([4], [5]), and the case of the L2 critical NLS equation (the solution S(t) in (1.9)
scatters), it is natural to expect that the minimal mass blow-up solution of gKdV also
scatters in negative time. Assuming this and because scattering is open in the critical L2

space, we obtain that (Exit) implies scattering. In other words, we prove in [22] that all
solutions scatter in the (Exit) regime if and only if the unique H1 minimal mass blow-up
solution scatters to the left. This ends the classification of the flow in A, in particular
the only blow-up regime is the 1/(T−t) universal blow-up regime of Theorem 1.1 and it
is stable.

• Finite/infinite-dimensional dynamics. The proof of Theorem 1.2 relies on a de-
tailed description of the flow. We will show that, before the (Exit) time t∗, the solution
admits a decomposition

u(t, x) =
1

λ1/2(t)
(Qb(t)+ε)

(
t,
x−x(t)
λ(t)

)
,
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where Qb is a suitable O(b) deformation of the solitary wave profile, and the bound

‖ε‖H1
loc
� b

holds. We then extract the following universal finite-dimensional system which drives
the geometrical parameters:

ds

dt
=

1
λ3
, −λs

λ
= b, bs+2b2 =0. (1.22)

It is easily seen that, starting from λ(0)=1 and b(0)=b0, the phase portrait of the dy-
namical system (1.22) is

(1) for b0<0, λ(t)=1+|b0|t, t>0, stable;
(2) for b0=0, λ(t)=1, t>0, unstable;
(3) for b0>0, λ(t)=b0(T−t) with T=1/b0, stable.

We may then reword Theorem 1.2 by saying that the infinite-dimensional system gKdV
for data u0∈A is governed to leading order by the universal finite-dimensional dynamics
(1.22). This is a non-trivial claim due to the non-linear structure of the problem, and the
proof relies on a rigidity formula when measuring the interaction of the radiative term
ε with the ordinary differential equations (ODEs) (1.22), see Lemma 4.3. Let us stress
that the assumption of decay to the right is fundamental here, and we expect that slow
decaying tails may force a different coupling with new leading order ODEs.

Finally, note that like for the finite-dimensional system (1.22), the three scenarios
of Theorem 1.2 can be seen on λ(t) only and are equivalently characterized by

– (Soliton) for all t, λ(t)∈
[
1
2 , 2

]
;

– (Exit) there exists t0>0 such that λ(t0)>2;
– (Blow up) there exists t0>0 such that λ(t0)< 1

2 .
We expect that results such as Theorem 1.2 (classification of the dynamics close to

the solitary waves) can be proved similarly for other problems such as, for example, the
mass critical non-linear Schrödinger equation and the energy critical Schrödinger and
wave equations.

Notation

Let the linearized operator close to Q be

Lf =−f ′′+f−5Q4f. (1.23)

We introduce the generator of L2 scaling

Λf = 1
2f+yf ′.
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For a given generic small constant 0<α∗�1 we let δ(α∗) denote a generic small constant
with

δ(α∗)! 0 as α∗! 0.

We denote the L2 scalar product by

(f, g) =
∫

R
f(x)g(x) dx.

From now on, to simplify notation, we will write
∫

to denote
∫

R, and will often omit dx
and dy in integrals.

1.4. Strategy of the proof

We give in this section a brief insight into the proofs of Theorems 1.1 and 1.2. As men-
tioned before, we are pushing further the dynamical analysis of the problem initiated
in [18]. We will not use rigidity arguments as for the theory in H1 (see [20] and [26]).
Nevertheless, we will use tools introduced to prove such rigidity arguments, such as mod-
ulation theory, L2 and energy monotonicity, local virial identities and weighted estimates
for x>0. However, the proofs here are self-contained, except for the virial estimates, for
which we refer to [16] and [20].

(i) Formal derivation of the law. We start as in [27], [31] and [39] by refining the
blow-up profile and considering an approximation to the renormalized equation. We look
for a solution to gKdV of the form

u(t, x) =
1

λ1/2(t)
Qb(s)

(
x−x(t)
λ(t)

)
,

ds

dt
=

1
λ3
,

xs

λ
=1, b=−λs

λ
, (1.24)

which leads to the slowly modulated self-similar equation

bs
∂Qb

∂b
+bΛQb+(Q′′b−Qb+Q5

b)
′ =0. (1.25)

A formal derivation of the generic blow-up speed can be obtained as follows: look for a
modulated ansatz

Qb =Q+bP+b2P2+..., bs =−c2b2+c3b3+...,

where the unknowns are P, P2, ... and c2, c3, ... . Let the linearized operator close to Q
be given by (1.23). Then the order b expansion leads to the equation

(LP )′ =ΛQ.
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Due to the critical orthogonality condition (Q,ΛQ)=0, it can be solved for a func-
tion P that decays exponentially to the right, but displays a non-trivial tail on the
left limy!−∞ P (y) 6=0. At the level b2, a similar flux type computation(5) reveals that
the P2 equation can be solved with a similar profile for the value c2=2 only.(6) This
corresponds to the formal dynamical system

− λs

λ
= b, bs+2b2 =λ2 d

ds

(
b

λ2

)
=0,

ds

dt
=

1
λ3
, (1.26)

which after reintegration yields finite-time blow up for b(0)>0 with

λ(t) = c(u0)(T−t).

(ii) Decomposition of the flow and modulation equations (§2). For the analysis, it is
enough to work with the localized approximate self-similar profile

Qb =Q+χ(|b|γy)P (y)

for some well chosen(7) γ>0. As long as the solution remains in the tube Tα∗ , we may
introduce the non-linear decomposition of the flow

u(t, x) =
1

λ1/2(t)
(Qb(t)+ε)

(
t,
x−x(t)
λ(t)

)
, (1.27)

where the three time-dependent parameters are adjusted to ensure suitable orthogonality
conditions(8) for ε. A specific feature of the KdV flow is that the generalized null space
of the full linearized operator L′ close to Q involves non-localized functions, and hence
the modulation equations driving the parameters are roughly speaking of the form

λs

λ
+b=

dJ1

ds
+O(‖ε‖2H1

loc
) and bs+b2∼ dJ2

ds
+O(‖ε‖2H1

loc
), (1.28)

with
|Ji|. ‖ε‖H1

loc
+

∫
y>0

|ε|, i=1, 2.

This explains the need for a control of radiation on the right as slow tails and large Ji

might otherwise perturb the formal system (1.26) (see also [18]).
(iii) The mixed energy/virial estimate (§3). The main new input of our analysis is

the derivation of a dispersive control on the local norm ‖ε‖H1
loc

which is relevant in all

(5) See (2.43).
(6) Otherwise, P2 grows exponentially on the right or the left.

(7) See Lemma 2.4, we can take γ= 3
4
.

(8) See (2.20).
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three regimes, and therefore must display some scaling-invariant structure. For this, we
adapt and revisit the construction of mixed energy/virial functionals as introduced in
[24], [39], [41] and [42]. Indeed, we build a non-linear functional

F ∼
∫ (

ψε2y+ϕε2− 1
3
ψ[(ε+Qb)6−Q6

b−6Q5
bε]

)
for well-chosen cut-off functions (ψ,ϕ) which are exponentially decaying to the left, and
polynomially growing to the right. The leading-order quadratic term relates to the
linearized Hamiltonian and is coercive from our choice of orthogonality conditions:

F & ‖ε‖2H1
loc
.

The essential feature now is the structure of the cut off which is manufactured to also
reproduce on the ground state the leading-order virial quadratic form which measures
some repulsivity properties of the linearized operator L′ as derived in [20], and leads to
the Lyapunov monotonicity :

d

ds

(
F
λ2j

)
+
‖ε‖2

H1
loc

λ2j
.
|b|4

λ2j
, j=0, 1. (1.29)

The b4 term relates to the error in the construction of the Qb profile as an approximate
solution to (1.25). The case j=0 in (1.29) is a scaling-invariant estimate which will
be crucial in all three regimes to control the dynamics, and the case j=1 is an H1

improvement in the blow-up regime λ!0.
(iv) Rigidity (§4). Combining the modulation equations (1.28) with the dispersive

bound (1.29) leads essentially to(9)

b(t)
λ2(t)

∼ ` (1.30)

for some constant `. Then the selection of the dynamics depends on
– either |b(t)|.‖ε(t)‖2

H1
loc

for all t,
– or there exists a time t∗1>0 such that |b(t∗1)|�‖ε(t∗1)‖2H1

loc
.

The second condition means that the finite-dimensional dynamics measured by b

takes control over the infinite-dimensional dynamics at some time t∗1. We claim that this
regime is trapped and that |b(t)|�‖ε(t)‖2

H1
loc

for t>t∗1 as long as the solution remains in
the tube Tα∗ . Reintegrating the modulation equations driven to leading order by (1.26),
we show that this leads to (Blow up) if b(t∗1)>0, and to (Exit) if b(t∗1)<0. The first case

(9) See (4.14).
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leads to the threshold (Soliton) dynamics. The condition on b(t1) which determines the
(Blow up) and (Exit) regimes is by continuity of the flow an open condition on the data.

(v) End of the proof of Theorem 1.1. The case E060 is treated in §5. Here the
variational characterization of Q and a standard concentration compactness ensures that
the solution must remain in Tα∗ , and then we show (Blow up) by proving that (Soliton)
cannot happen. For E0<0, this is a classical consequence of the energy conservation
law and local dispersive estimates (asymptotic stability) obtained in the previous step.
The case E0=0 is substantially more subtle, and we show that (Soliton) behavior at zero
energy implies L2 compactness, and hence asymptotic stability implies that the solution
has minimal mass, and thus is exactly a solitary wave.

Finally, we complete in §6 the sharp description of the singularity formation and the
universality of the focusing bubble stated by Theorem 1.1. This requires propagating the
dispersive estimates, which involve local norms around the soliton, further away to the
left of the soliton, in particular to compute the trace of the reminder (1.18). This is done
using a suitable H1 monotonicity formula in the spirit of the analysis in [18] and [26].
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2. Non-linear profiles and decomposition close to the soliton

In this section, we introduce refined non-linear profiles following the strategy developed
in [27] and [39]. The strategy is to produce approximate solutions to the renormalized
flow (1.25) which are as well localized as possible, which turns out to lead to a strong
rigidity for the scaling law.

2.1. Structure of the linearized operator

Denote by Y the set of functions f∈C∞(R,R) such that, for all k∈N, there exist Ck, rk>0
such that, for all y∈R,

|f (k)(y)|6Ck(1+|y|)rke−|y|. (2.1)

We recall without proof the following standard result (see, e.g., [17] and [44]).
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Lemma 2.1. (Properties of the linearized operator L) The self-adjoint operator L

on L2 satisfies the following properties:
(i) (eigenfunctions) LQ3=−8Q3, LQ′=0 and kerL={aQ′ :a∈R};
(ii) (scaling) L(ΛQ)=−2Q;
(iii) for any function h∈L2(R) orthogonal to Q′ for the L2 scalar product, there

exists a unique function f∈H2(R) orthogonal to Q′ such that Lf=h; moreover, if h is
even (resp. odd), then f is even (resp. odd);

(iv) if f∈L2(R) is such that Lf∈Y, then f∈Y;
(v) (coercivity of L) for all f∈H1,

(f,Q3) = (f,Q′) = 0 =⇒ (Lf, f) > ‖f‖2L2 ; (2.2)

moreover, there exists µ0>0 such that for all f∈H1,

(Lf, f) >µ0‖f‖2H1−
1
µ0

[(f,Q)2+(f, yΛQ)2+(f,ΛQ)2]. (2.3)

2.2. Definition and estimates of localized profiles

We now look for a slowly modulated approximate solution to the renormalized flow (1.24),
(1.25). In fact, in our setting, an order-b expansion is enough.

Proposition 2.2. (Non-localized profiles) There exists a unique smooth function P

such that P ′∈Y and

(LP )′ =ΛQ, lim
y!−∞

P (y) =
1
2

∫
Q, lim

y!∞
P (y) = 0, (2.4)

(P,Q) =
1
16

(∫
Q

)2

> 0 and (P,Q′) = 0. (2.5)

Moreover,
Q̃b =Q+bP

is an approximate solution to (1.25) in the sense that

‖(Q̃′′b−Q̃b+Q̃5
b)
′+bΛQ̃b‖L∞ . b2. (2.6)

Proof. We look for P of the form P=P̃−
∫∞

y
ΛQ. Since

∫
ΛQ=− 1

2

∫
Q, the function

y 7!
∫∞

y
ΛQ is bounded and has decay only as y!∞. Then, P solves (2.4) if

(LP̃ )′ =ΛQ+
(
L

∫ ∞

y

ΛQ
)′

=R′, where R=(ΛQ)′−5Q4

∫ ∞

y

ΛQ.
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Note that R∈Y. Since
∫

(ΛQ)Q=0 and LQ′=0, we have
∫
RQ′=−

∫
R′Q=0 and so, from

Lemma 2.1, there exists a unique (smooth) P̃∈Y orthogonal to Q′, such that LP̃=R.
Then P=P̃−

∫∞
y

ΛQ satisfies (2.4) and
∫
PQ′=0. We now compute, from L(ΛQ)=−2Q,

2
∫
PQ=−

∫
(LP )ΛQ=

∫
ΛQ

∫ ∞

y

ΛQ=
1
2

(∫
ΛQ

)2

=
1
8

(∫
Q

)2

. (2.7)

Finally, for Q̃b=Q+bP , we have

(Q̃′′b−Q̃b+Q̃5
b)
′+bΛQ̃b = b(−(LP )′+ΛQ)+b2((10Q3P 2)′+ΛP )

+b3(10Q2P 3)′+b4(5QP 4)′+b5(P 5)′,

which yields (2.6).

Remark 2.3. Since
∫

ΛQ=− 1
2

∫
Q 6=0, a solution P of (LP )′=ΛQ cannot belong to

L2(R). We have chosen the only solution P which converges to 0 at ∞ and which is
orthogonal to Q′. The fact that P displays a non-trivial tail on the left from (2.4) is an
essential feature of the critical gKdV problem and will be central in the derivation of
the blow-up speed; see the proof of (2.37). Such a non-local profile is a substitute to a
dispersive tail (see a similar use in [21]).

We now proceed to a simple localization of the profile to avoid some artificial growth
at −∞. Let χ∈C∞(R) be such that 06χ61, χ′>0 on R and

χ≡
{

1 on [−1,∞),
0 on (−∞,−2].

We fix
γ= 3

4 (2.8)

(note that any γ∈
(

2
3 , 1

)
works and 3

4 has no specific meaning here), and define the
localized profile

χb(y) =χ(|b|γy) and Qb(y) =Q(y)+bχb(y)P (y). (2.9)

Lemma 2.4. (Definition of localized profiles and properties) For |b|<b∗ small enough,
the following properties hold :

(i) (Estimates on Qb) For all y∈R,

|Qb(y)|. e−|y|+|b|(1[−2,0](|b|γy)+e−|y|/2), (2.10)

|Q(k)
b (y)|. e−|y|+|b|e−|y|/2+|b|1+kγ1[−2,−1](|b|γy) for k> 1, (2.11)
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where 1I denotes the characteristic function of the interval I.
(ii) (Equation of Qb) Let

−Ψb =(Q′′b−Qb+Q5
b)
′+bΛQb. (2.12)

Then, for all y∈R,

|Ψb(y)|. |b|1+γ1[−2,−1](|b|γy)+b2(e−|y|/2+1[−2,0](|b|γy)), (2.13)

|Ψ(k)
b (y)|. |b|1+(k+1)γ1[−2,−1](|b|γy)+b2e−|y|/2 for k> 1. (2.14)

(iii) (Mass and energy properties of Qb)∣∣∣∣∫ Q2
b−

(∫
Q2+2b

∫
PQ

)∣∣∣∣ . |b|2−γ , (2.15)∣∣∣∣E(Qb)+b
∫
PQ

∣∣∣∣ . b2. (2.16)

Proof. (i) First, from (1.2), for all k>0 one has |Q(k)(y)|.e−|y| on R. Since P ′∈Y
and limy!∞ P (y)=0, we have |P (y)|.e−|y|/2 for y>0. The estimates (2.10) and (2.11)
then follow from the definition of χ.

(ii) Expanding Qb=Q+bχbP in the expression of Ψb, and using Q′′−Q+Q5=0 and
(LP )′=ΛQ, we find that

−Ψb = b(1−χb)ΛQ+b((χb)yyyP+3(χb)yyP
′+3(χb)yP

′′−(χb)yP+5(χb)yQ
4P )

+b2((10Q3χ2
bP

2)y+PΛχb+χbyP
′)+b3(10Q2χ3

bP
3)y

+b4(5Qχ4
bP

4)y+b5(χ5
bP )y.

(2.17)

Therefore, the estimates (2.13) and (2.14) follow from the properties of Q, χ and P . In
particular, note that

|b(1−χb)ΛQ|. |b|e−3|y|/41(−∞,−1](|b|γy) . |b|e−|b|
−γ/4e−|y|/2 . |b|2e−|y|/2,

b2|PΛχb|. b2(e−|y|/2+1[−2,−1](|b|γy)).

(iii) We first estimate, from the explicit form of P ,∫
χ2

bP
2∼b!0 C

2
0 |b|−γ

for some universal constant C0>0. Estimate (2.15) now follows from∫
Q2

b =
∫
Q2+2b

∫
χbPQ+b2

∫
χ2

bP
2,

and then∫
Q2

b >
∫
Q2+2b

∫
PQ−C2

0 |b|2−γ and ‖Qb−Q‖L2 ∼b∼0 C0|b|1−γ/2.

Finally, expanding Qb=Q+bχbP in E(Qb), we get

E(Qb) =E(Q)−b
∫
χbP (Q′′+Q5)+O(b2),

and using E(Q)=0 and Q′′+Q5=Q yields (2.16).



blow up for the critical gkdv equation i 75

2.3. Decomposition of the solution using refined profiles

In this paper, we work with an H1 solution u to (1.1) which is a priori in the modulated
tube Tα∗ of functions near the soliton manifold. More explicitely, we assume that there
exist (λ1(t), x1(t))∈R∗

+×R and ε1(t) such that

u(t, x) =
1

λ
1/2
1 (t)

(Q+ε1)
(
t,
x−x1(t)
λ1(t)

)
for all t∈ [0, t0),

with, for all t∈[0, t0),
‖ε1(t)‖L2 6�6�0 (2.18)

for a small enough universal constant �0>0. We then have the following standard refined
modulation lemma.

Lemma 2.5. (Refined modulated flow) Assuming (2.18), there exist continuous func-
tions (λ, x, b): [0, t0]!(0,∞)×R2 such that

ε(t, y) =λ1/2(t)u(t, λ(t)y+x(t))−Qb(t)(y), for all t∈ [0, t0], (2.19)

satisfies the orthogonality conditions

(ε(t), yΛQ) = (ε(t),ΛQ) = (ε(t), Q) = 0. (2.20)

Moreover,

‖ε(t)‖L2 +|b(t)|+
∣∣∣∣1− λ(t)

λ1(t)

∣∣∣∣ . δ(�) and ‖ε(t)‖H1 . δ(‖ε(0)‖H1). (2.21)

Remark 2.6. The main novelty here with respect to [18], [20] and [26] is the use
of the modulation parameter b which allows for the extra degeneracy (ε,Q)=0. At the
formal level, the parameter b now plays the role of (ε,Q) in the previous work [18].

Proof. Lemma 2.5 is a standard consequence of the implicit function theorem applied
in L2. We omit the details and refer for example to [27] for a proof with similar Qb profiles
for the NLS case. The heart of the proof is the non-degeneracy of the Jacobian matrix:∣∣∣∣ (ΛQ,ΛQ) (ΛQ,Q)

(P,ΛQ) (P,Q)

∣∣∣∣ =(ΛQ,ΛQ)(P,Q) 6=0,

from
∂

∂λ
[λ1/2Qb(λy)]

∣∣∣∣
λ=1,b=0

=ΛQ and
∂

∂b
[λ1/2Qb(λy)]

∣∣∣∣
λ=1,b=0

=P,

and the explicit computations

(ΛQ,Q) = 0 and (P,Q) =
1
16

∫
Q2 6=0.
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2.4. Modulation equations

In the framework of Lemma 2.5, we introduce the new time variable

s=
∫ t

0

dt′

λ3(t′)
, or equivalently

ds

dt
=

1
λ3
. (2.22)

All functions depending on t∈[0, t0], for some t0>0, can now be seen as depending on
s∈[0, s0], where s0=s(t0). We now claim the following properties of the decomposition
of u(t), possibly taking a smaller universal �0>0.

Lemma 2.7. (Modulation equations) Assume that, for all t∈[0, t0),

‖ε(t)‖L2 6�6�0 and
∫
ε2y(t, y)e−|y|/2 dy6�0 (2.23)

for a small enough universal constant �0>0. Then the map s∈[0, s0] 7!(λ(s), x(s), b(s))
is C1 and the following holds:

(i) (Equation of ε) For all s∈[0, s0],

εs−(Lε)y+bΛε=
(
λs

λ
+b

)
(ΛQb+Λε)+

(xs

λ
−1

)
(ε+Qb)y

+Φb+Ψb−(Rb(ε))y−(RNL(ε))y,

(2.24)

where Ψb was defined in (2.12),

Φb =−(Qb)s =−bs(χb+γy(χb)y)P, (2.25)

and
Rb(ε) = 5(Q4

b−Q4)ε and RNL(ε) = (ε+Qb)5−5Q4
bε−Q5

b . (2.26)

(ii) (Estimates induced by the conservation laws) On [0, s0],

‖ε‖2L2 . |b|1/2+
∣∣∣∣∫ u2

0−
∫
Q2

∣∣∣∣, (2.27)∣∣2λ2E0+ 1
8b‖Q‖

2
L1−‖εy‖2L2

∣∣ . b2+‖ε(s)‖2L2 +δ(‖ε‖L2)‖εy‖2L2 . (2.28)

(iii) (H1 modulation equations) For all s∈[0, s0],∣∣∣∣λs

λ
+b

∣∣∣∣+∣∣∣xs

λ
−1

∣∣∣ .

(∫
ε2e−|y|/10

)1/2

+b2, (2.29)

|bs|.
∫
ε2e−|y|/10+b2. (2.30)
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(iv) (Refined modulation equations inA) Assuming the following uniform L1 control
on the right : ∫

y>0

|ε(t)|. δ(�0) for all t∈ [0, t0), (2.31)

the quantities J1 and J2 below are well-defined and satisfy the following laws:
• (Law of λ) Let

%1(y) =
4

(
∫
Q)2

∫ y

−∞
ΛQ and J1(s) = (ε(s), %1); (2.32)

then, for some universal constant c1,∣∣∣∣λs

λ
+b+c1b2−2

(
(J1)s+

1
2
λs

λ
J1

)∣∣∣∣ .
∫
ε2e−|y|/10+|b|

(∫
ε2e−|y|/10

)1/2

+|b|3. (2.33)

• (Law of b) Let

%2 =
16

(
∫
Q)2

(
(ΛP,Q)
‖ΛQ‖2L2

ΛQ+P− 1
2

∫
Q

)
−8%1 and J2(s) = (ε(s), %2); (2.34)

then, for some universal constant c2,∣∣∣∣bs+2b2+c2b3+b
(

(J2)s+
1
2
λs

λ
J2

)∣∣∣∣ .
∫
ε2e−|y|/10+|b|4. (2.35)

• (Law of b/λ2) Let

%=4%1+%2 ∈Y and J(s) = (ε(s), %); (2.36)

then, for c0=c2−2c1,∣∣∣∣ dds
(
b

λ2

)
+
b

λ2

(
Js+

1
2
λs

λ
J

)
+c0

b3

λ2

∣∣∣∣ .
1
λ2

(∫
ε2e−|y|/10+|b|4

)
. (2.37)

Remark 2.8. It is a remarkable algebraic fact that the equation of b/λ2 (2.37) is
related to %∈Y, which means that J is an L2 quantity which is easier to control than J1

and J2 separately.
The equations (2.33) and (2.35) correspond to a sharp improvement—after inte-

gration in time—of the rough estimates of (iii). However, they hold for initial data in
weighted spaces such as A. Here we are facing an intrinsic difficulty of the gKdV equa-
tion, which is that the null space of the full linearized operators L′ involves badly localized
terms, and hence getting geometrical parameters which are quadratic forcing terms of
the ε equation (2.24) requires some L1 control of the solution on the right. Formally,
(2.33) and (2.35) are the sharp analogues of the leading-order dynamical system

λs

λ
=−b,

(
b

λ2

)
s

=
bs+2b2

λ3
=0.
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Proof. (i) The equation of ε, λ, x and b follows by direct computations from the
equation of u(t). In particular, we use

∂

∂b
Qb =

∂

∂b
(bχb(y))P =(γ|b|γyχ′(|b|γy)+χ(|b|γy))P =(χb+γy(χb)y)P.

The rest of the computation is done in [17, Lemma 1] for example.
(ii) We write down the L2 conservation law∫

Q2
b−

∫
Q2+

∫
ε2+2(ε,Qb) =

∫
u2

0−
∫
Q2,

and we deduce from (2.15), using the orthogonality condition (2.20), that∫
ε2 . |b|+|b|1−γ‖ε‖L2 +

∣∣∣∣∫ u2
0−

∫
Q2

∣∣∣∣.
Then (2.27) follows since γ= 3

4 .
Now, we write down the conservation of energy and use (2.16), the equation of Q

and the orthogonality condition (ε,Q)=0 to estimate

2λ2E(u0) = 2E(Qb)−2
∫
ε(Qb)yy+

∫
ε2y−

1
3

∫
[(Qb+ε)6−Q6

b ]

=−2b(P,Q)+O(b2)+
∫
ε2y−2

∫
ε[(Qb−Q)yy+(Q5

b−Q5)]

− 1
3

∫
[(Qb+ε)6−Q6

b−6Q5
bε].

We estimate all terms in the above identity. By the properties of Qb,∣∣∣∣∫ ε[(Qb−Q)yy+(Q5
b−Q5)]

∣∣∣∣ . |b|
(∫

ε2e−|y|/10

)1/2

+|b|1+2γ

∫
−2|b|−γ<y<0

|ε|

. b2+‖ε‖2L2 .

The non-linear terms are estimated by the homogeneity of the non-linearity which implies
that ∣∣∣∣∫ [(Qb+ε)6−Q6

b−6Q5
bε]

∣∣∣∣ .
∫
|Qb|4ε2+|ε|6 . ‖ε‖2L2 +‖εy‖2L2‖ε‖4L2 .

The collection of the above estimates yields (2.28).
(iii) We sketch the standard computations(10) leading to (2.29) and (2.30). Differ-

entiating the orthogonality conditions (ε,ΛQ)=(ε, yΛQ)=0, using the equation of ε and

(10) See, e.g., [17, Lemma 4] for similar computations.
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estimate (2.13), we obtain∣∣∣∣(λs

λ
+b

)
− (ε, L(ΛQ)′)

‖ΛQ‖2L2

∣∣∣∣+∣∣∣∣(xs

λ
−1

)
− (ε, L(yΛQ)′)

‖ΛQ‖2L2

∣∣∣∣
.

(∣∣∣∣λs

λ
+b

∣∣∣∣+∣∣∣xs

λ
−1

∣∣∣+|b|)(
|b|+

(∫
ε2e−|y|/10

)1/2 )
+|bs|+

∫
ε2e−|y|/10+

∫
|ε|5e−9|y|/10.

We estimate the non-linear term using the Sobolev bound(11) and the smallness (2.23):

‖εe−|y|/4‖2L∞ .
∫

(|∂yε|2+|ε|2)e−|y|/2,

so that ∫
|ε|5e−9|y|/10 . ‖εe−|y|/4‖3L∞

∫
ε2e−|y|/10. (2.38)

Thus (2.23) holds and, for �0 small enough,∣∣∣∣(λs

λ
+b

)
− (ε, L(ΛQ)′)

‖ΛQ‖2L2

∣∣∣∣+∣∣∣∣(xs

λ
−1

)
− (ε, L(yΛQ)′)

‖ΛQ‖2L2

∣∣∣∣ . |b|2+|bs|+
∫
ε2e−|y|/10 (2.39)

and ∣∣∣∣λs

λ
+b

∣∣∣∣+∣∣∣xs

λ
−1

∣∣∣ . |b|2+|bs|+
(∫

ε2e−|y|/10

)1/2

. (2.40)

Next, differentiating in time s the relation (ε,Q)=0, using the ε equation, the alge-
braic facts LQ′=0, (Q,ΛQ)=(Q,Q′)=0 and (ε,ΛQ)=0, the non-degeneracy (P,Q) 6=0
and the bounds (2.13) and (2.14), we find, after integration by parts and using the
Sobolev estimate (2.38), that

|bs|.
∣∣∣∣λs

λ
+b

∣∣∣∣2+
∣∣∣xs

λ
−1

∣∣∣2+|b|2+
∫
ε2e−|y|/10 (2.41)

(see below for a much more detailed computation of bs).
Combining (2.40) and (2.41) yields (2.29) and (2.30).
(iv) To begin with, we claim the following sharp equation for b:

bs+2b2+cb3− 16
(
∫
Q)2

b

[
(ΛP,Q)
‖ΛQ‖2L2

(ε, L(ΛQ)′)+20(ε, PQ3Q′)
]

=O(|b|4)+O
(∫

ε2e−|y|/10

)
,

(2.42)

(11) Which follows by integration by parts.
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where c is a universal constant.
To prove (2.42), we take the scalar product of the equation of ε by Q and we keep

track of all terms up to order |b|3.
In this proof, c will denote various universal constants. First, we use the explicit

formula (2.17) to derive

(Ψb, Q) =−b2((10Q3χ2
bP

2)y+χbΛP,Q)−b3(10Q2χ3
bP

3, Q′)+O(|b|4)

=−b2((10P 2Q3)′+ΛP,Q)−b3(10Q2P 3, Q′)+O(|b|4)

=− 1
8b

2‖Q‖2L1 +c0b3+O(|b|4),

where c0=−10
∫
P 3Q2Q′, and where in the last step we have used the following funda-

mental flux computation:

(ΛP,Q) =−(P,ΛQ) =−(P, (LP )′) = (P, (P ′′−P+5Q4P )′)

= (P, P ′′′−P ′)+10
∫
Q3Q′P 2,

from which we indeed obtain

((10P 2Q3)′+ΛP,Q) =
1
2

lim
y!−∞

P 2(y) =
1
8

(∫
Q

)2

. (2.43)

This computation is the key to the derivation of the blow-up speed.
From (2.5),

(Φb, Q) =−(bs(χb+γyχ′b)P,Q) =−bs(P,Q)+O(b10) =− bs
16

(∫
Q

)2

+O(b10).

Next, from (2.5), ∣∣∣(xs

λ
−1

)
(Qb, Q

′)
∣∣∣+∣∣∣∣∫ (ΛQb)Q−b(ΛP,Q)

∣∣∣∣ . |b|10.

We estimate the small linear term as∫
Rb(ε)Q′ =20b

∫
PQ3Q′ε+b2O

(∫
ε2e−|y|/10

)1/2

,

and non-linear terms in ε are simply treated as before by (2.38).
Therefore, we have obtained

bs+2b2+cb3− 16
(
∫
Q)2

b

[(
λs

λ
+b

)
(ΛP,Q)+20(ε, PQ3Q′)

]
=O(|b|4)+O

(∫
ε2e−|y|/10

)
.

(2.44)
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Moreover, we check that when estimating λs/λ+b, using

|bs+2b2|6 |b|3+|b|
(∫

ε2e−|y|/10

)1/2

+
∫
ε2e−|y|/10,

and, keeping track of all b2 terms, we can improve (2.39) into∣∣∣∣(λs

λ
+b

)
− (ε, L(ΛQ)′)

‖ΛQ‖2L2

−cb2
∣∣∣∣ .

∫
ε2e−|y|/10+|b|

(∫
ε2e−|y|/10

)1/2

+|b|3. (2.45)

Estimate (2.42) follows from (2.44) and (2.45).
Due to the L1 bound (2.31), for any f∈Y,

(
ε,

∫ y

−∞ f
)

is well defined for all time and
by direct computations we have the following general formula:

d

ds

(
ε,

∫ y

−∞
f

)
=−(ε, Lf)+

(
λs

λ
+b

)(
ΛQb,

∫ y

−∞
f

)
+
λs

λ

(
Λε,

∫ y

−∞
f

)
−

(xs

λ
−1

)
(Qb, f)−

(xs

λ
−1

)
(ε, f)−bs

(
(χb+γyχ′b)P,

∫ y

−∞
f

)
+

(
Ψb,

∫ y

−∞
f

)
+(Rb(ε)+RNL(ε), f). (2.46)

Using (2.29), (2.30), (2.13) and (2.42), we obtain, from (2.46),

d

ds

(
ε,

∫ y

−∞
f

)
=−(ε, Lf)+

(
λs

λ
+b

)(
ΛQ,

∫ y

−∞
f

)
−

(xs

λ
−1

)
(f,Q)

− 1
2
λs

λ

(
ε,

∫ y

−∞
f

)
+cb2+O

(∫
ε2e−|y|/10

)
+O

(
|b|

(∫
ε2e−|y|/10

)1/2 )
+O(|b|3)

(2.47)

for some constant c depending on f .

– Equation of J1: We apply (2.47) to f=ΛQ, using the algebraic relations

LΛQ=−2Q,
(

ΛQ,
∫ y

−∞
ΛQ

)
=

1
8

(∫
Q

)2

and
(
Q′,

∫ y

−∞
ΛQ

)
=0,

to prove that

2(J1)s =
16(ε,Q)
(
∫
Q)2

+
(
λs

λ
+b

)
− λs

λ
J1+cb2

+O
(∫

ε2e−|y|/10

)
+O

(
|b|

(∫
ε2e−|y|/10

)1/2 )
+O(|b|3).
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The orthogonality conditions (2.20) now yield (2.33).

– Equation of J2. We now apply (2.47) to
∫ y

−∞ f=%2, f=%′2. We need some com-
putation related to %2. Using

∫
ΛQ=− 1

2

∫
Q,

(ΛQ, %2) =
16

(
∫
Q)2

(
(ΛP,Q)
‖ΛQ‖2L2

ΛQ+P− 1
2

∫
Q,ΛQ

)
− 32

(
∫
Q)2

(
ΛQ,

∫ y

−∞
ΛQ

)
=

16
(
∫
Q)2

[(ΛP,Q)+(ΛQ,P )]+
4

(
∫
Q)2

(∫
Q

)2

− 16
(
∫
Q)2

(∫
ΛQ

)2

=0,

and similarly

(%′2, Q) =
16

(
∫
Q)2

(
(ΛP,Q)
‖ΛQ‖2L2

(ΛQ)′+P ′, Q
)
−8(%′1, Q) = 0.

Next, the algebra
L(P ′) = (LP )′+20Q3Q′P =ΛQ+20Q3Q′P,

and the orthogonality relations (ε,ΛQ)=0 and (P,Q′)=0 yield

(ε, L%′2) =
16

(
∫
Q)2

(
ε, L

[
(ΛP,Q)
‖ΛQ‖2L2

(ΛQ)′+P ′
])
−8(ε, L%′1)

=
16

(
∫
Q)2

[
(ΛP,Q)
‖ΛQ‖2L2

(ε, L(ΛQ)′)+20(ε, PQ3Q′)
]
.

Inserting these relations into (2.46) yields

d

ds
J2 =− 16

(
∫
Q)2

[
(ΛP,Q)
‖ΛQ‖2L2

(ε, L(ΛQ)′)+20
∫
εPQ3Q′

]
− 1

2
λs

λ
J2

+cb2+O
(∫

ε2e−|y|/10

)
+O

(
|b|

(∫
ε2e−|y|/10

)1/2 )
+O(|b|3).

(2.48)

Combining (2.42) and (2.48) yields (2.35).

– Equation of J . We now compute, from (2.33) and (2.35),

d

ds

(
b

λ2

)
=
bs
λ2
−2

λs

λ

b

λ2
=
bs+2b2

λ2
− 2b
λ2

(
λs

λ
+b

)
=− b

λ2

[
(J2)s+

1
2
λs

λ
J2

]
− 2b
λ2

[
2(J1)s+

λs

λ
J1

]
+(2c1−c2)

b3

λ2
+

1
λ2
O

(∫
ε2e−|y|/10+b4

)
=− b

λ2

[
Js+

1
2
λs

λ
J

]
+(2c1−c2)

b3

λ2
+

1
λ2
O

(∫
ε2e−|y|/10+b4

)
,

which is (2.37).
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Finally, we check that %=4%1+%2∈Y. Indeed, %1 and %2 are exponentially localized
at −∞ from (2.4). We thus only need check that limy!∞ %(y)=0, but it is immediate
from their definitions that

lim
y!∞

%1(y) =− 2∫
Q

and lim
y!∞

%2(y) =
8∫
Q
.

This concludes the proof of Lemma 2.7.

2.5. Kato-type identities

We recall the following standard identities which correspond to the localization of con-
servation laws.

Claim 1. (Kato localization identities [9]) Let g be any C3 function and v(t, x) be
a solution of (1.1). Then, the following identities hold :

(i) (L2 identity)

d

dt

∫
v2g=−3

∫
v2

xg
′+

∫
v2g′′′+

5
3

∫
v6g′. (2.49)

(ii) (Energy identity)

d

dt

∫ (
v2

x−
1
3
v6

)
g=−

∫
(vxx+v5)2g′−2

∫
v2

xxg
′+10

∫
v4v2

xg
′+

∫
v2

xg
′′′. (2.50)

3. Monotonicity formulas

This section is devoted to the derivation of the monotonicity tools for solutions near the
soliton manifold which are the key technical arguments of our analysis for initial data
in A. We exhibit a Lyapunov functional based on a suitable localization of the linearized
Hamiltonian, which will both control pointwise dispersion around the soliton, and display
some monotonicity due to the coercivity of the virial quadratic form proved in [20]. A
related strategy originated in [24], [32], [33] and [39], but is implemented here in a new
optimal way. Such dispersive estimates coupled with the modulation equation for b will
lead to the key rigidity property for the proof of the main results of this paper.
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3.1. Pointwise monotonicity

Let ϕ1, ϕ2, ψ∈C∞(R) be such that

ϕi(y) =


ey for y <−1,
1+y for − 1

2 <y<
1
2 ,

yi for y > 2,

ϕ′i(y)> 0 for all y ∈R, i=1, 2, (3.1)

ψ(y) =
{
e2y for y <−1,
1 for y >− 1

2 ,
ψ′(y) > 0 for all y ∈R. (3.2)

Let B>100 be a large universal constant to be chosen in Proposition 3.1, let

ψB(y) =ψ
( y
B

)
and ϕi,B =ϕi

( y
B

)
, i=1, 2,

and define the following norms on ε:

Ni(s) =
∫
ε2y(s, y)ψB(y) dy+

∫
ε2(s, y)ϕi,B(y) dy, i=1, 2. (3.3)

We also define the following L2 weighted norms for ε:

Ni,loc(s) =
∫
ε2(s, y)ϕ′i,B(y) dy, i=1, 2. (3.4)

The heart of our analysis is the following monotonicity property.

Proposition 3.1. (Monotonicity formula) There exist µ>0, B>100 and 0<�∗<�0

such that the following holds. Assume that u(t) is a solution of (1.1) which satisfies
(2.18) on [0, t0] and thus on [0, t0] admits a decomposition (2.19) as in Lemma 2.5. Let
s0=s(t0), and assume the following a-priori bounds, for all s∈[0, s0]:

(H1) (smallness)
‖ε(s)‖L2 +|b(s)|+N2(s) 6�

∗; (3.5)

(H2) (bound related to scaling)

|b(s)|+N2(s)
λ2(s)

6�
∗; (3.6)

(H3) (L2 weighted bound on the right)∫
y>0

y10ε2(s, y) dy6 10
(

1+
1

λ10(s)

)
. (3.7)



blow up for the critical gkdv equation i 85

Consider, for (i, j)∈{1, 2}2, the energy-virial Lyapunov functionals

Fi,j =
∫ [

ε2yψB+ε2(1+Ji,j)ϕi,B−
1
3
((ε+Qb)6−Q6

b−6εQ5
b)ψB

]
, (3.8)

with
Ji,j =(1−J1)−(4(j−1)+2i)−1. (3.9)

Then the following estimates hold on [0, s0]:
(i) (Scaling invariant Lyapunov control) for i=1, 2,

dFi,1

ds
+µ

∫
(ε2y+ε2)ϕ′i,B . |b|4. (3.10)

(ii) (Scaling weighted H1 Lyapunov control) for i=1, 2,

d

ds

(
Fi,2

λ2

)
+
µ

λ2

∫
(ε2y+ε2)ϕ′i,B .

|b|4

λ2
. (3.11)

(iii) (Coercivity of Fi,j and pointwise bounds) for (i, j)∈{1, 2}2,

Ni .Fi,j .Ni, (3.12)

|Ji|+|Ji,j |.N 1/2
2 . (3.13)

Remark 3.2. The L2 weighted bound (3.7) is fundamental for the analysis and will
be further dynamically bootstrapped for an initial data in A. Also, one should think of
(3.10) as a scaling-invariant L2 bound, which is sharpened in the singular regime λ!0
by the H1 control (3.11). Finally, an important feature of Proposition 3.1 is that we do
not assume any a-priori control on the scaling parameter λ(s).

We will use several times in the proof the fact that in the definition of Fi,j , the
weight on εy at −∞ is stronger than the weight on ε. It follows in particular that Fi,j

does not control
∫
ε2yϕ

′
i,B . See Remark 3.5 below.

Proof. Step 1. Weighted L2 controls at the right.
We first claim, for all s∈[0, s0], the controls∫

y>0

yε2(s, y) dy.

(
1+

1
λ10/9(s)

)
N 8/9

1,loc(s), (3.14)∫
y>0

y2ε2(s, y) dy.

(
1+

1
λ10/9(s)

)
N 8/9

2,loc(s), (3.15)∫
y>0

|ε(s, y)| dy.N 1/2
2 (s). (3.16)
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From (3.7), for all A>0,∫
y>0

yε2 6A

∫
06y6A

|ε|2+
1
A9

∫
y>A

y10|ε|2 .AN1,loc+
1
A9

(
1+

1
λ10

)
,

and so the optimal choice

A10N1,loc =1+
1
λ10

leads, using the smallness (3.5), to the bound∫
y>0

yε2 .
(1+λ10)1/10

λ
N 9/10

1,loc .

(
1+

1
λ

)
N 9/10

1,loc .

(
1+

1
λ10/9

)
N 8/9

1,loc,

and (3.14) is proved. Similarly,∫
y>0

y2ε2 6A

∫
06y6A

y|ε|2+
1
A8

∫
y>A

y10|ε|2 .AN2,loc+
1
A8

(
1+

1
λ10

)
,

and thus the choice
A9N2,loc =1+

1
λ10

leads to the bound∫
y>0

y2ε2 .N 8/9
2,loc

(1+λ10)1/9

λ10/9
.

(
1+

1
λ10/9

)
N 8/9

2,loc,

and (3.15) is proved.
The bound (3.16) follows from∫

y>0

|ε|. ‖(1+y)ε‖L2(y>0) .N 1/2
2 .

Finally, we observe that (3.16) implies (3.13). In particular, the quantities Ji,j are well
defined, and so are Fi,j .

Step 2. Algebraic computations on Fi,j .
We compute

λ2(j−1) d

ds

(
Fi,j

λ2(j−1)

)
=2

∫
ψB(εy)sεy+2εs((1+Ji,j)εϕi,B−ψB [(ε+Qb)5−Q5

b ])

+(Ji,j)s

∫
ϕi,Bε

2−2
∫
ψB(Qb)s[(ε+Qb)5−Q5

b−5εQ4
b ]

−2(j−1)
λs

λ
Fi,j ,
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which we rewrite as

λ2(j−1) d

ds

(
Fi,j

λ2(j−1)

)
= f

(i)
1 +f (i,j)

2 +f (i,j)
3 +f (i)

4 , (3.17)

where

f
(i)
1 =2

∫ (
εs−

λs

λ
Λε

)
(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b ]),

f
(i,j)
2 =2

∫ (
εs−

λs

λ
Λε

)
εJi,jϕi,B ,

f
(i,j)
3 =2

λs

λ

∫
Λε(−(ψBεy)y+(1+Ji,j)εϕi,B−ψB [(ε+Qb)5−Q5

b ])

+(Ji,j)s

∫
ϕi,Bε

2−2(j−1)
λs

λ
Fi,j ,

f
(i)
4 =−2

∫
ψB(Qb)s((ε+Qb)5−Q5

b−5εQ4
b).

We claim the following estimates on the above terms: for some µ0>0,

f
(i)
1 6−µ0

∫
(ε2y+ε2)ϕ′i,B+C|b|4, (3.18)

|f (i)
k |6 µ0

10

∫
(ε2y+ε2)ϕ′i,B+C|b|4, for k=2, 3, 4. (3.19)

Note that, in (3.18), we obtained a negative term −µ
∫

(ε2y+ε2)ϕ′i,B , related both to the
smoothing effect of the gKdV equation and to a virial estimate for the linearization of
the gKdV equation close to the soliton. Inserting (3.18) and (3.19) into (3.17) indeed
yields (3.10) and (3.11).

In Steps 3–6, we prove (3.18) and (3.19). Observe that the definitions of ϕi and ψ

imply the following estimates:

|ϕ′′′i (y)|+|ϕ′′i (y)|+|ψ′′′(y)|+|yψ′(y)|+|ψ(y)|.ϕ′i(y) .ϕi(y) for all y ∈R, (3.20)

e|y|ψ(y)+e|y|ψ′(y)+ϕi(y) .ϕ′i(y) for all y ∈ (−∞, 2], (3.21)

ϕ′2(y) .ϕ1(y) .ϕ′2(y) for all y ∈R. (3.22)

In particular,

N1,loc(s) .N2,loc(s) .N1(s) .N2(s) and
∫
ε2(s, y)ϕ1,B(y) dy.N2,loc(s). (3.23)
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Step 3. Control of f (i)
1 . Proof of (3.18).

We compute f (i)
1 using the ε equation (2.24) in the form

εs−
λs

λ
Λε=(−εyy+ε−(ε+Qb)5+Q5

b)y

+
(
λs

λ
+b

)
ΛQb+

(xs

λ
−1

)
(ε+Qb)y+Φb+Ψb,

(3.24)

where

Φb =−bs(χb+γy(χb)y)P and −Ψb =(Q′′b−Qb+Q5
b)
′+bΛQb.

This yields

f
(i)
1 =2

∫
(−εyy+ε−[(ε+Qb)5−Q5

b ])y(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5
b ])

+2
(
λs

λ
+b

) ∫
ΛQb(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b ])

+2
(xs

λ
−1

) ∫
(ε+Qb)y(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b ])

+2
∫

Φb(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5
b ])

+2
∫

Ψb(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5
b ])

= f
(i)
1,1+f (i)

1,2+f (i)
1,3+f (i)

1,4+f (i)
1,5.

Term f
(i)
1,1. This term contains the leading-order negative quadratic terms due to

our choice of orthogonality conditions and suitable repulsivity properties of the virial
quadratic form(12) on the soliton core, and intrinsic monotoninicity properties of the
renormalized KdV flow in the moving frame at speed 1 which expulses energy to the left
and leads to positive terms induced by localization of both mass and energy.

Let us first integrate by parts in order to obtain a more manageable formula:

f
(i)
1,1 =2

∫
(−εyy+ε−[(ε+Qb)5−Q5

b ])y(−εyy+ε−[(ε+Qb)5−Q5
b ])ψB

+2
∫

(−εyy+ε−[(ε+Qb)5−Q5
b ])y(−ψ′Bεy+ε(ϕi,B−ψB)).

(12) See Lemma 3.4.
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We compute the various terms separately:

2
∫

(−εyy+ε−[(ε+Qb)5−Q5
b ])yψB(−εyy+ε−[(ε+Qb)5−Q5

b ])

=−
∫
ψ′B(−εyy+ε−[(ε+Qb)5−Q5

b ])
2

=−
∫
ψ′B(−εyy+ε)2−

∫
ψ′B((−εyy+ε−[(ε+Qb)5−Q5

b ])
2−(−εyy+ε)2)

=−
[∫

ψ′B(ε2yy+2ε2y)+
∫
ε2(ψ′B−ψ′′′B )

]
−

∫
ψ′B((−εyy+ε−[(ε+Qb)5−Q5

b ])
2−(−εyy+ε)2).

Next, after integration by parts,

2
∫

(−εyy+ε)y[−ψ′Bεy+ε(ϕi,B−ψB)]=−2
[∫

ψ′Bε
2
yy+

∫
ε2y

(
3
2
ϕ′i,B−

1
2
ψ′B−

1
2
ψ′′′B

)
+

∫
ε2

(
1
2
(ϕi,B−ψB)′− 1

2
(ϕi,B−ψB)′′′

)]
.

Similarly,

−2
∫

[(ε+Qb)5−Q5
b ]y(ϕi,B−ψB)ε

=−1
3

∫
(ϕi,B−ψB)′([(ε+Qb)6−Q6

b−6Q5
bε]−6[(ε+Qb)5−Q5

b ]ε)

−2
∫

(ϕi,B−ψB)(Qb)y[(ε+Qb)5−Q5
b−5Q4

bε],

and, by direct expansion,∫
[(ε+Qb)5−Q5

b ]yψ
′
Bεy =5

∫
ψ′Bεy((Qb)y[(ε+Qb)4−Q4

b ]+(ε+Qb)4εy).

We collect the above computations and obtain

f
(i)
1,1 =−

∫
[3ψ′Bε

2
yy+(3ϕ′i,B+ψ′B−ψ′′′B )ε2y+(ϕ′i,B−ϕ′′′i,B)ε2]

−2
∫ [

(ε+Qb)6−Q6
b

6
−Q5

bε−[(ε+Qb)5−Q5
b ]ε

]
(ϕ′i,B−ψ′B)

+2
∫

[(ε+Qb)5−Q5
b−5Q4

bε](Qb)y(ψB−ϕi,B)

+10
∫
ψ′Bεy((Qb)y[(ε+Qb)4−Q4

b ]+(ε+Qb)4εy)

−
∫
ψ′B((−εyy+ε−[(ε+Qb)5−Q5

b ])
2−(−εyy+ε)2)

= (f (i)
1,1)

<+(f (i)
1,1)

∼+(f (i)
1,1)

>,
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where (f (i)
1,1)

<, (f (i)
1,1)

∼ and (f (i)
1,1)

> correspond to integration over y<− 1
2B, |y|6 1

2B and
y> 1

2B, respectively.
For the region y<− 1

2B, we rely on monotonicity type arguments and estimate, using
(3.20), ∫

y<−B/2

ε2|ϕ′′′i,B |.
1
B2

∫
y<−B/2

ε2ϕ′i,B 6
1

100

∫
y<−B/2

ε2ϕ′i,B ,∫
y<−B/2

ε2y|ψ′′′B |.
1
B2

∫
y<−B/2

ε2yϕ
′
i,B 6

1
100

∫
y<−B/2

ε2yϕ
′
i,B ,

by choosing B large enough. Next, we recall the Sobolev bound,(13) for all B>1,

∥∥∥ε2√ϕ′i,B

∥∥∥2

L∞(y<−B/2)
. ‖ε‖2L2

(∫
y<−B/2

ε2yϕ
′
i,B+

∫
y<−B/2

ε2
(ϕ′′i,B)2

ϕ′i,B

)
. δ(�∗)

∫
y<−B/2

(ε2y+ε2)ϕ′i,B .
(3.25)

Remark 3.3. This estimate is linked to the L2 critical nature of the problem and
the smallness relies on the global L2 smallness (3.5) only, and requires no smallness of
derivatives. This is the key to control the pure ε6 non-linear term in the functionals Fi,j .

The homogeneity of the power non-linearity then ensures (for B large and �∗ small)
that ∣∣∣∣∫

y<−B/2

[
(ε+Qb)6−Q6

b

6
−Q5

bε−[(ε+Qb)5−Q5
b ]ε

]
(ϕ′i,B−ψ′B)

∣∣∣∣
.

∫
y<−B/2

(ε6+|Qb|4ε2)ϕ′i,B

. (δ(�∗)+e−B/10)
∫

y<−B/2

ϕ′i,B(ε2+ε2y)

6
1

100

∫
y<−B/2

(ε2y+ε2)ϕ′i,B ,

and similarly, for �∗ small depending on B,∣∣∣∣∫
y<−B/2

[(ε+Qb)5−Q5
b−5Q4

bε](Qb)y(ψB−ϕi,B)
∣∣∣∣

.B

∫
y<−B/2

(ε2|Qb|3+|ε|5)(|Qy|+|b| |(Pχb)′|)ϕ′i,B 6
1

100

∫
y<−B/2

(ε2y+ε2)ϕ′i,B+b4.

(13) See the proof of [26, Lemma 6].
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We further estimate, using (3.25) and ψ′.(ϕ′i)
2, for y<− 1

2 ,∣∣∣∣∫
y<−B/2

ψ′Bεy((Qb)y[(ε+Qb)4−Q4
b ]+(ε+Qb)4εy)

∣∣∣∣
. e−B/2

∫
y<−B/2

ϕ′i,B(ε2y+ε2)+
∫
ψ′B |ε|4|εy|2

6
1

100

∫
ε2yyψ

′
B+

1
100

∫
y<−B/2

(ε2y+ε2)ϕ′i,B .

Note that, for the term
∫
ψ′B |ε|4|εy|2, we have proceeded as follows:∫

ψ′Bε
2
yε

4 . ‖ε2(ψ′B)1/4‖2L∞
∫
ε2y(ψ′B)1/2

. ‖ε‖2L2

(∫
(ε2y+ε2)(ψ′B)1/2

) ∫
ε2y(ψ′B)1/2

. δ(α∗)
(∫

ε2y(ψ′B)1/2

)2

+δ(α∗)
∫
ε2yϕ

′
i,B

and(∫
ε2y(ψ′B)1/2

)2

=
(
−

∫
εεyy(ψ′B)1/2+

1
2

∫
ε2((ψ′B)1/2)′′

)2

.

(∫
ε2

) ∫
(ε2yy+ε2)ψ′B .

Thus, ∫
ψ′Bε

2
yε

4 . δ(α∗)
∫

(ε2yy+ε2)ψ′B+δ(α∗)
∫
ε2yϕ

′
i,B .

The remaining non-linear term is estimated using the local H2 control provided by lo-
calization:∣∣∣∣∫

y<−B/2

ψ′B((−εyy+ε−[(ε+Qb)5−Q5
b ])

2−(−εyy+ε)2)
∣∣∣∣

=
∣∣∣∣∫

y<−B/2

ψ′B(−2εyy+2ε−[(ε+Qb)5−Q5
b ])[(ε+Qb)5−Q5

b ]
∣∣∣∣

.
1

100

∫
y<−B/2

ψ′B(|εyy|2+|ε|2)+100
∫

y<−B/2

(ϕ′i,B)2(|ε| |Qb|4+|ε|5)2

.
1

100

∫
y<−B/2

[ε2yyψ
′
B+(ε2y+ε2)ϕ′i,B ].

In the region y> 1
2B, one has ψB(y)=1. We rely on (3.20) to estimate∫

y>B/2

ε2|ϕ′′′i,B |.
1
B2

∫
y>B/2

ε2ϕ′i,B 6
1

100

∫
y>B/2

ε2ϕ′i,B ,
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and we use the exponential localization of Qb to the right and the Sobolev bound

‖ε‖L∞(y>0) . ‖ε‖H1(y>0) .N 1/2
2 . δ(�∗)

to control∣∣∣∣∫
y>B/2

(
(ε+Qb)6−Q6

b

6
−Q5

bε−[(ε+Qb)5−Q5
b ]ε

)
ϕ′i,B

∣∣∣∣
.

∫
y>B/2

(ε6+|Qb|4ε2)ϕ′i,B

. (δ(�∗)+e−B/10)
∫

y>B/2

ϕ′i,B(ε2+ε2y)

6
1

100

∫
y>B/2

(ε2y+ε2)ϕ′i,B

and ∣∣∣∣∫
y>B/2

[(ε+Qb)5−Q5
b−5Q4

bε](Qb)y(ψB−ϕi,B)
∣∣∣∣

.
∫

y>B/2

(ε2|Qb|3+|ε|5)(|Qy|+|b|e−|y|) 6
1

100

∫
y>B/2

(ε2y+ε2)ϕ′i,B .

In the region |y|< 1
2B, one has ϕi,B(s, y)=1+y/B and ψB(y)=1. In particular,

ϕ′′′i,B=ψ′B=0 in this region, and we obtain

(f (i)
1,1)

∼ =− 1
B

∫
|y|<B/2

[
3ε2y+ε2+2

(
(ε+Qb)6−Q6

b

6
−Q5

bε−[(ε+Qb)5−Q5
b ]ε

)
+2[(ε+Qb)5−Q5

b−5Q4
bε]y(Qb)y

]
=− 1

B

∫
|y|<B/2

(3ε2y+ε2−5Q4ε2+20yQ′Q3ε2)+RVir(ε),

where

RVir(ε) =− 1
B

∫
|y|<B/2

[
−5(Q4

b−Q4)ε2+20y((Qb)yQ
3
b−Q′Q3)ε2− 40

3
Q3

bε
3−15Q2

bε
4

−8Qbε
5− 5

3
ε6+20y(Qb)yQ

2
bε

3+10y(Qb)yQbε
4+2y(Qb)yε

5

]
.

We now claim the following coercivity result which is the main tool to measure dispersion
(related to the virial estimate, see §A.2).
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Lemma 3.4. (Localized virial estimate) There exists B0>100 and µ3>0 such that,
if B>B0, then∫

|y|<B/2

(3ε2y+ε2−5Q4ε2+20yQ′Q3ε2) >µ3

∫
|y|<B/2

(ε2y+ε2)− 1
B

∫
ε2e−|y|/2.

We further estimate, by Sobolev’s inequality,

|RVir(ε)|.
1
B

(|b|+‖ε‖L∞(|y|<B/2))
∫
|y|<B/2

(ε2y+ε2) .
1
B
δ(�∗)

∫
|y|<B/2

(ε2y+ε2),

and thus, for �∗ small enough,

(f (i)
1,1)

∼ 6− µ3

2B

∫
|y|<B/2

(ε2y+ε2)+
1
B2

∫
ε2e−|y|/2.

The collection of the above estimates yields the bound

f
(i)
1,1 6−µ4

B

∫
[ψ′Bε

2
yy+ϕ′i,B(ε2y+ε2)]+Cb4 (3.26)

for some universal µ4>0 independent of B.

Term f
(i)
1,2. We integrate by parts to express f1,2:

f
(i)
1,2 =2

(
λs

λ
+b

) ∫
ΛQ(Lε)−2

(
λs

λ
+b

) ∫
ε(1−ϕi,B)ΛQ

+2b
(
λs

λ
+b

) ∫
Λ(χbP )(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b)])

+2
(
λs

λ
+b

) ∫
ΛQ(−(ψB)yεy−(1−ψB)εyy+(1−ψB)[(ε+Qb)5−Q5

b ])

+2
(
λs

λ
+b

) ∫
ΛQ[(ε+Qb)5−Q5

b−5Q4ε].

Observe, from (2.20), that∫
ΛQ(Lε) = (ε, LΛQ) =−2(ε,Q) = 0.

We now use the orthogonality conditions (ε, yΛQ)=0 and the definition of ϕi,B to esti-
mate ∣∣∣∣∫ ΛQε(1−ϕi,B)

∣∣∣∣ =
∣∣∣∣∫ ΛQε

(
1−ϕi,B+

y

B

)∣∣∣∣ . e−B/8N 1/2
i,loc,

so that, by (2.29) and for B large enough,∣∣∣∣(λs

λ
+b

) ∫
ΛQε(1−ϕi,B)

∣∣∣∣ . (N 1/2
i,loc+b

2)e−B/8N 1/2
i,loc 6

1
500

µ4

B
Ni,loc+Cb4.
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For the next term in f (i)
1,2, we first integrate by parts to remove all derivatives on ε. Then,

by (2.29), the weighted Sobolev bound (3.25) and the properties of ϕi,B , ψB , P and χb

(2.9), we obtain, for �∗ small,∣∣∣∣2b(λs

λ
+b

) ∫
Λ(χbP )(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b)])
∣∣∣∣

. |b|(N 1/2
i,loc+b

2)
(∫

y<0

ey/B+1
)1/2

N 1/2
i,loc

. |b|(N 1/2
i,loc+b

2)B1/2N 1/2
i,loc

6
1

500
µ4

B
Ni,loc(s)+Cb4.

Next, integrating by parts, using the exponential decay of Q and since ψB(y)≡1 on[
− 1

2B,∞
)
, ∣∣∣∣(λs

λ
+b

) ∫
ΛQ(−(ψB)yεy−(1−ψB)εyy+(1−ψB)[(ε+Qb)5−Q5

b ])
∣∣∣∣

. (N 1/2
i,loc+b

2)(e−B/10+δ(�∗))N 1/2
i,loc 6

1
500

µ4

B
Ni,loc,

and finally∣∣∣∣(λs

λ
+b

) ∫
ΛQ[(ε+Qb)5−Q5

b−5Q4ε]
∣∣∣∣ . (N 1/2

i,loc+b
2)δ(�∗)N 1/2

i,loc 6
1

500
µ4

B
Ni,loc.

The collection of the above estimates yields the bound

|f (i)
1,2|6

1
100

µ4

B
Ni,loc+Cb4.

Term f
(i)
1,3. We use the identity∫

ψB(Qb)y[(ε+Qb)5−Q5
b−5Q4

bε]+
∫
ψBεy[(ε+Qb)5−Q5

b ]

=
1
6

∫
ψB∂y[(ε+Qb)6−Q6

b−6Q5
bε] =−1

6

∫
ψ′B [(ε+Qb)6−Q6

b−6Q5
bε]

to compute

f
(i)
1,3 =2

(xs

λ
−1

) ∫
1
6
ψ′B [(ε+Qb)6−Q6

b−6Q5
bε]

+2
(xs

λ
−1

) ∫
(bχbP+ε)y[−ψ′Bεy−ψBεyy+εϕi,B ]

+2
(xs

λ
−1

) ∫
Q′[Lε−ψ′Bεy+(1−ψB)εyy−ε(1−ϕi,B)]

+10
(xs

λ
−1

) ∫
εψB(Q4

b(Qb)y−Q4Qy).
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Since |(ε+Qb)6−Q6
b−6Q5

bε|.|ε|2+|ε|6, by (3.25) and |xs/λ−1|6δ(�∗), we have∣∣∣∣2(xs

λ
−1

) ∫
1
6
ψ′B [(ε+Qb)6−Q6

b−6Q5
bε]

∣∣∣∣ . δ(�∗)
∫
ψ′B(|ε|2+|ε|6)

6
1

500
µ4

B

∫
(ε2y+ε2)ϕ′i,B .

Then, as before, integrating by parts, and using the Cauchy–Schwarz inequality,∣∣∣∣2b(xs

λ
−1

) ∫
(χbP )y[−ψ′Bεy−ψBεyy+εϕi,B ]

∣∣∣∣ . |b|(N 1/2
i,loc+b

2)B1/2Ni,loc

6
1

500
µ4

B
Ni,loc+b4

and ∣∣∣∣2(xs

λ
−1

) ∫
εy[−ψ′Bεy−ψBεyy+εϕi,B ]

∣∣∣∣ . δ(�∗)
∫

(ε2y+ε2)ϕ′i,B

6
1

500
µ4

B

∫
(ε2y+ε2)ϕ′i,B .

The next term is treated using the cancellation LQ′=0 and the orthogonality conditions
(ε,ΛQ)=(ε,Q)=0, so that (yQ′, ε)=0. Thus, by the definitions of ϕi,B and ψB ,∣∣∣∣2(xs

λ
−1

) ∫
Q′[Lε−ψ′Bεy+(1−ψB)εyy−ε(1−ϕi,B)]

∣∣∣∣
=

∣∣∣∣2(xs

λ
−1

) ∫
Q′

[
−ψ′Bεy+(1−ψB)εyy−ε

(
1+

y

B
−ϕi,B

)]∣∣∣∣
. (N 1/2

i,loc+b
2)e−B/10N 1/2

i,loc

6
1

500
µ4

B
Ni,loc+b4.

Finally,∣∣∣∣10
(xs

λ
−1

) ∫
εψB(Q4

b(Qb)y−Q4Qy)
∣∣∣∣ . |b|(N 1/2

i,loc+b
2)B1/2N 1/2

i,loc 6
1

500
µ4

B
Ni,loc+Cb4.

In conclusion, for f (i)
1,3,

|f (i)
1,3|6

1
100

µ4

B

∫
(ε2y+ε2)ϕ′i,B+Cb4,

for B large enough and �∗ small enough.

Term f
(i)
1,4. We compute explicitely

f
(i)
1,4 =−2bs

∫
(χb+γy(χb)y)P (−ψBεyy−ψ′Bεy+εϕi,B−ψB [(ε+Qb)5−Q5

b ]).
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We estimate, after integrations by parts,∣∣∣∣∫ (χb+γy(χb)y)P (−ψBεy)y

∣∣∣∣ .
∫
|ε| |(ψB((χb+γy(χb)y)P )y)y|.B1/2N 1/2

i,loc,∣∣∣∣∫ (χb+γy(χb)y)Pεϕi,B

∣∣∣∣ .B1/2N 1/2
i,loc.

The estimate of the non-linear term follows from the weighted Sobolev estimate (3.25)
with ψ6(ϕ′i)

2, for y<− 1
2 ,∣∣∣∣∫ (χb+γy(χb)y)PψB [(ε+Qb)5−Q5

b ]
∣∣∣∣ .

∫
ψB(|Qb|4|ε|+|ε|5)

.B1/2

(∫
(|ε|2+|ε|6)ψB

)1/2

.B1/2

(∫
(ε2y+ε2)ϕ′i,B

)1/2

.

Together with (2.30), these estimates yield the bound

|f1,4|6
1

500
µ4

B

∫
(ε2y+ε2)ϕ′i,B+C|b|4.

Term f
(i)
1,5. This term generates the leading-order term in b through the error term

Ψb in the construction of the approximate Qb profile. Recall that

f
(i)
1,5 =2

∫
Ψb(−(ψBεy)y+εϕi,B−ψB [(ε+Qb)5−Q5

b ]).

We now rely on (2.14) to estimate, by integration by parts and Cauchy–Schwarz’s in-
equality, ∣∣∣∣∫ (Ψb)yψBεy

∣∣∣∣ .B1/2b2N 1/2
i,loc 6

1
500

µ4

B
Ni,loc+C|b|4.

By (2.13), |Ψb|6b2+|b|1+γ1[−2,−1](|b|γy), and so, by the exponential decay of ϕi,B in the
left, ∣∣∣∣∫ Ψbϕi,Bε

∣∣∣∣ . (b2B1/2+e−1/2|b|γ )|b|1+γN 1/2
i,loc 6

1
500

µ4

B
Ni,loc+C|b|4.

For the non-linear term, similarly and using (3.25),∣∣∣∣∫ ΨbψB [(ε+Qb)5−Q5
b ]

∣∣∣∣ 6
1

500
µ4

B

∫
(ε2y+ε2)ϕ′i,B+C|b|4.

The collection of the above estimates yields the bound

|f (i)
1,5|6

1
100

µ4

B

∫
(ε2y+ε2)ϕ′i,B+|b|4.



blow up for the critical gkdv equation i 97

Step 4. f (i,j)
2 term.

We integrate by parts using (3.24):

f
(i,j)
2 =2Ji,j

∫
εϕi,B

[
(−εyy+ε−(ε+Qb)5+Q5

b)y

+
(
λs

λ
+b

)
ΛQb+

(xs

λ
−1

)
(ε+Qb)y+Φb+Ψb

]
.

We integrate by parts, estimate all terms like for f (i)
1 and use (3.13), which implies

|Ji,j |. δ(�∗),

to conclude that

|f (i,j)
2 |. δ(�∗)

[∫
(ε2y+ε2)ϕ′i,B+|b|4

]
.

Step 5. f (i,j)
3 term.

Recall that

f
(i,j)
3 =2

λs

λ

∫
Λε(−(ψBεy)y+(1+Ji,j)εϕi,B−ψB [(ε+Qb)5−Q5

b ])

+(Ji,j)s

∫
ϕi,Bε

2−2(j−1)
λs

λ
Fi,j .

We integrate by parts to compute∫
Λε(ψBεy)y =−

∫
ε2yψB+

1
2

∫
ε2yyψ

′
B ,∫

(Λε)εϕi,B =−1
2

∫
ε2yϕ′i,B ,∫

ΛεψB [(ε+Qb)5−Q5
b ] =

1
6

∫
(2ψB−yψ′B)[(ε+Qb)6−Q6

b−6Q5
bε]

−
∫
ψBΛQb[(ε+Qb)5−Q5

b−5Q4
bε].

Thus,

f
(i,j)
3 =

λs

λ

∫
[(2−2(j−1))ψB−yψ′B ]ε2y

− 1
3
λs

λ

∫
[(2−2(j−1))ψB−yψ′B ][(ε+Qb)6−Q6

b−6Q5
bε]

+2
λs

λ

∫
ψBΛQb[(ε+Qb)5−Q5

b−5Q4
bε]

+(Ji,j)s

∫
ϕi,Bε

2− λs

λ
(1+Ji,j)

∫
yϕ′i,Bε

2−2(j−1)
λs

λ
(1+Ji,j)

∫
ϕi,Bε

2
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=
λs

λ

∫
[2(2−j)ψB−yψ′B ]ε2y−

1
3
λs

λ

∫
[2(2−j)ψB−yψ′B ][(ε+Qb)6−Q6

b−6Q5
bε]

+2
λs

λ

∫
ψBΛQb[(ε+Qb)5−Q5

b−5Q4
bε]

+
1
i

[
(Ji,j)s−2(j−1)(1+Ji,j)

λs

λ

] ∫
(iϕi,B−yϕ′i,B)ε2

+
1
i

[
(Ji,j)s−(2(j−1)+i)(1+Ji,j)

λs

λ

] ∫
yϕ′i,Bε

2

= f
(i,j)
3,1 +f (i,j)

3,2 ,

where

f
(i,j)
3,2 =

1
i

[
(Ji,j)s−(2(j−1)+i)(1+Ji,j)

λs

λ

] ∫
yϕ′i,Bε

2.

We estimate all terms in the above expression using again the notation (f (i,j)
3,k )<, (f (i,j)

3,k )∼

and (f (i,j)
3,k )>, corresponding to integration over y<− 1

2B, |y|< 1
2B and y> 1

2B, respec-
tively. The middle term is easily estimated by brute force using (3.13), (2.33), (2.29) and
the a-priori bound (3.5), getting

|(f (i,j)
3 )∼|. δ(�∗)

∫
(ε2y+ε2)ϕ′i,B .

For y<−B, we use the exponential decay of ψB and ϕi,B , and (3.20) to estimate∫
y<−B/2

(ψB+|y|ψ′B+ϕi,B)(ε2y+ε2)+|y|ϕ′i,Bε2

.
∫

y<−B/2

ε2yϕ
′
i,B+

∫
y<−B/2

|y|ϕ′i,Bε2

.
∫
ε2yϕ

′
i,B+

(∫
y<−B/2

|y|100ey/Bε2
)1/100(∫

y<−B/2

ey/Bε2
)99/100

.
∫
ε2yϕ

′
i,B+N 9/10

i,loc ,

where we have used that
∫

y<−B/2
|y|100ey/Bε26‖ε‖2L2 6δ(�∗).

Remark 3.5. We see in the above estimate why we need to impose a stronger ex-
ponential weight on εy than on ε at −∞ in the definition of Fi,j . Indeed, since the
global L2 norm of εy is not controlled,(14) we cannot estimate

∫
y<0

|y|ψ′Bε2y as we did for∫
y<0

|y|ϕ′i,Bε2.

(14) Because λ becomes large in the (Exit) regime.
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Together with (2.29) and the weighted Sobolev bound (3.25), this yields the bound

|(f (i,j)
3 )<|. (b+N 1/2

i,loc)
(∫

ε2yϕ
′
i,B+N 9/10

i,loc

)
. δ(�∗)

∫
(ε2y+ε2)ϕ′i,B+b4.

For y>B, we estimate by brute force, using (3.20),

iϕi,B−yϕ′i,B =0 for y >B,

and (3.25),

|(f (i,j)
3,1 )>|. (b+N 1/2

i,loc)
∫

(ε2y+ε2)ϕ′i,B . δ(�∗)
∫

(ε2y+ε2)ϕ′i,B .

It only remains to estimate (f (i,j)
3,2 )>. This is a dangerous term which requires

– the weighted bound (3.7) and in particular its consequences (3.14) and (3.15)
which are additional information necessary to close the estimates;

– the following cancellation manufactured in the definition (3.9) from (2.33) and
(3.13):∣∣∣∣(Ji,j)s−(2(j−1)+i)(1+Ji,j)

λs

λ

∣∣∣∣ =
4(j−1)+2i

(1−J1)4(j−1)+2i+1

∣∣∣∣(J1)s−
1
2
λs

λ
(1−J1)

∣∣∣∣
. |b|+Ni,loc.

(3.27)

Remark 3.6. Note that the gain in (3.27) with respect to (2.29) motivates the pres-
ence of the factor 1+Ji,j in (3.8).

The estimates (3.27), (3.14) and (3.15) together with the bootstrap bounds (3.5)
and (3.6) and the control (3.23) imply that

|(f (i,j)
3,2 )>|. (|b|+Ni,loc)

(
1+

1
λ10/9

)
N 8/9

i,loc

. |b|(1+δ(�∗)|b|−5/9)N 8/9
i,loc+Ni,loc(1+δ(�∗)N−5/9

i,loc )N 8/9
i,loc

. δ(�∗)(Ni,loc+|b|4).

The collection of the above estimates yields the bound

|f (i,j)
3 |. δ(�∗)

(∫
(ε2y+ε2)ϕ′i,B+|b|4

)
.

Step 6. f (i)
4 term.

First,
|(Qb)s|=

∣∣bsP (χ(|b|γy)+γ|b|γyχ′(|b|γy))
∣∣ . |bs|.
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We use the Sobolev bound∥∥ε2√ψB

∥∥2

L∞
. δ(�∗)

∫
(ε2y+ε2)ψB (3.28)

to obtain∫
ψB |ε|5 . ‖ψ1/2

B ε2‖3/2
L∞

∫
ψ

1/4
B ε2 .

(∫
ε2

)3/4 ∫
(ε2y+ε2)ψB . δ(�∗)

∫
(ε2y+ε2)ψB ,

and thus, from (2.30), |Qb|6C and (3.20),

|f (i)
4 |. |bs|

∫
ψB(ε2|Qb|3+|ε|5) . (b2+Ni,loc)

∫
(ε2y+ε2)ψB . δ(�∗)

∫
(ε2y+ε2)ϕ′i,B .

Step 7. Proof of (3.12).
First, we estimate from the homogeneity of the non-linearity and the Sobolev bound

(3.28), ∫
ψB |(ε+Qb)6−Q6

b−6εQ5
b |.

∫
ψB(|Qb|4ε2+|ε6|) . δ(�∗)

∫
(ε2y+ε2)ψB .

The upper bound follows immediately.
The lower bound follows from the structure (3.8) of Fi,j which is a localization of

the linearized Hamiltonian close to Q. Indeed, we rewrite

Fi,j =
∫
ψBε

2
y+ϕi,Bε

2−5
∫
Q4ε2+Ji,j

∫
ϕi,Bε

2

− 1
3

∫
ψB [(ε+Qb)6−Q6

b−6εQ5
b−15Q4

bε
2] dy−5

∫
ψB(Q4

b−Q4)ε2.

The small L2 term is estimated from (3.9) and (3.13):

|Ji,j |
∫
ϕi,Bε

2 . δ(�∗)
∫
ϕi,Bε

2.

The non-linear term is estimated using the homogeneity of the non-linearity and the
Sobolev bound (3.28):∫

ψB |(ε+Qb)6−Q6
b−6εQ5

b−15Q4
bε

2|.
∫
ψB(|Qb|3|ε|3+|ε|6) . δ(�∗)

∫
(ε2y+ε2)ψB .

The coercivity of the linearized energy (2.3) together with the choice of orthogonality
conditions (2.20) and a standard localization argument(15) now ensure the coercivity for
B large enough: ∫

(ψBε
2
y+ϕi,Bε

2−5ψBQ
4ε2) >µNi,

and the lower bound (3.12) follows.
This concludes the proof of Proposition 3.1.

(15) See, for example, [20, Appendix] for more details.
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3.2. Dynamical control of the tail

We now provide an elementary dynamical control of the L2 tail on the right of the soliton
which will allow us to close the bootstrap bound (H3) of Proposition 3.1 in the setting
of Theorem 1.2. Consider a smooth function

ϕ10(y) =
{

0 for y6 0,
y10 for y> 1,

with ϕ′10 > 0.

Lemma 3.7. (Dynamical control of the tail on the right) Under the assumptions of
Proposition 3.1,

1
λ10

d

ds

(
λ10

∫
ϕ10ε

2

)
.N1,loc+b2. (3.29)

Proof. We compute, from (3.24),

1
2
d

ds

∫
ϕ10ε

2 =
∫
εsεϕ10 =

∫
ϕ10ε

[
λs

λ
Λε+(−εyy+ε−(ε+Qb)5+Q5

b)y

+
(
λs

λ
+b

)
ΛQb+

(xs

λ
−1

)
(ε+Qb)y+Φb+Ψb

]
.

We integrate the linear term by parts and use that yϕ′10=10ϕ10 for y>1 and ϕ′′′10�ϕ′10
for y large enough, to derive the bound∫

ϕ10ε

[
λs

λ
Λε+(−εyy+ε)y

]
=−1

2
λs

λ

∫
yϕ′10ε

2− 3
2

∫
ϕ′10ε

2
y−

1
2

∫
ϕ′10ε

2+
1
2

∫
ϕ′′′10ε

2

6−10
2
λs

λ

∫
ϕ10ε

2− 1
4

∫
ϕ′10(ε

2
y+ε2)+CN1,loc.

The terms involving the geometrical parameters are controlled from the exponential
localization of Qb on the right and (2.29) and (2.30):∣∣∣∣λs

λ
+b

∣∣∣∣ ∣∣∣∣∫ ϕ10ε(ΛQb)
∣∣∣∣ . (b2+N 1/2

1,loc)N
1/2

i,loc .N1,loc+b2,∣∣∣xs

λ
−1

∣∣∣ ∣∣∣∣∫ ϕ10ε(ε+Qb)y

∣∣∣∣ . (b2+N 1/2
1,loc)

[
N 1/2

1,loc+
∫
ϕ′10ε

2

]
.N1,loc+b2+δ(�∗)

∫
ϕ′10ε

2,∫
|ϕ10εΦb|. |bs|N 1/2

1,loc . b2+N1,loc.

We control similarly the interaction with the error from (2.12):∫
|ϕ10εΨb|. b2N 1/2

1,loc . b2+N1,loc.
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By integration by parts in the non-linear term, we can remove all derivatives on ε to
obtain (using |Qb|+|(Qb)y|6Ce−y/2 for y>0)∣∣∣∣∫ ϕ10ε[(ε+Qb)5−Q5

b ]y

∣∣∣∣ .
∫

y>0

ϕ10e
−y/2ε2(|ε|3+1)+

∫
ϕ′10ε

6

.
∫

y>0

e−y/4ε2(|ε|3+1)+
∫
ϕ′10ε

6.

Thus, by standard Sobolev estimates,∣∣∣∣∫ ϕ10ε[(ε+Qb)5−Q5
b ]y

∣∣∣∣ .N1,loc+δ(�∗)
∫
ϕ′10(ε

2
y+ε2).

The collection of the above estimates yields the bound

d

ds

∫
ϕ10ε

2+10
λs

λ

∫
ϕ10ε

2 .N1,loc+b2,

and (3.29) is proved.

4. Rigidity near the soliton. Proof of Theorem 1.2

This section is devoted to the proof of the following proposition which classifies the
behavior of any solution close to Q and directly implies Theorem 1.2. Let u0∈H1 be
such that

u0 =Q+ε0, ‖ε0‖H1 <α0 and
∫

y>0

y10ε20(y) dy < 1, (4.1)

and let u(t) be the corresponding solution of (1.1) on [0, T ). Let Tα∗ be the L2 modulated
tube around the manifold of solitary waves given by (1.13) and define the exit time

t∗ =sup{0<t<T :u(t′)∈Tα∗ for all t′ ∈ [0, t]},

which satisfies t∗>0 by assumption on the data. We claim the following result.

Proposition 4.1. (Rigidity/Dynamical version) There exist universal constants

0<α∗0�α∗��
∗ and C∗> 1

such that the following holds. If u0 satisfy (4.1) with 0<α0<α
∗
0, then u(t) satisfies the

assumptions (H1)–(H3) of Proposition 3.1 on [0, t∗).
Moreover, let t∗1 be the separation time defined by

t∗1 =
{

0, if |b(0)|>C∗N1(0),
sup{0<t< t∗ : |b(t′)|<C∗N1(t′) for all t′ ∈ [0, t]}, otherwise.

(4.2)
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Then the following trichotomy holds:
(Soliton) If t∗1=t∗, then t∗1=t∗=T=∞. In addition,

N2(t)! 0 and b(t)! 0 as t!∞, (4.3)

and
λ(t) =λ∞(1+o(1)) and x(t) =

t

λ2
∞

(1+o(1)) as t!∞, (4.4)

for some λ∞ satisfying |λ∞−1|6δ(α0).
(Exit) If t∗1<t

∗ with b(t∗1)6−C∗N1(t∗1), then t∗<T . In particular,

inf
λ0>0
x0∈R

∥∥∥∥u(t∗)− 1

λ
1/2
0

Q
( ·−x0

λ0

)∥∥∥∥
L2

=α∗. (4.5)

In addition,

λ(t∗) >
C(α∗)
δ(α0)

. (4.6)

(Blow up) If t∗1<t
∗ with b(t∗1)>C

∗N1(t∗1), then t∗=T . In addition, T<∞ and there
exists 0<`0<δ(α0) such that

lim
t!T

λ(t)
(T−t)

= `0, lim
t!T

b(t)
(T−t)2

= `30, lim
t!T

(T−t)x(t) =
1
`20
, (4.7)

and the following bounds hold :

‖εx(t)‖L2 .λ2(t)[|E0|+δ(α0)] and ‖ε(t)‖L2 . δ(α0). (4.8)

Remark 4.2. Note that u(t) belongs to the tube Tα∗ as long as 1
3 6λ(t)63 and that

the three cases are equivalently characterized by
(Soliton) for all t, λ(t)∈

[
1
2 , 2

]
;

(Exit) there exists t0>0 such that λ(t0)>2;
(Blow up) there exists t0>0 such that λ(t0)< 1

2 .
A continuity argument thus ensures that the cases (Exit) and (Blow up) are open

in A.
Also, note that on (t∗1, t

∗), λ(t) is almost monotonic and the separation time t∗1
defines a trapped regime, i.e.

|b(t)|&C∗N1(t) for t∗1<t< t
∗,

and hence the scenario is chosen at this point.
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The rest of this section is devoted to the proof of Proposition 4.1. First, note that,
by Lemma 2.5, u admits the following decomposition on [0, t∗]:

u(t, x) =
1

λ1/2(t)
(Qb(t)+ε)

(
t,
x−x(t)
λ(t)

)
,

with, due to (4.1),

‖ε(0)‖H1 +|b(0)|+|1−λ(0)|. δ(α0) and
∫

y>0

y10ε2(0, y) dy6 2. (4.9)

In particular, arguing as in the proof of (3.14), we have

N2(0). δ(α0). (4.10)

For �∗ as in Proposition 3.1, define

t∗∗ =sup{0<t< t∗ :u satisfies (H1)–(H3) on [0, t]}.

Note that t∗∗>0 is well defined by (4.9), (4.10) and a straightforward continuity argu-
ment. Recall that s=s(t) is the rescaled time (2.22). We let s∗∗=s(t∗∗) and s∗=s(t∗).
One important step in the proof is to obtain t∗∗=t∗ by improving (H1)–(H3) on [0, t∗∗].

4.1. Consequences of the monotonicity formula

We start with coupling the dispersive bounds (3.10) and (3.11) with the modulation
equation for b given by (2.37) to derive the key rigidity property at the heart of our
analysis.

Lemma 4.3. The following bounds hold :
(1) (Dispersive bounds) For i=1, 2, for all 06s16s2<s∗∗,

Ni(s2)+
∫ s2

s1

∫
(ε2y+ε2)(s)ϕ′i,B ds.Ni(s1)+|b3(s2)|+|b3(s1)|, (4.11)

Ni(s2)
λ2(s2)

+
∫ s2

s1

∫
(ε2y+ε2)(s)ϕ′i,B+|b|4

λ2(s)
ds.

Ni(s1)
λ2(s1)

+
[
|b3(s1)|
λ2(s1)

+
|b3(s2)|
λ2(s2)

]
. (4.12)

(2) (Control of the dynamics for b) For all 06s16s2<s∗∗,∫ s2

s1

b2(s) ds.N1(s1)+|b(s2)|+|b(s1)|, (4.13)

and, for a universal constant K0>1,∣∣∣∣ b(s2)λ2(s2)
− b(s1)
λ2(s1)

∣∣∣∣ 6K0

[
b2(s1)
λ2(s1)

+
b2(s2)
λ2(s2)

+
N1(s1)
λ2(s1)

]
. (4.14)

(3) (Control of the scaling dynamics) Let λ0(s)=λ(s)(1−J1(s))2. Then, on [0, s∗∗),∣∣∣∣ (λ0)s

λ0
+b

∣∣∣∣ .
∫
ε2e−|y|/10+|b|(N 1/2

2 +|b|). (4.15)
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Proof. We start proving (4.11) and (4.12). We first observe, from (2.42), the bound

b2 6−bs+CN1,loc. (4.16)

By the monotonicity formula (3.10), with (3.12),

Ni(s2)+
∫ s2

s1

∫
(ε2y+ε2)(s)ϕ′i,B ds.Fi,1(s2)+µ

∫ s2

s1

∫
(ε2y+ε2)(s)ϕ′i,B ds

6Fi,1(s1)+
∫ s2

s1

b4(s) ds.Ni(s1)+
∫ s2

s1

b4(s) ds,

and thus, using (4.16), (3.4) and the fact that |b| is small,

Ni(s2)+
∫ s2

s1

∫
(ε2y+ε2)(s)ϕ′i,B ds.Ni(s1)+|b3(s2)|+|b3(s1)|.

Similarly, from (3.11) and (3.12),

Ni(s2)
λ2(s2)

+
∫ s2

s1

1
λ2(s)

∫
(ε2y+ε2)(s)ϕ′i,B ds.

Fi,2(s2)
λ2(s2)

+µ
∫ s2

s1

1
λ2(s)

∫
(ε2y+ε2)(s)ϕ′i,B ds

.
Fi,2(s1)
λ2(s1)

+
∫ s2

s1

b4(s)
λ2(s)

ds (4.17)

.
Ni(s1)
λ2(s1)

+
∫ s2

s1

b4(s)
λ2(s)

ds.

We now integrate by parts in time, using (4.16) and (2.29), to estimate∫ s2

s1

b4(s)
λ2(s)

ds6
∫ s2

s1

−b2bs
λ2

ds+δ(�∗)
∫ s2

s1

N1,loc(s)
λ2(s)

ds

=−1
3

[
b3

λ2

]s2

s1

− 2
3

∫ s2

s1

b3
λs

λ3
ds+δ(�∗)

∫ s2

s1

N1,loc(s)
λ2(s)

ds

6

[
|b3(s1)|
λ2(s1)

+
|b3(s2)|
λ2(s2)

+δ(�∗)
∫ s2

s1

N1,loc(s)
λ2(s)

ds

]
+

2
3

∫ s2

s1

b4(s)
λ2(s)

ds

+C
∫ s2

s1

|b|3

λ2
[b2+N 1/2

1,loc ] ds

6

[
|b3(s1)|
λ2(s1)

+
|b3(s2)|
λ2(s2)

]
+δ(�∗)

∫ s2

s1

N1,loc(s)
λ2(s)

ds+
[
2
3

+δ(�∗)
] ∫ s2

s1

b4(s)
λ2(s)

ds,

and thus, for �∗ small,∫ s2

s1

b4(s)
λ2(s)

ds.

[
|b3(s1)|
λ2(s1)

+
|b3(s2)|
λ2(s2)

]
+δ(�∗)

∫ s2

s1

N1,loc(s)
λ2(s)

ds. (4.18)
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Inserting this bound into (4.17) concludes the proof of (4.12).
The virtue of (4.11) and (4.12) is to reduce the control of the full problem to the

sole control of the parameter b which is driven by the sharp ODE (2.37).
We now prove (4.13) and (4.14). The estimate (4.13) is derived by integrating (4.16)

in time using (4.11). We then compute, from (2.37), (2.29) and the a-priori bound(16)
|J |.N 1/2

1,loc: ∣∣∣∣ dds
(
b

λ2
eJ

)∣∣∣∣ =
∣∣∣∣ dds

(
b

λ2

)
+
b

λ2
Js

∣∣∣∣eJ

.

∣∣∣∣λs

λ

b

λ2
J

∣∣∣∣+ 1
λ2

(∫
ε2e−|y|/10+|b|3

)
.
b2

λ2
|J |+ 1

λ2
(N1,loc+|b|3)

.
b2

λ2
N 1/2

1,loc+
1
λ2

(N1,loc+|b|3)

.
1
λ2

(N1,loc+|b|3).

(4.19)

Integrating in time and using (4.16) and (4.12), we obtain, for all s, s′∈[s1, s2],∣∣∣∣[ b

λ2
eJ

]s′

s

∣∣∣∣ .
N1(s1)
λ2(s1)

+(|b(s′)|+|b(s)|) sup
[s1,s2]

|b|
λ2
. (4.20)

From (4.11),

|eJ(s)−1|. |J(s)|.N 1/2
1 (s) . (N1(s1)+|b3(s)|+|b3(s1)|)1/2. (4.21)

First, from (4.21) we obtain

sup
[s1,s2]

|b|
λ2

. min
[s1,s2]

|b|
λ2

+
N1(s1)
λ2(s1)

+
(

sup
[s1,s2]

|b|
)

sup
[s1,s2]

|b|
λ2
,

so that

sup
[s1,s2]

|b|
λ2

. min
[s1,s2]

|b|
λ2

+
N1(s1)
λ2(s1)

.

In particular, by (4.21), we obtain∣∣∣∣ b(s)λ2(s)
(eJ(s)−1)

∣∣∣∣ .

(
min

[s1,s2]

|b|
λ2

+
N1(s1)
λ2(s1)

)
(N1(s1)+|b3(s)|+|b3(s1)|)1/2

.
N1(s1)
λ2(s1)

+
b2(s1)
λ2(s1)

+
b2(s)
λ2(s)

.

(16) Recall that J given by (2.36) is a well-localized L2 scalar product.
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Second, combining these estimates with (4.20) taken at s=s1 and s′=s2, we obtain∣∣∣∣ b(s2)λ2(s2)
− b(s1)
λ2(s1)

∣∣∣∣ .

∣∣∣∣ b(s1)λ2(s1)
(eJ(s1)−1)

∣∣∣∣+∣∣∣∣ b(s2)λ2(s2)
(eJ(s2)−1)

∣∣∣∣+N1(s1)
λ2(s1)

+(|b(s1)|+|b(s2)|) min
[s1,s2]

|b|
λ2

.
N1(s1)
λ2(s1)

+
(
b2(s1)
λ2(s1)

+|b
2(s2)|
λ2(s2)

)
.

We finally prove (4.15). We integrate the scaling law using the sharp modulation
equation (2.33). From (3.13), ∣∣∣∣ λλ0

−1
∣∣∣∣ . |J1|. δ(�∗), (4.22)

and thus, from (2.33), we get∣∣∣∣ (λ0)s

λ0
+b−c1b2

∣∣∣∣ =
∣∣∣∣ 1
1−J1

[
(1−J1)

λs

λ
+b−2(J1)s

]
− J1

1−J1
b

∣∣∣∣
.

∫
ε2e−|y|/10+|b|(N 1/2

2 +|b|2).

This concludes the proof of Lemma 4.3.

We are now in position to prove the trichotomy of Proposition 4.1. Let

C∗ =10K0, (4.23)

where K0 is the universal constant in (4.14) and let the separation time t∗1 be given by
(4.2).

4.2. The soliton case

Assume that
t∗1 = t∗, i.e. |b(t)|6C∗N1(t) for all t∈ [0, t∗]. (4.24)

We first prove that in this case t∗∗=t∗, which means that the bootstrap estimates
(H1)–(H3) of Proposition 3.1 hold on [0, t∗]. Indeed, we claim that, for all s∈[0, s∗∗),

|b(s)|+N2(s)+‖ε(s)‖L2 +|1−λ(s)|. δ(α0), (4.25)

|b(s)|+N2(s)
λ2(s)

. δ(α0), (4.26)∫
y>0

y10ε2(s, y) dy6 5. (4.27)
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Taking α∗>0 small enough (compared to �∗), this guarantees by a standard continuity
argument that t∗∗=t∗.

We now prove (4.25)–(4.27). First, observe that, by (3.22) and the definition of t∗∗,
on [0, s∗∗],

N1 .
∫

(ε2y+ε2)ϕ′2,B and N1 .N2 . δ(�∗). (4.28)

Therefore, from (4.24), (4.11) and (2.30), for all s∈[0, s∗∗),

|b(s)−b(0)|6
∫ s

0

|bs(s′)| ds′ .
∫ s

0

(b2+N1,loc)(s′) ds′ .
∫ s

0

(δ(�∗)(C∗)2+1)N1(s′) ds′

.
∫ s

0

∫
(ε2y+ε2)(s′)ϕ′2,B dy ds

′ .N2(0)+δ(�∗)(|b(s)|+|b(0)|).

We thus conclude from (4.9) that, for all s∈[0, s∗∗),

|b(s)|. |b(0)|+N2(0). δ(α0).

Then, from (4.11) and (4.13),

N2(s)+
∫ s

0

(
b2+

∫
(ε2y+ε2)(s′)ϕ′2,B dy

)
ds′ . δ(α0). (4.29)

Inserting this into the conservation of the L2 norm (2.27) using (2.15) ensures that∫
|ε|2 . δ(α0).

Note that we also have, from (3.13),

|J1|+|J2|6 δ(α0). (4.30)

We now compute the variation of scaling from (4.15), which together with (4.24) implies
that ∣∣∣∣ (λ0)s

λ0

∣∣∣∣ . |b|+N1,loc .N1 .
∫

(ε2y+ε2)(s)ϕ′2,B ,

and thus from (4.29), for all 06s<s∗∗,∣∣∣∣log
λ0(s)
λ0(0)

∣∣∣∣ .N2(0)+δ(α0) . δ(α0).

Hence, from (4.22) and (4.30), ∣∣∣∣λ(s)
λ(0)

−1
∣∣∣∣ . δ(α0),



blow up for the critical gkdv equation i 109

which, with (4.9), implies that

|1−λ(s)|. δ(α0) for all s∈ [0, s∗∗). (4.31)

Together with (4.25), this implies (4.26). We now integrate (3.29) using (4.9), (4.31) and
(4.29) and obtain∫

y10ε2(s) dy6
λ10(0)
λ10(s)

∫
y10ε2(0) dy+

C

λ10(s)

∫ s

0

λ10(s′)(b2+N1,loc)(s′) ds′

6 2+δ(α0) 6 3,

and (4.27) is proved.
We therefore conclude that t∗=T and u(t) remains in the tube Tα∗ for all t∈[0, T )

from (4.25). Moreover, inserting (4.25) in the conservation of the energy (2.28), we get

‖εy(t)‖L2 .C for all t∈ [0, T ).

Hence the solution u(t) is uniformly bounded in H1 and thus global: T=∞.
It remains to show the convergence (4.3)–(4.4). From (2.30), (4.29) and (4.31) we

get ∫ ∞

0

|bt| dt.
∫ ∞

0

|bs| ds.
∫ ∞

0

(
b2+

∫
(ε2y+ε2)(s)ϕ′2,B

)
ds. δ(α0), (4.32)

which implies
lim
t!∞

b(t) = 0 (4.33)

and the existence of a sequence tn!∞ such that∫
(ε2y+ε2)(tn)ϕ′2,B! 0 as tn!∞.

By (4.28), N1(tn)!0 as n!∞ and thus, using the monotonicity (4.11),

N1(t)! 0 as t!∞.

Together with the uniform bound (4.27), we also obtain

N2(t)! 0 as t!∞. (4.34)

Finally, from (4.24), (4.15) and (4.32),∫ ∞

0

∣∣∣∣ ddt log λ0

∣∣∣∣ dt.∫ ∞

0

∣∣∣∣ dds log λ0

∣∣∣∣ ds. δ(α0),
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and thus
lim
t!∞

λ0(t) =λ∞0 with |λ∞0 −1|. δ(α0).

Now, from (4.34),
|J1|.N 1/2

2 ! 0 as t!∞

and thus, from (4.13),

lim
t!∞

λ(t) =λ∞ with |λ∞−1|. δ(α0). (4.35)

The translation parameter is controlled using (2.29), (4.34) and (4.35), which imply

xt =
1
λ2

xs

λ
=

1+o(1)
λ2
∞

as t!∞.

This concludes the proof of (4.3) and (4.4).

4.3. Exit case

We now assume that t∗1<t
∗ and

b(s∗1) 6−C∗N1(s∗1). (4.36)

Observe first that arguing on [0, s∗1] as in the soliton case, where the parameter b is
controlled by N1, we obtain, for all s∈[0, s∗1],

|λ(s)−1|+|b(s)|+N2(s)+
∫ s

0

∫
(ε2y+ε2)ϕ′2,B ds

′ . δ(α0) (4.37)

and ∫
y>0

y10ε2(s, y) dy6 5. (4.38)

In particular, t∗1<t
∗∗6t∗. Now, we claim that

t∗∗ = t∗ and t∗<T,

which means that the solution leaves the tube Tα∗/2 in finite time.
We first prove that t∗∗=t∗. We improve (H1)–(H3) on [t∗1, t

∗∗] to obtain t∗∗=t∗. The
proof is different from the one for the soliton case, since now b is not controlled by N1.
The fundamental observation is that (4.14), (4.23) and (4.36) imply the rigidity

−2|`∗|6 b(s)
λ2(s)

6−|`
∗|
2

for all s∈ [s∗1, s
∗∗), (4.39)
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where we have set, from (4.37),

`∗ =
b(s∗1)
λ2(s∗1)

6−C∗N1(s∗1)
λ2(s∗1)

< 0, |`∗|. δ(α0). (4.40)

Together with (4.12) and (4.37), this implies the bound

|b(s)|+N2(s)
λ2(s)

. δ(α0) for all s∈ [0, s∗∗],

and (H2) is improved for α∗ small compared to �∗. We now observe that, using b<0
from (4.39) and (4.15), for all s∈[s∗1, s

∗∗),

(λ0)s(s)
λ0(s)

&−N1,loc.

Together with (4.11) and the definition of λ0, this yields the almost monotonicity property
of λ:

λ(σ2) > 1
2λ(σ1) for all s∗1 6σ1 6σ2<s

∗∗. (4.41)

We integrate (3.29) using (4.11), (4.41), (4.37), (4.38) and (4.13) to get, for all s∗16s<s∗∗,∫
ϕ10ε

2(s) dy6
λ10(s∗1)
λ10(s)

∫
ϕ10ε

2(s∗1) dy+
C

λ10(s)

∫ s

s∗1

λ10(s′)(N1,loc(s′)+b2(s′)) ds′

6 3+C
∫ s

s∗1

(N1,loc(s′)+b2(s′)) ds′

6 3+C(|b(s∗1)|+|b(s)|+N1(s∗1))

6 3+δ(�∗),

and (H3) is improved. We now improve (H1). Since u(t)∈Tα∗ on [0, t∗), we have, by
(2.21), that |b(s)|6δ(α∗)��

∗ for all s∈[0, s∗). By (4.11), it follows that N2(s)��
∗

for all s∈[0, s∗∗). By (2.27), ‖ε(s)‖L2��
∗ for all s∈[0, s∗∗), and (H1) is improved. In

conclusion, we have proved t∗∗=t∗ again in this case.
We now prove that t∗<T . Let us show that (Exit) occurs in finite time. We divide

(4.15) by λ2
0 and use (4.39) and (4.22) to estimate, on [t∗1, t

∗),

|`∗|
3
−CN1,loc

λ2
6 (λ0)t 6 3|`∗|+CN1,loc

λ2
.

Integrating in time, for all t∈[t∗1, t
∗), we get

|`∗|(t−t∗1)
3

−C1

∫ t

t∗1

N1,loc

λ2
dτ 6λ0(t)−λ0(t∗1) 6 3|`∗|(t−t∗1)+C2

∫ t2

t∗1

N1,loc

λ2
dτ.
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From the monotonicity (4.41) and then (4.11),∫ t

t∗1

N1,loc

λ2
dτ =

∫ s

s∗1

λN1,loc dσ.λ(s)
∫ s

s∗1

N1,loc dσ. δ(�∗)λ(t),

and we therefore obtain the bound, for all t∈[t∗1, t
∗),

1
4 (|`∗|(t−t∗1)+λ0(t∗1))6λ(t) 6 4(|`∗|(t−t∗1)+λ0(t∗1)).

This yields the following estimates on b from (4.39), for all t∈[t∗1, t
∗),

−40|`∗|(|`∗|(t−t∗1)+λ0(t∗1))
2 6 b(t) 6− 1

40 |`
∗|(|`∗|(t−t∗1)+λ0(t∗1))

2. (4.42)

Inserting this bound into (4.11) yields the control

N2(t) .C(t),

which, inserted into the energy and mass conservation laws (2.27) and (2.28), yields the
H1 bound

‖ε(t)‖H1 .C(t).

It follows that t∗=T<∞ is not possible. On the other hand, t∗=T=∞ is also impossible
since then, by (4.42), b(t)!−∞ as t!∞, which contradicts the definition of t∗. Thus,
t∗<T6∞.

Finally, we observe that the scaling parameter is large at the exit time for α small
compared to α∗. Indeed, |b(t∗)|&(α∗)4 from (2.27), and thus, from (4.39) and (4.40),

λ2(t∗) >
1
2
|b(t∗)|
|`∗|

>
C(α∗)
δ(α0)

.

4.4. Blow up case

We now assume that t∗1<t
∗ and

b(s∗1) >C∗N1(s∗1)> 0. (4.43)

As before we have, for all s∈[0, s∗1],

|λ(s)−1|+|b(s)|+N2(s)+
∫ s

0

∫
(ε2y+ε2)ϕ′2,B ds

′ . δ(α) (4.44)

and ∫
y>0

y10ε2(s, y) dy6 5. (4.45)
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In particular, t∗1<t
∗∗6t∗. In this case, we claim that t∗∗=t∗=T and T<∞.

We first prove that t∗∗=t∗=T . First, we improve the bounds (H1)–(H3) of Propo-
sition 3.1. From (4.14), (4.23) and (4.43), we recover the rigidity

`∗

2
6

b(s)
λ2(s)

6 2`∗ for all s∈ [s∗1, s
∗∗), (4.46)

where we set, from (4.44),

`∗ =
b(s∗1)
λ2(s∗1)

> 0, |`∗|. δ(α0). (4.47)

Together with (4.12) and (4.44), this implies the bound

|b(s)|+N2(s)
λ2(s)

. δ(α0) for all s∈ [0, s∗],

and (H2) is improved provided α∗ is small compared to �∗. We now observe, from b>0
and (4.15), that, on [s∗1, s

∗∗),

− (λ0)s

λ0
&−N1,loc,

which, together with (4.11) and the definition of λ0, yields the almost monotonicity

λ(σ2) 6 3
2λ(σ1) for all s∗1 6σ1 6σ2<s

∗∗. (4.48)

In particular, from (4.44),

λ(s) 6 2 for all s∈ [0, s∗∗). (4.49)

This yields, with (4.44), (4.46), (4.43) and (4.11), that, for all 06s6s∗∗,

|b(s)|.λ2(s)`∗ . δ(α0) and N2(s)+
∫ s

0

∫
(ε2y+ε2)ϕ′2,B ds

′ . δ(α0).

The conservation of the L2 norm (2.27) implies that

‖ε‖2L2 . δ(α0), (4.50)

and (H1) is improved. We now integrate (3.29) using (4.11), (4.49), (4.44) and (4.13)
and obtain, for all 06s<s∗∗,∫

ϕ10ε
2(s) dy6

λ10(0)
λ10(s)

∫
ϕ10ε

2(0) dy+
C

λ10(s)

∫ s

0

λ10(N1,loc+b2) ds′

6
1

λ10(s)

[
5+C

∫ s

0

(N1,loc+b2) ds′
]

6
5+δ(�∗)
λ10(s)

,
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and (H3) is improved. We conclude that t∗∗=t∗. Moreover, by (4.50), for α0 small
enough compared to α∗, we get t∗=T , since the condition in the definition of Tα∗ is also
improved by this estimate.

We now prove that T<∞. We divide (4.15) by λ2
0 and use (4.46) and (4.22) to

estimate, on [t∗1, T ),

|`∗|
3
−CN1,loc

λ2
6−(λ0)t 6 3|`∗|+CN1,loc

λ2
.

We integrate in time and obtain in particular, for all t∈[t∗1, T ),

0 6λ0(t) 6λ0(t∗1)−
|`∗|(t−t∗1)

3
+C1

∫ t

t∗1

N1,loc

λ2
dτ. (4.51)

Now, from the bound (4.49) again and (4.11),∫ t

t∗1

N1,loc

λ2
dτ =

∫ s

s∗1

λ(σ)N1,loc dσ. 2
∫ s

s∗1

N1,loc dσ. 1,

and thus (4.51) implies that

T <∞ and in particular λ(t)! 0 as t!T .

The conservation of energy (2.28) implies that

‖εy(t)‖2L2 .λ2(t)|E0|+N2(t), (4.52)

and thus, from (H2),

‖εy(t)‖L2 +b(t)+N2(t)! 0 as t!T . (4.53)

We now prove (4.7)–(4.8). We estimate from (4.46), (4.19) and (4.12), using that
T<∞, ∫ ∞

0

∣∣∣∣ dds
(
b

λ2
eJ

)∣∣∣∣ ds.
∫ ∞

0

1
λ2

(N1,loc+|b|3) ds<∞,

and thus beJ/λ2 has a limit as t!T . Moreover,

|J(t)|.N 1/2
2 (t)! 0 as t!T

from (H2), and thus, from (4.46) and (4.47),

b(t)
λ2(t)

! `0> 0 as t!T , with |`0|. δ(α0). (4.54)
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The time integration of (4.15) using (4.54), (4.48) and (4.11) yields∣∣∣∣λ0(t)−
∫ T

t

b

λ2
dt′

∣∣∣∣ .
∫ T

t

N1,loc+o(b)
λ2

dt′ .
∫ ∞

s

λN1,loc ds
′+o(T−t)

. o(T−t)+λ(s)
∫ ∞

s

N1,loc ds
′ = o(|T−t|+λ(t)),

and thus, using (4.54) again,

lim
t!T

λ0(t)
T−t

= `0.

Moreover, from (4.22), ∣∣∣∣ λ(t)
λ0(t)

−1
∣∣∣∣ . |J1(t)|! 0 as t!T .

The control of the translation parameter follows from (2.29) and (H2), which yield

xt =
1
λ2

xs

λ
=

1
λ2

(1+o(1)),

and (4.7) follows. Finally, the L2 bound in (4.8) follows from (4.50), and the rest of (4.8)
follows from (H2) and the conservation of energy (2.28):

‖εy(t)‖2L2 .λ2(t)|E0|+|b(t)|+N2(t) . (|E0|+δ(α0))λ2(t).

This concludes the proof of Proposition 4.1.

5. Blow up for E060

In this section, we let an initial data

u0 ∈A with E0 6 0.

We moreover assume that u0 is not a solitary wave up to symmetries. We claim that
the corresponding solution u(t) to gKdV blows up in finite time in the (Blow up) regime
described by Proposition 4.1.

Let us first recall the following standard orbital stability statement which follows
from the variational characterization of the ground state and a standard concentra-
tion/compactness argument.

Lemma 5.1. (Orbital stability) Let α>0 small enough and a function v∈H1 be such
that ∣∣∣∣∫ v2−

∫
Q2

∣∣∣∣ 6α and E(v) 6α

∫
v2

x.

Then there exist (λv, xv)∈R∗
+×R such that

‖Q−ε0λ1/2
v v(λvx+xv)‖H1 6 δ(α), ε0 ∈{−1, 1}.
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For α>0 small enough compared to α∗, it follows from the conservation of mass
and energy that u remains in the tube Tα∗ on [0, T ). Therefore, only the case (Blow up)
and (Soliton) can occur in Proposition 4.1. We argue by contradiction and assume that
(Soliton) occurs.

Case E0<0. This case is particularly simple to treat using the estimates of Proposi-
tion 4.1. Indeed, (2.28) (consequence of the conservation of energy), combined with the
asusmption E0<0 and the asymptotic stability statements (4.3) and (4.4), implies

λ2(t)|E0|+
∫
|εy|2 . |b(t)|+N1(t)! 0 as t!∞,

and thus
λ(t)! 0 as t!∞,

which hence contradicts the soliton dynamics displayed in (4.4).

Case E0=0. This case is substantially more subtle and in particular there is no
obvious obstruction to the (Soliton) dynamics. In fact, the conservation of energy (2.28)
yields, with (4.3) and (4.4),∫

|εy|2 . |b(t)|+N1(t)! 0 as t!∞, (5.1)

but there is no further simple information on λ(t). Our aim is to show that this Ḣ1

convergence implies global L2 dispersion, and hence the solution has minimal mass which
for E0=0 is possible only for the solitary wave itself.

By rescaling, we may without loss of generality assume that λ∞=1 in (4.4). We
claim the following result.

Lemma 5.2. (L2 compactness) Assume that E0=0 and that u(t) satisfies the (Soli-
ton) case. Then∫

x−x(t)<−x0

u2
x(t, x) dx.

1
x3

0

for all t> 0 and x0> 1, (5.2)∫
x−x(t)<−x0

u2(t, x) dx.
1
√
x0

for all t> 0 and x0> 1. (5.3)

Assume Lemma 5.2. Then, from (4.3), for all x0>1,

|b(t)|+
∫

y>−x0

|ε(t, y)|2 dy! 0 as t!∞,

and thus, from (5.3) and (4.4),∫
|u0|2 =

∫
u2(t) =

∫
|Qb(t)+ε(t)|2!

∫
Q2 as t!∞.

Hence u0 has critical mass and a contradiction follows.
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Proof. Without loss of generality, by translation invariance, we assume that, for all
t>0,

|λ(t)−1|6 1
100 , |xt(t)−1|6 1

100 and ‖ε(t)‖H1 +|b(t)|6 1
100 . (5.4)

From the decomposition of u(t), there exists a0>1 such that, for α small enough, for all
t∈[0, T ), ∫

x<−a0/2

u2(t, x+x(t)) dx6
∫

y<−a0/8

(ε(t)+Qb(t))2(y) dy6
1

100
. (5.5)

Such an a0>1 is now fixed.

Step 1. First decay property of ux using almost monotonicity of a localized energy.
We claim that there exists C>0 such that, for all t0>0 and x0>a0,∫

x−x(t0)<−x0

u2
x(t0, x) dx6

C

x2
0

. (5.6)

Proof of (5.6). Let ψ be a C3 function such that, for c>0,

ψ≡
{

1 on (−∞,−3],
0 on

[
− 1

2 ,∞
)
,

ψ′ =− 1
2 on [−2,−1], ψ′ 6 0 on R, (ψ′′)2 6−cψ′ and (ψ′)2 6 cψ on R.

(5.7)

Let x0>a0. Define, for all t>0,

Ex0(t) =
∫ (

u2
x−

1
3
u6

)
(t, x)ψ(x̃) dx, (5.8)

where

x̃=
x−x(t)
ξ(t)

and ξ(t) =x0+
x(t)−x(t0)

4
.

First, observe that limt!∞Ex0(t)=0 by (5.1), (4.4) and the Gagliardo–Nirenberg in-
equality. Then, we control the variation of Ex0(t) on [t0,∞). By (2.50),

d

dt
Ex0(t) =− 1

ξ(t)

∫
(uxx+u5)2ψ′(x̃)− 2

ξ(t)

∫
u2

xxψ
′(x̃)+

10
ξ(t)

∫
u4u2

xψ
′(x̃)

+
1

ξ3(t′)

∫
u2

xψ
′′′(x̃)− xt(t)

ξ(t)

∫ (
u2

x−
1
3
u6

)(
1+

1
4
x̃

)
ψ′(x̃).

(5.9)

All the integrals above are restricted to x̃∈
[
−3,− 1

2

]
, since ψ′(x̃)=0 for x̃ /∈

[
−3,− 1

2

]
. In

particular, we have

−xt(t)
ξ(t)

∫
u2

x

(
1+

1
4
x̃

)
ψ′(x̃) >−1

4
1
ξ(t)

∫
u2

xψ
′(x̃).
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By (5.4) and ‖u‖4L∞.‖ux‖2L2‖u‖2L2 .1,

10
ξ(t)

∫
u4u2

x|ψ′(x̃)|.
1
ξ(t)

‖u‖4L∞
∫
u2

x|ψ′(x̃)|6
1

100
1
ξ(t)

∫
u2

x|ψ′(x̃)|.

Moreover, ∣∣∣∣ 1
ξ3(t)

∫
u2

xψ
′′′(x̃)

∣∣∣∣ .
1

ξ3(t)

∫
u2

x(t′) .
1

ξ3(t)
.

Now, we treat the u6 term. Recall the following standard computation (see, e.g., the proof
of [26, Lemma 6]), for a C1 positive function φ such that φ′/

√
φ.1, for all v∈H1(R),∥∥v2

√
φ

∥∥
L∞

6 sup
x∈R

∣∣∣∣∫ x

−∞

(
2v′v

√
φ+

1
2
v2 φ

′
√
φ

)∣∣∣∣
.

(∫
v2

)1/2(∫
(v′)2φ+

∫
v2 (φ′)2

φ

)1/2

.

(5.10)

Using this estimate, and the fact that ψ′′(x̃)2/|ψ′(x̃)|.1, we obtain∥∥u2
√
−ψ′(x̃)

∥∥2

L∞
.

(∫
supp φ

u2

)(∫
u2

x|ψ′(x̃)|+
1

ξ2(t)

∫
u2ψ

′′(x̃)2

|ψ′(x̃)|

)
.

(∫
supp φ

u2

)(∫
u2

x|ψ′(x̃)|+
C

ξ2(t)

∫
u2

)
.

(5.11)

Since x0>a0, by (5.5), we have∫
x̃∈[−3,−1/2]

u2(t) 6
∫

x<−x0/2

u2(t, x+x(t)) dx6
1

100
.

Thus, we get∣∣∣∣∫
x̃∈[−3,−1/2]

u6ψ′(x̃)
∣∣∣∣ .

(∫
x̃∈[−3,−1/2]

u2

)2(∫
u2

x|ψ′(x̃)|+
C

ξ2

∫
u2

)
6

1
100

∫
u2

x|ψ′(x̃)|+
C

ξ2

∫
u2.

(5.12)

Combining these estimates, we get

d

dt
Ex0(t) &

1
ξ(t)

∫
u2

xx(t)|ψ′(x̃)|+ 1
ξ(t)

∫
u2

x|ψ′(x̃)|−Cξ−3(t). (5.13)

Integrating between t0 and ∞, using that limt!∞Ex0(t)=0 and (5.4), we get

Ex0(t0) =
∫ (

u2
x−

1
3
u6

)
(t0)ψ

(
x−x(t0)
x0

)
dx.

1
x2

0

, (5.14)∫ ∞

0

[∫
u2

xx(t)|ψ′(x̃)|+
∫
u2

x|ψ′(x̃)|
]
dt

ξ(t)
.

1
x2

0

. (5.15)
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Using (5.10) and (5.5), we have∫
u6(t0)ψ

(
x−x(t0)
x0

)
dx.

(∫
x̃6−1/2

u2(t0)
)2(∫

u2
x(t0)ψ

(
x−x(t0)
x0

)
+

1
x2

0

∫
u2(t0)

)
6

1
100

∫
u2

x(t0)ψ
(
x−x(t0)
x0

)
+
C

x2
0

∫
u2(t0).

Therefore, for all t0∈[0, T ) and x0>a0, we have obtained∫
x−x(t0)<−x0

(u2
x(t0, x)+u6(t0, x)) dx.

1
x2

0

. (5.16)

Since ψ′(x̃)=0 for x̃<−3 and x̃>− 1
2 , using (5.15), we have∫ ∞

0

∫
u2

xx(t′)ψ(x̃) dt′<∞.

Moreover,

d

dx0

(∫ ∞

0

∫
u2

xx(t)ψ(x̃) dt
)

=
∫ ∞

0

∫
u2

xx(t)
−x̃
ξ(t)

ψ′(x̃) dt

.
∫ ∞

0

1
ξ(t)

∫
u2

xx(t)ψ′(x̃) dt.
1
x2

0

.

Integrating in x0, we get ∫ ∞

0

∫
u2

xxψ(x̃) dt′ 6
C

x0

and arguing in a similar way for ux, we obtain∫ ∞

0

∫
[u2

xx(t)ψ(x̃)+u2
x(t)ψ(x̃)] dt6

1
x0
. (5.17)

Step 2. Refined decay property of ux.
We claim the improved decay∫

x<−x0+x(t0)

u2
x(t0, x) dx.

1
x3

0

for all x0> 2a0. (5.18)

To obtain this improved estimate, we introduce

Gx0(t) =
∫
u2

x(t)ψ(x̃).

By direct computation,

d

dt
Gx0(t) =− 3

ξ(t)

∫
u2

xxψ
′(x̃)− xt(t)

ξ(t)

∫
u2

x

(
1+

1
4
x̃

)
ψ′(x̃)+

1
ξ3(t)

∫
u2

xψ
′′′(x̃)

−20
∫
u3

xu
3ψ(x̃)+

5
ξ(t)

∫
u2

xu
4ψ′(x̃).
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The second and the last terms in the right-hand side are treated as before. For the third
term, we use (5.16) and ψ′′′=0 for x̃>− 1

2 , which gives

1
ξ3(t)

∫
u2

x(t)ψ′′′(x̃) .
1

ξ3(t)

∫
x6−ξ(t)/2

u2
x .

1
ξ5(t)

.
ξt(t)
ξ5(t)

.

Finally, the term
∫
u3

xu
3ψ(x̃) is controlled as follows, using (5.10) with φ=ψ(x̃):∣∣∣∣∫ u3

xu
3ψ(x̃)

∣∣∣∣ 6
∥∥u2

x

√
ψ(x̃)

∥∥
L∞

∫ ∣∣uxu
3
√
ψ(x̃)

∣∣
6

∥∥u2
x

√
ψ(x̃)

∥∥
L∞

(∫
u2

xψ(x̃)
)1/2(∫

x<−x0/2+x

u6

)1/2

.

(∫
x<−x0/2+x

u2
x

)1/2((∫
u2

xxψ(x̃)
)1/2

+
(

1
ξ2

∫
u2

xψ(x̃)
)1/2)

×
(∫

u2
xψ(x̃)

)1/2(∫
x<−x0/2+x

u6

)1/2

.

(∫
x<−x0/2+x

u2
x

)1/2(∫
x<−x0/2+x

u6

)1/2(∫
u2

xxψ(x̃)+
∫
u2

xψ(x̃)
)

.
1
x2

0

(∫
u2

xxψ(x̃)+
∫
u2

xψ(x̃)
)
.

In conclusion of these estimates, we have obtained

d

dt
Gx0(t) &− ξt

ξ5
− 1
x2

0

(∫
(u2

xx+u2
x)ψ(x̃)

)
.

Therefore, by integration over [t0,∞), using (5.17) and limt!∞Gx0(t)=0, we obtain

Gx0(t0) .
1
x3

0

,

which proves (5.2).

Step 3. L2 estimate.
We deduce from (5.2) some L2 tightness for u. Indeed, for x0>1,

‖u(t, ·)‖2L∞(x−x(t)<−x0)
.

∫
x−x(t)<−x0

|uxu| dx.

(∫
x−x(t)<−x0

u2
x

)1/2(∫
u2

)1/2

.
1

x
3/2
0

,

from which ∫
x−x(t)6−x0

|u(t, x)|2 dx.
∫

y>x0

dy

|y|3/2
.

1
√
x0
,

and (5.3) follows.
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6. Sharp description of the blow-up regime

We now finish the proof of Theorem 1.1 by proving (1.16) and (1.18) in the framework
of a blow-up solution in Tα∗ . We further use L2 and H1 monotonicity properties away
from the soliton to propagate the dispersive information in larger regions to the left than
the norm Ni controlled by Proposition 4.1, and this will yield the sharp behavior (1.18).

We let

ũ(t, x) =u(t, x)− 1
λ1/2(t)

Qb(t)

(
x−x(t)
λ(t)

)
.

Proposition 6.1. (Improved dispersive bounds away from the soliton) Let u0∈A
be such that u(t) blows up in finite time T and

u(t)∈Tα∗ for all t∈ [0, T ).

Then, the following properties hold :
(i) (H1 estimates around the soliton)

sup
R>1

sup
t∈[T−1/`20R,T )

R2

∫
x>R

ũ2(t, x) dx<∞, (6.1)

lim
R!∞

sup
t∈[T−1/`20R,T )

∫
x>R

ũ2
x(t, x) dx=0, (6.2)

lim
t!T

1
(T−t)2

∫
x−x(t)>−x(t)/log(T−t)

ũ2(t, x) dx=0. (6.3)

(ii) (Existence and asymptotic of the dispersed remainder) there exists u∗∈H1 such
that

ũ!u∗ in L2 as t!T (6.4)

and ∫
x>R

(u?)2(x) dx∼
‖Q‖2L1

8`0R2
as R!∞. (6.5)

The rest of this section is devoted to the proof of Proposition 6.1.

6.1. H1 monotonicity away from the soliton

We aim at refining the dispersive estimate (4.12) by propagating it to the left of the
solitary wave, since N2 involves an exponentially well-localized norm at the left of the
soliton. For this, we use H1 monotonicity tools in the spirit of [26] and [20].
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Lemma 6.2. (Monotonicity away from the soliton core) There exist universal con-
stants a0�1 and 0<δ0�1 such that the following holds. Let 06t0<T , close enough to
T , and 0<ν< 1

10 be such that
λ2(t0)
ν

< δ0. (6.6)

Let

φ(x) =
2
π

arctan
(

exp
(√

ν

5
x

))
be such that

limx!∞ φ(x) = 1, limx!−∞ φ(x) = 0,

φ′′′(x) 6
ν

25
φ′(x) and |φ′′(x)|.

√
νφ′(x) for all x∈R.

(6.7)

Then, for all y0>a0 and t06t<T , we have the L2 monotonicity bound∫
ũ2(t, x)φ

(
x−x(t0)
λ(t0)

−ν t−t0
λ3(t0)

+y0

)
dx+2(b(t)−b(t0))(P,Q)

.
∫
ũ2(t0, x)φ

(
x−x(t0)
λ(t0)

+y0

)
dx+

1√
ν
e−

√
νy0/10+λ2+1/4(t0)

(6.8)

and the H1 monotonicity bound∫ (
ũ2

x−
1
3
ũ6

)
(t, x)φ

(
5
4

(
x−x(t0)
λ(t0)

−ν t−t0
λ3(t0)

+y0

))
dx−2

(
b(t)
λ2(t)

− b(t0)
λ2(t0)

)
(P,Q)

.
∫ (

ũ2
x(t0, x)+

ũ2(t0, x)
λ2(t0)

)
φ

(
x−x(t0)
λ(t0)

+y0

)
dx+

1√
ν

e−
√

νy0/10

λ2(t0)
+λ1/2(t0).

(6.9)

The proof of Lemma 6.2 is postponed to Appendix A.

6.2. Proof of Proposition 6.1

Step 1. Proof of (6.1).
The estimate (6.1) is a direct consequence of (6.8) and the space-time control of

local terms (4.12) which implies that

Ni(t2)
λ2(t2)

+
∫ t2

t1

∫
(ε2y+ε2)(s)ϕ′i,B

λ5(τ)
dτ . δ(α0). (6.10)

Indeed, if we fix ν= 1
16 in Lemma 6.2 (note that B>40=10/

√
ν ), then (6.6) is satisfied

from the blow-up assumption for t close enough to T , and we estimate the right-hand
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side of (6.8) as∫
ũ2(t0, x)φ

(
x−x(t0)
λ(t0)

+y0

)
dx

=
∫
ε2(t0)φ(y+y0)

.
∫

y<−y0

ε2(t0)eν(y+y0)/10+
∫

y>−y0

ε2(t0)

.
∫

y<−y0

ε2(t0)e(y+y0)/B+ey0/B

∫
−y0<y<0

ε2(t0)ey/B+
∫

y>0

ε2(t0)

. ey0/BN1,loc(t0).

(6.11)

Let R�1 be large enough and tR be such that x(tR)=R, so that

T−tR =
1
`20R

(1+oR(1))=
λ(tR)
`0

(1+oR(1)) as R!∞. (6.12)

We now make essential use of the fact that the space-time estimate (6.10) is better for
local L2 terms than the pointwise bound given by (H2). Indeed, the law (4.7) and (6.12)
ensure that, for R large,

λ(τ) = `0

[
T−tR+

1
R
oR(1)

]
>

1
2
λ(tR) for all τ ∈ [tR−(R`0)−5/2, tR],

and thus (6.10) implies that

(R`0)5
∫ tR

tR−(R`0)−5/2

∫
(ε2y+ε2)(t)ϕ′1,B dt.

∫ T

0

∫
(ε2y+ε2)(t)ϕ′1,B

λ5(t)
dt. δ(α0).

Thus, there exists tR∈[tR−(R`0)−5/2, tR] such that∫
(ε2y+ε2)(tR)ϕ′1,B . δ(α0)(`0R)−5/2∼ δ(α0)λ(tR)5/2 (6.13)

which is a strict gain on the pointwise bound (H2). Note also the relations

b(tR) = `30(T−tR)2(1+oR(1))=
1

`0R2
(1+oR(1)) and x(tR) =R+oR(1). (6.14)

We now apply (6.8) to u(t) with

ν= 1
16 , t0 = tR and y0 = yR =40 log `0R3.
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We obtain, from (6.11), (6.13), (6.14) and B�1, that, for all t∈[tR, T ),∫
ũ2(t, x)φ

(
x−x(tR)
λ(tR)

− 1
16

t−tR
λ3(tR)

+yR

)
−2b(tR)(P,Q)

. eyR/BN1,loc(tR)+e−yR/40+(T−tR)2+1/4 = oR

(
1
R2

) (6.15)

and

2b(tR)(P,Q) =
‖Q‖2L2

8`0
1
R2

(1+oR(1)).

Moreover, using (6.14), we estimate, for all x>2R and all t>tR,

x−x(tR)
λ(tR)

− 1
16

t−tR
λ3(tR)

+yR >
2R−R
λ(tR)

− 1
16

t−tR
λ3(tR)

>
1

`0λ2(tR)
> 0.

Thus, from (6.14) and (6.15), and also using that φ(y)> 1
2 for y>0, we obtain∫

x>2R

ũ2(t, x) dx.
1

`0R2
for all t∈

[
T− 1

2`20R
, T

)
,

and (6.1) follows.

Step 2. Proof of (6.2).
We now apply (6.9) to u(t) with the same choice as before

ν= 1
16 , t0 = tR and y0 = yR =40 log `0R3.

We estimate, as in the proof of (6.11) and using (6.13),∫
ũ2

x(tR, x)φ
(
x−x(tR)
λ(tR)

+yR

)
dx. eyR/B

∫
ε2y(tR)ϕ′1,B

λ2(tR)
= oR(1).

Using (6.11), we obtain, for all t∈[tR, T ),∫ (
ũ2

x(t, x)− 1
3
ũ6(t, x)

)
φ

(
5
4

(
x−x(tR)
λ(tR)

− 1
16

t−tR
λ3(tR)

+yR

))
dx

.

∣∣∣∣ b(t)λ2(t)
− b(tR)
λ2(tR)

∣∣∣∣+R2e−yR/40+oR(1)= oR(1),

where, in the last step, we used the fact that

lim
t!T

b(t)
λ2(t)

= `0.

Observe now the bound from Sobolev, (4.8) and (6.15):∫
ũ6(t, x)φ

(
5
4

(
x−x(tR)
λ(tR)

− 1
16

t−tR
λ3(tR)

+yR

))
dx

6C‖ũ‖4L∞
∫
ũ2(t, x)φ

(
x−x(tR)
λ(tR)

− 1
16

t−tR
λ3(tR)

+yR

)
dx.

1
R2

,

and (6.2) follows.
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Step 3. Proof of (6.3).
Let t be close to T . The space time estimate (6.10) and (4.7) ensure that

1
λ5(t)

∫ t−10(T−t)/|log(T−t)|

t−20(T−t)/|log(T−t)|
N1,loc(τ) dτ .

∫ T

0

N1,loc(τ)
λ5(τ)

dτ . δ(α),

and thus there exists

t∈
[
t− 20(T−t)
|log(T−t)|

, t− 10(T−t)
|log(T−t)|

]
such that

N1,loc(t) 6 `50(T−t)4|log(T−t)|.

Moreover, from (4.7), we have

x(t)−x(t) > (t−t) min
[t,t]

xt >
9

`20(T−t)|log(T−t)|
>

8x(t)
|log(T−t)|

, (6.16)

and
b(t)−b(t) = o((T−t)2) as t!T .

We now apply (6.8) with

ν= 1
16 , y0 = y=40|log(T−t)| and t0 = t.

The right-hand side of(6.8) is estimated using (6.11) and we obtain∫
ũ2(t, x)φ

(
x−x(t)
λ(t)

− 1
10

t−t
λ3(t)

+y
)
dx= o((T−t)2) as t!T .

Moreover, if x is such that

x−x(t) >− x(t)
|log(T−t)|

,

then, from (6.16) and (4.7),

x−x(t)
λ(t)

− 1
10

t−t
λ3(t)

>
1

λ(t)|log(T−t)|

[
8x(t)− 1

10
10(T−t)
λ2(t)

]
> 0,

and then φ(y)> 1
2 for y>0 yields (6.3).

Remark 6.3. Observe that (6.1) and (6.2) imply that, for all R>1,∫
x>R

ũ2

(
T− 1

200`20R
, x

)
dx.

1
R2

and lim
R!∞

∫
x>R

ũ2
x

(
T− 1

200`20R
, x

)
dx=0.

In particular, given t close enough to T , we chose R=(200`20(T−t))−1< 1
100x(t) and

conclude that∫
x>x(t)/100

ũ2(t, x) dx. (T−t)2 and lim
t!T

∫
x>x(t)/100

ũ2
x(t, x) dx=0. (6.17)
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Step 4. L2 tightness.
First observe, by a direct check using (4.7), that

1
λ1/2(t)

Qb(t)

(
x−x(t)
λ(t)

)
− 1
λ1/2(t)

Q

(
x−x(t)
λ(t)

)
! 0 in L2 as t!T ,

and hence (1.16) is equivalent to showing the existence of a strong limit

ũ(t)!u∗ in L2 as t!T . (6.18)

We first claim that the sequence is tight, i.e. for all ε>0 there exists Aε>1 such that for
all t∈[0, T ) one has ∫

|x|>Aε

ũ2(t, x) dx<ε. (6.19)

On the right x>Aε, where non-linear interactions take place, the claim directly follows
from (6.1). On the left, this is a simple linear claim which follows from the finiteness
of the time interval [0, T ), the H1 bound (4.8) and a Kato L2 localization argument.
Indeed, let tε be close enough to T such that∫ T

tε

∫
x<0

(u2
x+u2) dx dt< ε. (6.20)

Let ψ be a C3 function such that

ψ≡
{

1 on (−∞,−2],
0 on [−1,∞),

and ψ′ 6 0 on R. (6.21)

Pick Aε>1 large enough so that
∫
u2(tε)ψ(x+A)6ε. Then, by (2.49),

d

dt

∫
u2(t)ψ(x+A) =−3

∫
u2

x(t)ψ′(x+A)+
∫
u2(t)ψ′′′(x+A)+

5
3

∫
u6(t)ψ′(x+A),

and thus, from (6.20), for all t∈[tε, T ),∣∣∣∣∫ u2(t)ψ(x+A)−
∫
u2(tε)ψ(x+A)

∣∣∣∣ 6Cε

and (6.19) follows. Now the uniform H1 bound (4.8) ensures that for any sequence tn!T
there exists a subsequence tφ(n)!T and u?∈H1 such that ũ(tφ(n))⇀u? in H1 weakly
and ũ(tφ(n))!u? in L2 strongly from (6.19) and the local compactness of the Sobolev
embedding. By a weak convergence argument, the limit u? does not depend on the
sequence {tn}∞n=1. Indeed, let θ be a C∞ function with support in [−K,K]. Then∣∣∣∣ ddt

∫
uθ

∣∣∣∣ =
∣∣∣∣∫ u5θx+

∫
uθxxx

∣∣∣∣ 6Cθ

∫ K

−K

(|u|5+|u|) 6Cθ,K ,
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and thus
∫
u(t)θ has a limit as t!T , and (6.18) follows. Note that the regularity u∗∈H1

follows from (6.18) and (4.8).

Step 5. Universal behavior of u∗ at the singularity.
We now turn to the proof of the universal behavior of u∗ (6.5) at the singularity,

which follows from lower and upper bounds.
(i) (Upper bound) Let R�1 be large enough. Let tR be such that

x(tR) =R,

so that, from (4.7),

λ(tR)
`0

=(T−tR)(1+oR(1))=
1
`20R

(1+oR(1)),

b(tR) = `30(T−tR)2(1+oR(1))=
1

`0R2
(1+oR(1)).

We apply (6.8) to u(t) with

ν= νR =
1

log2R
, y0 = yR =10 log2R3 and t0 = tR

which satisfy the condition (6.6) for R large enough, and obtain, for all t∈[tR, T ),∫
ũ2(t, x)φ

(
x−x(tR)
λ(tR)

−νR
t−tR
λ3(tR)

+yR

)
dx−2b(tR)

∫
PQ

.
∫
ũ2(tR, x)φ

(
x−x(tR)
λ(tR)

+yR

)
dx+

1
νR
e−

√
νRyR/10+(T−tR)2+1/4

.
∫
ũ2(tR, x)φ

(
x−x(tR)
λ(tR)

+yR

)
dx+o

(
1
R2

)
.

Note that
−x(tR)

|log(T−tR)|
=− R

logR
(1+oR(1))�λ(tR)yR,

so that, by (6.3),∫
ũ2(tR)φ

(
x−x(tR)
λ(tR)

+yR

)
dx

. e−
√

νRyR/10

∫
ũ2(tR, x) dx+

∫
x−x(tR)>−2λ(tR)yR

ũ2(tR, x) dx=
1
R2

oR(1).

We thus conclude, from (2.5), that∫
ũ2(t, x)φ

(
x−x(tR)
λ(tR)

−νR
t−tR
λ3(tR)

+yR

)
dx6

2
∫
PQ

`0R2
(1+oR(1))=

‖Q‖2L1

8`0R2
(1+oR(1)).
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Passing to the limit t!T , we find that

R2

∫
(u?)2(x)φ

(
x−x(tR)
λ(tR)

−νR
T−tR
λ3(tR)

+yR

)
dx6

‖Q‖2L1

8`0
(1+oR(1)).

Using that x(tR)=R and λ(tR)=(1+oR(1))/R`0, and passing to the limit R!∞ yields

lim sup
R!∞

R2

∫
x>(1+νR)R

(u?)2(x) dx6
‖Q‖2L1

8`0
,

which now easily implies that

lim sup
R!∞

R2

∫
x>R

(u?)2(x) dx6
‖Q‖2L1

8`0
. (6.22)

(ii) (Lower bound) Let ω be a smooth function satisfying

ω≡
{

0 on (−∞,−1],
1 on [0,∞),

and ω′ > 0 on R.

Let 0<ν< 1
10 be arbitrary and let ων be defined by ων(x)=ω(x/ν). For R>1 large,

we define tR such that x(tR)=R as before. Using the identity (2.49), we have, for all
tR6t<T ,

d

dt

∫
u2ων

(
x−R+4 logR

R

)
>− 3

R

∫
u2

xω
′
ν

(
x−R+4 logR

R

)
+

1
R3

∫
u2ω′′′ν

(
x−R+4 logR

R

)
>−Cν

R

∫
(1−ν)R<x+4 log R<R

u2
x−

Cν

R3

∫
(1−ν)R<x+4 log R<R

u2.

By (6.2) and the properties of Qb (see in particular (2.9) and (2.11)) we have

sup
t∈[tR,T )

∫
(1−ν)R<x+4 log R<R

u2
x(t, x) dx= oR(1) as R!∞.

Since T−tR.1/`20R, by integrating over [tR, t] we obtain, for all t∈[tR, T ),∫
u2(t)ων

(
x−R+4 logR

R

)
>

∫
u2(tR)ων

(
x−R+4 logR

R

)
+oR

(
1
R2

)
. (6.23)

We now develop u in terms of Qb and ũ. On the one hand, a simple computation ensures∫
u2(t)ων

(
x−R+4 logR

R

)
=

∫
Q2+

∫
ũ2(t)ων

(
x−R+4 logR

R

)
+ot!T (1)

!
∫
Q2+

∫
(u∗)2(t)ων

(
x−R+4 logR

R

)
as t!T .
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Next, ∫
u2(tR)ων

(
x−R+4 logR

R

)
=

∫
Q2+2(P,Q)b(tR)+

∫
ũ2(tR)ων

(
x−R+4 logR

R

)
+oR

(
1
R2

)
>

∫
Q2+

1
R2

(
‖Q‖2L1

8`0
+oR(1)

)
,

where we used (6.5) to treat the cross term. We therefore conclude, from (6.23),

lim inf
R!∞

R2

∫
x>(1−ν)R−4 log R

(u?)2(x) dx>
‖Q‖2L1

8`0

and, since ν is arbitrary,

lim inf
R!∞

R2

∫
x>R

(u?)2(x) dx>
‖Q‖2L1

8`0
.

This concludes the proof of Proposition 6.1.

Appendix A.

A.1. Proof of Lemma 6.2

Let a0�1 and 0<δ0�1 be two constants to be chosen.
For t0∈[0, T ), we consider the renormalized solution

z(t′, x′) =λ1/2(t0)u(λ3(t0)t′+t0, λ(t0)x′+x(t0)), t′ ∈ [0, Tz), Tz =
T−t0
λ3(t0)

. (A.1)

The function z admits the decomposition

z(t′, x′) =
1

λ
1/2
z (t′)

(Qbz +εz)
(
t′,
x−xz(t′)
λz(t′)

)
=

1

λ
1/2
z (t′)

Qbz(t′)

(
x−xz(t′)
λz(t′)

)
+z̃(t′, x′),

(A.2)
with, explicitely,

εz(t′) = ε(λ3(t0)t′+t0), λz(t′) =
λ(λ3(t0)t′+t0)

λ(t0)
,

xz(t′) =
x(λ3(t0)t′+t0)−x(t0)

λ(t0)
, bz(t′) = b(λ3(t0)t′+t0).

In particular,
λz(0)= 1, xz(0)= 0 and bz(0)= b(t0). (A.3)
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The monotonicity bound (4.48) and (4.8) ensure that, for all t′∈[0, Tz),

‖(εz)x(t′)‖2L2 .λ2
z(t

′)λ2(t0)(|E0|+δ(α)), ‖εz(t′)‖2L2 . δ(α), (A.4)

‖z(t′)‖H1 .λ2(t0)(|E0|+δ(α))6 δ0, λz(t′) 6 3
2 , (A.5)

provided t0 is close enough to T and α is small enough.
We denote by N2(t′) the quantity defined in (3.3) for z(t′). From (H2), and then

(6.6), we have

θz = sup
t′∈[0,Tz ]

∣∣∣∣bz(t′)+N2,z(t′)
λ2

z(t′)

∣∣∣∣ = sup
t∈[t0,T )

λ2(t0)
∣∣∣∣b(t)+N2(t)

λ2(t)

∣∣∣∣ .λ2(t0)δ(α). (A.6)

Lemma 6.2 follows directly from the following monotonicity result on z̃ and (A.6).

Lemma A.1. (Monotonicity in renormalized variables) Assume (A.3)–(A.6). Then,
for all y0>a0 and all t′∈[0, Tz), the following hold :

(i) (L2 monotonicity)∫
z̃2(t′)φ(x′−νt′+y0) dx′+2(P,Q)(bz(t′)−bz(0))

+
1
4

∫ t′

0

∫
(z2

x+νz2)(t′′)φ′(x′−νt′+y0) dx′ dt′′

. θ9/8
z +

∫
z̃2(0)φ(x′+y0) dx′+

1√
ν
e−

√
νy0/10.

(A.7)

(ii) (H1 monotonicity)∫ (
z̃2
x−

1
3
z̃6

)
(t′)φ

(
5
4
(x′−νt′+y0)

)
dx′−2(P,Q)

(
bz(t′)
λ2

z(t′)
− bz(0)
λ2

z(0)

)
+

1
4

∫ t′

0

∫
(z2

xx+νz2
x)(t′′)φ

(
5
4
(x′−νt′′+y0)

)
dx′ dt′′

.λ2(t0)θ1/4
z +

∫
[z̃2

x(t0)+z̃2(t0)]φ(x′+y0) dx′+
1√
ν
e−

√
νy0/10.

(A.8)

Undoing the transformation (A.1) and applying Lemma A.1 yields Lemma 6.2.

Proof. The proof is closely related to the argument in [26] and [20].
We define, for y0>1 and 0<ν< 1

10 , the following localized mass and energy quantities:

M0(t′) =
∫
z2(t′, x′)φ(x′−νt′+y0) dx′,

E0(t′) =
1
2

∫ (
z2
x−

1
3
z6

)
(t′, x′)φ

(
5
4
(x′−νt′+y0)

)
dx′.
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Step 1. Monotonicity in L2 for z.
We claim that

M0(t′)−M0(0)+
1
4

∫ t′

0

∫
(z2

x+νz2)(t′′)φ′(x′−νt′′+y0) dx′ dt′′ .
1√
ν
e−

√
νy0/10. (A.9)

Indeed, we use formula (2.49) and (6.7) to estimate

d

dt′
M0(t′) 6

∫ (
−3z2

x−
24
25
νz2+

5
3
z6

)
φ′(x′−νt′+y0).

We claim that the non-linear term(17) is controllable up to an exponentially small term
after integration in time. Indeed, first recall from [26, Lemma 6] and (6.7) that, for all
v∈H1, a>0 and b∈R,

‖v2(φ′)1/2‖2L∞(|x−b|>a) . ‖v‖2L2(|x−b|>a)

(∫
v2

xφ
′+

∫
v2 (φ′′)2

φ′

)
(A.10)

. ‖v‖2L2(|x−b|>a)

(∫
v2

xφ
′+ν

∫
v2φ′

)
. (A.11)

Fix a0�1 such that (∫
2|y|>a0

Q2

)2

6 δ0.

On the one hand, by (A.11),∫
|x′−xz(t′)|>a0

z6φ′(x′−νt′+y0)

6 ‖z‖2L2(|x′−xz(t′)|>a0)
‖z2φ′(x′−νt′+y0)1/2‖2L∞(|x′−xz(t′)|>a0)

. ‖z‖4L2(|x′−xz(t′)|>a0)

∫
(z2

x+νz2)φ′(x′−νt′+y0).

Since

‖z‖2L2(|x′−xz(t′)|>a0)
.

∫
λz(t′)|y|>a0

Q2
b(y) dy+

∫
ε2z . δ0+δ(α),

we obtain, for δ0 small enough and α small enough,∫
|x′−xz(t′)|>a0

z6φ′(x′−νt′+y0) . (δ0+δ(α))
∫

(z2
x+νz2)φ′(x′−νt′+y0)

6
1
4

∫
(z2

x+νz2)φ′(x′−νt′+y0).

(17) Which has the wrong sign.
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On the other hand, the modulation equation (2.29) and the upper bound on scaling
(A.4) ensure that

(xz)t =
1
λ2

z

(xz)s

λz
>

1+δ(α0)
λ2

z

>
1
5
, (A.12)

and thus in particular

xz(t′) >xz(0)+ 1
5 t
′ > 1

10 t
′+νt′. (A.13)

We then estimate, from Sobolev’s inequality,

‖z‖6L6 . ‖z‖2H1‖z‖4L2 .
1
λ2

z

. (xz)t(t′),

and obtain, for all y0>a0,∫
|x′−xz(t′)|<a0

z6φ′(x′−νt′+y0) . (xz)t(t′)‖φ′(x′−νt′+y0)‖L∞(|x′−xz(t′)|<a0)

. (xz)t(t′)e−
√

ν(xz(t′)−a0−νt′+y0)/10

. (xz)t(t′)e−
√

νxz(t′)/100−
√

νy0/10.

In conclusion, we have the L2 motonicity formula: for all t′∈[0, t0),

d

dt′
M0(t′)+

1
4

∫
(z2

x+νz2)(t′)φ′(x′−νt′+y0) dx′ . (xz)t(t′)e−
√

νxz(t′)/100e−
√

νy0/10,

and by integration between 0 and t′ using that xz(0)=0, for all t′∈[0, Tz),

M0(t′)+
1
4

∫ t′

0

∫
(z2

x+νz2)(t′′)φ′(x′−νt′+y0) dx′ dt′′ 6M0(0)+
C√
ν
e−

√
νy0/10.

Step 2. Monotonicity in L2 for z̃. Proof of (A.7).

We now rewrite the monotonicity (A.9) using the decomposition (A.2). We compute

M0(t′) =
∫
z2(t′, x′)φ(x′−νt′+y0) dx′

=
∫

(Qbz(t′)(y)+εz(y, t′))2φ(λz(t′)y+xz(t′)−νt′+y0) dy dt′

=
∫
Q2

bz(t′)φ(λz(t′)y+xz(t′)−νt′+y0)+
∫
z̃2(t′, x′)φ(x′−νt′+y0) dx′

+2
∫
Qbz(t′)εz(t′)φ(λz(t′)y+xz(t′)−νt′+y0) dy dt.
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We estimate, using the lower bound (A.13),∫
Q2

bz(t′)φ(λz(t′)y+xz(t′)−νt′+y0)

=
∫
Q2+2bz(t′)(P,Q)+b2z(t

′)
∫
χ2

bx(t′)P
2φ(λz(t′)y+xz(t′)−νt′+y0)+O(e−

√
νy0/10)

=
∫
Q2+2bz(t′)(P,Q)+O(e−

√
νy0/10)+O(b2−γ

z (t′)),

where we have used that b2
∫
P 2χ2

b =O(b2−γ). Now, by Hölder’s inequality,

2bz(t′)
∣∣∣∣∫ εz(t′)χbzPφ(λz(t′)y+xz(t′)−νt′+y0)

∣∣∣∣
. bz(t′)(1−γ)/2

∫
ε2z(t

′)φ(λz(t′)y+xz(t′)−νt′+y0)+bz(t′)(3+γ)/2

∫
P 2χ2

bz

6 bz(t′)(1−γ)/2

∫
z̃2(t′, x′)φ(x′−νt′+y0) dx′+bz(t′)(3−γ)/2. (A.14)

We now insert these estimates into (A.9) and use, from (A.4) and the definition of θz,

|bz(t′)|. θz, (A.15)

and thus derive from the initialization (A.3) the bound (note that γ= 3
4 ), for all t′∈[0, Tz),∫

z̃2(t′, x′)φ(x′−νt′+y0) dx+
∫ t′

0

∫
(z2

x+νz2)(t′′)φ′(x′−νt′′+y0) dx′ dt′′

. θ9/8
z +

∫
z̃2(0, x′)φ(x′+y0) dx′+

1√
ν
e−

√
νy0/10.

(A.16)

Reinserting this bound into (A.14) and (A.9), keeping track of the bz powers now yields
(A.7).

Step 3. Energy monotonicity for z.
We claim the energy monotonicity

E0(t′)−E0(0)+
1
4

∫ t′

0

∫
(z2

xx+νz2
x)(t′′)φ

(
5
4
(x′−νt′′+y0)

)
dx′ dt′′

.

(
θ9/8

z +
∫
z̃2(t0)φ(x′+y0) dx′+

1√
ν
e−

√
νy0/10

)5/4

.

(A.17)

Indeed we estimate, from formula (2.50) and (6.7),

d

dt′
E0(t′) =−5

4

∫ (
(zxx+z5)2+2z2

xx−10z4z2
x+ν

(
z2
x−

1
3
z6

))
φ′

(
5
4
(x′−νt′+y0)

)
+

(
5
4

)3 ∫
z2
xφ

′′′
(

5
4
(x′−νt′+y0)

)
(A.18)

6−5
4

∫ (
2z2

xx+
ν

2
z2
x−

ν

3
z6−10z4z2

x

)
φ′

(
5
4
(x′−νt′+y0)

)
.



134 y. martel, f. merle and p. raphaël

We need to treat the non-linear terms. We claim that∫ Tz

0

∫
z4z2

xφ
′
(

5
4
(x′−νt′+y0)

)
dx′ dt′

. δ0

∫ Tz

0

∫
(z2

xx+νz2
x)φ′

(
5
4
(x′−νt′+y0)

)
dx′ dt′+

1√
ν
e−

√
νy0/8

+
∫ Tz

0

∫
z6φ′

(
5
4
(x′−νt′+y0)

)
dx′ dt′

(A.19)

for some small enough δ0>0, and∫ Tz

0

∫
z6(t′)φ′

(
5
4
(x′−νt′+y0)

)
dt′ .

(
θ9/8

z +
∫
z̃2(t0)φ(x′+y0)dx′+

1√
ν
e−

√
νy0/10

)5/4

.

(A.20)
Integrating (A.18) in time and inserting (A.19) and (A.20) yields (A.17).

Proof of (A.19). For a1>0 large enough, we have(18)

1
λ2

z(t′)

∫
|x|>a1

(Q′)2
(

x

λz(t′)

)
dx.

1
λ2

z(t′)
e−2a1/λz(t′) .

1
a2
1

6 δ0,

and thus∫
|x−xz(t′)|>a1

z2
x .

∫
|x−xz(t′)|>a1

z̃2
x(x)+

1
λ2

z(t′)

∫
|x|>a1

(Q′)2
(

x

λz(t′)

)
. δ0, (A.21)

where we used the smallness in the H1 bound (A.5).
We now write∫
|x−xz(t)|>a1

z4z2
xφ

′
(

5
4
(x′−νt′+y0)

)
.

∫
|x−xz(t)|>a1

(z2z4
x+z6)φ′

(
5
4
(x′−νt′+y0)

)
,

and need only treat the first term according to the expected bound (A.19). We estimate
the outer integral by using the localized Gagliardo–Nirenberg inequality (A.11) and the
outer smallness by (A.21):∫

|x−xz(t)|>a1

z2z4
xφ

′
(

5
4
(x′−νt′+y0)

)
.

∥∥∥∥z2
x(φ′)1/2

(
5
4
(x′−νt′+y0)

)∥∥∥∥2

L∞(|x−xz(t′)|>a1)

‖z‖2L2

. ‖zx‖2L2(|x−xz(t′)|>a1)

∫
(z2

xx+νz2
x)φ′

(
5
4
(x′−νt′+y0)

)
. δ0

∫
(z2

xx+νz2
x)φ′

(
5
4
(x′−νt′+y0)

)
.

(18) Using that x2e−x.1 for x>0.
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The inner integral is estimated by Sobolev’s inequality,∫
z4z2

x . ‖z‖4L∞‖zx‖2L2 . ‖z‖2L2‖zx‖4L2 .
1
λ4

z

,

and hence, using the structure of φ and (A.13),∫
|x−xz(t)|<a1

z4z2
xφ

′
(

5
4
(x′−νt′+y0)

)
.

1
λ4

z(t′)

∥∥∥∥φ′(5
4
(x′−νt′+y0)

)∥∥∥∥
L∞(|x−xz(t′)|<a1)

.
1

λ4
z(t′)

e−
√

νxz(t′)/100−
√

νy0/8.

We now claim that

1
c0λ2

z(t′)
e−c0xz(t′)+

∫ Tz

0

1
λ4

z(t′)
e−c0xz(t′) dt′ .

1
c0
, (A.22)

with c0=C
√
ν, which completes the proof of (A.19).

Indeed, first observe, from the definition of θz and the rough modulation equation
(2.29), that

|(λz)t|=
∣∣∣∣ 1
λ2

z

−(λz)s

λz

∣∣∣∣ .
1
λ2

z

(|bz|+
√
θzλz) .

√
θz

λz
,

and thus, from (A.12) and integration by parts in time,

∫ t′

0

1
λ4

z

e−c0xz dτ .
∫ t′

0

(xz)t

λ2
z

e−c0xz dτ =
[
− 1
c0λ2

z

e−c0xz

]t′

0

− 1
c0

∫ t′

0

2(λz)t

λ3
z

e−c0xz dτ

6
1
c0

[
1− 1

λ2
z(t′)

e−c0xz(t′)

]
+

2
√
θz

c0

∫ t′

0

1
λ4

z

e−c0xz dτ,

and (A.22) now follows from the a-priori smallness (A.6) and (6.6).

Proof of (A.20). Since φ′
(

5
4x

)
.(φ′)5/4(x), (A.11) yields∫

z6φ′
(

5
4
(x′−νt′+y0)

)
6 ‖z2(φ′)1/2(x′−νt′+y0)‖2L∞

∫
z2(φ′)1/4(x′−νt′+y0)

.

(∫
z2

)7/4(∫
z2φ′(x′−νt′+y0)

)1/4 ∫
(z2

x+νz2)φ′(x′−νt′+y0)

.

(∫
z2φ′(x′−νt′+y0)

)1/4 ∫
(z2

x+νz2)φ′(x′−νt′+y0).
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We now estimate∫
z2φ′(x′−νt′+y0) .

∫
z̃2φ′(x′−νt′+y0)+

∫
Q2

bz
(y)φ′(λz(t′)y+xz(t)−νt′+y0).

On the one hand, by (A.16) and φ′.φ,∫
z̃2φ′(x′−νt′+y0) . θ9/8

z +
∫
z̃2(0)φ(x′+y0) dx′+

1√
ν
e−

√
νy0/10.

On the other hand, from the space decoupling (A.13),∫
Q2

b(y)φ
′(λz(t′)y+xz(t)−νt′+y0) . |b|2−γ(t′)+

∫
Q2(y)φ′(λz(t′)y+xz(t)−νt′+y0)

. θ5/4
z +

1√
ν
e−

√
νy0/10.

The space-time estimate (A.20) now follows from (A.16).

Step 4. Energy monotonicity for z̃. Proof of (A.8).
We now rewrite the monotonicity (A.17) using the decomposition (A.2). We compute

2λ2
z(t

′)E0(t′) =
∫ [

(Qbz +εz)2y−
1
3
(Qbz

+εz)6
]
(t′, y)φ

(
5
4
(λz(t′)y+xz(t′)−νt′+y0)

)
dy

and develop this expression. The contribution of the Qb term is estimated using E(Q)=0
and the separation in space (A.13), which implies that∫

[(Qb)2y+Q6
b ]

[
1−φ

(
5
4
(λz(t′)y+xz(t′)−νt′+y0)

)]
dy

. |bz|1+γ +
1√
ν
e−

√
νxz(t′)/20e−

√
νy0/10.

The cross terms are treated using the orthogonality condition (2.20) and we obtain,
similarly to the proof of (2.28),

2λ2
z(t

′)E0(t′)

=−2bz(t′)(P,Q)+
∫ [

(εz)2y−
1
3
ε6z

]
(t′, y)φ

(
5
4
(λz(t′)y+xz(t′)−νt′+y0)

)
dy

+O
[

1√
ν
e−

√
ν(xz(t′)+y0)/10+|bz(t′)|2+|bz(t′)|1−γ

(∫
(εz)2y+

∫
ε2ze

−|y|
)]
.

(A.23)

We now divide by λz(t′) and estimate, from (A.4),

1
λ2

z(t′)

[
|bz(t′)|2+|bz(t′)|1−γ

(∫
(εz)2y+

∫
ε2ze

−|y|
)]

.λ2(t0)θ1/4
z ,

and conclude, using (A.22) and (A.23), that

2E0(t′) =−2bz(t′)
λ2

z(t′)
(P,Q)+

∫ [
z̃2
x−

1
3
z̃6

]
φ

(
5
4
(x′−νt′+y0)

)
dx′

+O
(
λ2(t0)θ1/4

z +
1√
ν
e−

√
νy0/10

)
,

which, together with the monotonicity (A.17) and L2 smallness of z̃, yields (A.8).
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A.2. Proof of Lemma 3.4

The proof of Lemma 3.4 is based on coercivity properties of the virial quadratic form
under suitable repulsivity properties. We recall this property in the following lemma.

Lemma A.2. ([16, Proposition 4]) There exists µ>0 such that, for all v∈H1(R),

3
∫
v2

y+
∫
v2−5

∫
Q4v2+20

∫
yQ′Q3v2 >µ

∫
v2

y+v2− 1
µ

(∫
vyΛQ

)2

− 1
µ

(∫
vQ

)2

.

We now turn to the proof of Lemma 3.4, which is a simple consequence of Lemma A.2
using a standard localization argument (see for example the proof of [20, Proposition 9]).
Indeed, let ζ be a smooth function such that

ζ(y) =
{

0 for |y|> 1
4 ,

1 for |y|< 1
8 ,

and 0 6 ζ 6 1 on R.

Set

ε̃(y) = ε(y)ζB(y), where ζB(y) = ζ
( y
B

)
.

Lemma A.2 applied to ε̃ gives

(3−µ)
∫
ε̃2y+(1−µ)

∫
ε̃2−5

∫
Q4ε̃2+20

∫
yQ′Q3ε̃2 >− 1

µ

(∫
ε̃yΛQ

)2

− 1
µ

(∫
ε̃Q

)2

.

(A.24)
On the one hand,∫

ε̃2y =
∫
ε2yζ

2
B+

∫
ε2(ζ ′B)2− 1

2

∫
ε2(ζ2

B)′′ 6
∫
|y|<B/4

ε2y+
C

B2

∫
|y|<B/4

ε2,∫
ε̃2 =

∫
ε2ζ2

B 6
∫
|y|<B/4

ε2,

and, by yQ′<0 and then by the exponential decay of Q and Q′,

−5
∫
Q4ε̃2+20

∫
yQ′Q3ε̃2

6−5
∫
|y|<B/4

Q4ε̃2+20
∫
|y|<B/4

yQ′Q3ε̃2

6−5
∫
|y|<B/2

Q4ε̃2+20
∫
|y|<B/2

yQ′Q3ε̃2+Ce−B/16

∫
B/4<|y|<B/2

ε2.
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Thus, for B large,

(3−µ)
∫
ε̃2y+(1−µ)

∫
ε̃2−5

∫
Q4ε̃2+20

∫
yQ′Q3ε̃2

6 (3−µ)
∫
|y|<B/4

ε2y

+(1−µ)
∫
|y|<B/4

ε2−5
∫
|y|<B/2

Q4ε̃2+20
∫
|y|<B/2

yQ′Q3ε̃2+
C

B2

∫
|y|<B/4

ε2

6 (3−µ)
∫
|y|<B/2

ε2y+
(
1−µ

2

) ∫
|y|<B/2

ε2−5
∫
|y|<B/2

Q4ε̃2+20
∫
|y|<B/2

yQ′Q3ε̃2.

On the other hand, by (2.20),∣∣∣∣∫ ε̃yΛQ
∣∣∣∣ =

∣∣∣∣∫ εζByΛQ
∣∣∣∣ =

∣∣∣∣∫ ε(1−ζB)yΛQ
∣∣∣∣ . e−B/16

(∫
ε2e−|y|/2

)1/2

,

and similarly for
∫
ε̃Q. Inserted in (A.24), these estimates finish the proof of Lemma A.2.

References

[1] Bourgain, J. & Wang, W., Construction of blowup solutions for the nonlinear
Schrödinger equation with critical nonlinearity. Ann. Sc. Norm. Super. Pisa Cl. Sci.,
25 (1997), 197–215 (1998).
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