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1. Introduction

1.1. Setting of the problem

We consider the L2-critical generalized Korteweg—de Vries (gKdV) equation

{ut+(um+u5)I:0, (t,z) €[0,T) xR, (1.1)

u(0, ) =uo(z), zeR.

The Cauchy problem is locally well posed in the energy space H' by Kenig, Ponce and
Vega [11], and given ug€ H?, there exists a unique(') maximal solution u(t) of (1.1) in
C([0,T), H') with either T=o00, or T'<oco and then lim;_,r ||u;(t)|| 1z =00. The mass and
the energy are conserved by the flow, for all t€[0,7),

M(u(t)):/RuQ(t) de =M, and E(u(t)):%/ui(t) da:—é/RuG(t) dz = Fo,

R
where My=M (ug) and Ey=FE(up), and the scaling symmetry (A>0)
ux(t, ) = N 2u(N3t, \x)

leaves invariant the L2 norm so that the problem is mass critical.

() In a certain sense.
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The family of traveling wave solutions (called solitons)
_y—1/2 -1 -2 *
u(t,x) =Xy QA (x—Ag“t—x0)), (Ao, z0) EREXR,

with
3

cosh? 2z

1/4
Q(w)—( ) L QHQP=Q and E(Q)=0, (1.2)

plays a distinguished role in the analysis. From a variational argument [43], H! initial
data with subcritical mass |Jug|/z2 <||Q| L2 generate global and H! bounded solutions
with T'=o0.

For |luo||z2=|Q]|L2, the existence of blow-up solutions has been a long standing
open problem. In particular, unlike for the analogous Schrodinger problem, there exists
no simple obstruction to global existence. The study of singularity formation for small

supercritical mass H! initial data
QL2 <lluollr2 <[|Qll 2 +a*, o <1, (1.3)

has been developed in a series of works by Martel and Merle [16]-[19], [26], where two
new sets of tools are introduced:

— a monotonicity formula and L2-type localized virial identities to control the flow
near the solitary wave;

— rigidity Liouville-type theorems to classify the asymptotic dynamics of the flow.

In particular, the first proof of blow up in finite or infinite time is obtained for initial
data

up € H'  with (1.3) and E(ug) <0. (1.4)

The proof is indirect and based on a classification argument: the solitary wave is char-
acterized as the unique universal attractor of the flow in the singular regime. If u(t)
blows up in finite or infinite time T with (1.3), then the flow admits near blow-up time
a decomposition

1 x—x(t)

u(t,z) = N (Q+e) (t, D) ), with e(t) = 0in L as t—T. (1.5)

Then, in [18], for well-localized initial data

C
up satisfying (1.4) and / up(x') da' < = for 2>0, (1.6)
T

z'>x
blow up is proved to occur in finite time 7" with an upper bound on a sequence t, —1"

C(uo)
—t, ’

[[tg () 22 < (1.7)

N
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by a dynamical proof.(?)

For the critical mass problem ||ug|| 2=||Q||L2, assuming in addition the decay
C
/ up(a') da' < = for 2>0,
' >z z

it was proved in [19] that the solution is global and does not blow up in infinite time.

1.2. Generic blow up for critical problems

In the continuation of these works, the program developed by Merle and Raphaél [7],
[27]-[31], [38] for the mass critical non-linear Schrédinger NLS equation(?)

; A 4/N, _
{Zat% wHuTe=0 e 0. 1) <RY, (18)

u|t:0 = Uo,

in dimensions 1< N <5, has led to a complete description of the stable blow-up scenario
near the solitary wave @ which is the unique H' non-negative solution up to translation
to AQ—Q+Q't*N=0. This problem displays a similar structure as the critical gKdV.
Initial data in H' with ||ug| 2 <||@Q| z2 are global and bounded, [43]. For ug€ H! with
llwollL2=||Q]| L2, Merle [25] proved that the only blow-up solution (up to the symmetries
of the equation) is

1

—i|z|? —t) _i/(T—t o
e—ilal?/4(T—1) i/ (T ”Q(ﬁ)- (1.9)

For small supercritical mass H' initial data
1Qll> <lluollz> <|Qll2+a”, o <1, (1.10)

an H'! open set of solutions is exhibited where solutions blow up in finite time at log-log

speed:

log llog(T—1)]
T—t '

Moreover, non-positive energy solutions belong to this set of generic blow up. This

[Vu(t)|| L2 ~C* (1.11)

double log correction to self-similarity for stable blow up was conjectured from numerics
by Landman, Papanicolou, Sulem and Sulem [15], and a family of such solutions was
rigorously constructed by a different approach by Perelman in dimension N=1, [37].

Blow-up solutions of type (1.9) (|lu(t)||g1~1/t), constructed by Bourgain and Wang [1]

(3) Arguing directly on the solution itself.
(®) Here and in (1.9), but not later, 4 denotes the imaginary unit.
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(see also Krieger and Schlag [13]) correspond to an unstable threshold dynamics as proved
in Merle, Raphaél and Szeftel [33]. Finally, under (1.10), the quantization of the focused

mass at blow up is proved:
u(t)* = Q72 00—y +|u*[?,  u* € L2 (1.12)

More recently, natural connections have been made between mass critical problems
and energy critical problems. For the energy critical wave map problem, after the work
[42], a complete description of a generic finite-time blow-up dynamics (log correction to
the self-similar speed) was given by Raphaél and Rodnianski [39], while unstable regimes
with different speeds were constructed by Krieger, Schlag and Tataru [14]. See also
Merle, Raphaél and Rodnianski [32] for the treatment of the Schrodinger map system
and Raphaél and Schweyer [40] for the parabolic harmonic heat flow.

The general outcome of these works is twofold.

First the sharp derivation of the blow-up speed in the generic regime relies on a
detailed analysis of the structure of the solution near collapse, and takes in particular
into account slowly decaying tails in the computation of the leading order blow-up profile.
These tails correspond to the leading order dispersive phenomenon which drives the speed
of concentration and the rate of dispersion, both being intimately linked.

Second, a robust analytic approach has been developed in a nowadays more unified
framework. In particular, the control of the solution in the singular regime relies on
mixed energy/Morawetz or virial type estimates adapted to the flow which have been

used in various settings, see in particular [31], [32], [39] and [41].

1.3. Statement of the results

The aim of the paper is to classify the gKdV dynamics for H' solutions close to the
soliton and with decay on the right. In particular, we aim at recovering the more refined
description of the flow obtained for the L? critical NLS equation.

More precisely, let us define the L? modulated tube around the soliton manifold by

. 1 - — g
To-=u€H": inf uQ() <a* (1.13)
{ A\ s

Ao>0
zroER

and consider the set of initial data

A:{UO:Q+E01H60”H1 < ag and / yloegdy<1}.
y>0
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Here oy and o* are universal constants with
<Ko K1 (1.14)

Our aim is to classify the flow for data ug€.A. First, we fully describe the blow-up
solutions in the tube 7,«: there is only one blow-up type, which is stable. We then show
that in fact only three scenarios occur:

— stable blow up with 1/(T—t) speed;

— convergence to a solitary wave in large time;

— stable defocusing behavior (the solution leaves the tube 7+ in finite time).

More precisely, we state the following result.

THEOREM 1.1. (Blow up near the soliton in A) There exist universal constants
O<ap<a*<kl such that the following holds. Let ug€.A.

(i) (Non-positive energy blow up) If E(ug)<0 and wug is not a soliton, then u(t)
blows up in finite time T and, for all t€[0,T), u(t) €Ty .

(ii) (Description of blow up) Assume that u(t) blows up in finite time T and that,
for all t€[0,T), u(t)€To~. Then there exists Lo=~Lo(ug)>0 such that

Q"2

to(T—1) as t—1T. (1.15)

[[ua ()| L2 ~

Moreover, there exist \(t), x(t) and u* € H', u*#0, such that

u(t, x)— )\1/12<t)Q<m;é§t)> —u* inIL?ast—T, (1.16)
where )
and )
/ (u*)? () da ~ !5”}?21 as R— oo. (1.18)
>R 0

(iii) (Openness of the stable blow up) Assume that u(t) blows up in finite time T
and that, for all t€[0,T), u(t)€Ty-. Then there exists po=p00(up)>0 such that, for all
vo €A with ||vo—uo|| g1 <o, the corresponding solution v(t) blows up in finite time T (vo)
as in (ii).

Comments on Theorem 1.1.

e Blow-up speed. An important feature of Theorem 1.1 is the derivation of the stable
blow-up speed for ug€ A: c

luz(®)llpz ~ 7= (1.19)
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which implies that z(t) — oo as t—T. Such a blow-up rate confirms the conjecture formu-
lated in [18] for Ey<0. Recall that, for up€.A and Ey<0, assuming some a-priori global
information on the H' norm for all time in [18], one could deduce (1.19). The derivation
of such a bound is the key to the proof of Theorem 1.1. This blow-up speed is very far
above the scaling law ||Ju,||z2~1/(T—t)*/3 (see [32] and [40] for a similar phenomenon
for energy critical geometrical problems).

e Structure of u*. The decay of u* in L? described in (1.18) is directly related to
the blow-up speed ||Q’|| 2 /€o(T —t), itself related to the speed of ejection of mass in time
from the rescaled soliton, similarly as for the critical NLS, see [30]. Note that the Cauchy
problem is well-posed in L?, so that the L? convergence (1.16) is relevant. It is an open
question but very likely that the convergence in (1.16) holds in H'! since the left-hand
side is bounded in H' and u* is in H!. Note that u*¢.A.

The fact that u*€ H' is in contrast to the stable regime for critical NLS, where the
accumulation of ejected mass from the rescaled soliton implies that u*¢LP, p>2. Here
we still observe some ejection of mass from the soliton, but since the concentration point
z(t) of the soliton is going to infinity, the mass does not accumulate at a fixed point
and gives the tail of u*. More generally, the regularity of u* is directly connected to the
blow-up speed and the strength of deviation from self-similarity, see [32] and [40].

e On localization on the right. Let us stress the importance of the decay assumption
on the right in space for the initial data which was already essential in [18] and [19].
Indeed, in contrast to the NLS equation, the universal dynamics cannot be seen in H*
since an additional assumption of decay to the right is required:

— In part IT of this work [22], we construct a minimal mass blow-up solution with
1/(T—t) blow up. The initial data is in H' and decays slowly on the right.(*) Thus, the
blow-up set without decay assumption on the right is not open in H'.

— We prove in [23] the existence of H' blow-up solutions with different blow-up
speeds, in the range 1/(T—t)" for any v> % for initial data with slow decay on the right
(so that Theorem 1.1 and [18] do not apply). We also prove the existence of blow up in
infinite time for H' data close to the soliton.

These examples justify the existence of a theory in the energy space H' (see [16],
[20] and [26]), where blow up in finite or infinite time is possible, with a large range of
possible blow-up rates, together with a theory for initial data with decay on the right
([18] and the present paper), where the universal blow up is described in Theorem 1.1.

However, we do not claim sharpness in the y'° weight in Theorem 1.1.

e Dynamical characterization of @Q. Recall from the variational characterization

(%) This is mandatory from [19]: there is no minimal mass blow up for data with decay on the
right.
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of @ that E(ug)<0 implies |Jug||r2>||@Q||12, unless ug=Q up to scaling and translation
symmetries. Theorem 1.1 therefore recovers the dynamical classification of () as the
unique global zero-energy solution in A like for the mass critical NLS, see [31]. The
proof of this type of result is delicate, and one needs to rule out a scenario of vanishing
of the energy of the radiation specific to the zero-energy case. Here, we expect this result

to hold without decay assumption (no global H! zero-energy solution close to @ exists

except Q).
We now state the following rigidity result of the flow for data in A.

THEOREM 1.2. (Rigidity of the dynamics in A) There exist universal constants
I<apka* k1

such that the following holds. Let ug€ A.

Then, one of the following three scenarios occurs:

— (Exit) There exists t*€(0,T) such that uw(t*)¢Ty-.

— (Blow up) For all t€[0,T) one has u(t)€Ty- and the solution blows up in finite
time T'<oo in the regime described by Theorem 1.1.

— (Soliton) The solution is global, for all t>=0 one has u(t)€T,+, and there exist
Aoo>0 and x(t) such that

A2t Ao - +2(1) = Q in HL . as t— oo, (1.20)
t
[Aoo —1| < 04y—0(1) and z(t) ~ o t— 0. (1.21)

Comments on Theorem 1.2.

e Stable/unstable manifold. All three possibilities are known to occur for an infinite
set of initial data. Moreover, the sets of initial data leading to (Exit) and (Blow up) are
both open in A by perturbation of the data in H'. For fR ud dx<f]R Q? dx only the (Exit)
case can occur, and for Ey<0 only (Blow up) can occur. From the proof of Theorem 1.2,
the (Soliton) dynamics can be achieved as threshold dynamics between the two stable
regimes (Exit) and (Blow up) as in [3], [8] and [32]. More precisely, given b€R small,
let @y be the suitable perturbation of @ built in Lemma 2.4, and ¢y be a suitable small
perturbation satisfying the orthogonality conditions (2.20). Then there exists by=b(eq)
such that the solution to gKdV with initial data Qp, +¢q satisfies (Soliton). The Lipschitz
regularity of the flow 9—b(gp) needed to build a smooth manifold remains to be proved;
see [13] for related constructions. Note also that solutions that scatter to @ in the regime

(Soliton) where constructed dynamically by Cote [2].
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e Classification of the flow in A. Theorem 1.2 is a first step towards a complete clas-
sification of the flow for initial data in A. Its structure is reminiscent from classification
results obtained by Nakanishi and Schlag [34]-[36], for Klein Gordon and supercriti-
cal Schrodinger equations. These results were proved using in particular classification
arguments based on the Kenig-Merle concentration compactness approach [10], the clas-
sification of critical dynamics by Duyckaerts and Merle [5] (see also [6]), and eventually
a no return lemma. In the analogue of the (Exit) regime, this lemma shows that the
solution cannot come back close to solitons and in fact scatters. In the critical situations,
such an analysis is more delicate and incomplete (see Krieger, Nakanishi and Schlag [12]).
Moreover, in [34] and [35], both the blow-up statements and the no return lemma rely
on a specific algebraic structure—the virial identity—which does not exist for gKdV.

In the continuation of Theorem 1.2, what remains to be done to describe the flow

for data up€.A4 is to answer the following question:
What happens after t* in the (Exit) regime?

In [22], the second part of this work, we propose a new approach to answer this question
related to the understanding of the threshold dynamics. We proceed in two steps:

(1) We prove the ezistence and uniqueness in H' of a minimal mass blow-up solution
lluo|lLz=||Q|| 2. From [19], this solution has slow decay to the right and is global on the
left in time.

(2) We then show that in the (Exit) case of Theorem 1.2, the solution is at time ¢*
L? close to the unique minimal mass blow-up solution.

Having in mind the properties of threshold solutions for H' critical NLS and wave
equations ([4], [5]), and the case of the L? critical NLS equation (the solution S(t) in (1.9)
scatters), it is natural to expect that the minimal mass blow-up solution of gKdV also
scatters in negative time. Assuming this and because scattering is open in the critical L?
space, we obtain that (Exit) implies scattering. In other words, we prove in [22] that all
solutions scatter in the (Exit) regime if and only if the unique H! minimal mass blow-up
solution scatters to the left. This ends the classification of the flow in A, in particular
the only blow-up regime is the 1/(7—t) universal blow-up regime of Theorem 1.1 and it
is stable.

o Finite/infinite-dimensional dynamics. The proof of Theorem 1.2 relies on a de-
tailed description of the flow. We will show that, before the (Exit) time ¢*, the solution

admits a decomposition

1 x—x(t)
u(t,z) = W(Qb(t)+5) <f7 A(t))’
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where @y, is a suitable O(b) deformation of the solitary wave profile, and the bound
lellmp,, <O

holds. We then extract the following universal finite-dimensional system which drives
the geometrical parameters:

%:%, —%:b, bs+2b% =0. (1.22)
It is easily seen that, starting from A(0)=1 and b(0)=by, the phase portrait of the dy-
namical system (1.22) is

(1) for bo<0, A(t)=1+]bolt, t>0, stable;

(2) for bo=0, A(t)=1, >0, unstable;

(3) for bo>0, A(t)=bo(T—t) with T'=1/by, stable.
We may then reword Theorem 1.2 by saying that the infinite-dimensional system gKdV
for data ug€.A is governed to leading order by the universal finite-dimensional dynamics
(1.22). This is a non-trivial claim due to the non-linear structure of the problem, and the
proof relies on a rigidity formula when measuring the interaction of the radiative term
¢ with the ordinary differential equations (ODEs) (1.22), see Lemma 4.3. Let us stress
that the assumption of decay to the right is fundamental here, and we expect that slow
decaying tails may force a different coupling with new leading order ODEs.

Finally, note that like for the finite-dimensional system (1.22), the three scenarios
of Theorem 1.2 can be seen on A(t) only and are equivalently characterized by

— (Soliton) for all t, A(t)€[3,2];

— (Exit) there exists t9>0 such that A(tg)>2;

— (Blow up) there exists to>0 such that A(to)<3.

We expect that results such as Theorem 1.2 (classification of the dynamics close to
the solitary waves) can be proved similarly for other problems such as, for example, the
mass critical non-linear Schrodinger equation and the energy critical Schrodinger and

wave equations.

Notation

Let the linearized operator close to @ be

Lf=—f"+f-5Qf. (1.23)

We introduce the generator of L? scaling

Af=5f+yf.
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For a given generic small constant 0<a* <1 we let §(a*) denote a generic small constant
with
0(a*) =0 asa*—0.

We denote the L? scalar product by

(f.9) Z/Rf(x)g(:r) dx.

From now on, to simplify notation, we will write [ to denote fR, and will often omit dx

and dy in integrals.

1.4. Strategy of the proof

We give in this section a brief insight into the proofs of Theorems 1.1 and 1.2. As men-
tioned before, we are pushing further the dynamical analysis of the problem initiated
in [18]. We will not use rigidity arguments as for the theory in H' (see [20] and [26]).
Nevertheless, we will use tools introduced to prove such rigidity arguments, such as mod-
ulation theory, L? and energy monotonicity, local virial identities and weighted estimates
for £>0. However, the proofs here are self-contained, except for the virial estimates, for
which we refer to [16] and [20].

(i) Formal derivation of the law. We start as in [27], [31] and [39] by refining the
blow-up profile and considering an approximation to the renormalized equation. We look
for a solution to gKdV of the form

1 x—x(t) ds 1 T s
““’”‘»/2@)Qb<”< A0 ) b Sk S

which leads to the slowly modulated self-similar equation

bs%w/\@w( L —Qu+Q3) =0. (1.25)

A formal derivation of the generic blow-up speed can be obtained as follows: look for a
modulated ansatz

Qv =Q+bP+b2Po+..., by=—cob®+esb+...,

where the unknowns are P, P>, ... and c¢o,c3,.... Let the linearized operator close to ()

be given by (1.23). Then the order b expansion leads to the equation

(LP) = AQ.
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Due to the critical orthogonality condition (@,AQ)=0, it can be solved for a func-
tion P that decays exponentially to the right, but displays a non-trivial tail on the
left lim, ., P(y)#0. At the level b%, a similar flur type computation(®) reveals that
the P, equation can be solved with a similar profile for the value c;=2 only.(°) This

corresponds to the formal dynamical system

A d (b ds 1
—Z2=b, b2 =N S )| =0, —=— 1.2
P ds ()\2> 0w (1.26)

which after reintegration yields finite-time blow up for 5(0)>0 with
A(t) = c(ug) (T —t).

(ii) Decomposition of the flow and modulation equations (§2). For the analysis, it is

enough to work with the localized approximate self-similar profile

Qv =Q+x(|b["y) P(y)

for some well chosen(”) v>0. As long as the solution remains in the tube 7,~, we may

introduce the non-linear decomposition of the flow

u(t,z) = A1/#2(@(621)&)%) (t, xkégt) > (1.27)

where the three time-dependent parameters are adjusted to ensure suitable orthogonality
conditions(®) for e. A specific feature of the KdV flow is that the generalized null space
of the full linearized operator L’ close to @) involves non-localized functions, and hence

the modulation equations driving the parameters are roughly speaking of the form

As . dJy ) L, dJs ,
h\ +b= 75 +O(”6||Hfoc) and bg+b° ~ P +O(||5HH110C): (1.28)

with

il S Nl + / e, 1,2,
y>0

This explains the need for a control of radiation on the right as slow tails and large J;
might otherwise perturb the formal system (1.26) (see also [18]).
(iii) The mixed energy/virial estimate (§3). The main new input of our analysis is

the derivation of a dispersive control on the local norm ||| which is relevant in all

See (2.43).

Otherwise, P> grows exponentially on the right or the left.
See Lemma 2.4, we can take 7:%.

See (2.20).

5
6

8

—_— — —

(
(
(7
(
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three regimes, and therefore must display some scaling-invariant structure. For this, we
adapt and revisit the construction of mixed energy/virial functionals as introduced in
[24], [39], [41] and [42]. Indeed, we build a non-linear functional

Fo [ (wedvost=gulie+ @ -Qt-oai)

for well-chosen cut-off functions (%, ¢) which are exponentially decaying to the left, and
polynomially growing to the right. The leading-order quadratic term relates to the

linearized Hamiltonian and is coercive from our choice of orthogonality conditions:
2
FZle .
> llelZy

The essential feature now is the structure of the cut off which is manufactured to also
reproduce on the ground state the leading-order virial quadratic form which measures
some repulsivity properties of the linearized operator L’ as derived in [20], and leads to

the Lyapunov monotonicity:

d(FN\ el jpe
— [ = oc L | —
ds(W)+ o~ 0L (1.29)

The b* term relates to the error in the construction of the @Qp profile as an approximate
solution to (1.25). The case 7=0 in (1.29) is a scaling-invariant estimate which will
be crucial in all three regimes to control the dynamics, and the case j=1 is an H*
improvement in the blow-up regime A—0.

(iv) Rigidity (§4). Combining the modulation equations (1.28) with the dispersive
bound (1.29) leads essentially to(°)

~ 0 (1.30)

for some constant £. Then the selection of the dynamics depends on

— either |b(t)|§||5(t)|\%[110c for all ¢,

— or there exists a time ¢} >0 such that |b(¢])|> HE(tT)”%’fm'

The second condition means that the finite-dimensional dynamics measured by b
takes control over the infinite-dimensional dynamics at some time ¢;. We claim that this
regime is trapped and that |b(t)[> Hs(t)”fﬁo . for t>t% as long as the solution remains in
the tube 7. Reintegrating the modulation equations driven to leading order by (1.26),
we show that this leads to (Blow up) if b(t]) >0, and to (Exit) if b(¢])<0. The first case

() See (4.14).
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leads to the threshold (Soliton) dynamics. The condition on b(t;) which determines the
(Blow up) and (Exit) regimes is by continuity of the flow an open condition on the data.

(v) End of the proof of Theorem 1.1. The case Ey<0 is treated in §5. Here the
variational characterization of () and a standard concentration compactness ensures that
the solution must remain in 7+, and then we show (Blow up) by proving that (Soliton)
cannot happen. For Fy<0, this is a classical consequence of the energy conservation
law and local dispersive estimates (asymptotic stability) obtained in the previous step.
The case F=0 is substantially more subtle, and we show that (Soliton) behavior at zero
energy implies L? compactness, and hence asymptotic stability implies that the solution
has minimal mass, and thus is exactly a solitary wave.

Finally, we complete in §6 the sharp description of the singularity formation and the
universality of the focusing bubble stated by Theorem 1.1. This requires propagating the
dispersive estimates, which involve local norms around the soliton, further away to the
left of the soliton, in particular to compute the trace of the reminder (1.18). This is done

using a suitable H! monotonicity formula in the spirit of the analysis in [18] and [26].
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2. Non-linear profiles and decomposition close to the soliton

In this section, we introduce refined non-linear profiles following the strategy developed
in [27] and [39]. The strategy is to produce approximate solutions to the renormalized
flow (1.25) which are as well localized as possible, which turns out to lead to a strong

rigidity for the scaling law.

2.1. Structure of the linearized operator

Denote by Y the set of functions f € C* (R, R) such that, for all k€N, there exist Cy, ;>0
such that, for all y€R,

|1 )] < Cr(L+[yl) e, (2.1)

We recall without proof the following standard result (see, e.g., [17] and [44]).
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LEMMA 2.1. (Properties of the linearized operator L) The self-adjoint operator L
on L? satisfies the following properties:

(i) (eigenfunctions) LQ3*=-8Q3, LQ'=0 and ker L={aQ’":acR};

(ii) (scaling) L(AQ)=-2Q);

(iii) for any function h€ L?(R) orthogonal to Q' for the L? scalar product, there
exists a unique function f€H?(R) orthogonal to Q' such that Lf=h; moreover, if h is
even (resp. odd), then f is even (resp. odd);

(iv) if fEL?*(R) is such that Lf€Y), then f€Y;

(v) (coercivity of L) for all fEH?",

(f,Q)=(£.Q)=0 = (Lf,f)=|flL (2.2)

moreover, there exists pio>0 such that for all fe H',

(LS. f) >uo||f||zl—i[<f,cz>2+<f, yAQ)*+(f,AQ)?). (2.3)

2.2. Definition and estimates of localized profiles

We now look for a slowly modulated approximate solution to the renormalized flow (1.24),

(1.25). In fact, in our setting, an order-b expansion is enough.

PROPOSITION 2.2. (Non-localized profiles) There ezxists a unique smooth function P
such that P'€) and

(LPy=AQ, tm P)=; [Q. lm P@)=0. (2.0
2
(P, Q)=116</Q> >0 and (P,Q")=0. (2.5)
Moreover,
Qy=Q+bP

is an approzimate solution to (1.25) in the sense that
(@1 —Qu+@Q3) +bAQy || o b, (2.6)

Proof. We look for P of the form P:]B—fOo AQ. Since [ AQ=—1 [ Q, the function
y
Yy fyoo AQ is bounded and has decay only as y—oco. Then, P solves (2.4) if

(Lﬁ)/:AQ"'(L /OO AQ) =R/, where R=(AQ) —5Q* /OO AQ.
Y y
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Note that R€Y. Since [(AQ)Q=0and LQ’'=0, we have [ RQ'=— [ R'Q=0 and so, from
Lemma 2.1, there exists a unique (smooth) PeYy orthogonal to @', such that LP=R.
Then P:ISffyoo AQ satisfies (2.4) and [ PQ’'=0. We now compute, from L(AQ)=-2Q,

Z/PQ:—/(LP)AQ:/AQ/:OAQ:;(/AQ)Q:é(/Q)Q. (2.7)

Finally, for @b:Q+bP, we have

(Q —Qy+Q3) +bAQy = b(—(LP) +AQ) +b2((10Q>P?) +AP)
+b3(10Q2P3)/+b4(5QP4)/+b5(P5)/,

which yields (2.6). O
Remark 2.3. Since [ AQ=—1 [ Q#0, a solution P of (LP)'=AQ cannot belong to

L?(R). We have chosen the only solution P which converges to 0 at oo and which is
orthogonal to @’. The fact that P displays a non-trivial tail on the left from (2.4) is an
essential feature of the critical gKdV problem and will be central in the derivation of
the blow-up speed; see the proof of (2.37). Such a non-local profile is a substitute to a
dispersive tail (see a similar use in [21]).

We now proceed to a simple localization of the profile to avoid some artificial growth
at —oo. Let x€C>®(R) be such that 0<x<1, x¥'>0 on R and

. {1 on [~1,00),

0 on (—oo0,—2].
We fix
’y:% (2.8)

(note that any 76(%,1) works and % has no specific meaning here), and define the

localized profile

xo(y) =x([b]"y) and  Qu(y)=Q(y)+bxs(y)P(y). (2.9)

LEMMA 2.4. (Definition of localized profiles and properties) For |b|<b* small enough,
the following properties hold:
(i) (Estimates on Q) For all y€R,

1Qs(y)] S e W (B (1f_q.0) ([0 7y) +e1¥172), (2.10)
Q% ()| Se Wt fple W2 4 o1y (oY) for k=1, (2.11)
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where 17 denotes the characteristic function of the interval I.
(ii) (Equation of Q) Let

— Uy = (Qy — Qv +Q3) +bAQy. (2.12)

Then, for all yeR,
@3 ()| S [0 g, ) ([0 7y) +0 (e M2 41 1o g (10]7)), (2.13)
O ()] < b1 EFDTL Ly g ([b]Ty) +62e 112 for k=1, (2.14)

(iii) (Mass and energy properties of Qp)

’/Qb (/Q%%/PQ)‘ <|p>, (2.15)

‘E(Qb)w PQ‘ <b2. (2.16)

Proof. (i) First, from (1.2), for all k>0 one has |Q®) (y)|<e~!¥l on R. Since P'€Yy
and lim, . P(y)=0, we have |P(y)|<e” ¥/ for y>0. The estimates (2.10) and (2.11)
then follow from the definition of x.

(ii) Expanding Q,=Q+0bx,P in the expression of ¥;, and using Q" —Q+Q°>=0 and
(LP)'=AQ, we find that

_‘I’b:b(1_Xb)AQ"‘b((Xb>yyyp+3(xb)yypl+3<Xb)yPN_(Xb)yP+5(Xb)yQ4P)
+0*((10Q*x3 P?)y+ PAxy+xpy P') +b°(10Q*x; P?), (2.17)
+1(BQX Py T (X5 P)y-

Therefore, the estimates (2.13) and (2.14) follow from the properties of @, x and P. In

particular, note that
D1 x)AQI S [ble ™41 _1y(b[7) < le¥ 2o/ < el
b PAxs| S (e 241y _y)([b]y)).
(iii) We first estimate, from the explicit form of P,
[P i

for some universal constant Cy>0. Estimate (2.15) now follows from
/Qb /Q2+2b/XbPQ+b2/X P2,
and then

Jai= [ @ [PQ-CEH and Q0=Glls ~omo Colt .
Finally, expanding Q,=Q+bx, P in E(Qy), we get
E(@)=E(@-b [ wP(@"+Q)+00?)
and using F(Q)=0 and Q" +Q°=Q yields (2.16). O
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2.3. Decomposition of the solution using refined profiles

In this paper, we work with an H! solution u to (1.1) which is a priori in the modulated
tube 7.« of functions near the soliton manifold. More explicitely, we assume that there
exist (A1(t),z1(t))€R% xR and €;(¢) such that

1 m—xl(t))
ut,z) = ———(Q+e, (t, for all £ € [0, o),
0= @+ (8 5 0.)
with, for all t€[0, ty),
ler(®)llrz <3¢ <3a (2.18)

for a small enough universal constant ,>0. We then have the following standard refined

modulation lemma.

LEMMA 2.5. (Refined modulated flow) Assuming (2.18), there exist continuous func-
tions (X, x,b):[0,t0]— (0, 00) x R? such that

e(t,y) =X\ 2(ult, \O)y+a(t) — Qo (y), for all t € [0,to], (2.19)

satisfies the orthogonality conditions

(=(1), yAQ) = (£(t), AQ) = (=(£), Q) = . (2.20)
Moreover,
()
||e<t>||L2+b<t>|+]1—w\sa<z> and el S5(Om).  (221)

Remark 2.6. The main novelty here with respect to [18], [20] and [26] is the use
of the modulation parameter b which allows for the extra degeneracy (g,@)=0. At the

formal level, the parameter b now plays the role of (¢, Q) in the previous work [18].

Proof. Lemma 2.5 is a standard consequence of the implicit function theorem applied
in L?. We omit the details and refer for example to [27] for a proof with similar @ profiles

for the NLS case. The heart of the proof is the non-degeneracy of the Jacobian matrix:

’ (AQ,AQ) (AQ,Q)

(P,AQ)  (P,Q) ‘ (AQ, AQ)(P, Q) #0,

from

=P
A=1,b=0

)

=AQ and 2[Al/QQb(Ay)]

9 1/2
Q)] %

oA

A=1,b=0

and the explicit computations

(AQ,Q)=0 and <P,Q>=1i6/@2¢0. 0
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2.4. Modulation equations
In the framework of Lemma 2.5, we introduce the new time variable
t /
dt . ds 1
s:/o W, or equivalently prinbvE (2.22)

All functions depending on t€]0, ¢, for some t;>0, can now be seen as depending on
s€[0, so], where so=s(tg). We now claim the following properties of the decomposition

of u(t), possibly taking a smaller universal 3¢ >0.

LEMMA 2.7. (Modulation equations) Assume that, for all t€[0,1o),
le(@)|lrz < <39 and /<€§(t,y)e_|y|/2 dy < 3 (2.23)
for a small enough universal constant s¢9>0. Then the map s€[0, so]— (A(s), z(s),b(s))

is C1 and the following holds:
(i) (Equation of ) For all s€[0, so],

As Ts
—(Le) +bAe:<‘+b>(AQb+Aa)+ ——1)(e+Q»)
Y A ( A ) Y (2.24)
+®y+ Wy —(Ry(€))y = (BNL(E))y,
where Wy, was defined in (2.12),
—(Qb)s = =bs(xo +7y (x0)y) P, (2.25)
and
Ry(e) =5(Qy—Q")e and Ryw(e) = (e4+Qb)° —5Qpe—Q;. (2.26)
(ii) (Estimates induced by the conservation laws) On [0, so],
el 7+ f - f ) (227
202 B+ bl QIIZ: — lleyll7z] S b +lle(s)lI72 +d(llell ) lley 72 (2.28)
(iii) (H' modulation equations) For all s€[0, so),
1/2
e

|bs| g/aze—w‘/l%b?. (2.30)
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(iv) (Refined modulation equations in A) Assuming the following uniform L' control

on the right:
/ le(t)| S 0(s20)  for all t€(0,t0), (2.31)
y>0

the quantities J1 and Jo below are well-defined and satisfy the following laws:
e (Law of \) Let

4 y
o1(y)= (IT)Q /_OO AQ and Ji(s)=(e(s),01); (2.32)

then, for some universal constant cy,

As 2 LA 2 —ly|/10 2 10\ 3
7+b+clb -2 (J1)5+§7J1 <[ ete +b|{ [ %€ +b]°.  (2.33)

e (Law of b) Let

16 (AP,Q) 1/ )
02 = AQ+P—= | Q)—8p1 and Ja(s)=(e(s),02); 2.34
.- 707 o ! 1 (5= (e(s) )i (234
then, for some universal constant ca,
1) _
bs+2b2+ch3+b<(J2)s+2);\Jg)‘ﬁ/a% l91/10 4 )4, (2.35)

o (Law of b/\?) Let

o=401+02€Y and J(s)=(e(s),0); (2.36)
then, for co=co—2cy,

d (b b 1A b3 1 _
CLS<)\2>+)\2(JS+2;J>+CO)\2 §>\2</626 y/10+|b4>. (237)

Remark 2.8. It is a remarkable algebraic fact that the equation of b/A? (2.37) is

related to p€)), which means that J is an L? quantity which is easier to control than J;

and Jo separately.

The equations (2.33) and (2.35) correspond to a sharp improvement—after inte-
gration in time—of the rough estimates of (iii). However, they hold for initial data in
weighted spaces such as A. Here we are facing an intrinsic difficulty of the gKdV equa-
tion, which is that the null space of the full linearized operators L’ involves badly localized
terms, and hence getting geometrical parameters which are quadratic forcing terms of
the e equation (2.24) requires some L' control of the solution on the right. Formally,
(2.33) and (2.35) are the sharp analogues of the leading-order dynamical system

As b\ bs+2b%
i (w) -
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Proof. (i) The equation of €, A\, z and b follows by direct computations from the

equation of u(t). In particular, we use

2@ =2 b0 () P = by (B7) X (579) P = (s +7(x0),) P

The rest of the computation is done in [17, Lemma 1] for example.

(ii) We write down the L? conservation law

/Q%—/Q2+/62+2(6,Qb)=/u3—/622,

and we deduce from (2.15), using the orthogonality condition (2.20), that

/525|b|+|b|1_7||8||L2+‘/ug—/QQ

Then (2.27) follows since y=3.

Now, we write down the conservation of energy and use (2.16), the equation of Q

and the orthogonality condition (g, @)=0 to estimate

2)\2E(u0):2E(Qb)—2/5(Qb)yy+/€§—%/[(Qb—i—a)G—Qg]
— (P, Q)+O(1?) + / 29 / Q= Q)yy+(Q]— Q)
~5 [ (@< -5-605.

We estimate all terms in the above identity. By the properties of Qy,

[@-anriai-a|su( [ 2emm) ppe | g

2|b|—7<y<0

SO+ ez

The non-linear terms are estimated by the homogeneity of the non-linearity which implies
that

] [i@+er-as-603

S/IQbI4€2+|€I6§HEIIZLﬁHEyH%zIIEH‘iz-

The collection of the above estimates yields (2.28).
(iii) We sketch the standard computations('?) leading to (2.29) and (2.30). Differ-
entiating the orthogonality conditions (g, AQ)=(g, yAQ)=0, using the equation of € and

(19) See, e.g., [17, Lemma 4] for similar computations.
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estimate (2.13), we obtain

Ao\ ELOAQN| [z N (e LEAQ))
‘(A*b)‘ TiaT, *‘(A‘l)‘ TAGT.

A T 1/2
< <‘;+b’+‘;1‘+|b|> <|b|+(/s2ely/1°) )

+|bs|+/g2e—‘yl/10+/\5|5e—9\y|/10.

We estimate the non-linear term using the Sobolev bound(!!) and the smallness (2.23):
e 5 [ (0,2 =i,

so that
/|g\5e—9‘y‘/105||5e—|y‘/4\|§oc/EQe—lyVlo. (2.38)

Thus (2.23) holds and, for sy small enough,

()"t

‘(:c _1> (e, L(yAQ))

5% TAGTE, ‘§|b|2+|bs+/826_y/10 (2.39)
L

and

Next, differentiating in time s the relation (e, @)=0, using the € equation, the alge-
braic facts LQ'=0, (Q,AQ)=(Q,Q')=0 and (g, AQ)=0, the non-degeneracy (P, Q)0
and the bounds (2.13) and (2.14), we find, after integration by parts and using the
Sobolev estimate (2.38), that

A )P 2
|bs|§‘>\s+b’ +‘%—1‘ +|b\2+/52e—‘y|/10 (2.41)
(see below for a much more detailed computation of by).
Combining (2.40) and (2.41) yields (2.29) and (2.30).

(iv) To begin with, we claim the following sharp equation for b:

16 b[(AP, Q)

bs+2b%+cb® —
(J@)?2 LIAQl3.

<e,L<AQ>’>+2o<e,PQ3Q’>]

:0(|b|4)+0</52e—yl/10>,

(2.42)

(1) Which follows by integration by parts.
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where c is a universal constant.

To prove (2.42), we take the scalar product of the equation of € by @ and we keep
track of all terms up to order |b[3.

In this proof, ¢ will denote various universal constants. First, we use the explicit

formula (2.17) to derive

(Wp, Q) = —b*((10Q° X5 P?)y +xsAP, Q) =b*(10Q°x; P, Q") +O(|b[*)
=—b*((10P?Q®) +AP,Q)—b*(10Q*P?,Q")+O(|b|*)
= —0°1QI7. +eob® +O(Jb]"),

where ¢g=—10 [ P?Q*Q’, and where in the last step we have used the following funda-

mental flur computation:
(AP,Q)=—(P,AQ)=—(P,(LP)") = (P,(P" = P+5Q"P))
:(P,P”’fP’)JrlO/Q‘BQ’PQ,
from which we indeed obtain

2
(0P*Q*Y +4P.Q) = 1m )= ( [ @). (2.43)

This computation is the key to the derivation of the blow-up speed.
From (2.5),
/ 10 bs ’ 10

Next, from (2.5),

(5-1)@n @)

+| fuena-war.a)| <
We estimate the small linear term as

1/2
/Rb(s)Q’2Ob/PQ3Q’5+b20</€2ey/1o) 7

and non-linear terms in ¢ are simply treated as before by (2.38).

Therefore, we have obtained

byt 26+ — (flg)Qb[(/\;H)) (AP, Q)+20(5,PQ3Q’)} :O(b|4)—|—0(/526|y|/(;(24.)
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Moreover, we check that when estimating A;/A+b, using

1/2
b5 +2b| < [b]°+]0| (/s%'yl/lo) +/e%*\yl/107

and, keeping track of all b? terms, we can improve (2.39) into
As , LIAQ)’
() - tdan

1/2
3 IAQIE s [t f e ) e eas)
L2

Estimate (2.42) follows from (2.44) and (2.45).
Due to the L' bound (2.31), for any f€Y, (e, [Y__ f) is well defined for all time and

by direct computations we have the following general formula:

L[ ) =mrns(Fe) (san [ 1)+ (ae [ 1)

~(G@en- (5 e n-n(mir [ 1)

— 00

; (m, / f) F(Ry()+ Raw (o). f). (2.46)

— 00

Using (2.29), (2.30), (2.13) and (2.42), we obtain, from (2.46),

£ ) )oe )G
;/\A(g/: f> +cb2+0</ sze'y/m) (2.47)
+o(|b|( / s2e-y/1°)1/2)+0<b|3>

for some constant ¢ depending on f.

— Equation of J;: We apply (2.47) to f=AQ), using the algebraic relations

a0 (10 [ s0)-4(fof s (o[ )

to prove that

2(J1)s = 1((}(2’2)?+ (A;+b> —%Jﬁ—ch

+0</ g2e—yl/10> +O(|b| (/ ng—lyl/w)l/Q ) +0(|p]?).
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The orthogonality conditions (2.20) now yield (2.33).

— Equation of J;. We now apply (2.47) to fi’oo f=02, f=05. We need some com-
putation related to go. Using [AQ=—13 [Q,

(AQ’QZ):UZG»Q(&ZHCZ‘) A / %A ) Jop(re [ 1)

-t e [0

and similarly

(05, Q)=

16 <(AP, Q)

(fQ)2 HAQH%2 (AQ) +P7Q>8(917Q)O-

Next, the algebra
L(P")=(LP) +20Q°Q' P = AQ+20Q°Q' P,

and the orthogonality relations (¢, AQ)=0 and (P, Q’)=0 yield

N\ 16 (AP7 Q) / /:|> ’
= A — L
(¢,Lo3) (IQ)2 <E7L|:||AQ|%2( Q)'+P 8(e, Loh)
16 [(AP,Q) , 30y ]
= A 20(e, P .
TO7 | [T € LR +20(:. PO'Q)
Inserting these relations into (2.46) yields
d _ 16 (AP7Q) / 3/ 71/\7
T g, Haen 0 [ ere] -5

e (2.48)
+cb2+0(/ s%ly/m) +0 <|b| </ 52674/10) ) +O(|b?).

Combining (2.42) and (2.48) yields (2.35).

— Equation of J. We now compute, from (2.33) and (2.35),

d (b bs As b bs+2b%  2b [\,
ds()\2>_)\2_2>\)\2_)\2_)\2<)\+b>
b 1) 2b As
- /\2[(@) QAJQ} AQ[Q(tjl)s )\Jl}

3
ST Y

b LAs b* 2 —|yl/10 | 34
= )\{J+2)\J]+(2c1 )3z +53 O</5ey|/ +0t ),

which is (2.37).
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Finally, we check that p=40,+02€). Indeed, p; and p; are exponentially localized
at —oo from (2.4). We thus only need check that lim, . 0(y)=0, but it is immediate

from their definitions that

. 2 . 8
yhj{.lo o1(y) = ) and z}g& 02(y) = To
This concludes the proof of Lemma 2.7. O

2.5. Kato-type identities

We recall the following standard identities which correspond to the localization of con-

servation laws.

Cramv 1. (Kato localization identities [9]) Let g be any C® function and v(t,x) be
a solution of (1.1). Then, the following identities hold:

(i) (L? identity)
d 2 2 7 2 _m 5 6 /1
7 g=-3 [ vig'+ | vig +§ vg'. (2.49)

(ii) (Energy identity)

d 1
= (vi—gve’)g:—/(vm—&-v5)2g’—2/vixgq—lo/v4v§g’+/vig’”. (2.50)

3. Monotonicity formulas

This section is devoted to the derivation of the monotonicity tools for solutions near the
soliton manifold which are the key technical arguments of our analysis for initial data
in A. We exhibit a Lyapunov functional based on a suitable localization of the linearized
Hamiltonian, which will both control pointwise dispersion around the soliton, and display
some monotonicity due to the coercivity of the virial quadratic form proved in [20]. A
related strategy originated in [24], [32], [33] and [39], but is implemented here in a new
optimal way. Such dispersive estimates coupled with the modulation equation for b will
lead to the key rigidity property for the proof of the main results of this paper.
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3.1. Pointwise monotonicity
Let 1, p2,1€C®(R) be such that

eY for y < —1,
pily) =9 14y for —i<y<i, ¢i(y)>0 forallyeR, i=1,2,
Yy’ for y>2,

o -1
Uly) = { ‘ Ty N Y'(y) >0 for all yeR.
1 for y > —3,

Let B>100 be a large universal constant to be chosen in Proposition 3.1, let

%(y)mﬁ(%) and SDi,BZ%(%),iZLZ

and define the following norms on &:
NiGs) = [ s nvnt) v+ [ 2s.pein) s, i=1.2
We also define the following L? weighted norms for &:

Nosoe(s) = / (s, y)e py) dy, i=1,2.

The heart of our analysis is the following monotonicity property.

(3.3)

(3.4)

PROPOSITION 3.1. (Monotonicity formula) There exist p>0, B>100 and 0<3* <3¢
such that the following holds. Assume that u(t) is a solution of (1.1) which satisfies
(2.18) on [0,to] and thus on [0,ty] admits a decomposition (2.19) as in Lemma 2.5. Let

so=s(to), and assume the following a-priori bounds, for all s€[0, so]:
(H1) (smallness)
HE(S)HL2 +|b(8)|+N2(8) <Y

(H2) (bound related to scaling)

lb(s)[+Na(s)
() S

(H3) (L? weighted bound on the right)

1
10_2
y e’ (s,y dy<10<1—|— )
/y>o (v) A10(s)

(3.5)

(3.6)

(3.7)
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Consider, for (i,j)€{1,2}2, the energy-virial Lyapunov functionals

1
Fis= [ |Bvnt 204 T)0n 3+ Q-G -60Dvn|. G
with
Jij=(1—Jy)~A=D+20 _q, (3.9)

Then the following estimates hold on [0, so):

(i) (Scaling invariant Lyapunov control) for i=1,2,

dj:i.,l
ds

u / (242 <" (3.10)

(ii) (Scaling weighted H' Lyapunov control) for i=1,2,

d (Fig H 2, .2 |b‘4
£(52)+ 5 [@ressil (311)

(iii) (Coercivity of F; ; and pointwise bounds) for (i,7)€{1,2}?,

NiSFij SN, (3.12)
Tl 1755 SN2 (3.13)

Remark 3.2. The L? weighted bound (3.7) is fundamental for the analysis and will
be further dynamically bootstrapped for an initial data in A. Also, one should think of
(3.10) as a scaling-invariant L? bound, which is sharpened in the singular regime A—0
by the H' control (3.11). Finally, an important feature of Proposition 3.1 is that we do
not assume any a-priori control on the scaling parameter A(s).

We will use several times in the proof the fact that in the definition of F; ;, the
weight on €, at —oo is stronger than the weight on €. It follows in particular that F; ;

does not control f512/902,3~ See Remark 3.5 below.

Proof. Step 1. Weighted L? controls at the right.
We first claim, for all s€[0, sg], the controls

)
1
/y>0 y252(57 y) dy S <1+)\10/9(8)>N2871/§1(8), (315)

/ eIy SR (). (3.16)

1
/>0 y52(s,y) dyf/ (14‘)\10/9(5>N1871/09C(5)7 (314)
Yy
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From (3.7), for all A>0,

1 1 1
2 2 10 2
ye <A/ €l +f/ ye] 5M1,100+(1+>,
/y>0 0<y<A A% [ s a A9 AL0

and so the optimal choice

10
A Nl,loc 1+W

leads, using the smallness (3.5), to the bound
(1FAI)VI0 o 10 o 9/10 1 8/9
»/y>0 y€2 5 by Nl l/oc ~ Nl l/oc ~ 1+ )\10/9 Nl 1/007

and (3.14) is proved. Similarly,

1 1 1

2 2 2 10 2
y'e <A/ yle| +—/ Y e §AN2,1OC+<1+>
~/y>0 0<y<A AS y>A A8 AlO

and thus the choice .

9 _
A N2,loc—1+w

leads to the bound
1+)\10)1/9
22 < prsfo WA (1) N2
/y>0 2,loc )\10/9 )\10/9 2,loc

and (3.15) is proved.
The bound (3.16) follows from

/ el S N1 tg)ell L2 (yo0) SN
y>0

Finally, we observe that (3.16) implies (3.13). In particular, the quantities 7; ; are well

defined, and so are F; ;.

Step 2. Algebraic computations on F; ;.

We compute

)\2(j1);;< ]:g”1 )—2/1/13 (ey)sey+2es((1+Ti1)epi B — V(e +Qb)°—Q}))

(Tis)s / pipe—2 / V(@) l(e+Qb) — Q) —5:Q1]

As
fi,j?

—2(-1)5
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which we rewrite as

i d ]:i,' % 0,5 ] %
XU ( Wﬁ)) =B+ A, (3.17)

where

i :2/ (ss—A;AE)<—<wBsy>y+wi,B—w3[<f+Qb>5—Q2D7

i.j As
fg( 73)22/<58—>\AE>E'~771,j80ivB7

£ 2% /AE(_(ngy)y+(1+$,j)e<pi,B —p[(e+Qs)°—Q3))

As
A

£ =2 / G (Qn)s((e+ Q) — Q) —5eQ).

+(Ji,j)s/sai,362—2(j—1) Fi

We claim the following estimates on the above terms: for some g >0,

D < g / (€2 422)0) s+ CIB[", (3.18)

RS % /(s§+s2)go;,B+C|b|4, for k=2,3,4. (3.19)
Note that, in (3.18), we obtained a negative term —p [ (e +¢*)¢] g, related both to the
smoothing effect of the gKdV equation and to a virial estimate for the linearization of
the gKdV equation close to the soliton. Inserting (3.18) and (3.19) into (3.17) indeed
yields (3.10) and (3.11).

In Steps 3-6, we prove (3.18) and (3.19). Observe that the definitions of ¢; and

imply the following estimates:

i ()1 + 1] (1" (W) |+ lyd" () |+ 10 ()] S @ily) Swily)  for all yeR, (3.20)
ellp(y) +elly (y) +oi(y) S @ily) for all y € (—00,2], (3.21)
5 (y) Se1(y) Swhly) forall yeR. (3.22)

In particular,

Nl,loc(s) SNZ,IOC(S) SNl(S) §N2(S) and /52(87 y)@l,B(y) dy SNZ,IOC(‘S)' (323)
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Step 3. Control of fl(i). Proof of (3.18).
We compute ffi) using the ¢ equation (2.24) in the form

55_%&5: (—eyyte—(e+Qu)°+Q}),
(3.24)

As T
+ </\+b) AQy+ (7—1> (€+Qb)y+<bb+\I’b7

where
Oy =—bs(xo 7y (xs)y) P and  —¥y = (Q) —Qu+Q3) +bAQs.
This yields
fli) :2/(_8yy+5_[(5+Qb)5_Qg])y(_(wBEy)y"‘E@i,B_q/’B[(E+Qb)5_Qg])
+2<);+b)/AQb(—(¢BEy)y+€s0i,B—T/)B[(€+Qb)5—Q15>])
+2<%—1) /(5+Qb)y(—(1/)38y)y+680i,3—wB[(g‘f'Qb)s—Q?)D
+2/<I>b(—(¢BEy)y+€<Pi,B—¢B[(E+Qb)5—QgD
+2/\I’b(—(wBEy)y‘f'E%,B—¢B[(5+Qb)5—Q2])
= A+ O+ £+ £+ 0
Term fl(q This term contains the leading-order negative quadratic terms due to
our choice of orthogonality conditions and suitable repulsivity properties of the virial
quadratic form(1?) on the soliton core, and intrinsic monotoninicity properties of the

renormalized KdV flow in the moving frame at speed 1 which expulses energy to the left

and leads to positive terms induced by localization of both mass and energy.

Let us first integrate by parts in order to obtain a more manageable formula:

792 [ (=em e+ @~ Qi (e +e—[(+ @~ Qf v
+2 /(_Eyy""g_ [(e+@Qb)° = Q3))y (—¥pey +e(viB—1B)).

(12) See Lemma 3.4.
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We compute the various terms separately:
2 [ (oo e+ Qo) ~Qil)yba(-c e+ Qo) ~G})
- [ U(-en e+ Qe -G}
= [ W(cenrel= [ (e lE+ Q) =GR~ (~en+e?)
[ [untet,+2+ | 52<w33—¢§§’>}
- [ (e [+ Qe - Q3 ~ (e P,
Next, after integration by parts,

2/(_gyy"‘g)y[_w%ﬁy“‘g(%ﬁ—wB)]:_2 [/ wBEyy+/ (2%3 21/13 27%?/3/)

+/ €2 <;(9‘7i,B —Yp) — %(%’B _wB)m)] .

Similarly,

) / [(e+Q0)>— Q3ly (91,5 —¥p)e

1

] /(%‘73 —B) ([(e+Qb)° - Q) —6Qpe] —6[(c +Qs)° — Q3 e)

9 / (05— 05) Qo) [(+ Q) — @ —5Q1e],

and, by direct expansion,

/[(€+Qb)5—62§]yw396y:5/¢§96y((Qb)y[(€+Qb)4—Q§}+(€+Qb)4€y)~

We collect the above computations and obtain
£l == [ Bunet, + (30l s+ vh— VRIS + (0] 5= lp)e
—o [[EH R Gge(e Q- Qe (L)
+2 [ [(6+Qu)* -0 -503(Qu)y (Ya—iz)
+10 [ e, (@ul(e+@0) - Ql)+ (+ Q')
- [l e-le+ QP -QI)*- (e +e?)

= (DS +UD ™+ (D>
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where ( 1(?)<, ( fq)N and (fl(?)> correspond to integration over y<—1B, |y|<3B and
y> %B , respectively.

For the region y< —%B , we rely on monotonicity type arguments and estimate, using
(3.20),

1 1
2 /11 2 1 2 1
€%\ \5*/ €2} <7/ %9} B,
/y<—B/2 vBl~ B2 y<—B/2 »F =100 y<—B/2 oB

1 1
2 m 2 1/ 2/
6|¢\5*/ £y¥% <7/ €45 B
/y<—B/2 virBi~ B2 y<—B/2 " “5 =100 y<—B/2 " v

by choosing B large enough. Next, we recall the Sobolev bound,(*?) for all B>1,

: ()
|e2vels| S ([ e[ | e0EL)
y<— y<—

/
L (y<—B/2 ¥i,B

(3.25)

<6(a%) (e24€%) ¢, 5.

~ Yy (pz,B
y<—B/2

Remark 3.3. This estimate is linked to the L? critical nature of the problem and
the smallness relies on the global L? smallness (3.5) only, and requires no smallness of

derivatives. This is the key to control the pure €% non-linear term in the functionals Fij-

The homogeneity of the power non-linearity then ensures (for B large and »* small)
that

6_ 6
/ [W—Qgg—[(aﬁ-Qb)‘s—ng} (@Q,B_wé)
y<—B/2

< / (1@l ')l
y<—B/2

< (8(oc") +eB/) / (P 1e)
y<—B/2
1

<— 2. .2y 1
100 /y<3/2(€y+5 J¢ip:

and similarly, for »* small depending on B,

/ [(e+Q0)° — Q) —5QEE Q1) (V5 —1.5)
y<—B/2

1
SB[ (@@l PRI P Do s< g5 | (et
y<—B/2 y<—B/2

(13) See the proof of [26, Lemma 6].
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We further estimate, using (3.25) and ¢’ <(¢})?, for y<—3,

z/)/Bgy((Qb)y[(g“'Qb)ZL _Qé] + (5+Qb)45y)

s [ (et [ uplelte
y<—B/2
<L/52 wjg—i—i/ (e24+€?) ¢l 5.
100 ) “#PETI00 J,e_pyn Y g

Note that, for the term [ ¢/z|e|*|e,|?, we have proceeded as follows:
[wstet Sl i [ 2wy

Il [etsen ) [

2
56<a*>( / szwsg)m) +3(0") [ et
and

(faww) =(= [emtnr=ed [y s([2) e

Thus,

y<—B/2

[ uheiet saa) [(@, 4@ [ el

The remaining non-linear term is estimated using the local H? control provided by lo-

calization:

/ w%((_%y“‘g_[(5+Qb)5_Q2])2_(‘5yy+5)2)‘
y<—B/2

Wi (—2eyy+2e—[(e+Qb)" —Qp)(e+@b)" — Q3]

y<—B/2
1
Stoo | sl P 100 [ (el Qe
y<—B/ y<—B/2
1
Stis | Bt E N al
100 Jye_pjp ¥ Yy :

In the region y>%B, one has ¥p(y)=1. We rely on (3.20) to estimate

1
2| " 2 1
eipl S / el p < oo £°0i B
L>B/2 32 y>B/2 100 y>B/2
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and we use the exponential localization of @ to the right and the Sobolev bound

1/2 *
el Lo w0y S el >0y SN /> S 8(5%)

to control
E+Q G_QG
[ (= g e+ @ur -0l ) oo
y>B/2
< / QD)
y>B/2
SOE+e ) [ g pletred)
y>B/2
1
< 2, .2\ 1
100 y>B/2(€y+E )i
and

/ (e Q0 — Q3 —5QL) Q1) (Y5 —01.5)
y>B/2

_ 1
S[ @R < g [ (e
y>B/2 y>B/2

In the region |y|<3B, one has ¢; p(s,y)=1+y/B and ¥p(y)=1. In particular,

¢}’s=1p=0 in this region, and we obtain

. 6__ M6
) e [36§+62+2<(5+@’)Q”—Q?e—[(€+Qb)s—Q?]a>
B Jiy<B/2 6
+2[<6+Qb>5—Q;:’—sczée]y(@b)y}
-2 B Q) R ),
y|I<
where
Rvie( 77;/ CripA A2 3 o3z 40 g 5 2.4
@ =g [ @0 0@l @' - Tl 1501
Yy

—8Que” — g€6+QOy(Qb)yQ§€3+ 10y(Qp)yQue* +2y(Qp)ye” |-

We now claim the following coercivity result which is the main tool to measure dispersion

(related to the virial estimate, see §A.2).
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LEMMA 3.4. (Localized virial estimate) There exists Byo>100 and p3>0 such that,
if B=DBy, then

/| /@£+¥—Mf¥+mwQQ%%>u;/
y|<B/2

1
(52—1—52)——/626_‘”'/2.
wi<B/2 © B

We further estimate, by Sobolev’s inequality,

1 1,
Ry S b+ elmquien) [ (@S 5o6e) [ (e,
lyl<B/2 ly|<B/2
and thus, for s»* small enough,
i)\~ M3 2, .2 1 2 —lyl/2
D~ <-22 @+m+—/sey.
| 2B Jiy<np2 B
The collection of the above estimates yields the bound
f(z) < _& [w/ 2 / 2 2 Cb4 3.26
1,1 B BEyy—’_Soi,B({':y—’_E )]+ ( . )

for some universal >0 independent of B.

Term fl(g We integrate by parts to express fi 2:
{f;2(§+b> /AQ(Ls)Q();\Ser) /5(17%3)AQ
#2052 40) [ ACPN-(0ne,)y o010 - Ul(e 4G~ )
#2540 [ Q) (1= vm)ey,+(1-vm) e+ Q0 -}
+2();\S+b)/AQ[(5+Qb)5—Q2—5Q4E].
Observe, from (2.20), that

/AQ(L&) = (g, LAQ)=—-2(¢,Q) =0.

We now use the orthogonality conditions (¢, yAQ)=0 and the definition of ¢; g to esti-

mate
[rasti-eun|=| [ aae(iuns ) 5o

so that, by (2.29) and for B large enough,

’(A;Ha) /Aqu—%B)

1
SN He)e PN < o B Nioe+CB.
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For the next term in fl(g, we first integrate by parts to remove all derivatives on €. Then,
by (2.29), the weighted Sobolev bound (3.25) and the properties of ¢; g, ¥p, P and xp

(2.9), we obtain, for s* small,

’2b():\s+b> / A(bex—wBey)ywi,B—w3[<a+czb>5—@2>]>\

1/2
S ([ o) Wi
<0

SN2 +62) BY 2N

i,loc loc

1 g 4
S 500 BM,]OC(S)+Cb .

Next, integrating by parts, using the exponential decay of @ and since ¥p(y)=1 on
(2B, ),

’(Aﬁb) / AQ(~(¥5)yey— (1=t)eyy +(1-¥5)[(e+Qb)° — Q)

1
S (_/\/'»1/2+b2)(6_3/10+6(%*))N,1/2 < 7&-/\/;’,100

i,loc

and finally

‘( +b>/AQ (e4+Qp)°— Q3 —5Q%]| < (W, 1/2+b2)6(%*)N}/2<iﬁj\fuoc.

i,loc

The collection of the above estimates yields the bound

(i) L Ha 1
|f1,2| 100 BN 100+Cb

Term f{’). We use the identity
[ 0n(Qul(+ @0~ Q5 -5Q8el + [ vne, (4G -0}
—5 [ vedll(e+ @~ Qf-6Q5 =~ [ wpl(e+@)°~Qf~60
to compute
£h=2(5-1) [ Gunle+ @’ -Q3-603s
+2(7—1) [Py, -tz ~vney, +opsl
+2(52-1) [ QLe=vhe, +(1-vn)ey —=(-pin)

+10(§—1) / cUn(QH(Q)y—Q Q).
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Since |(e+Qp)5— Q% —6Q%e|<|el?+€|®, by (3.25) and |xs/A—1]|<(3¢*), we have

‘ *_1 / | 5+Qb) Qb_6Qb5

1| 586 [ wip(el +1el)

1o 2, .2

Then, as before, integrating by parts, and using the Cauchy—Schwarz inequality,

< B[N N2 462 BY2N oc

i,loc

‘25)()\_1) /(Xbp) [~¥sey—¥Beyy+epiBl| S

1 py 4
oc b
5003/\/1 +

and

T
‘2 (7 - 1) / ey|—¥pey—VBeyy e B]

<6() / (E4+e2)¢lp

1 Ha 2y, 7
<ot [l

The next term is treated using the cancellation LQ’=0 and the orthogonality conditions
(e,AQ)=(g,Q)=0, so that (yQ’,&)=0. Thus, by the definitions of ¢; g and g,

’ 7_1 /Q [Le—pe, + (_wB)Eyy_g(l_‘Pi,B)]‘

] (5:-1) [ @[-vhe,+ ¢B>syy—s(1+g—%,3)]‘
§(N.1/2+b2) B/10'/\/1/2

i,loc JJoc

L g 4
< 1,l0C b
500 BN1 +

Finally,

1
SIDINY 2402 BY2N2 < BN oo +C,

)10(A_1) / U (QH @)y~ Q'Qy) Sl e <2555

In conclusion, for f1 3

L pa

< —
100 B

31 <

(532/ +52)<)O;,B +Ob47
for B large enough and »* small enough.

Term fl(i)l We compute explicitely

£ =—2b, / (X6 +7Y(x8)y ) P(—¥Beyy — Ve, +epi s —¥B[(e+Qy)° —QF)).
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We estimate, after integrations by parts,

' / Ot 15000)y) P~ 65y )y| < / e (65 (Ot +1500)y) Pyl S BN,

5],31/2'/\/1.1/2

Jloct

‘/(xbﬂy(xb)y)Pscm,B

The estimate of the non-linear term follows from the weighted Sobolev estimate (3.25)
with &< (¢})?, for y<—3,

< / Ui(1Qs el +Iel)
1/2
< B2 ( / <|e|2+|s|6>w3)

1/2
< B2 ( / (€§+62)90§,B) .

Together with (2.30), these estimates yield the bound

‘/(Xb+’YZU(Xb)y)P¢B[(E+Qb)5_Qg]

1 pg

| f1,4] < 500 B (e2+e%)g; p+Cbl*.

Term fl(lé This term generates the leading-order term in b through the error term

Uy in the construction of the approximate @ profile. Recall that
7% =2 [ o(=(me,)y+epin—bale+ Qo) QR

We now rely on (2.14) to estimate, by integration by parts and Cauchy—Schwarz’s in-
equality,

1
/ (Uo)ypey| S BY2PNL < m%mlocww.

By (2.13), | U, |<b*+[b|'T71;_5 _11(]b]"y), and so, by the exponential decay of ¢; g in the

left,
‘/ Vi, BE

For the non-linear term, similarly and using (3.25),

, 1
SO B4 I INE < Sn N oe OBl

ey

‘/\waB[(g"‘Qb)S_Qg] S350 B

(e2+e%)¢; p+Cbl*.

The collection of the above estimates yields the bound

L g

< 15 [ Ere)ehstiblt
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Step 4. fz(i’j) term.
We integrate by parts using (3.24):

2(i’j) =2J7i; /5%‘,3 [(5yy+5(€+Qb)B+Qg)y

+ <>;\s+b> AQp+ (%—1) (e4+Qp)y+Pp+T4|.

We integrate by parts, estimate all terms like for fl(i) and use (3.13), which implies
|Tiql S6("),

to conclude that
1506 | [Eaerets il

Step 5. féi’j) term.
Recall that

] >\s
f5 =27 / Ae(~(Wney)y+ (14T )ewin—Yn((E+Q)° ~QF)
As
HT)e [ ein =213 Fs.

We integrate by parts to compute
/A€(w36y)y:*/€§w3+%/af,yz/f%;,
/(AE)E%,B = —% /62W2,B,
[ Acvnlie+ @ -Qf) = [@un—yiip)le+Qu)’ - Q5005
- [ vnh@ul(e+ @~ -5Q5),

Thus,
i =2 / [(2-2(j 1)) — i<
_% [(2—2(7—1))ws —y 3] [(e+Q1)° —QF —6Qj¢]

220 [ 0AQul(e+Q)P-Qf -5}

As L As
HT [unet =320 50) [elne =2-D5 04 55) [ gne?
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As / @ )s -yl — 22 (202 syl [+ Q) — QY —6Q3e]

3 A
+2fs/wBAQb[(E+Qb)5—Q?—5Q§E]
As
[(Ju) 2(j-1)(1+Ti5) /\]/(iw,sywé,B)EQ
1 As .
r1|@-eu-neaarany| [else
= fsi+ 133,
where

1,7 1 . . As /
17 =3 |G- e-n 04505 | [t

We estimate all terms in the above expression using again the notation ( ézkj ))<, ( élkj ))”
and ( éf,’cj))>, corresponding to integration over y<—1iB, |y|<3B and y>1iB, respec-
tively. The middle term is easily estimated by brute force using (3.13), (2.33), (2.29) and
the a-priori bound (3.5), getting

1506 [+l
For y<—B, we use the exponential decay of ¥p and ; g, and (3.20) to estimate

/ (b -+lyldly +0i.5) (€2 %)+ |yl e?
y<—B/2
5/ Ei%ﬁ/ lyle} e
y<—B/2 y<—B/2

1/100 99/100
([ e ([ )
’ y<—B/2 y<—B/2
9/10
</ ysoz B+'/\/;, léc ’
where we have used that [ _ ly|100e¥/Be2 ||e||2, <8(5*).

Remark 3.5. We see in the above estimate why we need to impose a stronger ex-
ponential weight on €, than on € at —co in the definition of F; ;. Indeed, since the

global L? norm of ¢, is not controlled,(**) we cannot estimate fy <0
2

Jy<o lule 5e

lylypes as we did for

(14) Because A becomes large in the (Exit) regime.
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Together with (2.29) and the weighted Sobolev bound (3.25), this yields the bound
1S 0NN ( [ Belst ) $06) [(Eredipl st
For y> B, we estimate by brute force, using (3.20),
ipi,p—yp;p=0 fory>DB,
and (3.25),
1S O3 [ (e $560) [ (el p.

It only remains to estimate ( éfﬁj ))>. This is a dangerous term which requires

— the weighted bound (3.7) and in particular its consequences (3.14) and (3.15)
which are additional information necessary to close the estimates;

— the following cancellation manufactured in the definition (3.9) from (2.33) and

(3.13):

. ‘ As| o AG-D)+2i 12
(Fiads =CU=FH )| = i =g X U] g o)
§|b|+-/\/i,loc-

Remark 3.6. Note that the gain in (3.27) with respect to (2.29) motivates the pres-
ence of the factor 1+7; ; in (3.8).

The estimates (3.27), (3.14) and (3.15) together with the bootstrap bounds (3.5)
and (3.6) and the control (3.23) imply that

i 1
(f557)] 5<|b+M,loc>(1+ Am/g)Nii{i
S IDI(L+8(e) b~ IN LS+ Nigoe (L85 )N, LN

i,loc i,loc i,loc
S 5(%*)(M,loc+|b‘4)-
The collection of the above estimates yields the bound
1566 ([ @ e tiot).

Step 6. fii) term.
First,
[(Qb)s] = [bs POX(B y) +[0 yx (16]9) | S 1bs]-
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We use the Sobolev bound
e2Vos I $36e7) [+t (3.28)

to obtain
1/2 3/2 1/4 e
Jes sy fotes([2) [@rewnsion) [,
and thus, from (2.30), |Qy|<C and (3.20),
1S [ 6n(EIQ +EP) S O+ Nio) [ (E4e0m S80667) [+l

Step 7. Proof of (3.12).
First, we estimate from the homogeneity of the non-linearity and the Sobolev bound
(3.28),

/ Ul e+ Qn)°— Q8 —6:Q5| < / G (1Qul*e2 +]e%]) S6(7) / (2425,

The upper bound follows immediately.
The lower bound follows from the structure (3.8) of F; ; which is a localization of

the linearized Hamiltonian close to ). Indeed, we rewrite
Fi’j:/1/13554'801”352—5/Q452+\77,"j/90i’B52
—5 [ vlle+ P~ Qf -0} -1501=%) dy—5 [ vn(@}-Q1):*
The small L? term is estimated from (3.9) and (3.13):
|~7i,j|/%,35255(%*)/%,352-

The non-linear term is estimated using the homogeneity of the non-linearity and the
Sobolev bound (3.28):

/1/)3\(€+Qb)6*Q§*6€QZ’*15Q§€2|S/wB(IQbI3|€I3+I€I6)§5(%*)/(€§+62)¢B~

The coercivity of the linearized energy (2.3) together with the choice of orthogonality
conditions (2.20) and a standard localization argument('®) now ensure the coercivity for

B large enough:
/(¢BE§+@i,B€2—5¢BQ4€2) > ulN;,

and the lower bound (3.12) follows.
This concludes the proof of Proposition 3.1. O

(1%) See, for example, [20, Appendix] for more details.
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3.2. Dynamical control of the tail

We now provide an elementary dynamical control of the L2 tail on the right of the soliton
which will allow us to close the bootstrap bound (H3) of Proposition 3.1 in the setting

of Theorem 1.2. Consider a smooth function

0 for y <0,

e10(y) = { 10

with o, > 0.
Y fory>1, 7102

LEMMA 3.7. (Dynamical control of the tail on the right) Under the assumptions of

Proposition 3.1,
1 d

)\10ds<)\10/@1062> SNI,IOC—'_bQ' (329)

Proof. We compute, from (3.24),
1d 5 As 5.5
5qs | P18 = [ Estpr0= [ P108 7A5+(_Eyy+5_(5+Qb) +Qp)y

+ <):\S+b) AQb+ (%—1) (5+Qb)y+@b+@b:| .

We integrate the linear term by parts and use that y¢},=10p10 for y>1 and o)<,

for y large enough, to derive the bound

AL 1A, 3 1 1
/@105{)\A5+(5yy+5)y} :*gy/wiog*g/@’1063*5/@306%5/%'662

10 Ag 1
RS *37/@1052*1 /@30(534’52)4’0./\/’17]00.

The terms involving the geometrical parameters are controlled from the exponential
localization of @ on the right and (2.29) and (2.30):

SO+ NHZN, e SN o+,

Joc i,loc ~

s
’/\—i-b‘ ’/‘PlOE(AQb)

5 (b2 +N11,1/020) l:Nll,l/OQC—’—/ sp/1052:|

S Mo +b7+6(5") / P10,

%—1‘ ’/@105(€+Qb)y

/ | 10e®@s| < [bsl N} < B2+ M o

We control similarly the interaction with the error from (2.12):

Joc ~

/ 0106 W] SOPNLE S B2 4N oc.
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By integration by parts in the non-linear term, we can remove all derivatives on ¢ to
obtain (using |Qy|+|(Qs)y|<Ce™¥/2 for y>0)

’/ P10€](e+Qs)° —QRly

S [ owe (e [ et
y>0

g/ e_y/452(|5\3+1)+/<p/1056.
y>0

Thus, by standard Sobolev estimates,

‘/ P10e(e+Qp)° —QZly

< Moo +6(¢") / o2 +2).
The collection of the above estimates yields the bound

d As

- /901062+10* /901052 §N1,1oc+b2,

ds A

and (3.29) is proved. O

4. Rigidity near the soliton. Proof of Theorem 1.2

This section is devoted to the proof of the following proposition which classifies the
behavior of any solution close to @ and directly implies Theorem 1.2. Let ug€H' be
such that

ug=Q+¢o0, |leollgr <ao and / ymsg(y)dy<1, (4.1)
y>0

and let u(t) be the corresponding solution of (1.1) on [0,7). Let 7~ be the L? modulated

tube around the manifold of solitary waves given by (1.13) and define the exit time
t* =sup{0<t<T:u(t') € T,for all ' €[0,¢]},
which satisfies t* >0 by assumption on the data. We claim the following result.
PRrOPOSITION 4.1. (Rigidity/Dynamical version) There exist universal constants
O<of<a* <™ and C*>1

such that the following holds. If ug satisfy (4.1) with 0<ag<afy, then u(t) satisfies the
assumptions (H1)—(H3) of Proposition 3.1 on [0,t*).

Moreover, let t7 be the separation time defined by

sup{0 <t <t*:|b(t")| < C*N1(t') for all ¥’ €]0,t]}, otherwise.
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Then the following trichotomy holds:
(Soliton) If t{=t*, then ti=t*=T=o00. In addition,

Nao(t) =0 and b(t) =0 ast— oo, (4.3)

and
At) = Ao (140(1)) and x(t) = ;

2
00

(1+0(1)) ast— oo, (4.4)

for some A satisfying |Aoo —1|<0(ax).
(Exit) If t5<t* with b(t3)<—C*N1(t}), then t*<T. In particular,

. % 1 =X ok
)\1011>fo U(t ))\(1)/2Q( )\0 ) Lz—Oé . (45)
zroER
In addition,
C(a™)
AtH) > . 4.6
) G (16)

(Blow up) If t5<t* with b(t7)=>C*N1(t7), then t*=T. In addition, T <oo and there
exists 0<ly<d(ag) such that

At b(t 1
lim ®) =/ly, lim (*) =0, lim (T—t)z(t) = — (4.7)
T t—T
and the following bounds hold:

lea ()l 22 S A2 ()| Bol+6(a0)]  and  [le(t)]l 2 S 6(ao). (4.8)

Remark 4.2. Note that u(t) belongs to the tube 7, as long as %éx\(t)SB and that
the three cases are equivalently characterized by

(Soliton) for all ¢, A(t)€[3,2];

(Exit) there exists ¢9>0 such that A(tg)>2;

(Blow up) there exists to>0 such that \(f)<3.

A continuity argument thus ensures that the cases (Exit) and (Blow up) are open
in A.

Also, note that on (t},%*), A(t) is almost monotonic and the separation time t}

defines a trapped regime, i.e.
Ib(t)| 2 C*Ni(t) for t} <t <t*,

and hence the scenario is chosen at this point.
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The rest of this section is devoted to the proof of Proposition 4.1. First, note that,

by Lemma 2.5, u admits the following decomposition on [0, ¢*]:

1 r—x(t
(t Z‘) )\1/2()(th)+5)< )\(tg)>’

with, due to (4.1),
(0|2 +[6(0)[+[1=A(0)| S 6(c0)  and />0 e2(0,y) dy <2. (4.9)
y
In particular, arguing as in the proof of (3.14), we have
N2(0) < d(a). (4.10)
For x* as in Proposition 3.1, define
t** =sup{0 <t <t*:u satisfies (H1)-(H3) on [0, t]}.

Note that t**>0 is well defined by (4.9), (4.10) and a straightforward continuity argu-
ment. Recall that s=s(¢) is the rescaled time (2.22). We let s**=s(¢t**) and s*=s(t*).
One important step in the proof is to obtain t**=¢* by improving (H1)—(H3) on [0, t**].

4.1. Consequences of the monotonicity formula

We start with coupling the dispersive bounds (3.10) and (3.11) with the modulation
equation for b given by (2.37) to derive the key rigidity property at the heart of our

analysis.

LEMMA 4.3. The following bounds hold:
(1) (Dispersive bounds) For i=1,2, for all 0<s1<s2<8™,

Ni(sa)+ / / (€2+2)(5)¢) s ds S NG (51)+ 6% (s2) |+ 6% (s)], (4.11)
Nifsa) | [ [E+Gelpt B Nifs) | [P0l [1(s2)
e T/, X2 (s) ds % A?(slﬁ[wsl) T X (s2) ] (4.12)

(2) (Control of the dynamics for b) For all 0<s1<sg<s™
/ b (s) ds S Ni(s1)+[b(s2)|+]b(s1)], (4.13)
and, for a universal constant Kqo>1,
b(s2)  b(s1) [52(81) b*(s2) | Ni(s1 )}
- < + + . 4.14
(s 2| 60 ) TR .
(3) (Control of the scaling dynamics) Let A\g(s)=A(s)(1—J1(s))?. Then, on [0,s**),

A
‘(AOO) +b’ /2 /104 | (N2 + o). (4.15)
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Proof. We start proving (4.11) and (4.12). We first observe, from (2.42), the bound
b? < by +CN7 1oc- (4.16)

By the monotonicity formula (3.10), with (3.12),

Nis2)+ / / (24+%) ()¢ ds S Fi(s2) / / (€2 +%)(s)gl.p ds
Fi71(51)—|—/ T (s) dsgfv;(sl)+/ “ b (s) ds

and thus, using (4.16), (3.4) and the fact that |b| is small,
s2
Nilsa)+ [ [ € 42) (60l ds SN s1) 89 (2] 189 ().
S1

Similarly, from (3.11) and (3.12),

Ni(s2) %21 5 o Fia(s2) s2 . ,
A2 (s5) +/Sl )\2(3)/(69+6 )(s )%Bds< 2 (52) +,u/ 2(8)/(8y+6 )(s)¢i p ds
< fi,2(81)+ 52 b4(s)

A%(s)

~ 326 5 5 ds (4.17)
Ni(s1) | [ b(s)
S 32(s1) —0—/51 N(s) ds.

We now integrate by parts in time, using (4.16) and (2.29), to estimate

S1 1

1 b3 S2 2 S2 3)\8 . S2 NL]OC(S)
—‘3&]51‘3/& PR ds ol |y 0
6°(s1)] |, [(s2)] o [ Nijoc(s) 2/52 b (s)
< 00T/ z
\{W D NG T TG B TE L N
S2 b
+C/ | | b2+/\/’111/o2c}

N(s) T N2(s2) ] o)

< Pb?’(sl) 1(s2)| " Nitle) gy 250 [ ()

S1 )‘2(3) 3 )\2(5)

1

and thus, for »* small,

"2 b (s) 63 (s1)|  [b3(s2)] o [ Miseels)
/S N2 (s) ds < {/\2(51) + /\2(82)}—#5(% ) 3 (s) ds. (4.18)

1 S1
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Inserting this bound into (4.17) concludes the proof of (4.12).

The virtue of (4.11) and (4.12) is to reduce the control of the full problem to the
sole control of the parameter b which is driven by the sharp ODE (2.37).

We now prove (4.13) and (4.14). The estimate (4.13) is derived by integrating (4.16)
in time using (4.11). We then compute, from (2.37), (2.29) and the a-priori bound(*®)

|J| 1/2
d(b d/b\ b
ds (v )‘ ds()\2>+)\2']

1,loc”
As b 1
<|Zs 2 il 2,—]yl/10 3
< )\)\QJ’+)\2</6€ —I—|b|>

b2
< a5l 1+ 55 N goc + ) (4.19)

b2
< L N2 +—2(J\/1,1oc+|b|3)

~ )2 1,loc
1
N )\2 (Nl loc+|b| )

Integrating in time and using (4.16) and (4.12), we obtain, for all s, s’ €[sq, sa],

b ! N1(81) ’ M
5] [S T i) s B (4.20)
From (4.11),
) 1| S 1T(5)] SNY2(5) S Wi (s1) +16° ()] +[6° (s1) ) /2. (4.21)

First, from (4.21) we obtain

Iol [o] | Ni(s1) |b]
sup < min — + —|—( sup |b|) sup —,
[s1,s2] >\2 [s1,52] >\2 A2( ) [s1,s2] [s1,s2] 2
so that b )
o 112 i 1 M)

FER B CRIS LI

[s1,52]

In particular, by (4.21), we obtain

@@= 5 (min B S ) i) + 0418 o0
(o)
(

<N1(81) b (81) + -
S N2(s1) | A2(s1) | A2(s)

16) Recall that J given by (2.36) is a well-localized L? scalar product.
g Y
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Second, combining these estimates with (4.20) taken at s=s; and s'=s5, we obtain
b(s2)  b(s1) b(s1) b(s2) Ni(s1)
A2(s2)  A%(s1) |7 [A%(s1) A2 (s2) A*(s1)
.|
+(b(s1) +Hb(s2)) min 11

Ni(s1) | (PP(s1) | D*(s2)]
: A%(s1) +</\2(81) >\2(82)>'

(e‘](sl)—l)‘—i-’ (eJ(SQ)_l)‘_i_

+|

We finally prove (4.15). We integrate the scaling law using the sharp modulation
equation (2.33). From (3.13),

A
1| 5115066 (122
Ao
and thus, from (2.33), we get
(AO)S 2 1 As Ji
b—c1b| = 1—-J1)—4+b—2(J1)s| — b
‘ ST bl el SRV WL SR Iawey
5/EQe_ly‘/lo—i-\b|(N21/2+|b|2).
This concludes the proof of Lemma 4.3. O

We are now in position to prove the trichotomy of Proposition 4.1. Let
C*=10Ky, (4.23)

where Kj is the universal constant in (4.14) and let the separation time ¢} be given by
(4.2).

4.2. The soliton case

Assume that
ty=t*, ie. |b(t)|<C*Nyi(¢) for all ¢t €[0,1*]. (4.24)

*

We first prove that in this case t**=¢*, which means that the bootstrap estimates
(H1)—(H3) of Proposition 3.1 hold on [0,¢*]. Indeed, we claim that, for all s€[0, s**),

[b(s)[+N2(s)+|le(s)][ L2 +[1—=A(s)] S 6 (), (4.25)
[b(s)|+Na(s)
R <o), (4.26)

/ y'0e%(s,y) dy < 5. (4.27)
y>0
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Taking a* >0 small enough (compared to »*), this guarantees by a standard continuity
argument that t**=t*.

We now prove (4.25)—(4.27). First, observe that, by (3.22) and the definition of ¢**,
on [0, s**],

M 5/(5§+€2)<p/273 and N7 SNy S6(s"). (4.28)

Therefore, from (4.24), (4.11) and (2.30), for all s€[0, s**),

1b(s)—b(0)| < / ba(s")] ds’ < / (0N 1oe)(s) s < / (6(")(C*)2+ DN ()
0 0 0
< / / (242)(s ). dy ds’ SN(0)+(")([b(5)] +1B(O)]).
We thus conclude from (4.9) that, for all s€0, s**),

[b(s)] S [6(0)|+N2(0) < 6(a)-

Then, from (4.11) and (4.13),
Nz($)+/ <b2+/(€§+62)(8,)g0/2,3 dy> ds’ <é(ap). (4.29)
0
Inserting this into the conservation of the L? norm (2.27) using (2.15) ensures that

[ 1P 5500,

Note that we also have, from (3.13),
|J1|+|J2| < d(ap). (4.30)

We now compute the variation of scaling from (4.15), which together with (4.24) implies
that

‘ (Ao)s
Ao

and thus from (4.29), for all 0<<s<s**,

Ao(s)
Xo(0)

< b+ M o SM: < / (2 422)(5) b 1

‘log

SN2(0)+6(a0) < 6(eo).
Hence, from (4.22) and (4.30),

1] sotan)
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which, with (4.9), implies that
[1-=X(s)| < d(ag) for all s€]0, ™). (4.31)

Together with (4.25), this implies (4.26). We now integrate (3.29) using (4.9), (4.31) and
(4.29) and obtain

/leEQ(S) dy< )\10(0) /leEQ(O) dy—l— C /S )\10(5/)(1)24-./\/ )(SI) ds’'
X )\10(8) )\10(8) 0 1,loc
< 2+5(O&0) < 37

and (4.27) is proved.
We therefore conclude that ¢*=T and u(t) remains in the tube 7~ for all t€[0,T)
from (4.25). Moreover, inserting (4.25) in the conservation of the energy (2.28), we get

lley(@®)|lL2 SC for all t€[0,T).

Hence the solution u(t) is uniformly bounded in H' and thus global: T'=0c.
It remains to show the convergence (4.3)—(4.4). From (2.30), (4.29) and (4.31) we

[ maes [T indass [ (b2+ /<s§+52><s>so;,3)ds55<a0>, (4.32)

which implies

get

lim b(t) =0 (4.33)

t—o0

and the existence of a sequence t,, — oo such that
/(554—62)(%)@’273 10 as ty,— o0,
By (4.28), N1 (tn)—0 as n—o00 and thus, using the monotonicity (4.11),
Ni(t) =0 ast— oo.
Together with the uniform bound (4.27), we also obtain
No(t) =0 ast— oo. (4.34)
Finally, from (4.24), (4.15) and (4.32),

“ld
/0 ’dtlog)\o ds < (o),

dtS/ ‘dlog)\o
o |ds
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and thus
tlim Ao(t) =27 with AP —1] Sd(ag).
—00

Now, from (4.34),
\J1|§./\/21/2—>0 as t— oo

and thus, from (4.13),

lim A(£) =A% with [A>®°—1| < 5(ap). (4.35)

t—o0

The translation parameter is controlled using (2.29), (4.34) and (4.35), which imply

1z, 140(1)
xt:ﬁjz v as t — oo.
This concludes the proof of (4.3) and (4.4).
4.3. Exit case
We now assume that 7 <t* and
b(s7) < —C*Ni(s7). (4.36)

Observe first that arguing on [0,s]] as in the soliton case, where the parameter b is
controlled by N7, we obtain, for all s€[0, s}],

IA(5) = 1|+ [b(s)|+Na (s) / / £2 162 < 5(ao) (4.37)

and
/ y'e?(s,y) dy <5. (4.38)
y>0

In particular, ¢] <t**<t*. Now, we claim that
t"*=t* and ¢*<T,

which means that the solution leaves the tube 7,- /5 in finite time.

We first prove that t**=¢*. We improve (H1)-(H3) on [t},¢**] to obtain t**=¢*. The
proof is different from the one for the soliton case, since now b is not controlled by M.
The fundamental observation is that (4.14), (4.23) and (4.36) imply the rigidity

b r*
oy M) 1]

MO for all s € [s}, s™), (4.39)
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where we have set, from (4.37),

M) il
C=%en ST e

Together with (4.12) and (4.37), this implies the bound

|b(s)|+Na(s)
X(5)

<0, |0 <8(aw). (4.40)

So(ag) for all s€[0,s**],

and (H2) is improved for o* small compared to »*. We now observe that, using b<0
from (4.39) and (4.15), for all s€[s}, s**),

(Ao)s(s)
/\00(8) Z,_Nl,loc'

Together with (4.11) and the definition of Ao, this yields the almost monotonicity property
of \:

Moz) = 3A(o1)  for all s7 <oy <op < s*. (4.41)
We integrate (3.29) using (4.11), (4.41), (4.37), (4.38) and (4.13) to get, for all s7<s<s**,

10 g* s
[ oo ay< S / 1oz ) vty [ AT Wi ()46

<3+C Nuoc N4+b%(s")) ds'

S

<3+C(Ib(s1)[+b(s)[+N1(s7))

<3+0(5"),

and (H3) is improved. We now improve (H1). Since u(t)€7,+ on [0,t*), we have, by
(2.21), that |b(s)|<d(a*)<x* for all s€[0,s*). By (4.11), it follows that Na(s)< s*
for all s€0,s*). By (2.27), |le(s)|| 2 << s* for all s€[0,s**), and (H1) is improved. In
conclusion, we have proved t**=t* again in this case.
We now prove that t*<T. Let us show that (Exit) occurs in finite time. We divide
(4.15) by A2 and use (4.39) and (4.22) to estimate, on [t},*),
|€*|_ Nlloc Nlloc

7R < (M) <3| +OREE,

Integrating in time, for all te[t],t*), we get

71 =7)
3

t .
701/ N/l\,QloC dTgAO(t)*AO(tT)<3M*|(t7t;)+c2/ %dr
ty ;
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From the monotonicity (4.41) and then (4.11),

[ Mitoe 4 / M 1oc do S A(5) / N toe do < 8(37)A(2),
and we therefore obtain the bound, for all t€[t},t*),
TUCNE=1) +X0 (1)) SAE) <A (E=17) + Ao (t7))-
This yields the following estimates on b from (4.39), for all t€[t},t*),
=407 (|| (E=17) + Ao (t1))* < D(t) < — g5 |71 (17] (= 17) + o (£1))*. (4.42)
Inserting this bound into (4.11) yields the control
Na(t) SC(1),

which, inserted into the energy and mass conservation laws (2.27) and (2.28), yields the
H' bound

el S C@)-

It follows that t*=T < oo is not possible. On the other hand, t*=T'=00 is also impossible
since then, by (4.42), b(t)——o0 as t— o0, which contradicts the definition of ¢*. Thus,
t*<T <.

Finally, we observe that the scaling parameter is large at the exit time for o small
compared to a*. Indeed, [b(t*)|>(a*)* from (2.27), and thus, from (4.39) and (4.40),

Lp@)|  Cla”)
2 x| 7 0(an)

N (t*) >

4.4. Blow up case

We now assume that ¢7 <t* and
b(s7) = C*Ni(s7) >0. (4.43)

As before we have, for all s€]0, s3],

A1+ Na(s)+ [ [ (422160 S000) (444

and
/ y'0e? (s, y) dy < 5. (4.45)
y>0
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In particular, t] <t**<t*. In this case, we claim that t**=¢*=T and T <oo.
We first prove that ¢**=t*=T. First, we improve the bounds (H1)-(H3) of Propo-
sition 3.1. From (4.14), (4.23) and (4.43), we recover the rigidity

& b(s)
g <2* for all s€[st, ™), 4.4
3 S %2(s) 20*  for all s € [s7,s™) (4.46)
where we set, from (4.44),
b(s1)
Y= < . 4.4
14 X (s1) >0, || <é(ao) (4.47)

Together with (4.12) and (4.44), this implies the bound

|b(s)[+Na(s)

< for all *
2 (s) Sé(ag) for all s€]0,s*],

and (H2) is improved provided o* is small compared to s*. We now observe, from 6>0
and (4.15), that, on [s}, $**),

Ao
_( )\O) Nl locy

which, together with (4.11) and the definition of A, yields the almost monotonicity
Moz) <32A(o1) for all s7 <oy <op < s*. (4.48)
In particular, from (4.44),
A(s)<2 for all s€[0,s™). (4.49)

This yields, with (4.44), (4.46), (4.43) and (4.11), that, for all 0<<s< 5™,

b(s)| SA%(s)0* <(ag) and  No(s // (G +e2)ph pds’ S 6(ap).
The conservation of the L? norm (2.27) implies that
lellZ2 S d(ao), (4.50)
and (H1) is improved. We now integrate (3.29) using (4.11), (4.49), (4.44) and (4.13)

and obtain, for all 0<s<s**,

10

"
< 1

= >\10 (3)

C s
/@1062(0) dy+ )\10(8) /0 )\lo(Nl,loc+b2) dS/

546 (3%)
AO(s)

{5—#0/ (Nl,loc+b2)d8/:| <
0
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and (H3) is improved. We conclude that t**=t*. Moreover, by (4.50), for oy small
enough compared to o, we get t* =T, since the condition in the definition of 7, is also
improved by this estimate.

We now prove that T<oco. We divide (4.15) by A2 and use (4.46) and (4.22) to

estimate, on [t7,T),

|£*|_ Nl,loc
3 ¢ A2

Nl,loc
A2

<—(Xo)e <3|F|+C

We integrate in time and obtain in particular, for all te[tf, T),

*tft* t oc
I I T

0< Ao(t) < Ao(t7) 3 2
t

dr. (4.51)

Now, from the bound (4.49) again and (4.11),

t s s
N;\,Qloc d’r:/ )\(O’)NLloc do‘§2/ j\leoc dO’S 1,
1 ST s

and thus (4.51) implies that

T <oo and in particular A(t) —0ast—T.

The conservation of energy (2.28) implies that

lley (012 SN (1) Bol+Na(t), (4.52)
and thus, from (H2),
lley )]l 2+b(t)+Na(t) -0 ast—T. (4.53)

We now prove (4.7)—(4.8). We estimate from (4.46), (4.19) and (4.12), using that
d

T<oo,
Sl ) dsS [ = Wigoet ) ds < oo,
[l (o) o [ Satamer oy as<oe

and thus be’ /A2 has a limit as t—7T. Moreover,

T SN2 (#) >0 ast—T
from (H2), and thus, from (4.46) and (4.47),

b(t)
AZ(t)

—ly>0ast—T, with [{5] <d(ap). (4.54)
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The time integration of (4.15) using (4.54), (4.48) and (4.11) yields

T T e3¢}
b oetolb
Yolt)= [zt g/t Nl’l/\;'—o()dt’g/ MV 1oe ds'+o(T—1)

SoT=0406) [ Nigueds' =oIT—+X(1),

and thus, using (4.54) again,
. Aolt)
7y =t

Moreover, from (4.22),
At)
-1 <|Ji(t)]| =0 t—T.
’)\o(t) ‘N| 1(2)] as

The control of the translation parameter follows from (2.29) and (H2), which yield

1z, 1

and (4.7) follows. Finally, the L? bound in (4.8) follows from (4.50), and the rest of (4.8)
follows from (H2) and the conservation of energy (2.28):

ley (B)II72 < A ()] Eol+[b(t) [+ N2(t) < (| Eol+8(c0)) A (t).

This concludes the proof of Proposition 4.1.

5. Blow up for E,<0
In this section, we let an initial data
ug€ A with Ey<0.

We moreover assume that ug is not a solitary wave up to symmetries. We claim that
the corresponding solution u(t) to gKdV blows up in finite time in the (Blow up) regime
described by Proposition 4.1.

Let us first recall the following standard orbital stability statement which follows
from the variational characterization of the ground state and a standard concentra-

tion/compactness argument.

LEMMA 5.1. (Orbital stability) Let a>0 small enough and a function v€ H' be such

that
oo

Then there exist (Ay, z,) ERE XR such that

T

<a and E(v)éa/vQ.

1Q—coA2v( Aoz +,)|| g1 <O(a), eoe€{—1,1}.
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For >0 small enough compared to o, it follows from the conservation of mass
and energy that « remains in the tube 7+ on [0,7). Therefore, only the case (Blow up)
and (Soliton) can occur in Proposition 4.1. We argue by contradiction and assume that

(Soliton) occurs.

Case Fy<0. This case is particularly simple to treat using the estimates of Proposi-
tion 4.1. Indeed, (2.28) (consequence of the conservation of energy), combined with the

asusmption Fy<0 and the asymptotic stability statements (4.3) and (4.4), implies
AQ(t)\EOH/ ey S D] TN (H) =0 as £ o,

and thus
A(t)—0 ast— oo,

which hence contradicts the soliton dynamics displayed in (4.4).

Case Fy=0. This case is substantially more subtle and in particular there is no
obvious obstruction to the (Soliton) dynamics. In fact, the conservation of energy (2.28)
yields, with (4.3) and (4.4),

/|<sy|2 IO +NI(£) >0 as t— oo, (5.1)

but there is no further simple information on A(t). Our aim is to show that this H'
convergence implies global L? dispersion, and hence the solution has minimal mass which
for Ep=0 is possible only for the solitary wave itself.

By rescaling, we may without loss of generality assume that Ao=1 in (4.4). We
claim the following result.

LEMMA 5.2. (L? compactness) Assume that Eg=0 and that u(t) satisfies the (Soli-

ton) case. Then

1
/ ui(t,z)de S — for allt>0 and xo>1, (5.2)
z—z(t)<—zo Lo
1
2
uw (t,x)de <——=  for allt >0 and xo>1. (5.3)
~/z—w(t)<—zo v Zo

Assume Lemma 5.2. Then, from (4.3), for all zo>1,
|b(t)\+/ et y)[2dy — 0 as t— oo,
Y>—xo

and thus, from (5.3) and (4.4),

(5.3
[l = [~ [1Quo+ep— @ as i

Hence ug has critical mass and a contradiction follows.
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Proof. Without loss of generality, by translation invariance, we assume that, for all
t>0,
AO-1< 5, [oe®)—11< ks and o)l +bE)]| < 5. (5.4)

From the decomposition of u(t), there exists ag>1 such that, for « small enough, for all
tel0,7),

/a;< a0/2“2(t’x+x(t))dx</< ao/s(s(t)+Qb<t>)2(y) dygﬁlo. (5.5)

Such an ag>1 is now fixed.

Step 1. First decay property of u, using almost monotonicity of a localized energy.
We claim that there exists C'>0 such that, for all tg>0 and z¢>ag,

/ u?(tg, z) d < % (5.6)
$7w(to)<710 ]"0

Proof of (5.6). Let 1 be a C* function such that, for ¢>0,
{ 1 on (—o0,—3,

0 on [—3,00), (5.7)
P'=—ton[-2,-1, ¥'<0onR, (¥")°<—cy and (¢')*<cy onR.

P=

Let x¢>aq. Define, for all t>0,

Bult)= | (ui— ;u) (1,2 (F) do, (5.8)
where
T v—z(t) and ((t)=ux +7x(t)—m(t0)
£(t) 0 4

First, observe that lim; o, E,(t)=0 by (5.1), (4.4) and the Gagliardo—Nirenberg in-
equality. Then, we control the variation of E,,(t) on [tg, c0). By (2.50),

%Ezo(th—%/(uggﬁ V(3 (2t /u (& )/u“ui«b’(i)
/(s

u? % 6) <1+4x>¢(§z)

—3,—3], since ¢/()=0 for #¢[-3,—3]. In

_“;t(%) /ug (1+if)w'(j) 2—2?115)/%1//(5:)

(5.9)

///

t

All the integrals above are restricted to Z€

particular, we have
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By (5.4) and ||u]| 1o SllualZe ul: <1,

4, 2,1/ (A 1 4 20,0 (A 1 1 20,0 (A
[t @i gl [Ev@i< g [ 2wl

10
£(t)

Moreover,

ol R ol Rt ot

Now, we treat the u® term. Recall the following standard computation (see, e.g., the proof
of [26, Lemma 6]), for a C! positive function ¢ such that ¢'/\/¢<1, for all ve H*(R),

x , 1 ¢/
/_Oo <2v v\/$+2v2\/$)

[0*V/@ ] o <sUD
z€R

(5.10)
1/2 n2\1/2
2 ne2 2(¢)>
s(f) (Jures [#55)
Using this estimate, and the fact that 1" (%)?/|¢/(Z)| <1, we obtain
2 /a2 < 2 21,/ (7 1 21///(55)2>
V@2 ([, ) (e Orag [y -

$(L ) vz [2)

Since x¢>ag, by (5.5), we have

1
/ W2(1) g/ 2 (t 4a(t)) de < ——
ze[—3,-1/2] r<—x0/2 100

2 C
< 2 2010~ ~ 2
~ (/aEe[—3,—1/2]u ) (/ welv (x)|+§2 /U ) (5.12)
1 1oy C
<qg5 [ @l [

Combining these estimates, we get

Thus, we get

/ WS (7)
z€[-3,-1/2]

d 1 2 1/~ 1 20,1 (7 -3
G2 g [ @l g [ww@i-cete. )
Integrating between ¢y and oo, using that lim; ,o Ey, (t)=0 and (5.4), we get
1 —x(t 1
Bulto) = [ (230 o (“2) ) do L, (5.14)

TN ow@r [ @] ol (5.15)
: GORE:
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Using (5.10) and (5.5), we have
2
r—x(t x—x(t 1
[t () ao ([ w) ([aeon( TR0 [e)
Zo F<—1/2 Zo %o

< [ wen () 1 5 [,

Therefore, for all to€[0,T) and x¢>ag, we have obtained

1
/ (42 (0, 2) +uS (b0, 7)) d S 5. (5.16)
wfw(to)<7a30 xO

Since ¢/ (Z)=0 for #<—3 and &>—1%, using (5.15), we have

| [ <.

([ o) = [ [ o g @a
> 1

<[ v @as s

/ / 2@t < <
0 o

and arguing in a similar way for u,, we obtain

Moreover,

Integrating in zo, we get

/0 @@ as (5.17)

Step 2. Refined decay property of uy.
We claim the improved decay

1
/ uz(to,x)dr S —5  for all 2o > 2ag. (5.18)
z<—zo+z(to) Ty

To obtain this improved estimate, we introduce

By direct computation,
d _ 3 2 (5 xt(t) 2 1. 15 1 2 10 (=,
=g [w2w@-20 [ (1e 0 )o@+ s [0 @

£(t) £(t)
—20 / uSudep(z) / wduyy (7).

L5
&(t)
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The second and the last terms in the right-hand side are treated as before. For the third

term, we use (5.16) and ¢"’=0 for #>—1, which gives

1 u2 " if 1 u2 1 gt(t)
gﬁ(t)/ SOV S & /xg_gw OO}

Finally, the term [ u3u3(%) is controlled as follows, using (5.10) with ¢=1(%):

[ o) < 20 e [l Vo
<T@, [ev@) ([ L )
([t ((fawe) ([ )
(fee@) ([ o)
() (L) ([rwes [evw)

S ([ v [ o)

0

In conclusion of these estimates, we have obtained

1002~ ( [0t ).

dt T a2

Therefore, by integration over [tg, 00), using (5.17) and lim; o0 G4, (t)=0, we obtain

1
GI (tO) S —3>
0 1‘3

which proves (5.2).

Step 3. L? estimate.
We deduce from (5.2) some L? tightness for u. Indeed, for x¢>1,

1/2 1/2

1
Jusul do < (/ Ui> (/UQ) S
z—z(t)<—z0 z—z(t)<—z0 Ty

ORI M———y |

from which
dy 1

utoPdes [ s
~/ac—9c(t)<—3:0 y>xo |y‘3/2 Vo
and (5.3) follows. O
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6. Sharp description of the blow-up regime

We now finish the proof of Theorem 1.1 by proving (1.16) and (1.18) in the framework
of a blow-up solution in 7,+. We further use L? and H' monotonicity properties away
from the soliton to propagate the dispersive information in larger regions to the left than
the norm A; controlled by Proposition 4.1, and this will yield the sharp behavior (1.18).

We let
) 1 z—x(t)
a(t, ) =u(t, z)— Al/Q(t)Qb(t)< A1) )

PROPOSITION 6.1. (Improved dispersive bounds away from the soliton) Let up€.A
be such that u(t) blows up in finite time T and

u(t) €T+ for allte|0,T).

Then, the following properties hold:

(i) (H! estimates around the soliton)

sup sup R? / a*(t, ) dx < oo, (6.1)
R>1te[T—-1/03R,T) z>R
lim sup / a2 (t, ) dx =0, (6.2)
Roooycir—1/02R,T) Ja>R

1
lim ———

@?(t,z) dx=0. (6.3)
=1 (T'—t)? -/z—a;(t)2—m(t)/log(T—t)

(ii) (Existence and asymptotic of the dispersed remainder) there exists u* € H' such

that
a—u* in L? as t—T (6.4)

and
z>R(u )2 (z) dx ~ NS as R— oo. (6.5)

The rest of this section is devoted to the proof of Proposition 6.1.

6.1. H' monotonicity away from the soliton

We aim at refining the dispersive estimate (4.12) by propagating it to the left of the
solitary wave, since A involves an exponentially well-localized norm at the left of the

soliton. For this, we use H! monotonicity tools in the spirit of [26] and [20].
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LEMMA 6.2. (Monotonicity away from the soliton core) There exist universal con-
stants apg>1 and 0<g<<1 such that the following holds. Let 0<to<T, close enough to

T, and 0<V<% be such that

M), (6.6)

() = % arctan <exp (fm»

limg o0 ¢(I) =1, lim, oo QS(I) =0,

Let

be such that

(6.7)
¢ (x) < %(/b'(x) and |¢"(x)| SVvd'(x) for all zeR.
Then, for all yo>ag and to<t<T, we have the L?> monotonicity bound
—x(t t—t
[ ears( a8 - ) de 2000000 (P @
Alto) A3 (to) (6.8)

5/712(750’33)05(W+y0> d$+$€_ﬁy°/lo+)\2+1/4(to)

and the H' monotonicity bound
J (3o (G (5w ) ) =25 e )

72 _ —V/To/10
§/(ﬁi(to,$)+u)\g]f((;;§))¢(x/\é((f)o)+yo) deJri%Jr)\lm(to)-

The proof of Lemma 6.2 is postponed to Appendix A.

6.2. Proof of Proposition 6.1

Step 1. Proof of (6.1).
The estimate (6.1) is a direct consequence of (6.8) and the space-time control of
local terms (4.12) which implies that

Ni(ta) [ [(e3+E)(s)¢) s
A2(t2)  Jy, A5(7)

dr < (). (6.10)

Indeed, if we fix =4 in Lemma 6.2 (note that B>40=10/y/v), then (6.6) is satisfied

from the blow-up assumption for ¢ close enough to 7', and we estimate the right-hand
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side of (6.8) as

/ ﬂQ(to,xm(Wwo) do

2/52(t0)¢(y+y0)
5/ 52(t0)6”<y+y°>/10+/ £2(to) (6.11)
y<—%¥o Yy>—"Yo
s etrrornions [ ety [ )
y<—yo ~Yo<y<0 y>0
/Seyo/BNl,loc(tO)-
Let R>>1 be large enough and ¢ be such that z(tg)=R, so that
1 Altr)
T—tr=—5=(140gr(1))= (1+0r(1)) as R— oc. (6.12)

2R lo

We now make essential use of the fact that the space-time estimate (6.10) is better for
local L? terms than the pointwise bound given by (H2). Indeed, the law (4.7) and (6.12)

ensure that, for R large,

1 1
A(T) =40 [T—tR"‘ROR(l)] > 5A(tr) forallTe [tr—(Rlo)™*/% tr],

and thus (6.10) implies that

wef [ @t paes [ LGEEN0AD g gy
t 0

r—(Reg)=5/2 A2(t)

Thus, there exists tg€[tr—(Rl)~°/2,tg] such that
/(873—"_62)(%}3)90/1,3 S 6(0n) (boR) ™% ~ 5( o) A(ER)? (6.13)
which is a strict gain on the pointwise bound (H2). Note also the relations

b(Er) = L3(T—TR)*(1+0r(1)) 1+or(1)) and z(fg)=R+or(l).  (6.14)

Ly
Uy R?

We now apply (6.8) to u(t) with

v=-=L1 to=tr and yo=yr=40logl R>.

167
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We obtain, from (6.11), (6.13), (6.14) and B>>1, that, for all t€[tg,T),

[ 1o (S ) ~20E0) (P.Q)

. (6.15)
S eyR/BNl,IOC(ER)+e_yR/40+(T_tR)2+1/4 R <R2>
and
(i) (P, @)= 1AL L1 0n1).
86 R?
Moreover, using (6.14), we estimate, for all z>2R and all t>tg,
—x(t 1 t—t 2R—R 1 t—t 1
:L‘ x( R) R YR =2 R > 0.

Aig) 16 M3(fg) Mir) 16 X3(Tg) = LoN2(tR)
Thus, from (6.14) and (6.15), and also using that ¢(y)>3 for y>0, we obtain

1 1
< for all T———,T
/m>2R @3 (t,x) dr < N or a te[ 2BR ),

and (6.1) follows.

Step 2. Proof of (6.2).
We now apply (6.9) to u(t) with the same choice as before

V= to=tr and yo=yr=40logl R>.

1
16
We estimate, as in the proof of (6.11) and using (6.13),
oz z—x(lg) /Bf€ trR)¢) B
t —_— de SeVR/P——————= —op(1).
/ux( R,x)¢< i) +ygr | dx<e N(in) =og(1)
Using (6.11), we obtain, for all t€[tg,

7).
/( (t:z:ffu > < <:r a;;R) 116;3(;};+y1%>)d1:
<[ wR)) RN op(1) = or(1),

where, in the last step, we used the fact that

b))
ey =

Observe now the bound from Sobolev, (4.8) and (6.15):

J 0§ (San e o)) 4

. _ x—ax(t 1 t—¢ 1
<Clillie [ a0 T - S ) do S .

and (6.2) follows.
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Step 3. Proof of (6.3).
Let ¢ be close to T'. The space time estimate (6.10) and (4.7) ensure that

1 /t—lO(T—t)/|log(T—t) T Nl,loc(T)
t

00 M joc(T)dT S dr <é(a),

—20(T—t)/|log(T—t)| o A7) ~

and thus there exists

7e {t_ 20(T—t) . 10(T—t) ]
log(T—t)]""  [log(T—1)|
such that

Nl loc() f (T t) HOg(T t)|
Moreover, from (4.7), we have

_ 9 8x(t)
D 2 D o log(T—1)] ~ Tlog(T—D)]

(6.16)
and

b(t)—b(t)=o((T—t)?) ast—T.
We now apply (6.8) with

V:%7 yo=y=40|log(T—¢)| and to=*%.

The right-hand side of (6.8) is estimated using (6.11) and we obtain

9 z—ax(t) 1 t-t P2
/u (t7m)¢< NG 10090 +y de= t)°) ast—T.
Moreover, if x is such that
x—x(t) = —&
= log(T=t)|"

then, from (6.16) and (4.7),

c—a(@) 1 t—1 1 1 10(7—1)
A ‘mA3<t>>A<t>|1og<T—t>|[ TS0 } 0,

and then ¢(y) >3 for y>0 yields (6.3).

Remark 6.3. Observe that (6.1) and (6.2) imply that, for all R>1,

1 1 1
~92 . ~9
[———— dr < — d 1 [— ——— dr=0.
/DRu( 200533”) Yo M RN $>Rum( 200@33””) v=0

In particular, given ¢ close enough to T, we chose R=(20003(T—t))™' <552 (t) and

conclude that

/ w?(t,x)de <(T—t)*> and lim @2 (t, ) dx=0. (6.17)
z>z(t)/100 =T Jo>a(t)/100
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Step 4. L? tightness.
First observe, by a direct check using (4.7), that

r—x(t) 1 z—2(t) o
)\1/2()th)< N0 )_A1/2(t)Q< N0 )—>0 inL#ast—T,

and hence (1.16) is equivalent to showing the existence of a strong limit

a(t)—»u* inL?ast—T. (6.18)

We first claim that the sequence is tight, i.e. for all >0 there exists A.>1 such that for
all t€[0,T) one has

/ @ (t, ) de <e. (6.19)
|z|>A

On the right > A., where non-linear interactions take place, the claim directly follows
from (6.1). On the left, this is a simple linear claim which follows from the finiteness
of the time interval [0,7), the H' bound (4.8) and a Kato L? localization argument.
Indeed, let t. be close enough to T such that

T
/t/ O(u§+u2)dxdt<e. (6.20)
e Jr<

Let 9 be a C? function such that
1 —00, —2
1/;—{ on (=00, 2}, and 1'<0 onR. (6.21)
0 on[-1,00),
Pick A.>1 large enough so that [u?(t.)i(x+A)<e. Then, by (2.49),

%/u2(t)¢(x+A):—3/ui(t)zp’(:c+A)+/uz(t)z/;”’(x+A)+§ uS (1) (x4 A),

and thus, from (6.20), for all te[t.,T),

’/ P(z+A) /Q(ts)w(erA)'éC’e

and (6.19) follows. Now the uniform H! bound (4.8) ensures that for any sequence t,,—T
there exists a subsequence t4,)—7T and u*€H I such that U(tym))—u* in H L weakly
and @(tg(n))—u* in L? strongly from (6.19) and the local compactness of the Sobolev
embedding. By a weak convergence argument, the limit «* does not depend on the
sequence {t,}>2 ;. Indeed, let § be a C*° function with support in [—K, K|. Then

’/ w0, +/uem

u9

<0 [ P+ tu) <o,
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and thus [ ()0 has a limit as t—7T, and (6.18) follows. Note that the regularity u*€ H*
follows from (6.18) and (4.8).

Step 5. Universal behavior of u* at the singularity.

We now turn to the proof of the universal behavior of u* (6.5) at the singularity,
which follows from lower and upper bounds.

(i) (Upper bound) Let R>>1 be large enough. Let tg be such that

z(tr) =R,

so that, from (4.7),

Atr)
Lo

b(tr) =€3(T—tr)*(14+0r(1))

=(T—-tr)(1+0r(1)) 1+o0g(1)),

1
2R
= i (+on()
TRz TR
We apply (6.8) to u(t) with

1

—_—, =ypr=10log? B> and to=t
log2R Yo=Yr g 0=1R

V=VR=
which satisfy the condition (6.6) for R large enough, and obtain, for all t€[tg,T),

/ﬂ2(t,x)¢<x;ég)R) —VR;S_(Z;WR) dm—Qb(tR)/PQ

—x(t 1
S/QQ(tR,I)¢<x)\(z;)R)+yR> dz+E6*\/V7RyR/1O+(T7tR)2+1/4

</ a?(tR,xw(WwR) dx+o(];).

llog_(?(t—i)m B ‘101;3(“03(1)) < A(tr)yr,

Note that

so that, by (6.3),

w*(tr)$ z—oltr) +yr | dx
Atr)

< e~ VVRYR/10 /ﬁQ(tR, ) dl,Jr/ ﬁQ(tR,x) dx = "
z—xz(tr)>—2X(tR)YR

We thus conclude, from (2.5), that

r—x — 21
Jtaro( oy ) e < 2 1 on) = L (o)
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Passing to the limit t—7T', we find that

r—2X — 21
w [ <u*>2<x>¢< ) m) o< Ve 14 01,

Using that z(tg)=R and A(tr)=(14+o0r(1))/Rly, and passing to the limit R— oo yields

2
lim sup R? / (u*)?(x) dx < w,
R—o00 z>(1+vRr)R 8[0

which now easily implies that

2
lim sup R? / (u*)? () da < ||682£[|L1 . (6.22)
R—oo >R 0

(ii) (Lower bound) Let w be a smooth function satisfying

e { 0 on (—o0,—1],

and w >0 onR.
1 on [0,00),

Let 0<v<{5 be arbitrary and let w, be defined by w,(z)=w(z/v). For R>1 large,
we define tp such that z(tg)=R as before. Using the identity (2.49), we have, for all
th<t<T,

d w2 r—R+4log R
dt v R

3 9 ,{z—R+4logR 1 9 m{r—R+4logR
"R “w%(R S AL G

C’y 2 Cl/ 2

=z —— Uy — 53 u-.
R (1—v)R<z+4log R<R R (1—v)R<z+4log R<R

By (6.2) and the properties of @} (see in particular (2.9) and (2.11)) we have

sup ul(t,r)dr=o0g(1) as R— oo.

teltr,T) /(1V)R<z+4 log R<R

Since T—tr<1/03R, by integrating over [tg,t] we obtain, for all te[tg,T),

/ u2<t>wy($‘“]jl"gR> > | u2<tR>wu(”C‘]”;k’gR)+oR(;2). (6.23)

We now develop u in terms of @@, and @. On the one hand, a simple computation ensures

[t (FEEER ) = [t [, (EEEER Y o)
_>/Q2+/(u*)2(t)wy<x_R—;“0gR> as t—T.
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Next,

R
:/Q2+2(P,Q)b(tR)+/ﬂ2(tR)wu (W)+OR<$Q>

2, 1 /07,
2/62 +R2< 8t +0R(1)>7

where we used (6.5) to treat the cross term. We therefore conclude, from (6.23),

2
lim inf R? (u*)Q(x) dz > Q7
R—o0 z>(1—v)R—4log R 84y

and, since v is arbitrary,

2
lim inf R? / (u*)?(z) da > w
R—o0 >R 8¢

This concludes the proof of Proposition 6.1.

Appendix A.
A.1. Proof of Lemma 6.2

Let ap>1 and 0<dp<1 be two constants to be chosen.

For to€[0,T), we consider the renormalized solution

2(t,2") = N2 (o) u( N3 (b))t +to, Ato)x' +x(to)), t' €[0,T.), T.= . (A

The function z admits the decomposition

;. , =z, (1) 1 x—x,(t) o
)= s @uen (1 555 ) = s v () +20)
(A.2)
with, explicitely,
3 /
(1) =<V 1)t +10), N (D

_ (N3 (to)t' +to) —x(to)

z, ()= o) ;b () =b(N3 (o)t +to).

In particular,

A(0)=1, 2.(0)=0 and b,(0)=b(to). (A.3)
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The monotonicity bound (4.48) and (4.8) ensure that, for all ¢'€[0,T}),

1(e2)2 ()72 SAZ(E)AN*(to) (|1 Bol+0(a)),  le=(t)l[7= S 6(a), (A.4)
2" [ S X*(t0) (| Bol +6(a)) < o, A:(t) <3, (A.5)
provided %y is close enough to T" and « is small enough.

We denote by N3(t') the quantity defined in (3.3) for z(¢'). From (H2), and then
(6.6), we have

b (t) + N ()]
A(t) -

b(t)+Na(t)

sup  A(tp) (D)

t€fto,T)

0, = sup ’ S AQ(to)é(Cz) (A6)

t’'€[0,T%]

Lemma 6.2 follows directly from the following monotonicity result on Z and (A.6).

LeMMA A.1. (Monotonicity in renormalized variables) Assume (A.3)—(A.6). Then,
for all yo>ag and all t'€]0,T.), the following hold:
(i) (L? monotonicity)

[ B0l vt 40 do' +2(P, Q)(b(¢)--(0))
t/
+%/0 /(zi—&—VzQ)(t”)q/)’(x’—ut’—&—yo) dz’ dt” (A7)
SO+ [0 ) do'+ eV,

(ii) (H! monotonicity)

/(zi—;f') (t')¢(i(m’—ut’+yo)> da’ ~2(P, Q) (i‘z((if)) _ 22((‘30

t/
il (Zﬁﬁl/zg?c)(t”)ef)(i(w’Vt”+yo)> ax' dt" (A3)
0
1
5/\2(t0)9i/4+/[52(t0)+52(t0)}¢>(33'+y0)dx’+ﬁe—ﬁyo/1o_

Undoing the transformation (A.1) and applying Lemma A.1 yields Lemma 6.2.

Proof. The proof is closely related to the argument in [26] and [20].

We define, for yg>1 and 0<v< 1—10, the following localized mass and energy quantities:

Moy(t) :/z%t’,x’)d)(m'—ﬁ’—&—y@ dx’,



BLOW UP FOR THE CRITICAL GKDV EQUATION I 131

Step 1. Monotonicity in L? for z.
We claim that

I 1
Mo(t’)—Mg(O)—FZ/O /(zi+1/z2)(t”)gb'(x’—1/t"—|—y0)dx’ dt" < ﬁefﬁyo/w. (A.9)

Indeed, we use formula (2.49) and (6.7) to estimate

d 24

)
dt,MO(t')</<—3 i—%V22+326)¢>'(x’—1/t’+y0).

We claim that the non-linear term(!”) is controllable up to an exponentially small term

after integration in time. Indeed, first recall from [26, Lemma 6] and (6.7) that, for all
vEH', a>0 and bER,

/1\2
I 2 sy S0l [ 2 [ 5) (aa0)

Sl oo ([ 200 [20). a)

2
(/ Q2> < do.
2|y|>ao
On the one hand, by (A.11),

/ 289/ (a' —vt' +y0)
|2/ =z (t")|>a0

< ||Z||2L2(\xuxz(t')|>a0) HZQ¢/($/—Vt'+yo)1/2||%oo(|xuxz(tf)|>ao)

S ||Z||i2(\;c’—;cz(t/)|>ag) /(Z§+V22)¢/($/—Vt'+yo)-

Fix ag>1 such that

Since

e / Q2y) dy+ / £2 < 5o +5(a),

Az () |y|>ao

we obtain, for §y small enough and « small enough,
/ 29 (¢ —vt'+y0) S (Jo+0(e)) /(Z§+VZ2)¢/($'*Vt'+yo)
|2/ —z. (t')]|>a0

1
< 1 /(zi+yz2)¢'(m’—vt’+y0).

(17) Which has the wrong sign.
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On the other hand, the modulation equation (2.29) and the upper bound on scaling

(A.4) ensure that

1 (z2)s - 14+6(ag) _ 1
(xz)tzg X, 2 \2 2z (A~12)

9
z

ot

and thus in particular
z.(t) = .(0)+ 5t > f5t' +vt'. (A.13)

We then estimate, from Sobolev’s inequality,
6 < 2 4 < 1 < /
12ze S =l 2Nz S 55 S (22)e(t),
z
and obtain, for all yg>ay,

/ 20 (&' =t +yo) S ()¢ () |0 (&' =1t +90) | Lo (jor —. (1) | <a0)
o'~ (') | <ao

({L’Z)t(t/)e_\/’j(xz (t/)—ao—yt’_l,_yo)/lo

AN N

(2,) (e~ V7e=(t')/100=/7yo /10,

In conclusion, we have the L? motonicity formula: for all ¢ €0, ),

d 1 /
M)+ 7 [0 @ vt o) do’ S (et ) V710,

and by integration between 0 and ¢’ using that x,(0)=0, for all ¢'€[0,T),

1"
Mo(t)+5 / /(zg+uz2)(t")¢'(a:’—yt'+yo) do! dt” < MO(O)—i—\C}e‘ﬁyO/lo.
0 1%

Step 2. Monotonicity in L? for z. Proof of (A.7).

We now rewrite the monotonicity (A.9) using the decomposition (A.2). We compute
My(t') = / 2t 1) p(a' —vt' +yo) da’
=/(szw)(y)ﬂz(y,t’))2¢(/\z(t’)y+xz(t')—l/t'+yo)dydt’

= [ QW)= )+ [ (2ot + o)

+2 / sz(t’)gz(tl)¢(Az (tl)y+xz(t/) _Vt/+y0) dy dt.
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We estimate, using the lower bound (A.13),

[ @Ry o0l -t +30)
= [ QNP Q) [ 30 PP Wy a6) =1 ) +OfeVP10)
= [ Q42 P.Q)+O( YO ()

where we have used that b? [ P2x7=0(b*>""). Now, by Holder’s inequality,

2. (¢ / - ()X, PO (' g+ (') — vt + o)

Sh()02 [ IO+ (t) -t o) +0.(6) S [ P,
< b, ()72 / 2t 2" ) (' — vt +yo) da’ +b, (1) B7)/2, (A.14)
We now insert these estimates into (A.9) and use, from (A.4) and the definition of 6,
[b:(t)] < 0-, (A.15)

and thus derive from the initialization (A.3) the bound (note that y=3), for all ' €[0, T%),

t/
/gz(tl,l‘/)d)(:ﬂ/fl/turyo) dl’Jr/ /(Zi+VZ2)(t/I)¢/(‘T/71/t//+y0) da’ dt”
0 (A.16)
SO+ [ 20,0000 +0) da 4V

Reinserting this bound into (A.14) and (A.9), keeping track of the b, powers now yields
(A.7).

Step 3. Energy monotonicity for z.
We claim the energy monotonicity

Fo(t) / / Loy tV2}) ¢<i($'—l/t”+yo)> dxz’ dt”
1 5/4
S (92/8+/g2(t0)¢(x’+y0)dm/+ﬁ6_ﬁyo/1o> .

Indeed we estimate, from formula (2.50) and (6.7),

C;Eo(t’)i/((zm+z5)2+223x102 z +V<z ;z6>)¢’(i(x'vt’+yo)>
3
+<i) /z§¢”’<i(x’—ut’+yo)) (A.18)
5 5
<— 4/(2 2 +22z—§z —102%z )¢’<4(w’—vt/+yo)>~

(A.17)
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We need to treat the non-linear terms. We claim that

T,
/ /z4zz¢'(5(x/1/t'+y0)) da’ dt’
0 4
<dp /Tz/(z2 +v22)¢’ é(m’—uturyo) dz’dt’+iefﬁy°/8 (A.19)
~ 0 T T 4 \/;

T. 5
+/ /z6¢’(4(x’—ut’+y0)> dx’ dt’
0

for some small enough §y >0, and

T, 1 5/4
[ [0 (G- ) av < (0254 [ eota’ +uphda'+ ey )
0 4 vz
(A.20)
Integrating (A.18) in time and inserting (A.19) and (A.20) yields (A.17).

Proof of (A.19). For a;>0 large enough, we have(!®)

1 2 €T 1 —92 A ’ 1
dr < ar/A:(t) < <
AZ(T) /|w|>a1(Q) <>\z(t’)> eem© ~ap

and thus

1 T
25 Bt [ @2 (55 ) st
/wxz(t’)|>a1 |z—z.(t")|>a1 /\g(t/) |z|>aq )\Z(t/) 0

where we used the smallness in the H! bound (A.5).

‘We now write

5 5
/ z4z§¢’<4(x'—ut’+y0)> SJ/ (ZQZ;L.—l—zG)qb'<4(x’—yt’+yo)>,
|[z—z.(t)|>a1 lz—z. (t)|>a1

and need only treat the first term according to the expected bound (A.19). We estimate

the outer integral by using the localized Gagliardo—Nirenberg inequality (A.11) and the
outer smallness by (A.21):

5
/ 222;1(;5’ <4(x’yt’+y0))
lz—z,(t)|>a1

212 (St 4

2
<

~

121172
L= (le—z.(t')|>a1)

)
Sl o [Catvdd (G -vt4m)

soo [l (Fa vt )

(18) Using that z2e~* <1 for 0.
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The inner integral is estimated by Sobolev’s inequality,

1
/2425 Slzlzllzelze S N2llZzllzllz: S 5
z

and hence, using the structure of ¢ and (A.13),

1
/ z4z§¢’<5(:ﬂ’—l/t’+yo)> S~ ¢/<5(x'—1/t'+y0)>
lz—x. (t)|<a1 4 ML) 4 Lo (lz—z. (t')|<ay)
< b e (t)/100-iye/5.
~AL)
We now claim that
1 —coxx(t') /Tz 1 —coxz(t') g4t 1
—_— = — A At < — A.22
CoAz(t/)e * 0 )\ﬁ(t’)e ~ep’ ( )
with ¢o=C+/v, which completes the proof of (A.19). O

Indeed, first observe, from the definition of 6, and the rough modulation equation
(2.29), that

O] = |y o

<
A2 ~

(AENCENER

1
A2
and thus, from (A.12) and integration by parts in time,

t/ t/ t/ t/
ie—cozz dTS/ (wz)te—coxz dr — [_ 1 e—coxz:| _i/ Q(Az)te—coxz dr
0 z 0

0 )\AZL )\g Co)\2 0 Co )\2
1 1 NN
<= |1— —cox(t') Z/ — 0%z g
{ @) F o o N

and (A.22) now follows from the a-priori smallness (A.6) and (6.6).

Proof of (A.20). Since ¢'(22)<(¢')%/4(z), (A.11) yields

/z%’(i(m’—yt’—&—y@)

<22 (@ — vt +y0) 3 / 2V (@t +y0)

7/4 1/4
S </ 22> (/ 22¢’($'Vt/+yo)> /(z§+1/22)¢/(x/,1/t/+y0)

1/4
< ( / z2¢>’<x’—ut'+yo>) [0 @t ).
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We now estimate
[ 2@ -vt s [ 206 vt )+ [ QRO OE 4. +0),
On the one hand, by (A.16) and ¢’ <¢,
/ 29/ (2~ vt +yo) SO+ / 2(0)¢ (o' +yo) do'+—= f eV,

On the other hand, from the space decoupling (A 13),

/Qb (t)y+a=(t)—vt' +y0) S b7 ( /Q2 (t")y+-(t)—vt'+y0)
< g5/t 4 L ~vIm0
~ 7z +\/;e
The space-time estimate (A.20) now follows from (A.16). O

Step 4. Energy monotonicity for Z. Proof of (A.8).

We now rewrite the monotonicity (A.17) using the decomposition (A.2). We compute

22Vt = [ (@ te 5@ e o SOt ) vt 4n) )

and develop this expression. The contribution of the @), term is estimated using F(Q)=0
and the separation in space (A.13), which implies that

i@+ [w(i(xz(t')wz(wut’+y0>)} dy
< b, |1 e~ Vra=(t')/20 ;—/vyo /10
S

The cross terms are treated using the orthogonality condition (2.20) and we obtain,

similarly to the proof of (2.28),
2X2(t") Eo(t')

2.+ [ |- 322 | o (GO @) -vt s Jan

+o{ﬁ V4104 (¢ )|2+|bz(t’)|17(/(62)§+/6§e|y|>}
We now divide by A, (#') and estimate, from (A.4),
ot | BP0 ([ [ e | s
and conclude, using (A.22) and (A.23), that
20t =-S5 P+ [ |22 o (G-t ) v

1e—ﬁyo/10>,

v

+0 (AQ(to)eg/4+

which, together with the monotonicity (A.17) and L? smallness of 2, yields (A.8). O
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A.2. Proof of Lemma 3.4

The proof of Lemma 3.4 is based on coercivity properties of the virial quadratic form

under suitable repulsivity properties. We recall this property in the following lemma.

LEMMA A.2. ([16, Proposition 4]) There exists u>0 such that, for all ve H'(R),

3/v§+/v25/Q4v2+20/yQ'Q302>u/v§+02;(/vyAQ>2i</vQ>2.

We now turn to the proof of Lemma 3.4, which is a simple consequence of Lemma A .2
using a standard localization argument (see for example the proof of [20, Proposition 9]).
Indeed, let ¢ be a smooth function such that

£ 1
g(y)_{o °r|y‘>;1’ and 0<¢<1 onR.
1 for [y| <35,

Set,
2(y)=e(y)Cp(y), where (ply)= c(%)

Lemma A.2 applied to € gives

, 1 > 1 .
(SM)/éf,Jr(lu)/éQ5/Q4é2+20/yQ’Q552>M(/éyAQ) u(/éQ).
(A.24)
On the one hand,

1 C
2 2,2 CYPURY 2/ 2\1 2 2
gr = €<+/€(C)—*/E(C)§/ 6+—/ g%,
/ ! / o N P i<s Y B2 Dyi<np
/52=/€2C1%</ &2,
ly|<B/4
and, by y@Q’<0 and then by the exponential decay of @ and Q’,
—5 / Q' +20 / yQ' Q%
<-5 / Q*&?+20 / yQ' Qe
lyl<B/4 ly|<B/4

<-5 / Q*%+20 / yQ' Q3% +CeB/16 / 2.
lyl<B/2 lyl<B/2 B/4<|y|<B/2
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Thus, for B large,

(37u)/§§+(17u)/5275/Q4§2+20/yQ’Q352

<(37u)/ e
lyl<B/4
C
+(1—u)/ 52—5/ Q4§2+20/ yQ’Q352+—2/ g
lyl<B/4 ly|<B/2 lyl<B/2 B2 Jiy<B/a

<(3—u)/ e§+<1—ﬁ)/ 52—5/ Q452+20/ yQ' Q3.
lyl<B/2 27 Jiyi<By2 lyl<B/2 ly|<B/2

On the other hand, by (2.20),

1/2
‘ / 6”1//\62‘ - ‘ / ecByAQ] - ] / 6(1<B)yAQ‘ < eB/0 < / 526yl/2) ,

and similarly for [ £Q. Inserted in (A.24), these estimates finish the proof of Lemma A.2.
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