Acta Math., 211 (2013), 315-382
DOI: 10.1007/s11511-013-0106-x
© 2013 by Institut Mittag-Leffler. All rights reserved

p-adic logarithmic forms and a problem of Erdos

by

KunNru1l Yu

Hong Kong University of Science and Technology
Hong Kong, People’s Republic of China

Dedicated to Prof. Gisbert Wiistholz on the occasion of his 61st birthday.

1. Introduction
1.1. Introduction and the main theorem

For any meZ let P(m) denote the greatest prime divisor of m with the convention that
P(m)=1 when me{1,0,—1}. By the problem of Erdds in the title of the present paper
we mean his conjecture from 1965 that
pP@2"-1)
n

— 00 asn—oo

(see Erdés [10]) and its far-reaching generalization to Lucas and Lehmer numbers. We
briefly recall their definition in the sequel.
Let o and B be complex numbers such that a+8 and af are non-zero coprime
rational integers and such that «/8 is not a root of unity. The rational integers
n_pn
="

with n>0 are called Lucas numbers, see [15] published in 1876 and [16] published in

1878. The divisibility properties of numbers of such a form have been studied by Euler,
Lagrange, Gauss, Dirichlet and others (see [9, Chapter XVII]).

Similarly, let o and 3 be complex numbers such that (a+3)? and af3 are non-zero
coprime rational integers and such that «/8 is not a root of unity. We define for n>0

the rational integers

n n
a"—p
for n odd,
- a—
Un = am _/Bn
for n even,
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known as Lehmer numbers. In 1930 Lehmer [13] extended the theory of Lucas numbers
to this more general setting. Note that Lucas numbers are also Lehmer numbers up to a
multiplicative factor a+8 when n is even. For a detailed history of Lucas and Lehmer
numbers we refer to [25].

The generalization of the conjecture of Erddés to Lucas numbers u, and Lehmer

P(uy P(tn
(u )—>oo and ()
n n

numbers ,, is that

respectively, as n—oo.

Since the 1970s one of the big goals of Stewart has been to solve the problem of
Erdés. Several partial results in this direction were obtained, see Stewart [23], [24] and
especially Shorey and Stewart [22], where the lower bounds for P(u,) and P(%,) hold
only for n belonging to a certain very restricted subset of natural numbers. They used
p-adic logarithmic forms and had to rely on the work of van der Poorten [20] on lower
bounds for logarithmic forms in the p-adic case. This work contains, as it turned out
later, some inaccuracies, as were pointed out in Yu [34] and [39], and this made their
proof not completely rigorous and it was necessary to revise van der Poorten’s paper and
to remove the inaccuracies so that their result in [22] could be fully justified. Also it
became clear through their work that for getting progress especially toward the problem
of Erdés the bounds for p-adic logarithmic forms had to be sharpened considerably.

In a sequence of papers (Yu [34]-[36]) on lower bounds for p-adic logarithmic forms
the author was able to remove, with the help of the Vahlen—Capelli theorem and some
p-adic devices, the problem in [20] and to sharpen the bounds substantially. Using the
very subtle approach of Baker and Wiistholz in the Archimedean case in their 1993 paper
[6], the author could then get a further significant refinement upon the results in [36]
in analogy to their result. This was published in Yu [37] and [38] and used by Stewart
and Yu [26] to deal with the abc-conjecture. Stimulated by the work of Matveev [18],
[19] some further refinements were made possible in Yu [40] on the basis of the work of
Loher and Masser [14] on counting points of bounded height. This was, as it turned out,
crucial for attacking the problem of Erdss.

During Stewart’s visit to the Hong Kong University of Science and Technology in
2005 we worked on improvements upon our result on the abc-conjecture in [26], using the
new bound for p-adic logarithmic forms in [40]. In this discussion, he discovered a nice
device, which we refer to as Stewart’s device in the present paper and which we describe
below. The problem came up how to estimate from above the p-adic order of numbers of
the shape #°—1 with p a prime ideal, lying above the rational prime p, 6 a p-adic unit in
K, and b a rational integer. The question can be transformed into, in the number field

K, a problem of a p-adic logarithmic form with one term only. The best known result
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at the time in [40] was unfortunately insufficient to deal with the problem if one treated
0°—1 directly. Stewart’s idea was to transform the p-adic logarithmic form with one
term into a p-adic logarithmic form with many terms and then to apply [40, Theorem 1].
This looks odd at the first glance but he was able to make it work. We briefly sketch
the underlying idea. He artificially introduces k—1 prime numbers po, ..., pi, prime to p
(if 6=a/f with a and 8 in the definition of Lucas or Lehmer numbers, then he requires
D2, ..., Pk to be prime to paf), satisfying the following conditions:

(i) The numbers 01, po, ..., pxr with §=01ps ... p. are multiplicatively independent. If
0=a/f, then this is the case indeed.

(ii) One chooses p; as small as possible. In virtue of the prime number theorem with
error term (see Rosser and Schoenfeld [21]), log py, is basically of the size log k.

(iii) The quantity & is chosen as log p/log log p multiplied by a very carefully deter-
mined constant.

When he applied [40, Theorem 1] to 65p5 ... p? —1 instead of #°—1 directly, he gained
in the upper bound for the p-adic order of §°—1 a factor of the shape

oxn [ — clogp
P loglog p

as needed. In retrospect, [40, Theorem 1] and Stewart’s device along with his strategy
were sufficient to solve the problem of Erdés in the case when «/f is rational, thereby
establishing the conjecture of Erdds from 1965 (see §9 for details). After his visit to
HKUST, he found out that the bottleneck for completely solving the problem of Erdés
is the dependence on the parameter p in the estimates for p-adic logarithmic forms.
According to [40], in the case when [Q(a/8):Q]=2 and p(>2) is inert in Q(«/f3) the
dependence is of size p?. Stewart knew that if one could reduce p? to p, one would be
able to solve the problem of Erdds completely. He was very excited and started to urge
the author to try to get the improvement needed. The author knew that it would be a
very tedious and demanding work. Nevertheless the author agreed to deliver the required
improvement to help Stewart to solve the problem of Erdds. The present work is the
result of the author’s effort. On the basis of this work Stewart was able to pass through
the bottleneck when [Q(a/8):Q]=2 and p (>2) is inert in Q(«/B), thereby solving the
problem of Erdés also for the case when [Q(«/8):Q]=2, whence solving the problem
completely (see [25]).

Since 2005 the author has re-examined [40] thoroughly and has achieved in the
present paper, through very detailed work, three refinements upon [40]:

(1) The appeal to the Vahlen—Capelli theorem as in [40] and in [35]-[38] has been
removed from the p-adic theory of logarithmic forms. It has the effect that a quadratic

extension of the ground field (when p>2) can be avoided, whence it leads to a gain of
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a factor 2™ in applications. Stewart has made substantial use of this refinement in [25].
The author is very confident that this refinement together with the streamlining of the
proof carried through the present paper will have further value in the p-adic theory of
logarithmic forms and in applications;

(2) The author has succeeded in establishing the relevant refinement in the depen-
dence on the parameter p in the estimates for p-adic logarithmic forms. This is the key
for getting the reduction of p? to p in the case when [Q(a/8):Q]=2 and p (>2) is inert
in Q(a/B);

(3) As a by-product the author has got a nice improvement on the numerical con-
stants in the theorems.

The refinements (1) and (2) will be explained in more detail after the statement of
the main theorem in §1.1. The improvement (3) will be discussed at the end of §1.3.

Throughout this paper, [40] will be referred to frequently; for convenience, we shall
refer to formulas, theorems, sections and so on in [40] by adjoining a &, e.g. (1.5)%, §2%
and Lemma 5.1%.

We now start to state our main theorem. Let «q, ..., o, be non-zero algebraic num-
bers and K be a number field containing s, ..., &, with d=[K:Q]. Denote by p a prime
ideal of the ring Ok of algebraic integers in K, lying above the prime number p, by e,
the ramification index of p, and by f, the residue class degree of p. For a€ K, a#0, we
write ordya for the exponent to which p divides the principal fractional ideal generated
by o in K and we put ord, 0=co. An element o of K is said to be a p-adic unit if

ord, a=0; « is called a p-adic integer if ord, «>0. We shall estimate ord,(=—1) for

E=ab .. al, (1.1)

with by, ..., b, being rational integers and Z#£1.

Write K, for the completion of K with respect to the exponential valuation ordy;
and the completion of ord, will be denoted again by ord,. Denote by K the residue class
field of K at p. Now let Q, be an algebraic closure of Q, and C, be the completion of
@p with respect to the valuation of @p, which is the unique extension of the valuation
|-]p of Qp. Signify by ||, the valuation on C,, and by ord, the exponential valuation
on C,, with the convention that ord, 0=cc. Then |y|,=p~ 7 for all y€C,. There
exists a Q-isomorphism # from K into @, such that K is value-isomorphic to Q,(¢(K)),
whence we can identify K, with Q,(¥(K)) (see Hasse [12, pp.298-302]). This gives

ord, y=epord,y for all ye K.
Let s be the rational integer determined by

P Hp—1) <2e, <p*(p—1). (1.2)
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If B isin K, and =1 (mod p), then the p-adic series BP”%:=exp(zlog BP”) converges
in the disk {z:|z|,<p”} (¥ will be given later by (2.1)) in C, which contains strictly the
unit disk (see [36, Lemma 1.1]).

One of the basic tools in the theory of logarithmic forms is the Kummer descent
introduced by Baker and Stark [5]. For this one needs to choose a prime number ¢,

which should be different from p in the p-adic case. The optimal choice for g is

92, ifp>2,
q—{ p (1.3)

3, ifp=2.

Let p(K) and p(kK,) denote the groups of roots of unity in K and K,, respectively,
and let ¢" and ¢* signify the order of the g-primary component of u(K) and p(K,),

respectively. We fix a generator
ap = Cqu (14)

of the g-primary component of p(K), where and in the sequel ¢, =e*™/™ for meZxy.
The classical Kummer theory requires that the field K contains (,. This is certainly true

if g=2 (i.e. p>2), since then {;=—1. Therefore we impose
GEK, ifq=3(ie. p=2). (1.5)

For a multiplicatively independent set a={ax, ..., an} of p-adic units in K we now
introduce a quantity 6(a). We apply the lattice saturation procedure described in §5%
as follows. From a we introduce a g-saturated lattice M=Mg (a1, ..., a, )N(Z[1/q])",

where

MK(al, ...,an) = { (8?1, ceey STTL) 18, €4, tE€Z~o and a1’ .o’ € Kt}
is the Loher-Masser lattice, see [14] (or §2%*). We fix a basis {bi,...,b,} of M and
introduce a set of p-adic units {11,...,9,} in K corresponding to this basis (see §5%,
replacing {a},...,al.} by {a1,...,an} and {61,...,0,.} by {91,...,9,}). We remark that
{1, ..., 9, } has the property that ﬁEM:Zn] (1<i<n) is in the subgroup (ag, a1, ..., @) of

K* and that the Kummer condition
K (g0}, . 01/0) K] = g

is satisfied. Let @g, 1, ..., ¥, be the images of ag, 91, ..., 9, under the residue class map
at p from the ring of p-adic integers in K onto the residue class field K at p. The
cardinality |(@g, 91, ...,9,)| of the subgroup (ag,d1,...,9,) of the multiplicative group
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K* (of K) depends on a only; it is independent of the choice of basis {b1,...,b,} of M
(see §5%). Thus we can define an index 6(a) by

plr—1 :{ oo, D1, .., Un)|,  ifn>2, (1.6)
5(a) ()], if n=1.
It is clear that if n>2 and the Kummer condition
[K(a)/% 0779, ... al/0): K] = g (1.7)
is satisfied then i1
TG): [{ag, @y, ..., Qn)|. (1.8)

We now assume that «y, ..., a,, in (1.1) are multiplicatively independent p-adic units
in K and write a={ay, ..., }. For any x>0, let log*z=logmax{z,e}. We introduce
the terms
LN (n+1)"+ dnt2og*d

n! q“fplogp

fo
p e A
Xmaxy ————————-, — » max{log e’ (n+1)d, ey, fp logp},
{5(a)(fplogp)"+1 n} {loge*(n+1)d, ey, fy log p}

c? (n+1)"*tt dnt2log*d
Co(n,d,p,a) = — (aPep*)"
2(md ) = 2 ( (n=1! ¢"(fylogp)?

fP en

X max{ %, —(fylogp)"** } max{log e*(n+1)d, ey, f, logp},
nn

Cl(n7d7p7a)zc(1)(a(1)) (19)

n

(1.10)

Gl(n,d):(n+1)(a(()1)n+a§1)+log(aél)n+aé1))+logd), (1.11)

Ga(n,d) = (n+1)(aPn+a? +log(n+1)+log d), (1.12)

which will appear in the main theorem. The numerical values of a®, ¢(®), aéi), agi)
(i=1,2) and aél) will be given in §1.3.

Throughout this paper we shall use the notation of heights introduced in [6, §2].

Thus let ho(«) denote the absolute logarithmic Weil height of an algebraic number «

with the minimal polynomial ag szl(x—a(j )) over Z, where ap>0. Then

s
1 .
ho(a):6<logao+ E logmax{1,|a(3)|}>.

Jj=1

We further introduce, for i=1, 2,

G) _ |0y |, .
h —max{log<w(d) 1I£ja<xn<h0(0£j)+ho(0[n) Jlog B, G;(n,d), (n+1) fylogp .
(1.13)
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Here we note that aq, ..., a,, are not roots of unity, since they are multiplicatively inde-

pendent, whence hg(a;)#0, 1<i<n, and the terms B°* and w(d) are given by

B :1I<njl£n|bj‘ (1.14)

b;j#0
and
1 .
m, lfd>17
(o)
w(d) = & (1.15)
log2-log3
———— ifd=1,
log 6

respectively. With the above notation we now state our main theorem.
MAIN THEOREM. Assume that n>2 and that (1.5) holds. Suppose further that

aq, ..., ay are multiplicatively independent elements of K, by, ..., b, are in Z, not all zero,
and that they satisfy

ordp a; =0 (1<j<n), (1.16)
ord, by, <ord, b, (1<j<n). (1.17)

Then we have
ord,(E—1) < IEI}IIQ(CZ‘(TL, d,p, ) Vho(ar) ... ho(a). (1.18)

)

Comparing our main theorem with the main theorem®, we observe that (1.5)* has
been relaxed to (1.5). Namely, now we may simply take K as our ground field when p>2,
whereas in [40] and in [36]-[38] if the first condition in (1.5)%*, that is, ord,(p’» —1)=1
or (4€K when ¢=2 (i.e. p>2), does not hold, a quadratic extension of K obtained
by adjoining (4 to K is necessary. The underlying cause of this is that the author has
succeeded in removing the appeal to the Vahlen—Capelli theorem as in [40] and in [35]-[38]
from the theory of p-adic logarithmic forms. This is the first refinement.

Moreover, neglecting the difference between p/» and p/» —1, the cardinality |K|=p/>,
as a factor in the upper bounds for ord,(=—1) in [35]-[38] and [40], has been reduced to
the cardinality of a subgroup of K*, i.e., the quantity (1.6). This is the second refinement.

We now explain how we achieve the two refinements. Recall the definition of ¢* and
q" between (1.3) and (1.4). Set
plr—1

and G;= .
qH

fp_l
Gy="2
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By Hasse [12, p. 220], we see that ¢“|(p’» —1) and pu=ord,(p’» —1), whence p>u. In [40],
we use, in the Ith inductive step, (8.1)* (iii), i.e.,

didi+..4d A =D (mod Gy) for all Ae AL,

where A is a subset of Z"; accordingly, in the study of fractional points s/q (with s€Z
and (s,q)=1) for the Kummer descent, we demand the irreducibility of the polynomial
"1 over K(Gi/q, ...,9,1«/(1), for which we appeal to the Vahlen—Capelli theorem,

whence we are forced to impose (1.5)% on K. In contrast to [40], in the present paper,

x4

we use (iii) of (5.1), i.e.,
didi+..4d A =D (mod Gy) for all Ae AL,

accordingly, in the Kummer descent, we demand the irreducibility of the polynomial
x?—qg over K, which is, a priori, guaranteed by (1.4). Therefore we can avoid the
Vahlen-Capelli theorem in the p-adic theory of logarithmic forms and relax (1.5)* to
(1.5). For more details, see the proof of Lemma 5.4; for the history of the introduction
of the Vahlen—Capelli theorem into the p-adic theory of logarithmic forms, see [39].
Furthermore, to create AY) for I=0 (the initial inductive step), in the construction of

auxiliary functions using Siegel’s lemma, we classify the set

dl dr ’
et A (M, M) EA
Ryt sy e O 4}
by the congruence relation modulo Gg/d(a’), where §(a’)=ged (Go, dy, ...,d,) and A’ is
a certain finite subset of Z". By Dirichlet’s pigeonhole principle, there exist e1 €Z and a

subset A CA’ with cardinality |A”|>|A’|/(Go/6(a’)) such that

@y W/\Tzcﬁ (mod 5?03)) for all (A1, ..., Ar) €A,

Thus A© is created and (5.1) (iii) for =0 is satisfied with £(©):=5(a’)e; (see (4.19) (iii)).
Now the quantity Go/d(a’) comes into play through Siegel’s lemma (here we use [6,
Lemma 1]) and d(a’) is switched into d(a) (see (1.6)) by the basic hypothesis in §2.
Finally pf*/8(a) appears as a factor of the upper bound for ord,(Z—1) in our main
theorem, in place of pf* in the main theorem®. For more details, see §4. Note that
some difficulty in the estimation from below arises due to the introduction of §(a’) and
d(a). We overcome this difficulty by taking the first maximum in (3.4) (see, for instance,
the proof of (3.23)); consequently, we take the first maximum in (1.9) and (1.10), which

appear in our main theorem.
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1.2. Variants for applications

Let a={aq,...,an},
I'=(a) and r=rankl. (1.19)

If r>1 we write b for a multiplicatively independent subset of a with cardinality |b|= r.

For Theorems 1 and 2 below we define, for a€ K,

A () :max{ho(a), W}, (1.20)
where the value of s will be given in §1.3. Let
Q) =[] ho()- ] »"(a), 2=minQ(b) (1.21)
ach aca\b
and
Cy(n,d,p,b)=(n+1)C1(n,d,p,b), (1.22)

where Ci(n,d,p,b) is given by (1.9) with a replaced by b. We note that here §(b) is
defined by (1.6) with a replaced by b. Let B be a real number satisfying

B > max{|b1], ..., |bn]|, 3} (1.23)
THEOREM 1. Let r>1. Suppose that (1.5) and (1.16) hold. If E#1, then
ord, (E2—1) < C{(n,d,p, b)Qmax{log B, f, log p}, (1.24)

where b satisfies Q(b)=Q. Furthermore, if r=1 then the right-hand side of (1.24) can
be multiplied by ﬁ.

For Theorem 2 below we define, for a€ K,

QI E max{ho(a), maX{?Z;;‘:ngp’ i }, (1.25)

where the value of s, will be given in §1.3. Define Q(b) and Q by (1.21) with A (a)
given by (1.25). Set
C3(n,d,p,b) = (n+1)Ca(n,d; p,b), (1.26)

where Cs(n,d,p,b) is given by (1.10) with a replaced by b. Here, again, §(b) is defined
by (1.6) with a replaced by b. Let B satisfy (1.23).

THEOREM 2. Let r>1. Suppose that (1.5) and (1.16) hold. If E#1, then
ordy,(E—1) < C5(n,d,p, b)) max{log B, f, logp}, (1.27)

where b satisfies Q(b)=Q. Furthermore, if r=1 then the right-hand side of (1.27) can
be multiplied by ﬁ.
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1.3. Numerical values

We consider the following cases:
(I) p=3, including sub-cases (I.1) d>1 and (1.2) d=1;

IT) p=>5 with e, >2;

IV) p>7 with e, >2;

(
(
(
(V) p

IIT) p>5 with ey,=1, including sub-cases (III.1) d>1 and (II1.2) d=

We give the values of a(¥), »;, a (l) (2—1 2) by (1.28) and (1.29), the values of ¢(*),
agz) (1=1,2) by (1.30) and the Values of ay (1) by (1.31) below:

(14,18, 2+log 14),

(a(l) A1, aél)) -

(a(2) J‘f2):{ (7a 25)a ifp>27 a(2)_
’ (13,48), if p=2.

(D, a{V, @ ()=

NOM {
alV) =

According to the definition of cases (I)-(V), (1.36)* and (1.37)%

oV =

0

in case (V).

2+log21, in case (I),

(939, 4.03,1438,1.94), in case
(636,4.79, 648,2.76), in case
(505, 3.44,690,0.71), in case
—1
(1794, 471, 495]’—2 : 1.99), in case
p—

—1
(1790, 5.84, 557L, 3.32) ,
p—2

(2680,5.12, 2418, 3.58),
(206, 2.52, 406, 1.48),

),

a§1)+10g 2,

16,

—1
P
p—2

32,

in cases (1.2) and (IIL.2),

in the remaining cases.

in cases (I), (II) and (IV),

in case (III),

in case (V),

2+log 35, in case (II),
2+log7,  in cases (IIT) and (IV
2+log52, in case (V).

— —~ o~ o~

in cases (I), (II) and (IV
-1
(7p 5 9 5 24—log7>7 in case (III),

(26,34, 2+10g 26),

L1),
1.2),
1),

I1L.1),

in case (II1.2),

in case (IV),

in case (V),

give

),

),

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)
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and

if > 2
a<2>={8’ tp=2 (1.33)

16, if p=2.
Comparing (1.9) and (1.10) with (1.6)* and (1.7)%, and (1.28) and (1.29) with (1.32)

and (1.33), one can see the numerical refinements.

1.4. Outline of the paper

Obviously the main theorem is equivalent to the following two theorems.

THEOREM 1. Under the hypotheses of the main theorem, we have
ord, (E—1) < C1(n,d, p, a)ho(r) ... ho(an)h Y.

THEOREM II. Under the hypotheses of the main theorem, we have
ordy(E—1) < Ca(n, d, p, a)ho(r) ... ho(an)h Y.

In §82—7 below, we give a proof of Theorem I.

Then we deduce Theorem 1 from Theorem I in §8. We have also carefully worked
out a proof of Theorem II, which implies Theorem 2 and which is obtained following
the same line of argumentation as in Part IT of [40] and utilizing the three refinements
upon [40] explained in §1.1. In order to reduce the size of the present paper, we have
skipped the proofs of Theorems II and 2. We remark further that one can deduce from
Theorem I (resp. Theorem II) a theorem, which is an improvement upon Theorem 2%
(resp. Theorem 4*), following the argumentation in §12*. Finally, in §9 we give further
remarks on the solution of the problem of Erdés, in order to be more streamlined with

respect to the p-adic theory of logarithmic forms.

2. Basic hypothesis

From now on till the end of this paper, we always assume (1.5). Let 3 be defined by
(1.2), ¢ by (1.3), u and ag by (1.4). Set ¥ and 6 to be

-2
p—l, if p>5 with e, =1, . .
9={", and 0= (1+1026) V. (2.1)
p . 2n
%0 otherwise
e

k=3
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Put
7 .
4> 1fp> 2a
cp=1¢" (2.2)
2 ifp=2.
Let aq,...,a, and by, ..., b, be given as in the main theorem. Define
omi
lozg, l;=loglaj|+iarga;, argaje(—mm (1<j<n), (2.3)

and

Our basic hypothesis is that there exist linear forms Lg, L1, ..., L, in 2q, 21, ..., 2, with
coefficients in Z and positive real numbers o1, ..., 0, having the following properties:

(i) Lo==zo; Lo, L1, ..., L, are linearly independent; and
L=ByLyo+Bi1L1+...+B,L, (2.5)

for some rationals By, By, ..., B, with B, #0.
(ii) We have

ho(a)) <o; (1<i<r) (2.6)
for
of=eli with I, =Li(lo, ..., In) (0<i<r), (2.7)
and
> OLi ho(aj) <oy (1<i<r). (2.8)
" 8Zj
j=1
(iii) o1, ..., 0, satisfy
0'1...0T<¢1(T)h0(a1)...ho(an)7 (29)
where
p* " max{p/e/5(a)(fy logp)" T, e /n"}
= — 1)d 2.1
)= (eead ) e e ey 10

with o' ={af,...,al}.

Note that (2.8) will be used for the estimation of |v;| (see (4.23)) and |'yj(.I)| (see
(5.6)) from above. For more details see p.220%, line 9.

We note that I{=Iy, af=cap and that o, ..., o are multiplicatively independent, since

15,15, ..., 1. are linearly independent. Further, we see that of, ..., o/ are in K and
ordya; =0 (1<i<r). (2.11)

Thus d(a’) is well defined in the sense of (1.6). For r=n, a set of linear forms and a set
of positive real numbers as above exist, e.g., L;=2; (0<i<n) and o;=ho(a;) (1<i<n).

We now take r as the least integer for which two such sets exist.



p-ADIC LOGARITHMIC FORMS AND A PROBLEM OF ERDOS 327

LEMMA 2.1. If r=1, then Theorem 1 holds.

Before proving Lemma 2.1, we remark that [35, Lemma 1.4] can be restated as
follows. Suppose that « is a p-adic unit in a number field K of degree d and beZ\{0}.
If a’#1, then

ordy(a’—1) <

e (20 1@ (1455 Jepho(@)).

where |(@)| denotes the cardinality of (@) as a subgroup of K*.

Proof. Note that B;£0. Write By=p1/q1, with p1,q1 €Z, (p1,q1)=1 and ¢; >0. By
(2.5), we have
q1L=q:1Bozo+p1Li.

Thus ¢1Bo€Z and p1|b; (1<j<n), whence |p;|<B°. Now
ordp(2—1) < 01‘dp((a11’1 afl")‘“qu -1)= ordp((all)plqu —1)

<

e (0820 B2/ (@) leghole),
where the second inequality is obtained by the above restated [35, Lemma 1.4]. Note
that log 2¢"“B°<2h() by (1.13). Now, by applying [14, Theorem 3] for a lower bound
of ho(ay) ... ho(ay), and by (2.6), (2.9) and (2.10), observing that |(a})|<p/r/é(a’) (by
(1.6)), Theorem I follows. O

By Lemma 2.1, we may assume that r>2 in our basic hypothesis from now on to
the end of §7.
Proposition 3.1%* will be applied to a polynomial P(Yp, ..., Y;) with differential op-

erators 01, ..., 0,_1 replaced by a new set as follows. We write

T

1
Z(bnaLi baLi>ai (1<j<n). (2.12)

1=
=1 8Zj jazn

iT B,
Now the linear independence of L, ..., L, implies that the matrix of coefficients of
01, ...,0pr_1 has rank r—1. It follows that this matrix has a non-singular square sub-
matrix of order r—1. Let S,,—1 be the symmetric group on {1,...,n—1}. Without loss of

generality, we may assume that

oL, _
"‘3zj

L.
ord,, det (b b; gz - ) = min ord,det
n/1<i,j<r

TESH_1

OL; 8Li)
bpn=———br (i o . (2.13
( 0zr (5 (3)8;;” 1<, j<r ( )

Thus 07,...,0_, are linearly independent over Q, and Proposition 3.1% holds with

07,...,0;_y in place of 01, ...,0r—1. Furthermore, 07 (r<j<n) are linear combinations
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of 07, ...,0;_; with coefficients in QNZ, , where Z, is the ring of p-adic integers. Note

that the asterisked operators can be written in the form

. ~~(, 0L,  OL;\, O
0 _Z<b”azj_bfazn>mayi' (2.14)

i=1

In §§3-7 below, we assume that the lattice saturation procedure described in §5%

has been applied to the set {a],...,al} in the basic hypothesis of this section.

3. Choices of parameters and numerical preparation for §§4—7

3.1. Choices of parameters

We introduce the parameters D;, j=—1,0,1, ..., r, for our auxiliary function (in §4 below),
and S and T for the range of zeros and the multiplicity of zeros.

Let h be given by (1.13) for i=1 with G;(n,d) replaced by go=go(r,d):=G1(r,d)
and (n+1)f, logp replaced by (r+1)f,logp. Let g be given by (1.3), u by (1.4), v by
(5.4)%, ¢y by (2.2) and ¢, ¢1, c3 and ¢4 be given by Table 3.1 (in §3.3 below). Put

S csq(r+1)d(h+vlogq)
fplogp
q"h max{gi, ey, fy log p}
h+vlog q)(max{g1, ey, fp logp}+rlogq)’

(3.1)

7=1 (3.2)

where g1 =g (r,d)=loge*(r+1)d (see also (3.16) in §3.3). Note that ~, as a function of
v, increases for v>0, since h>go=G1(r,d)>39 (by (1.11) and r>2) and g; >5. So

1<y<¢”. (3.3)

Set

v 1 P\ ri(r+1)"
D= s (1+¢) (2+92>006104 <62qep€> 0

o (34)
e Pt

X dr+1(10g*d)01 ...or(max{g1, ep, fp logp}+vlogq),

where € and g will be given by (3.16), » by (1.2), 6 by (2.1), and r, a’={o], ..., o},
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0(a’) and o1, ..., 0, are those in the basic hypothesis (see §2),

1D
__ar+DD .
c16 ep fp logp
Doy =h+vlogg—1, D_y=|D_], (3.6)
~ 1 1 SD 1 _
Dyg= —— i , Doy=1|Dy], 3.7
07 ¢iea (D_1+1) d max{gi, ep, fp logp}+vlogq 0= [Do] (3.7)
D
Di=————, 1<i<r (3.8)

;=
cicorp*do;’

3.2. Proposition 3.1

Set .
q’r‘

N ep fologp
ProroSITION 3.1. Under the hypotheses of Theorem 1, we have

SD. (3.9)

ord,(E—1)<U.
In §84-7, we shall prove Proposition 3.1.
LEMMA 3.2. Proposition 3.1 implies Theorem 1.
Proof. On noting (2.1), (3.1), (3.2) and (3.4), Proposition 3.1 gives

fO( 2 P ) " (r4+1)" d"log"d

14+10-26 0 d u i lo
v e fologp (3.10)
ple e
xmax{ 5(@)(Jy logp) 1 rT} max{gi,ep, fplogp}oi ...onh,
where )
fo=(14+10"2%)(14¢) <2+g>coclcgc4q2. (3.11)
2

Recall aV and ¢V given in §1.3. By Table 3.2 below, we have fo<c). From (1.2),
(1.3), (2.1) and (2.2) we get

2,3\
(62‘”’ ) < (1+10726)gM",
epl

On applying (2.9) and (2.10) and observing that

,rT 27‘—1’Lnn

Theorem I follows from (3.10). O
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C5 99

Case co c1 c3 C4
r=2 ref3,7 [ r=8 r=2 r>3

(I.1) 2.66 | 1.449 1.4647 | 20.74 0.5377 0.55 0.56 1.1062 1.0666

107 107

(1.2) 1.9 1.4494 | 1.3852 | 20.8 0.538 0.551 0.56 103 103
(I1) 2.74 | 1.4372 | 0.8412 | 19 0.53 0.54 0.55 1.10902 | 1.06794
(III.1) | 2.78 | 1.4341 | 2.992 18.7 0.528 0.536 0.55 1.1096 1.06993

107 107

(II1.2) | 2.6 1.432 3.26 18.2757 | 0.5267 0.534 0.55 103 103
Iv) 3 1.4441 | 3.849 20 0.5345 0.543 0.56 1.10134 | 1.06422

V) 2.5 2.5347 | 0.4757 3.765 0.753 0.78 0.827 | 1.10745 | 1.0658

Table 3.1. We have gg:% for r>8 in all cases.

3.3. Numerical preparation for §§4-7

Here we make a detour. The reader may skip this subsection and continue to §4. We
shall prepare most inequalities, which are needed in the theoretical argumentation in
§84-7, and the validity of which is reduced to numerical verifications in each of the cases
(I)—(V) (see §1.3), using PARI/GP CALCULATOR V.2.3.0 (shortened as PARI/GP).
We hope, in this way, we can make the proof in §§4-7 neater and verifiable from the very
bottom.

We keep the notation introduced in §1, §2 and §5%. The values of co, c1, c3, ¢4 and
¢5 are given in Table 3.1 above. The definition of gg is given in (3.16).

Let co be given by (2.2), and

7,  in cases (I), (II) and (IV),
a*=q I, in case (III), (3.12)
2 in case (V).
Set
cs 58, ifd>2,
M= e e {11 ifd=1. (3.13)

Recall that s is defined by (1.2), ¢ and 6 by (2.1), and wg is the number of roots of
unity in K. Note that 8 satisfies
0<0<9, (3.14)

where 0=7/(1+10726), and J and 1 are given by Table 3.2 below.
We shall need

d -
—>q""'(q-1), (3.15)
p
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which is a consequence of the fact that p is unramified in Q({g4x).

We now define g; (0<5<12), g1, go1, €, ¢* and ¢; by the following set of formulas:

go=go(r,d)=G1(r,d), where G1(n,d) is defined by (1.11),
g1 =loge*(r+1)d,

391 .

_ 291 ifegr<y,
L) Toggyt T REST
it = 39

9L 1 ifr>8,

log ge—¢s

1

M, in cases (I), (II) and (V),
g = log p

c3q(r+1)%d, in cases (III) and (IV),

2 T (r+1)"
g3 = 5000104(0 nglf’a log p,

_q(r+1) gz { 1, in cases (1.2) and (III),

) fplogp gl_l, otherwise,
1
1+€:(1+r+ ),
294
- |t ) 3.16)
N log n—(r+1) :
ez q(r+1)g3
010491fp10gp’
r—1 .
) ( )(r—i—l) o 1 g3 L in cases (1.2) and (III),
=2coci e -
g61 0cr ¢ 9 P p g <g3> , otherwise,
g1
1 1 1 rle”
—o(1+=)(1+— ) —— "%
9 Q( 95)( gm)c’{“cgqp’“w;( r2r
_ 3q(r+1)gogs
fplogp ~
1 ged }) r log g3
= —(loggr+g1+maxilog =~ 0 | + ——— ,
gs g7< 297191 { gesh c3q(r+1)2 g3
1 logl d
1+M, if d>2,
g1 = 1 go log 6
og .
1+— | 1+log —————— fd=1
+go< +Oglog2-log3>’ ' ’
gQZmaX{gglv%}a
—1 .
r—1 go logp, in case (1.2),
=exp(—14+1071°) —————.
J1o p( ) q(r+1)cop* — otherwise,

r+1’
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G Y

g11= qucoch&;(a*) )2 9091,
1
Iy~ itd>2
gi2=1 297 gn
0, ifd=1.

Now we show how to get the upper bound for gg in Table 3.1 by an example: case
(I.1) with r=2. By considering d as a continuous variable with d>2 and analyzing
0go1/0d and 9%gg; /0d?, we see that

991(2, d) < ggl (2, 4113) < 110627

whence g9(2, d)<1.1062.
Let ¢ be given by Table 3.1, gg=go(r, d) in (3.16) and set

_ co(log™d)p'»
Co1 = pfpi—l’ (3.17)
3 1.2
Coz :Co(log*d){ 29 m Case.( )7 (318)
1, otherwise,
r,d
co3 = co3(r, d,p) = M' (3.19)
601—1
It is readily verified that
o3 < €035 (3.20)
where ¢g3=¢p3(r) is given by
2 3 4
max{gg(ga ), = g9(rrv ) , 99(T7 ) }7 in case (Il)7
cog—1 5gcolog3—1 cologd—1
107
103 in case (1.2),
i (12)
9 4
max{g;)(r, ), _ go(r, 3) 7 go(r, 4) }7 in case (II),
o (r) 7co—1 Fcolog3—1 ¢ologd—1
Co3\T) =
2 3
max{ 920(711), 009190(;73_)1 }, in cases (III.1) and (IV),
1
92(5’11)7 in case (I11.2),
2 4
max{‘(ig(r’ )’ go(r;4) }’ in case (V).
§CO_1 cologd—1

(3.21)
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Case |[p=>|d>|e> | iz [P |ed | 9 %"S wr> | fo<
(L) | 3* | 2 1 1 3 3 |3 1 2 939
T2 | 3 | 1* | 1 | 1 3 | 318t 2" 636
I | 5" | 2 2 1 5 512 1 2 505
(ITL.1) | 5 2 1 1 IR 1 1 2 1794
(I11.2) | 5 1 1* 1* 1* 3 1 1 2% 1790
vy [ 7 | 2 2 1 1 : |2 1 2 2680
(V) | 2° | 2 1 2 4 2 |2 1 6 206

Table 3.2. Here * means the exact equality

(Note that d is even in case (V) by (1.5).) In the computation, we shall use that
Coa(r) <co3(3) (B3<r<7) and éo3(r) <éos3(8) (r=38).

It can be verified that Table 3.2 above is true, where the values of e,9 and 1 make
(3.14) valid, and the column of fy is obtained by direct computation according to its
definition (3.11), using the rest of Table 3.2.

We assert that the following inequalities for r(>2), d and p,
fi=1i(rd,p)>0 (1<;5<30) (3.22)
hold for all cases (I)-(V), where f; (1<r<30) are defined as follows. (The inequality
[ =0 will be referred to as (3.22) (j).) In fact, we have tried very hard to make, in each

case, a nearly optimal choice of ¢y, ¢1, ¢3, ¢4 and ¢5, such that fy (see (3.11)) is as small

as possible, subject to condition (3.22). We let

Ji= 265Q(1—21> —c1 <912+ <1+2(Coi—1))gs)
1
( 2(co2—1 <1+292+1))
1 1
(9 (g97i+¢Co3)+ (H—l)gw)
1 1 €p
( )( 002—1+(9+p—1>d)7

e
1
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where and in the sequel, cp, ¢1, ¢3, ¢4 and ¢z are given by Table 3.1, ¢ by (2.2), ¢ by
(1.3), g; (0<j<12) and 4; by (3.16), coa by (3.18), és by (3.21), 8 by (2.1), epd and ¥
by Table 3.2, and
. fmy i2<r<T,
B { 1, ifr>8,
with 7 given by (3.13),

0 ifp>2
- q 1 1 qlogq ’ )
f2=1((qn) _1)—(1+) g 84 5logq ,

—1 2089 i p=2
C2 C4 95 q—1)g 3log g1’ up
where (gn)" is replaced by ¢"e~ when r > 8,
1 g .y
f3=f1+265q<q—2+2>+ - (—n"*?)

go czepl

1 1 lo 0, ifp>2,
—C(H-) (il;]—k 5log g " ' E
— - 1 =

4 95 q 91 3log g1 p

where " 12 is replaced by e~ when r > 8,

r+1 1
fa=2cs5q(q )(77 059294) €1 <912+( +2(002—1)>gs>

1 1 <1+ 1 >+ I, ifp>2,
c2 \ 2(co2—1) 2g2+1 Now if p=2

16°

1 1 r+1 1
—— | —5|99——+Co3 |+ | 1+ g1o0
cz \ epb C594 co2—1
1 r+1
logan™ 4o

1 1 1 1 \e n
——l1+=) |1 0+ -+ ,
C4( +g5> +002—1+< p—1> d+ 5logq

3log gnr+t’ p=2

where log gn™t! is replaced by log ge =% when p>2 and r > 8,

2 1 1
c1—4desn" — (H— + V>, if p>2,
s g'nga \ 92  gcsept
5 =
1 1 1
01—6057’]T— <T+ + v>, 1fp:2,
q"g94 \ M92  qcsepl

1 1
(et
92 gesepd(r+1)
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1 1
205— 2— % )(H + > if p>2,
r+1 q"92  q"tlegeyt
1

if p=2,
T+1(r+1)03ep9

where 2—¢5/(r+1) is replaced by 2 when r > 8,

335

Ui .
2c5— , if p>2,
I ¥ g tlegeyt P
8= .
- fp=2,
g ti(r+1)cze,d
fom %a if p>2, 1 <1+ 1 >02 log q {3, if p>2,
’ B fp=2 ) (A0+1)d)P 95/ coqlogan L 4, ifp=2,
%7 if p>2, 1 1 \c2logqin 1, if p>2,
fro= 13 T (qpr+1lyin I+~ .
B ifp=2 (gn~*1)n g5)ca ¢ g3, ifp=2,
where 47 is replaced by 10 when r > 8,
1 1 1 1 1
st (11 1) 1y
loggn\c2 ¢ 95 ) 919
1 1 1 1 1
fr2 =2e5m* — o8 (+(1+>2) (for r > 3),
loggn \ca2 ca 95 /) 914
1 1 1 1 1
Fra = 2esn’— 0g q (+(l+> 3) (for r > 4),
log qn Ca 95 /) 919
1 1 1 1 1
Fram 2ea 1 - ogq( - 1+> 4} (for 5<r<7),
log qn 919
r+1 if p>2, 1 1 1
]015205({77 7 ?p ) ( +— ) > (for r>8),
e %, ifp=2 95 ) 914
7
1 1 5 ifp>2, 1 1) 1
fro=2es1 — 2L~ s ’ +(1+> ;
logqn \ c2 B ifp=2 C4 95/ 914"

where n" is replaced by e=% when r > 8,

1 logg 1 1\loggqg
fir=2es(q=Dlog = mym — <1+95) gran’
Fomd 2 390 {qz, if p>2,

(r+1)d  (9o—1)fylogp | ¢'%/, ifp=2
Fro=ed— 2¢  c3q90 7
(r+1)d  (9o—1)fylogp
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1 1
:q—i—i,
f20 77T+1 go
1 0
Lgﬁ—e, in cases (1.2) and (III),
Far= cica p*
B —1r-—1
LLQ—B—e, otherwise,
2p cre2 1
fpm IO 1o S50
27 r1’
r+1
_ g’
Jo3= r+1 ©
log go 2
:1— e
'f24 go 'I""‘].7
r+1 1 1
Fas =20, D0 L1
9294 csepb ga
9o r+203(7"+1)d>
= _lo 3 7 1 ]
f26 | g( q f»logp
r+1 2 1
for=2c5n" — +<1)V for p=2 only),
q"g29am n) q"Ttesept ga ( )

where 1" is replaced by e~ and 1—2/7 is replaced by —2/n when r > 8,

1 1 1\lo
f28205<1>q77<1+) gq,
g2 Cq 95/ 91

We now prove (3.22). Observe that each f; (1<j<30), as a function of r, increases
monotonically for r>8. (Here we use the fact that, as functions of r, n"*! increases and
n" decreases, and both tend to e~ % as r—o00.) Thus (3.22) with =8 implies (3.22) for
r>8, and it suffices to verify (3.22) for r=2,3, ..., 8.

Let
1 1
5:(1+).
Cy4 95

We estimate the following terms Fj(e,#) appearing in f; (j=1,3,4), where

B, o
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with

1
pr=—
C3

5 1<A N {17’"*2, if2<r<7,>
= — Ci s
3 c3 03 Jo e, ifr>=8

1 r+1
Ba=— (99 +Cos)-

C3 C594

(g9 +¢o3),

Thus, by the fact that F/'(x)>0 for >0 (j=1,3,4), we have
Fj(epd) <max{Fj(e,f), Fj(ep?)}, j=1,3,4.

In f; (j=1,3,4), for cases (III) and (IV), we replace Fj(ey6) by the above upper bound;
for cases (I), (II) and (V), we replace Fj(ep6) by

fpﬂém(e;)é.

We denote by f] (7=1,3,4) the resulting function. Thus f; 2]2 (j=1,3,4).
In f; (1<5<30, with j#1,3,4), f1, f3 and fi1, we now apply the values

. ept
0= 11 10-%

and 9 given by Table 3.2; furthermore, we replace g9 by its upper bound in Table 3.1, p,
d, ey, fp, p* and wg by their lower bounds in Table 3.2, and e, /d by its upper bound in
Table 3.2. Now we are ready to run PARI/GP, separately in each of the cases (I)—(V),
for computing f; (1<5<30, j#1,3,4), f1, f3 and fy for r=2,3,...,8. We conclude that,

in each case,

>0 (r=2,3,..,8), 1<j<30, j#1,3,4,
fi(r,d,p) >0 (r=2,3,..,8), j=1,3,4.
This completes the proof of (3.22).

Recall (3.16). It is readily seen that the following inequalities (3.23), (3.25)—(3.33)
hold. We now list (3.23)—(3.33) and prove part of them, when it is necessary.

SD 25D .
S>gs, DZ>gs, 7297 and %2911 (1<igr). (3.23)
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Proof. We prove D>gs. The other three inequalities can be proved similarly. Note
that wr >¢" and coqp™/ep0>0a*, by (1.2)-(1.4), (2.1), (2.2) and (3.12). Applying [14,
Theorem 3], and using (2.6) and (5.4)*, we obtain
17

r+1 * -
d" ™ (log*d)oy ...0r 2 G

"Wk, (3.24)

where g is given by (3.13). Now D>gs follows at once. Observe that we have replaced

the first maximum in (3.4) by (e”/r") f, logp to obtain the lower bound g3 of D. O
T T
T>gs and ([ ]+T> <(+e)—, (3.25)
r 7!
~ 1\ ~
Do>gs and Do+1< <1+>Do, (3.26)
95
q” D, [T]+r
D_1+1)(Do+1l)——F——F 2 25+1 2
(D-_1+1)( 0+)G/5( N cor ( S+)< . > (3.27)

where Go=G/q" with G=p/» -1, a’={a},...,al} and §(a’) are those in the basic hy-
pothesis (see §2), and cp; is given by (3.17).

SD
(D_1+1)(Do+1)(¢"D1 ... D, +1) < g6 SD™ ! <exp (gsd> . (3.28)

Proof. By (3.4), (3.8) and (3.16), we have ¢"D; ... D, >g¢1. Now (3.7), (3.8), (3.24)
and (3.26) yield the first inequality of (3.28). Note that

d , SD rlog D r log D
Sp =952 a 22 pro g < .
g6 en© d o SD/d " esq(r+1)2 D
Now on applying (3.23), the second inequality of (3.28) follows. O
1 SD
p*S D; 3.29
Z UZ C1C2 d ’ ( )
~ 1 SD
T(D_1+1)=T(h+vl = 3.30
( 1+ ) ( +v og q) 0163€p9 d ’ ( )
S q, if p>2,
1 o2 <gi, 3.31
Og(e( +D—1+1{q7/6, if p=2 )) 7 (331)
log| e( 2¢+ S < (3.32)
g q D,1+1 X 91 .

Proof. Formulas (3.31) and (3.32) are consequences of (3.22) (18) and (3.22) (19),
respectively. O
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1 —-1)D1 1 SD
a:log(h—&-(r)) <gio——— forz>1. (3.33)
e ci1c2p* T 3 d

Proof. Recall that h>go=G1(r,d)>39 (by (1.11) and r>2). By (3.22) (21), we see
that (r—1)D/cicop™ > fa1 +e>e. The proof of [37, (9.31)] also works here, which gives

e (r—1)D

c1Ccop”

left-hand side of (3.33) <

where §€(0,1) satisfies §=e~("T179) <e=" <10715. Using the fact that

1
S m, in case (1.2),
q = logp
caq(r+1)2, otherwise,
(3.33) follows. O

4. The construction of auxiliary functions

Recall (1.4). By Hasse [12, p. 220], we have ¢*|(p/» —1). Put

G
G=p’» -1 and Gozq—u. (4.1)
Choose and fix ¢, a Gth primitive root of unity in K, such that
¢G0 = ay,. (4.2)
Fix £€C,, satisfying
e1=c. (4.3)
Thus £%° €C, is a gth root of og. We fix
oz(l)/q =G0, (4.4)
Furthermore, we have
¢Gola=al/? if q|Gy. (4.5)

Recall o, ..., in the basic hypothesis (see §2) and 64, ...,0, in §5%. By (1.16),
(2.11) and (5.10)%, there exist rational integers a;, a; and d; such that

a;=(% (mod p) (1<j<n),
o =¢" (mod p) (1<j<r), (4.6)
0;=¢% (mod p) (1<j<r).
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Now [36, Lemma 1.1] implies that

x 1
ordy(af ¢V —=1)>0+—— (1<j<n),

p—1
s 1 1
ord, ((af)P"¢% —1) > 9+1f1 (1<j<r), (4.7)
*d 1 .
ord, (65 Cdj—1)>9+pf1 (1<j<r),

where a;=—a;p*, aj=—a;p*, dj:—djp”, » is given by (1.2) and 6 by (2.1).

Recall that »>2 and
30,01, B)] = L
‘<a03 1y eey T>| - 5(a,)

(see (1.6), §2 and §5%*). By (4.2) and (4.6), we have

_ _ = < ~ ~ fp_l
A0, 01, ., 0,3 = (€O, ¢, L ¢trY| = [(¢8ed(Gosdasdr)y | — L —. (48
(@, 61 =", ¢ ¢ =< )| A (4.8)
Obviously, ged(Go, di, ..., d,)=ged(Go, dy, ..., d,). Thus
5(a") =ged(Go, dy, ..., d;). (4.9)

We have noted in §1.1 that there exists a Q-isomorphism 1 from K into @p CC, such
that K, is value-isomorphic to Q,(¥(K)), whence we can identify K, with Q,(¢(K)).
Henceforth we embed K, into C, in this fashion.

For the basic properties of the p-adic exponential function exp and logarithmic
function log, see, e.g., [34, §1.1].

Let L;(zo, ..., zn) and o (1<i<r) be as specified in the basic hypothesis in §2. Then

exp(Li(0,log a? ¢, ... log o2 ¢™)) = (a)P"C%, 1<i<r, (4.10)

(this is just (7.5)%). Here and in (4.11) below exp and log signify the p-adic exponential

and logarithmic functions. Henceforth for all z€C,, with ord, z>—6, we define
(()7"¢*)” =exp(zlog(af)”"¢*) and (07C")* =exp(zlog¢").  (411)
Observe that the functions in (4.11) have supernormality 6 in the sense that
(a)"cty™™ and (07¢h)

are p-adic normal functions by (4.7). (The concepts of p-adic normal series and functions
are due to Mahler [17], see also Adams [1] and [34].) We define (Gfkgdi)l/q by (4.11) with
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z=1/q, and we fix a choice of gth roots of 1, ..., 0, in C,, denoted by Gi/q, ...,9,1"/(1, such
that
(07 CH) = (0P e, 1<, (4.12)

where € has been fixed, satisfying (4.3). We remark that, taking Hé/q as aé/q in (4.4),
and 0;/9 (1<i<r) as in (4.12), then (5.11)* still holds.
We shall use the notation introduced in Baker and Wiistholz [6, §12]:

(z+1)... (z+k)

Az k)= o

for k€eZsy and A(z0)=1,

r—1

1_1(2:17 ceey Z,«_l;tl, ---7tr—1) = H A(ZZ, tz) (tl, ---,tr—l € N (Z: Z;O)),

i=1
and
m! \ dz
For the functions IT with 7=t +...+t,_1>1 we have

T/
’ ‘Zl|+...—|—|z,«_1‘
| <e” <1+T/ .

Oz k, 1, m) = — (d>mA(z;k)l (l,meN).

By the argument in Tijdeman [27, p.200], we see that [36, Lemma 1.3] and the first
assertion of [27, Lemma T1] remain valid for x<0.

Recall the matrices B and B in 5% and that by, ..., b,, the rows of B, form a basis
for the lattice M. For every (Ar,...,A\r)E€Z", (f1,..p pir):=(A1, .., Ap) B is in M. We fix

o =A1b1o+...+Arbro, (4.13)

so that
(/Lo,ul,...,,U,T):(O,)\l,...,)\T)B (414)

is in M. On defining for all s€Z, with the usual exponential function,
(af)!* =exp(uisli) (0<i<r), (4.15)

where I} is given by (2.7), we see that (4.14) yields

T

ﬁajis =[] e (4.16)
=1 =0

We also write for peM and A=pB~=pV (see (5.15)*),

pi=q"p; (0<i<r) and XN,=¢"\; (1<i<r), (4.17)
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where 1 is given by (4.13). Thus p}€Z (0<i<r) by (5.4)%.

We quote Lemma 7.1% as our Lemma 4.1 below, where
((apPcyss/n and (07t

are given by the p-adic functions in (4.11) at z=p;s/q and z=X\;s/q, respectively.
LEMMA 4.1. For all peM and s€Z, we have

T T

H((a;)p"gai)uiS/q _ H(gf”cdi)AiS/q’

i=1 i=1
where A=(\1, ..., \,) EZ" is determined by A=puB~t=p) .

Recall D; (1<i<r) defined by (3.8) and ¢”D; ... D,.>gg1 (see the proof of (3.28)).
Let
C={zeR":0<z;<D;,1<i<r} and m=I[¢"D;...D,]. (4.18)

It may be of some interest to note that ¢”D ... D, >gg1 >5-10°, computed by running
PARI/GP. Thus m>5-10°. By Lemma 5.1%, we see that MN(C—x(®) ((®:=x)

contains m+1 distinct points
0, K1 =21—T0, -5 My =Lm —Lo-
Let dy, ..., d, be given by (4.7), G and Gy by (4.1), and consider {0, pq, ..., ,,, }VCZ"

(recalling V=B"", see (5.15)*). We classify the set

dq d,
— At — A (A, M) €{0, e

{5(&’) 1+ +(5(C1/) ( 1 )E{ 1231 Nm}v}
by the congruence relation modulo Go/d(a’), where §(a’)=(Go, d1, ..., d;) (see(4.9)). By
Dirichlet’s pigeonhole principle, there exist a subset A(O)Q{O,ul, vy By YV CZT with
cardinality |A|>(m+1)/(Go/6(«)) and £, €Z such that

dl dr _ GO
6(al)/\1+...+m/\r:el (mod(s(al)) for all (Ag,..., \,) €A,

Observe that A©) C{O, 1, vy i, }VCZ" has the following properties:

(i) M@ .= AOBCMn(C—z®);
(ii) ¢" D1 ... D, /(Go/6(a')) < M| = |AD| < gDy ... D, +1; (4.19)
(iii) di A +...4+dp A =@ (mod Gy) for all Ae A where () :=§(a')e;.
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Fix a point A(O):(Ago), ey )\50)) of A, Then
A=A+ 4+d (A —AD)=0 (mod Gg) for all e A©). (4.20)

Write ;\z(/\_l,)\o,/\):()\_l,)\o,)\l, .. Ar) and define, with D_; and Dy given by
(3.6) and (3.7),

AY = {(Aez?.0< 0 <Di (i=—-1,0) and Ae AO). (4.21)
We shall construct a rational function P=P(Yj, ..., Y}.) of the form
N Aoty i =7 = ()
P= " oA(AYo+A_1; Doq 1)) oty )yl (4.22)
AcA®

with coefficients o(A) in Ok, where (ug0)7...7u$p)):)\(0)3 with A®eA® in (4.20),
(11, .. i) =AB for each Ae A and p/=¢"p; and (’ugo)),:q,,'ugo) (1<i<r) (see (4.17)).

Denote by 05, ...,0;:_; the differential operators specified in (2.12) (see also (2.14))
and put 95=0/9Y,. Then we have

R ON; ;o , RN 1 (0)y
a;ylm (117) LY (1) S (117) LY (1) (1<j<n),

where

" oL, . 0L, .
wq"Z(bnb- )(uiuf»”) (1<j<n), (4.23)

- Y5
pt 0z Oz,

and 7; (1<j<n) are rational integers by (5.4)%.
For t=(to,...,t,—1)EN", write |t|=ty+...4+t,_1 and put

H(t) =(v15 oo Vet t1s oo o) = A1 1) o A(Yr—15tr-1),
O(Yp;t) =v(D_1+1)*°O(Yo+A_1;D_1+1,A\o+1,t0),

where

v(k)=1lem(1,2,....k) for k€ Zso.

We record (see Rosser and Schoenfeld [21, p. 71, (3.35)])
log v(k) < 1.03883k < 107 k. (4.24)
We introduce further rational functions Q(t)=Q(Yo, ..., Y;;t) by

~ ’ (0)\s ’ 0)\/
Q)= 3 (MO (Yo )y~ |y, (4.25)

AcA®



344 K. YU

As indicated in §1.1, we use the notation of heights introduced in [6, §2]. Now we
apply Siegel’s lemma—here we use [6, Lemma 1], which is a consequence of Bombieri

and Vaaler [7, Theorem 9], to prove the following lemma, where

N ep¥ with =AY,

o=(o(A):A€A
co2 is given by (3.18) and épz by (3.21). Recall S and T given by (3.1) and (3.5).

LEMMA 4.2. There exist Q(X)60K7 XEA(O), not all zero, with

SD 1 1 1 1 1
ho(@) < =~ — =g+ (14— ) —
o) ) (gm ( gs+ <+292+1>

—1\2 2
€02 €162 A (4.26)
1 1 1 Co3 1
togo—+(1+— ) — +—F— )
c1c3 gs ) c1eq epl cic3
such that
Q(s, ()P ¢™) ™7 ()P ¢™) /9" ) =0 (4.27)

for all sS€EZ with |s|<S and teN" with [t|<T.

In the sequel, s always denotes a rational integer and ¢ is always in N”. The expres-
sions “s€Z” and “teN"" will be omitted.

2 (0)

Proof. If Ae A" then, by (4.20), there exists w; (X)€Z such that

di( A=A+ 4 de (A =AY =0, (V) Go.

Thus for each A=(A_1, Ao, )\)EA(O)

(see §5%) and (4.16),

, W=AB, we have, by Lemma 4.1, (4.2), ay=0y=ap

1\ ~aiys/q” yuh— (i) _ o™ raly (pi—pl®)s
(((az)? ¢%)¥ ) () ¢*)
i=1 i=1
B | (et
< r (0)y_ s ’
ZGSUI(A)S Hel()\if)\i )p*s

i=1
T

= (ap) "™ [T () "7 € Q(6, 01, .. 6,),
i=1
where w(X):wl(j\)Jr(uofﬂéo))p"eq”’Z with po and Mgo) determined by A and A©
through (4.13). Thus it suffices to construct @(;\)EOK, S\EA(O), not all zero, such that

3 o(ANTI()O (s:) () * D T (e e+ =0 (4.29)

5\6[\(0) i=1
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for all |s|<S and [t|<T.
Here (4.29) is a system of

M<(25+1) <[T]T+r)

~ (0 < X _ (0
homogeneous linear equations in N :|A( )| unknowns g(A), )\EA( ), with coefficients in
E=Q(6y,01,...,0,) CK. Note that (4.19) and (3.27) imply that

(D_1 +1)(D0+1)qVD1 ...D

N> Go/0(@)

== co1 M. (4.30)

By applying [6, Lemma 1] and following the lines of argumentation in the proof of
Lemma 7.2%, we can determine o(A)€Op, AcA?
We omit the details here. O

, not all zero, and Lemma 4.2 follows.

5. The first main inductive argument

In order to state and prove the first and second main inductive argument in the sequel,
we have to introduce further notation. Let T€N. Suppose that (D eR", ¢()e€Z and
AU )(QZT) satisfy the following properties:

(i) MDD .= ADBCMN(g I C—zD);

(i) 1< |MD| = |AD| <¢" Dy ... D, +1; (5.1)

(iii) dy A +...4+dp A =D (mod Gy) for all Ae AD.

Fix a point /\(1)2()\9), vy /\y))eA(I). Then
di (0 =AM+ 4 de (A —AD)=0 (mod Go) for all e AD. (5.2)

Define

A (D)

A7 ={A=0O_1,20,A)eZ2:0<\<D; (i=—1,0) and Ae AL}, (5.3)

. A
We shall construct A, 2D e and o (X)e0k, )\EA( ), in the first main inductive
argument below.

We introduce Q) ()=Q) (Yy, ..., Yy; t) by

~ ’ (I’ / /
QU= 3 oD ®)O(g Yos )y Ly (5.4)

S\GA(I)
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where
0O @) =111, oAt b)) = A1) o A 80 1)

with

oL;  OL; 0 ,
= —y <
=q” §< "oz, Jazn>(uz pi) (1<j<n),

(141 -y o) =AB for each AeAD), (ugl), ...,M«I)):/\(I)B with A e AW in (5.2),

and (u (I)) q”ugl) (1<igr).
We now define the linear forms

1 0L,
b, Oz,

M;=L;— (I<i<r),
where L; (1<i<r) are the linear forms in the basic hypothesis (see §2) and

L:b121++bn2n

Then

oL; “lro9L, . 0L
nM - nao_ Y55 j 1< § .
b b (80) +;(b 5, bjazn)z] (1<i<r)

(5.5)

(5.6)

1 =q" i

(5.7)

For zy, 21, ..., zn in Cp, with ord, 20 >0 and ord, z;>1/(p—1) (1<j<n), we define the

p-adic functions (here e’ =exp(L;) and eM: =exp(M;)),

4,0(])(2'07 ...,Zn;t) :Q(I)(Zo,CLI(O’ZI’”"Z")7 m’eLr(O,zl,...,zn);t%
f(l) (ZOa vy n—1; t) = Q(I) (ZOa eM1(07Z17m7zn_1)7 LKD) eNIT(O,Zl ..... Zn—l); t)

We put, for z€C,, with ord, 220,

D (z;8) =D (2, 2¢ " log ol ¢™, ..., 2¢ 7" log ol ("3 1),
f(I)( ) f (Zazq7V IOgal Cala"'azq7V logaﬁilganil;t)'

y (4.10), we have, for z€C,, with ord, z>0,

oD (2:8) = QU (2, (1) ¢4, o ()¢ )75 1),

(5.12)

Recall 1) given by (3.13), S by (3.1), T by (3.5). Define SU), 7 1* I, and Iy by

SW Z (DI p) _ I

3(max{gi, ey, fp log p}+vlogq)

I* =
log(qn™*1)

+1,

(5.13)

(5.14)
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T(11+1)C—5<1<T(Il)c—5 (5.15)
r+1 r+1’
Ip=min{I*, I }. (5.16)

Note that (5.15) means that I is the farthest depth of descent one can reach by the
classical small inductive steps (see the proofs of Lemmas 5.2-5.4 below), using [37, Lem-
mas 2.1 and 2.2] with M >1. I* in (5.14) indicates the depth of descent determined by

the multiplicity estimates in §3%*. In the next two formulas we set

{1, if p>2,
a=
5. ifp=2.

Observe that (3.22) (9) and (5.14) imply that

1 1\ czloggqg 1
——+al| 14+ — | = <1 5.17
(gn+1)! < gs> ca q max{gi, ey, fylogp}+vlogg (5:17)
for 0<I<I*—1. Note that I; >4 (see (3.16)) and i1 >10 when r>8, where the latter can
be verified by running PARI/GP. Now, by (3.22) (9), (3.22) (10) and (5.14), I >, imply
that if I*>1; then

1 1\ezlo I I ifp>2,
W+a( +95> i fqmax{gl,emfp log p}+vlogq S { ;g if p=2, (5.18)
for [ KILI*—1.
The first main inductive argument. Suppose that Proposition 3.1 is false, i.e.,
ord,(E-1)>U (5.19)

for some ay, ..., ay, and by, ..., b, in the main theorem. Then for every I €Z with 0<I<
there exist AV Czr, gD eR", cDez satisfying (5.1) and Q(I)(S\)GOK, 5\61&(1), not all
zero, satisfying (4.26) with @ replaced by ), such that

e D (s;8)=0 for all |s] <¢SU) and [t| <nTD. (5.20)
In the remainder of this section, and in §6 and §7, we always keep (5.19).
LEMMA 5.1. Suppose that Q(I)(S\)EC)K, 5\61&(1), are not all zero, and set

AD = min ordy, Q(I)(j\). (5.21)
AeAD

Then for all yeQNZ, and |t|<T we have

ord, (£ (y; £) =9 (y; 1)) > U —ord,, by +AD.



348 K. YU

Proof. This is similar to the proof of [37, Lemma 11.1]. We omit the details here. [

We now define o(® () to be o () (5\61&(0)) in Lemma 4.2, 7;0) to be v; (1<j<n)
in (4.23) and TI(9)(¢) to be TI(¢) in Lemma 4.2. Thus Lemma 4.2 gives

0O (s;6)=0 for all |s|] <S© and |¢| <T©. (5.22)

LEMMA 5.2. Suppose I=0 or I isin Z with 1<I<Iy—1, for which the first main

inductive argument holds. Then for J=1,...,r we have
oD (s:8) =0 for all |s|<q”SD and |t| <n’T@. (5.23)

Proof. By (5.6), (5.7), (5.9) and (5.11),

n—1
Oty = 3 oDAID 0O 2 t) [ (a8 7¢wy "o’ (5.24)
AeA™ i=1

We remark that (8.26)%* with fél) replaced by f(I) holds.

Note that (5.23) holds for J=0 when I'=0 by (5.22), and for J=1 when I>1 by
(5.20). Assume that (5.23) holds for J=k with 0<k<r when I=0, and with 1<k<r
when I>1. We shall prove (5.23) for J=k+1 with k<r and include the case k=r for
later use.

Similarly to [37, §11], we see that, by (5.21) and (5.24),
FO(z¢) .= p(P-1+D)(Do+ 1) (0+1/(p=1)—A") FD@ 02t (|t <nrHiTd) (5.25)

are p-adic normal functions. Obviously

1 d\" ) 1 d\"
AN L) (gf ) — D1+ D Dot 1O+ o-1)-aD —ms L (AN oy e
m! <dz) (sps2)=p m! \ dz F(sit). (5.26)

We now apply [37, Lemma 2.1] to each function in (5.25), taking

=[g* s — [k S5
R=[¢"SY] and M {UT 7’—1—1} (5.27)

(Note that M >1, since [<Ip—1<I;—1 and k<r). By (5.26), (8.26)* with f") replaced
by £, and (5.23) with J=Fk and Lemma 5.1, we see that [37, (2.3)] holds for each
F(D(2:t) in (5.25) whenever

1
U+(D_1+1)(D0+1)<9+_1>
! (M+1) max{h+vlogq, log(2R+1) (5.28)
> (M+1)(2R+1)p+ MY maxd loyg;gq’ 0g(2R+1)}
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We now verify (5.28). By (5.15), we see that (8.31)%* holds. Further (3.23) and (5.27)
give (8.32)%. Thus we have, on noting (3.5) and (3.9),

k 1 k r+1 1
77(2(1’“—) BU <(M+1)2R+1)0< "‘L”(zq’w)c"’a (5.29)
qr 92/ c1 qr 92/ c1

Now (3.1), (3.22) (26) and (5.27) yield
log(2R+1) <log3¢" SV <y~ Y (h41logq) (5.30)

for all I>0 (here we extend the definition of R in (5.27) for all 1>0). Now, by (8.31)%,
(3.1), (3.5), (3.9) and (5.30) we obtain

(M+1)max{h+vlogg,log(2R+1)} 1 pfgqrtt cs
log p = 038p9 (7”+1)q"+1 c1 ’

(5.31)

Denote by A(k) the sum of the extreme right-hand sides of (5.29) and (5.31), multiplied
by ¢"c1/csU, and consider k as a continuous variable on the interval 0<k<r. Then
1

1
> 2log gn+(logn (—f—V) > 2log qn? >0,
( ) 92 qesepf(r+1)

1 dA(k)
(qn)k  dk

where the second inequality follows from (3.22) (6). Thus (5.28) follows from the inequal-
ity U2 A(r)esU/c1q", which is implied by

1 1
czes(n +n <2+ +—— )
1> eslr ) q"92  cgepbgmti(r+1)
The above inequality is a consequence of (3.22) (5) and (3.22) (7). This proves (5.28).
Thus we can apply [37, Lemma 2.1] to each of the functions in (5.25), and by (5.28),
(5.29) and Lemma 5.1 we obtain

1 1\ U
ord <’>(S;t>+ D_1+1)(Do+1 <e+)—AU>>2c ’f( ’f—) 5.32
pe G (D-14+1)(Do+1) | N\ 5, g (5.32)

for all s€Z and [t|<nFH1TW),
We now assume k<r and prove (5.23) for J=k+1. Suppose that it were false, i.e.,

there exist s and ¢ such that
oD (s:8)#0, with |s| <g*t1 SO and [t| < b 1T, (5.33)

We proceed to get a contradiction. In the remainder of the proof, we fix these s and ¢.
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In virtue of (5.2) and similarly to the proof of formula (4.28), we see that for each

5\:()\_1, Ao, )\)EA(I), pn=AB, there exists a rational integer wy)(;\), such that
di( A=A+ +de (A= 2AD) =wD(A) Gy

and

T

np™raiys/a” \uh—(ui") _ o™ raiy (i —p$)s
(((af)P ¢)™ra) (o)™ ¢*)
=1 =1
i
=07 ¢ty e
=t (5.34)
w{D A)s . ()\ifx\g))p”s
% ( H(gl i
1=1
= (ap)""" Vs T (@) #e P c (6o, 01, ..., 0,),
=1

where w) (X):wg)(5\)+(u0—u(()l))p”€q*”Z with po and u(()l) determined by A and A()

through (4.13). Let
0, ifI=0
5[ { 9 1 9

1, ifI>1.
Then, by [27, Lemma T1] if I=0 and [36, Lemma 1.3] if I>1, we see that

1 (Lo DD+ Iordy (D1 + D (o~ 5: ) IID) (2) € Z. (5.35)

By (5.34), we have ord, ) (s;t)=ord, ¢', where

G= 3 oD (A)gH PorDIP-+ D bordy(D-r+1))]

SeAD
Ach (5.36)

x0(g~ s I (1) ()" O T o (er 7
i=1
is in Q(0o, 01, ...,0,)C K and is non-zero. Now let ||, be an absolute value on K nor-

malized as in [6, §2], and let |-|,, be the one corresponding to p, whence

> log ¢/, (5.37)

v#vo

ord, ¢’ = (—log |¢']v,) =

epfplogp ep fologp
by the product formula on K. We note that (8.42)* with Al(,j) replaced by A(I), (8.43)%

with Agf) replaced by A(I) and AZ()I) replaced by A1) (8.44)% and (8.46)* are valid in
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the current setting. By (1.13), (2.8), (3.33), (5.1), (5.5), (5.6) and the definition of gg; in
(3.16), we see that (7.32)* with II(¢) replaced by I1(/)(¢) (i.e, v; replaced by ’y](l), 1<j<r)
is valid for 7/>1 and it holds trivially for 7/=0. Using [35, Lemma 1.6], the fact that
qn"t1>1 and (3.22) (18), we obtain

107
log |00 (g7 s;t)| < ﬁto(D—lJrl)

1 1 SD lo
+(1+><1+ 54 kp)
gs ) cicq d max{ g1, ey, fp logp}+rlogyq

for 5\61&(1), with s and ¢ as in (5.33), where

_{k, if p>2,
P max{kf%,()}, if p=2.

Thus we have

SD k+1 1 1 1
log [0(¢ s I (1) < 22 [(99” +gm) R (1+) e

d ept 01031 gs ) c1cq (5.39)
% <1+max{g1,ep,gﬁggp}+uloqup)]
for XEA(D, with s and ¢ as in (5.33). We assert that
k+1
é (q;]?’““)f +i <1+915) max{gi, ep, ;ﬁggp}Jrvlogq (51 (Hqil) +kp> (5.30)

el d (i) Flogg |
) q g5 ) max{g1,ep, fylogp}+vlogq
Clearly (5.39) holds for I=0. If I>1, then k>1. On noting that I<Iy—1<I*—1, (5.39)
follows from (5.17).
By the above discussion and (4.26) (with @ replaced by o)), and noting (3.9), we
see that (5.33) implies that

CquH

-1

< (1 Vg | = [ o (14—
<1912 2(cos—1) gs & q 2(co2—1) 2g2+1
1] 1 . 1
+— {0(9977“1‘*‘003)"' <1+ >910:|
cs Lep co2—1

1/ 1 1kl 1
+<1+> [1+ + qu+<9+>e”].
C4 g5 co2—1 g1 p—1/)d

(ordp #(5;8)+(Da+1)(Do+1) <0+pl) Am)

(5.40)
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Write (k) for the right-hand side of (5.40). Observe that (5.32) and (5.40) give

£(k) :=2cs5qn* (qk — 2;2) —R(k) <O0. (5.41)

Now (3.22) (j), j=11,...,15, imply that £'(z)>0 for 0<z<r—1. Thus (5.41) yields
£(0)<0. Recalling f; in (3.22) and 1>n, we get f; <£(0)<0, contradicting (3.22) (1).
This proves that (5.33) is impossible, whence (5.23) holds for J=k+1. The proof of
Lemma 5.2 is thus complete. 0

LEMMA 5.3. For every I as in Lemma 5.2 we have
oD (S; t) =0 for all |s| < q([SUHV]+1) and |t| <TUHD. (5.42)
q
Proof. The proof follows the pattern of that of Lemma 8.3% and utilizes §3.3, espe-

cially (3.22) (1) and (3.22) (2). We omit the details here. O

LEMMA 5.4. For every I as in Lemma 5.2 there exist A(IH)CZ’” xI+D R,

(I
eItV ez satisfying (5.1) with I replaced by I+1 and oTTD(A)eOk, AeA +1) not

all zero, satisfying (4.26) with @ replaced by oY), such that
oI (s:t) =0 for all |s| <q([STTV]4+1) and |t| <nTT+D). (5.43)

Proof. Write the elements of AD ag t=(t1, ..., t) and recall the fixed AD e AD i
(5.2). For every A*=(\}, ..., \)€Z" with 0<Af <q (i=1,...,7), let

ADNY={ee AD - AD =X* (mod ¢)}, (5.44)

where the congruence signifies the system of r congruences for the corresponding coor-
dinates. Thus for LGA(I)()\*), there exists a unique A€Z", such that

=20 = gA+ 1" (5.45)
~ (I .
Writing ¢—1 and ¢ for A_; and Ag, set Al )()\*):{i:(b_l,Lo,L)eA( ) e AD A} We
decompose ) (s/q;t) (see (5.12)) into the sum of ¢" sub-sums indexed by A*

A(St)= T danwen s

[\(I)(A*)

XH P” @) L/ay (=) )s/a
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where 7=(71, ..., 7.)=tB, and 7/ =¢"7; (1<i<r). For te A")(X*), we have, by (5.2) and
(5.45),

quA+Zd/\* Zd =AY = g(A X)) Go

for some g(A, A*)€Z. Thus, Lemma 4.1 and (4.12) give

T

| ) (SO SRR | (S KL

i=1 i=1
_H 1/‘1 q>\i+A:)S (546)
= ( H(gil/Q)p"sAZ) ( H 91,17){5)\72>£G09(A7A*)5'
i=1 i=1

Now, (5.46), (4.4) and ap="0y yield

<I><q t) (ilf[l(gil/q)pm:);((gé/%. (5.47)

From (5.11)% and [K(Qé/q):K]:q (by Bp=0p and (1.4)), we get
[K (05 ) (01, ... 01/9) - K (05'")] =" (5.48)

By (5.42), (5.47) and (5.48), we obtain, for every A*=(\},...,\5)€Z" with 0<\;<¢q
(1<i<r),

apg‘l*) ( t) =0 for all |s| <q([SYTV]+1) with (s,q)=1and [t|<TUFD.  (5.49)

There exists a A* as above, such that AP (A*)#£@ and oD (2), icA! ()\*), are not all
zero. We fix this A* in the remainder of the proof of the current lemma. Using the
second line of (5.46) and

¢ dihi+Y_ dix =g(A X")Go,

i=1 i=1
we obtain from (5.49) that

T

> oD@nD @6 s ) [0 ¢ )M =0 (5.50)

ieA (ax) i=1
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for all |s|<q([SUD]+1), with (s,¢)=1, and [¢|<TU+D.
From (5.45) and (5.2) we see that for ce A (A¥),

0> dX+ Y AN =Y di(—AN")=0  (mod Go). (5.51)
=1 =1 =1

Now we consider two cases: (i) (¢, Go)=1 and (ii) ¢|Go.
(i) (¢, Go)=1. (5.51) implies that there exists a unique &' €Z (mod Gg) satisfying

q5'+z diA\i =0 (mod Gy). (5.52)

i=1

(ii) | Go. (5.51) and ¢|Go imply that ¢|>";_; d;A} and
s 1 I G
> din=—= " diA+b— (mod Go) (5.53)
= 1= q
for some beZ with 1<b<q. Now we have a partition

AD ) = UA(” ),
b=1

where
AP ={ee ADA*): A= (M1, ..., Ar) in (5.45) satisfies (5.53)}. (5.54)

The left-hand side of (5.50) is decomposed into a sum of ¢ sub-sums, denoted by Xy,

over
AV ={i=(0_1,00,0) €272 :0< 1 < D; (i=—1,0) and t€ A (A"}
(b=1,...,q). For icAL”(A*), (4.2), (4.5) and (5.53) give
C )s f[ ap Cd <ﬁ 9%}")\,;5) Cb(Go/q)scgl()\,)\*)Gos
i=1 =1
R ——
=1

for some g1 (X, A*)€Z. Thus

¢r L did)ey, e (o /q)bK.
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Now (1.4) and (s,¢)=1 imply that [K(ag/q):K]:q. Thus (5.50) implies, for b=1, ..., ¢,
Eb—O for sand tin (5.50). There exists a be{1, ..., ¢} such that A,(,I)()\*);AQ and o) (2),
LEAb ()\*) are not all zero. Fix this b in the remainder of the proof of the current lemma
and let

== Z d; >\*+b— (5.55)

Now we write out “33,=0 for s and ¢ in (5.50)” as

T

S o D@uO@eq s ) [0 ¢ )M =0 (5.56)

ieAD (A =1

for all |s|<q([SUTD]41), with (s,q)=1, and [t|<TU+D).
We take
AUY I = ¢ =AD" e AD (A7) (5.57)

if (¢, Go)=1, whereas if ¢|Go, A (A*) in (5.57) is replaced by AL (A*). Let

e+ = ¢ Y& 4 D4 ), where p* =B, (5.58)
L+ _ { ¢'in (552), it (¢,Go) =1, (5.59)
"in (5.55), if ¢| Go.

Set MUFD=AU+V B Tt is readily verified that AYTY zI+D) and eU+D satisfy (5.1)
with I replaced by I+1. For each 5\:()\,1, Ao, )\)GA(HU, on noting that A_1=:¢_1 and
Ao=Lg, we define

o ()= 0(0),

where A and ¢ are connected by (5.57). Obviously @+ := (o1 (X): AeA! )) satisfies
(4.26) with o replaced by @™, We now fix ATV e AU+ For ¢ in (5.57), we have,
by (5.5),

I ()= A(y"s 1) o Ay s t),

where, by (5.6) and (5.45), with 7=uB, p=AB, p*=X*B and pI+) =AUV p,

0 _ o~ (5 0Ly OLiN 04 e (g 5.60
v =q ;(bnazj bjazn (ri—pi )=qv; '+ (I<j<r), (5.60)

in which 7( 4

hand side of (5.6) with u;— ( ) replaced by qu(1+1)+u;“ Note that 77 €Z (1<j<r). By

is given by (5.6) with I replaced by I+1, and ~; is given by the right-

Z

(5.60) and [34, Lemma 2.6], we see that, for 1<j<r, A(y; S ;) is a linear combination of
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A(’y§1+1); k), k=0, ...,t;, with the coefficient of A('y;1+l); t;) non-zero. So A('y;1+l); t;) is
a linear combination of A('y](-l);k:), k=0, ...,t;. Thus (5.50) (when (¢, Go)=1) and (5.56)
(when ¢|Gg) imply that

R B D dr (AT
S TR @)e(g st [T ¢t AT =0 (5:61)

XEA(H—I) i=1

for all |s|<q([SUTD]41), with (s,q)=1, and [t|<TU+D),
Now (5.61) gives, by Lemma 4.1,

eIt (s:t)=0 for all |s| < q([STTV]41), with (s,¢) =1, and [¢| <TU*D.  (5.62)

In order to prove Lemma 5.4, it remains to verify (5.43) for s with ¢|s. We now apply
[37, Lemma 2.2] to each function in (5.25) with I replaced by I+1 and with |t|<nTU+D),
taking

R=q([S"*V]4+1) and M= [TU“)%} . (5.63)

(Note that I<Ip—1<I;—1, so M>[TU¢s/(r+1)]>1.) By (5.26) with I replaced by
I+1, (8.26)% with fb(l) replaced by fU+1) (5.62) and Lemma 5.1, we see that [37, (2.6)]
holds for each FUHD (z;¢) with |t|<nT+1) whenever

U+(D1+1)(D0+1)<9+1)

-1
1 ’ (2M +2) max{h+vlogq,log 2R} (5.64)
>2<1>R(M+1)0+ Hax 084, 08 .
q log p
By (3.22) (20), we have
S < 18U 41 < gD,
q
This inequality and (5.63) imply that
gSUHD c R< 28D and S pU+D) < 41 <on < 25 pU+D), (5.65)
r+1 r+1
The second inequality of (5.30) implies that
n" 1 log 2R < h4vlogq. (5.66)

Now, (5.65), (5.66), c3>0.47 (see Table 3.1) and e,0>0.49 (see Table 3.2) yield

1. . 21 q—1 1
— .right-hand side of (5.64) <4esn™t + V>
ue (5.64) o (qr_l q T (r+1)czepb

1
< 2esn™ <2+V> <cq,
g ti(r+1)cse,d
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where the third inequality follows from (3.22) (5) and (3.22) (8). The above inequality
implies (5.64). Thus we can apply [37, Lemma 2.2] to each FUTY (2:¢) with [¢|<nT U+,
By (5.64), (5.65) and Lemma 5.1, we obtain

1 2 -1)U
ord, eV (s;8) 4+ (D_1+1)(Do+1) (9—1—]91) — AU+ 5 Cs(CCIqT) (5.67)
- 1
for all |s|<q([SUHV]+1), with ¢|s, and |t|<nTU+D).
Assume (5.43) were false, i.e., there exist s and ¢t such that
Ut (s:8) £0  for all |s| < q([STTV]41), with ¢| s, and [¢] <nTT+D. (5.68)

We proceed to deduce a contradiction. In the sequel, we fix these s and t. Now, since
q|s, we have, by [27, Lemma T1] if /=0 and by [36, Lemma 1.3] if I>1,

q(sf(Do+1)((D71+1)I+ordq((D71+1)!))@(qf(Hl)S; t)n(”l) (t)€Z. (5.69)

Similarly to the proof of Lemma 5.2, we have ord, /™1 (s;t)=ord, ¢, where
o — Z oUFD ()01 (Po+ D (D141 I+ord, (D-1+1)h)

S\GA(IJrl)
r
(I+1))pxs

x0TV I (@) (ag) O T ()

i=1
(with w*D(A)eq ¥Z) is in K and non-zero. Let |-|, be an absolute value on K
normalized as in [6, §2], and |-|,, be the one corresponding to p. Then we have (5.37)
1"

with ¢’ replaced by .
Lemma 5.2, and utilizing (5.17), we see that (5.68) implies that

Following the same lines of argumentation as in the proof of

CquH

-left-hand side of (5.67)

1
<o <912+<1+2(002_1)>98>
+1( + ! (1—1- ! )) 5.70
C2 4 2(602—1) 292+1 ( : )
1 1 12 4 1
+— 7(9977 +¢éo3)+ | 1+ —1 )90
C3 \ €p Co2

1 1 1 log g ( 1 )ep>
+—(1+=) 1+ + +o+— |2
[ ( 95> ( ce—1 (¢—1)¢ p—1/d

if p>2, whereas if p=2, the right-hand side of (5.70) is replaced by the sum of it and the

term

()5 o
¢4 g5 ) 3logqnr+t’
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Write Ry for the right-hand side of (5.70). Then (5.67), (5.70) and the definition of f3
in (3.22) give
f3=2¢5q(¢—1)—MR2 <0, (5.71)

contradicting (3.22) (3). Thus (5.68) is impossible, whence Lemma 5.4 follows. O

By applying Lemma 5.2 with =0 and J=1, and applying Lemma 5.4 with I=0,
we see that the first main inductive argument is true for /=0,1. Now the first main
inductive argument follows by induction on I, utilizing Lemma 5.4.

If I* <1, we take I=1y=1" in the first main inductive argument. In §6, starting from
(5.20) with I=TI*, we shall carry out a group variety reduction and reach a contradiction
to the minimal choice of r. This will prove Proposition 3.1 when I*<I;.

In the remainder of this section we prepare the proof of Proposition 3.1 when
I">1. (5.72)

(We shall complete this proof in §7). The first main inductive argument with I=Ip=1I;

gives

e (s;8)=0 for all |s| <¢S") and |¢| <nTU). (5.73)

Define r1 €Z by

1

1< 2 o2 5.74
K r+1 < n ( )

Thus, by (5.15),
0<r <. (5.75)

LEMMA 5.5. If I*>1;, we have
e (s;8) =0 for all |s| <q TSI and [t| <y HtTT), (5.76)

Proof. The proof follows the pattern of that of Lemma 8.5% and utilizes §3.3, espe-
cially (3.22) (j), j=1,5,27. We omit the details here. O

6. Group variety reduction (I*<Iy)

Now I*<I; implies Io=1". We write I=1I" in this section. Then the first main inductive
argument gives
oW (s:t)=0 for all |s| <qSY) and [¢| <nTD. (6.1)

Let
Si=[¢"" D], 1<i<r. (6.2)
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Recalling (5.4), (5.8), (5.10) and multiplying (9.1) by

T

[Tl gety/ayin,
i=1
we obtain
3 — . *ralNs/q” \ i —($) +6;
> DI ()e(g s ) [T(((ag)rTgeeys/am eI+ = (6.3)
XGA(I) i=1

for all 0<s<qS® and [¢|<nT@); here we recall (4.17) and that p=AB and p) =X B.

Now we take
R r f Dy s
P(Yorn Vo) = 3 0D NA(G Yot Ays Do+ 1) v/ 0000 (6.4

S\EA(I) i=1

IS
Note that o)(X), )\GA( ), are not all zero. So P(Yyp,...,Y,) is a non-zero polynomial
with degree in Y; at most D; (0<i<r), where

Do=(D_14+1)(Do+1) and D;=2¢""'D; (1<i<r). (6.5)

Take
S=qSD, T=nTD and 9;=((c})P"¢*)"/7" (1<i<r). (6.6)

! (see §2).
Recall that 95=00=0/0Yy and 05, ..., 0% _, are the differential operators specified in §2,
and that

Observe that ¥4, ...,9, are multiplicatively independent, since so are o, ..., o

r ’_ (I)\s . r ’_ (I)\r X
a]* H}/ZML (y ") +6s :’YjH}/iM (k3 ") +6: (1<]<n), (67)

=1 i=1

where «; is given by (see (4.17) and (5.6))

WjZVJ(-I)JFi_Zl(b”gZ_bng)& (1<j<n). (6.8)
By [34, Lemma 2.6], we obtain from (6.3), (6.4) and (6.6)—(6.8)

(O) (7). (OF_ ) P(s,05,...,95) =0 forall 0<s<S and [¢|<T. (6.9)
Now Proposition 3.1%* holds with 5, ...,97_, in place of 91, ...,9,_1 (see §2). Put

Sozm, Si:ﬁ::J (1<i<r), ﬁ:{LJ (0<i<r). (6.10)
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Then So>81=...=8, since r>2, Top=...=T,, So+...+5,<S and To+...+7.<T.
We note that
gt <1, (6.11)

since qn?("tY <qe=2% <1, by the fact that C5>%logq (see Table 3.1). Recalling that
I=TI*, we see that (5.14) and (6.11) imply that

77_(““1)1 > (anH)l > exp(3(max{g1, ep, fp log p}+vlogq)). (6.12)

Now we prove
T 41 < Do, (6.13)

which implies (3.2)*. By (3.26) and (6.5), we have

Dy (D_1+1)Dy D
Do (DoatDDo Do g5
T T T T

where the third inequality follows from the definition of g5 in (3.16), using PARI/GP.
Further, by (3.1), (3.5), (3.7), (6.5), (6.6), (6.10), (6.12) and the definition of h in §3.1,

we have
D0 s e (1) golepB) (e (r+1)d)? > 4
Tv C4
(see Tables 3.1 and 3.2). This completes the proof of (6.13).
By (3.7), (3.8), (6.5), (6.12) and using that do;>2/log” 3d if d>1 (see Voutier [28])

and that do; >log2 if d=1, we obtain
Doy >D; (1<Z<’I‘) (614)

Now we verify (3.1)%.
(i) m=0. By (6.14), it suffices to show that (So+1)(7o+1)>Dy. By (3.5), (3.7),
(3.26), (6.5), (6.6) and (6.10), we have

1¢*>n SD
So+1)(To+1)> —————
(So+1)(To+1) o1 30 e, ogp
and 1 1 SD 1
Do=(D1+1)( Do+ < | 1+— | ————.
0=(Dr+1)(Do+1) ( g5>6104 d fylogp

Thus (3.1)* with m=0 follows from (3.22) (30).
(ii) 1<m<r. By (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10) and n™T1>n">e=%

we have

—c T m m+1
Tm+m+1> > 2q€ 577( +1)I ( q > * SDm+1

Sm+1
( +)< m+1 (m+1)!3r  \ cife, fplogp
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and for any 1< <...<ip, <7,

1 1 Dm+1 2 v—I\m
DoD;, ... D, < (1+ ) S (2¢")

g5 ) crcy (creorp®) ™ (dm oy, ... i, ) fologp’
Applying [14, Theorem 3] for a lower bound of d"*lo;, ...0;  and using
(an+l)1m > (64(r+1)d)2mpfpmq3um

(see (6.12)), we obtain (3.1)* with 1<m<r.
(iii) m=r. By (3.4), (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10) and

{ pfp e’“f ) } o pfp (6.15)
maxq ———-————, ~Jplogp S 5 —~ 7, .
5(a')(fplogp)” " r7 ¥ (fplogp) 1
we have - .
rtr (r41)I(r—1) 20" q .
(Sr+1) r > rl3r \ c10e, fy 1o 5D
pJplOgP
and
v—I\r _—u 1 1 *
DoDy...Dm < (2¢"7)"q 1+— J(1+¢e)| 2+— |eglog™d
gs g2
T q Y
o £ log plt Spr.
X fplogp 7! c10ey fplogp

Now by 7=+ >p3f (see (6.12)) and
(an+1)1r > (64(,,4_’_1)d)3rq3yr7

(3.1)* with m=r follows.
Having verified (3.1)* and (3.2)*, we can now apply Proposition 3.1%* with a;=0;
(1<i<r). Thus there exist an integer p with 1<p<r and a set of linearly independent
linear forms L, ...,L, in Zy,..., Z, over Z such that B1Z;+...+B,Z, is in the module

generated by L, ..., L, over Q and, on defining
"1 0L,

o (1<i<o), (6.16)

we have at least one of (3.3)® and (3.4)%*, whence (3.4)%* always holds, since (3.3)%
implies (3.4)* by (6.10) and (6.13). Now
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are linear forms in zg, 21, ..., 2z, over Z having the following two properties:

(i) The o+1 linear forms £{=z9, L1, ..., £}, are linearly independent and
L=ByLy+BiL,+..+B,L,

for some rationals BY, ..., By, not all zero, since {Ly, ..., £, } is a set of linearly independent
linear forms in Zi,...,Z,. over Z and B1Z1+...+B,Z, is in the module generated by
Ly,....L, over Q.

(ii) We have ho(a)<R; (1<i<p) for of=e" with I/ =L}(lo, 11, ..., 1) (1<i<o),
since I/ =L;(11,...,1].) (by (2.7) and (6.17)), whence, by (2.6), (2.7) and (6.16),

aL;
h(](a;/)<; aZ] ho(a;)\RZ (1<2<9)
Further (2.8) and (6.16) give
—|oL; x| 9L; | |OLk | oL, ‘
Hho(aj) < 2 ho(ay) < R (1<i<o).
Z azj hO(OLJ)\Z A 8Zj hO(Oé])\ 97, oL =R (l\z\g)
Jj=1 j=1k=1 k=1

We note that the set a”’={af,...,a}} is multiplicatively independent, since lo, Y, ...,1}
are linearly independent. Further we see that of, ...,o/é are p-adic units in K. Thus
d(a”) is well defined in the sense of (1.6). Let ¢1 (o) be defined by (2.10) with r replaced
by ¢ and o’ replaced by a”. We shall prove that (3.4)%* implies that

Rl ...RQgwl(g)ho(al)...ho(an), (618)

whence the basic hypothesis in §2 holds with p in place of . By the minimal choice of r,
we have a contradiction and this establishes Proposition 3.1 when I*<I;.

Now, by (3.4)%, (2.9), (2.10), (3.4), (3.5), (3.7), (3.8), (3.26), (6.5), (6.6), (6.10),
e"=r"/rl, Co)<o!r? (see §3%), qn?(1—1/g2)>1 and (6.15) with r replaced by ¢ and o’
replaced by a”; in order to prove (6.18), it suffices to show that

1 1
D (@t e > 1550 (14¢) (2+) (1+>
q 92 g5

x (2eq”)°r(r+1)?(o+1)(e!)*(log*d)p’® f, log p.

(6.19)

It is readily verified that (gn"t1)7¢>(e*(r+1)d)*2¢*¢ and n~ "+ >p3fe (see (6.12))
imply (6.19). This proves Proposition 3.1 when I*<I;.
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7. The second main inductive argument

In this section we treat the case when
I'> I (71)

and complete the proof of Proposition 3.1.
Recalling (5.15) (the definition of I) and (5.74) (the definition of r1), we define

L— {3(ma><{91, €p. fplogp}+vlogq)—Tiloggn ™!

J—f—l and 13211—|-12. (72)
logq

The second main inductive argument. Under (7.1) and the hypothesis of the first
main inductive argument, for every I €7 with Iy <I<I3 there exist A(I)QZT, D eR",
e €7 satisfying (5.1) and Q(I)(S\)GOK, 5\61&(1), not all zero, satisfying (4.26) with o
replaced by o), such that

oD (s;8)=0 for all |s| <qlg" STV] and |¢] <yt T, (7.3)

In this section we always keep (5.19).
We remark here that the proof given in [37, §2] is valid also for M =0. Therefore
Lemmas 2.1 and 2.2 in [37] with M =0 are true, which are important for the proofs of

Lemmas 7.1 and 7.2 below.

LEMMA 7.1. Suppose that I is in Z with I; <I<I3—1, for which the second main

inductive argument holds. Then we have
o) (s;t> =0 for all |s|<q[g"SUV] and [t| <npm T, (7.4)
q

Proof. The conclusion (7.4) for s with ¢|s follows from (7.3). Now we consider s
with (s,q)=1. Note that, by (5.74),

L) 5
g r+1

So we apply [37, Lemma 2.1], to each function in (5.25) with [t|<n™ 1T with
R=q[¢"S")] and M=0. (7.5)

By Lemma 5.1, (7.3) and the definition of h in §3.1, which implies that ord, b, <h/logp,
we see that [37, (2,3)] holds for each F)(z;t) in (5.25) with [t|<n"* ! TU1) whenever

h+vlogq

- (7.6)

U+(D_1+1)(Do+1) <9+pll> > (2R+1)0+
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By (3.5), (3.9), (3.23), (3.25), (5.74) and (7.5), we obtain
@R+1)0< -1 2p 1y < 2 L (Qq““—l-m). (7.7)
r+1 c1q” 5N T gaga
By (3.1), (3.5), (3.9) and (3.25), we have

h+vlogq < T h+vlogq < U
logp  “ga logp T grtleiczepfgs

1 +1 1
A (T i V)’
q"94 \ Ng2  qcsepl

which is by (5.75) a consequence of (3.22) (5), implies (7.6), and hence implies [37, (2.3)].
Further

(7.8)

Thus

2(1—1)39 >9 (1—1> ROy
q q r+1

(7.9)
+1 U
> 2c5(q—1 ”“(” - > .
sa=1 o e ) g
We also have
1 Cs
2R+1 92<1>R9>2R9 ritlph)
( ) q ! (r+1)q
1 U
2es(1—— (R R 7.10
> ( gz>(qn) - (7.10)

1\1
2 <1+> oed v 19
g5 ) cag1 c1q"t
where the third inequality follows from (3.22) (28).
Let K’:K(Hé/qﬁi/q,...,@i/q) and recall (5.11)*. By consecutively applying [11,
Chapter III, (2.28) (c)] r+1 times, we see that pOg'=P1P2 ... Pgro for some ry with

0<ro<r+1, where ; are distinct prime ideals of O+ with ramification index and

residue class degree (over Q)

ep, =€y and fy, =¢" T f, j=1,..¢".

Denote by |- [, an absolute value on K’ normalized as in [6, §2], and by |-[,; the one
corresponding to ;, and let K‘/ﬁj be the completion of K’ with respect to |-|v;_. The
embedding of K, into C, (see §1.1) can be extended to an embedding of Ky, = into C,,
and we define for g€ K} x with 50,

1
qrti-roe, fplogp

: 1
ord)) B:= ————(~log|Bl.) =
! e, fy, log p 7

(7 log |B|v; )
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We have ord;j) oW (s/q;t)=ord, oV (s/q;t) (1<j<q™), since ch)(s/q;t)er(gK%j).
We now apply [37, Lemma 2.1] to each F)(z;t) in (5.25) with [¢|<n" 17U and
by (7.6), (7.9), (7.10) and Lemma 5.1, we obtain, for all s€Z,

q"°
. 1
Z ord](oj) o (Z, t) +q"(D_1+1)(Do+1) <9+p—1> —qoAWD
j=1
— g (ordpgp(l) (2;1:) (D1 +1)(Dy+1) <e+pi1> —A(’)> (7.11)

U X X r+1 1\ 1loggq
e U (e (T Yo (11 ) 1)
Clqrﬂro( alg=1)n 1 csn™tlgagy gs/)ca g1

Now we prove (7.4) for s with (s,q)=1. Suppose (7.4) were false, i.e., there exist s and
t such that

oD <S;t) #0, for |s| <qlg" S, with (s,q) =1, and [¢t| <nr 1T, (7.12)
q

We proceed to deduce a contradiction. In the sequel, we fix these s and t.
. < (I
For each A=(A_1, A0, A\)eA, u=AB, by Lemma 4.1, (4.3), (4.4), (4.12) and
ap=0y, we have, with w@(ﬂ)eZ occurring in (5.34),

) ey /e Y=Y s/ _ T * iy =20
[L((afymemy ey amtesin =T (o 1"t ) =20
=t i=1
= (03/ 1y Vs ﬁ(e_l/q)m_xgn)pxs (7.13)

i=1

e K (0,0, ...,01 1) = K'.

NG
By [36, Lemma 1.3], for )\EA( ),

gPot DD+ DI+ Fordg (P4 1)D) g (g~ U+ 6, [T (¢) € Z.
By (1.3), (7.12) and (7.13), we have

ord) o) (q t) —ord{) " (j=1,...4"), (7.14)

where

Qo' = Z Q(I)(X)q(Do-H)((DA+1)(1+1)+0rdq((D71+1)!))

AeA®
© (7.15)

x @ (g Vs )T (1) (071 Vs T (01 ) A=A ws
=1
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is in K’ and is non-zero. Then, by the product formula on K’, we have

gt "e, f, (log p) Zord = Zlog|g0”|v/—z log |¢" |/, (7.16)

j=1

where 3 signifies the summation over all V' F V], ey Ugro - FoT 5\:()\_1,/\0,)\)61& ,
pw=AB, we have, by (1.4), (4.16) and (4.17), with af=60y=ag, and (5.1),
w{ (A)s - 1/q (Aingj))p”
CIOR ] (G
i=1

H(a;)mg—(ué%’)p"s

i=1

oD (D)4 (2D
log(H s >H| =)+ >>>

s 1 I s
\quDlogmax{l (e |U}752<u§)+x< ) log (a})7"* .

=1 =1

log

:Wlog

v’

Now log |(a)P” *loy=0 (1<j<q™) by (2.11). So S "log | ()P *|,»=0 by the product
formula on K’. Thus for s in (7.12), we have, by (2.6), (3.8) and (5.11)%,

Z log -

(01/‘1) (5\)5 H(a}l/Q)()\i*)\g’I))p"s
Bearing in mind that s and ¢ are as in (7.12), we obtain, by (3.22) (19) and (3.22) (29),

i=1
—(I+1) T1
q |s| q"S
1 2+4——— ] ) <1 2+
og(e( D 141 >) og 6( (an+1)11(D_1+1))>
r1—1
qn S
2
( +D_1+1)>

<log(eqg ™! <2q+(go_cl?’;%(r+l)d>)
p

r+1+4ry 1
a SD.

o @ (gt eren

By (3.1), (3.5), (3.6), (5.74), we get

T1+1T(Il)(D +1) (r+1)SD
desgaciczepl’
Thus
10g|q(D0+1)(( 141 (I+1)+ordg (D-1+1 '))@( (I+1) . t)H(I)( t)|

1 1 1 1/(g—1))1 1
<<997"+Jr 10) SD+(1+9> (1+ (I+r1+1/(g—1))logq )SD
5

epl c594 cies d max{g1, ey, fplogp}+rlogq ) crcs d ~
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Following the same line of argumentation as in the proof of Lemmas 8.2% and 8.3%, we
see, by (7.11), that (7.12) implies that

£(r1,1) <0, (7.17)
where

o _ T1 _M—C #
£(ry, 1) =2cs5(q—1)(qn)" 9201 1(912+<1+2(c02—1)>98>

ca \ ¢!~ (gt 2(co—1) 2g>+1
1 1 r+1 1

—— | =3\ 9 +Coz |+ | 1+ g1o
c3 \ epl C594 coa—1

1 1 1 1 e
)
C4< gs coa—1 p—1/d

(I—14r1+1/(g—1))logq )
max{g1, ey, fp logp}+rlogq /)

By I1 >y (see (3.16) and (5.15)) and (3.22) (17), we see, on noting that [; <I<Is—1 and
g™ T =gyt >1, that 0L(z,I)/02>0 for 0<z<r. Hence, (7.17) implies that

£(0,1)<0. (7.18)
Further, d2£(0,y)/dy*<0 for I; <y<Iz—1. Thus (7.18) gives
min{S(O,Il),S(O,Ig—l)} <0, (719)

since the left-hand side of (7.19) is the minimum of £(0,y) on the interval I} <y<I3—1.
By (5.18) and (7.1), we have

.t 1(1+1) (L+1/(g=1)—1)logq
c2 (qurt)h ea ' g5 ) max{gi, ey, fplogp}+vlogg
1 q 1 1 I, log g 7q
<=t 14+= <—
c2 (gt ey ( g5> max{gi, ep, fp logp}+rlogqg ~ 8ca

if p>2, whereas, if p=2, 7q/8¢y in the extreme right-hand side is replaced by the expres-
sion
13¢q 4 1 1 5logq
16y ca \" g5/ 3loggn
Thus

fa<£(0, 1), (7.20)
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where f4 is given by (3.22). Now we treat £(0,I3—1). By (5.14), we have

(I* =1) log qn"** < 3(max{gy, ey, fp log p}+vlogq) < I*loggn™*. (7.21)
Thus, by (7.2),
log ¢"* '~ (gn"™ )" = (I~ 1) log g+ 11 log gn" "

> 3(max{g1, ey, fy logp}+vlogg)—logq (7.22)
> (I"—1)log gn" "' —log g.

Further, by (7.1), (7.2) and (7.21),

(Is—2)log g = (I, —1)log g+ (I2—1)logq

N

-1
(I1—1) log g+3(max{g1, ey, f, log p}+v1log q)—I1 log qn"
(I, —1)log g+ (I* —1Iy) log gn"** (7.23)
—1)
-1)

A

= (I*=1)log g+ (I* —I;) log " **
< (I*—1)log g+logn"*.

So, by (5.18), (6.11), (7.22) and (7.23), we obtain

1 1 L1 (1+1) (I3—2+1/(¢—1))log g

o gl (gt ¢y g5 ) max{g1, e, fp logp}+rlogq
1 1 1\ (I*—1)1 log "4 (1 -1
1__a <1+>( Jogg+logn™ +(loga)/(a=1) 75,
co (gnmth) Cy gs max{gl, €p, fp Ing}'H/lqu

~
8 C2 C4 ’

1 1\1 r+1

T O+>%wﬂ
95 g1

if p>2, whereas, if p=2, the extremely right-hand side of (7.24) is replaced by the

expression
13 1 1\5 lo
Bag 1(,1)5 losg
16c2 ¢4 g5/ 3 loggn™*

F1<£(0,I5—1). (7.25)

Summing up, (7.19), (7.20) and (7.25) give f4<0, contradicting (3.22) (4). This proves
that (7.12) is impossible, whence (7.4) holds and Lemma 7.1 follows. O

Now (7.24) implies that

LEMMA 7.2. For every I as in Lemma 7.1 there exist A(IH)QZ’”, U+t eR",
. < (41
eI+ ez satisfying (5.1) with I replaced by I+1, and o"+tD(A)eOk, AeA"" ), not

all zero, satisfying (4.26) with o replaced by oItV such that

P (s:8) =0 for all [s| <qlg™ ST and [t <y T, (7.26)
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Proof. The proof follows the pattern of that of Lemma 9.2%* and Lemma 5.4, and
utilizes §3.3. We omit the details here. O

By Lemma 5.5, the second main inductive argument is valid for I=1;. Now the
second main inductive argument follows by induction on I, utilizing Lemma 7.2.

Starting from (7.3) with I=1I3, we carry out a group variety reduction and reach a
contradiction to the minimal choice of r in the basic hypothesis in §2 (this is very similar
to §6 and §10%, so we omit the details here). This proves Proposition 3.1 when I*>1;.
Recalling §6, the proof of Proposition 3.1 is now complete. By Lemma 3.2, Theorem I is
established.

8. The proof of Theorem 1
We first deduce a special case of Theorem 1 from Theorem I. Recall (1.19)—(1.23).
LEMMA 8.1. Suppose that r=n>1. Then Theorem 1 holds.

Proof. The condition r=n implies that
b=a and Q=hg(ay)...ho(an).
Using (1.9), (1.22) and applying [14, Theorem 3] for a lower bound of 2, we get

d_ D ypntnt )T

Ci(n,d,p,b)Q> a
i(n,dp.0) fologp o (n!)?

log e*(n+1)d, (8.1)

where g is given by (3.13). Thus

1
7900

log2 < CY(n,d,p, b)Qmax{log B, f,logp} (8.2)

fplogp

We prove Lemma 8.1 for n=1 first. By the restated (in §2) [35, Lemma 1.4], we have

- d _ 1
ord, (2—-1) < Tlogp <log 2B+ |{a1)| (l—i—p_l)epho(al))

By (8.1), we get

d 1
logB<—C7(1,d Q loc B 1 )
Fylogp %7 = 3950 1 (1, d,p, {on})Qmax{log B, f, log p}

Further, using (1.6) and (3.15), we obtain

d
Jplogp

1 1,
(142 epholen) < g CiL . e mae{iog B, fylog ).
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Thus Lemma 8.1 for n=1 follows. We now prove Lemma 8.1 for n>2. Without loss of

generality, we may assume (1.17). Let
ho(ag) =max{hg(a1), ..., ho(an)}.

By [34, (2.6)], we have

=-1)< B log2). .
ordy( ) 7 logp<n ho(ax)+log2) (8.3)
By (8.2) and (8.3), we may assume that
1\ fplogp .. Q
— - . A4
log B ” < 7900> nd Ci(n,d;p, ) ho(ou) (8.4)

Write W for the right-hand side of (8.4). Applying [14, Theorem 3] for a lower bound of
Q/ho(a), we obtain

1\ cWe (n+1)"*t2(n—1)"-1
> (1—— ) S qyn log e (n+1)d. .
w ( 7900) . (a') EOE dloge®(n+1)d (8.5)

2 given in §1.3, we see that

Recalling a), (M), aél), agl) and aé
logW > agl)rH— agl) +logd > agl)n+aél).
Thus (8.4) gives (see (1.11))
(n+1)log B> (n+1)(log W+ loglogW) > G1(n,d).
This, together with (1.13)—(1.15) and Voutier [28, Corollary 1], yields
(n+1) max{log B, f, logp} > h(Y).

Now, on noting (1.9) and (1.22), Theorem 1 follows from Theorem I when r=n>1. O

Proof of Theorem 1. By Lemma 8.1, Theorem 1 holds for r=n and we may assume
that r<n.
In the remainder of the proof of Theorem 1, we assume that

ho(al)é...gho(an). (86)

Thus ho(aw,) >0, since r>1. There exist iy, ..., 4, in Z with 1<i; <...<i, <n such that
(i) b:={as,,..., ;. } is multiplicatively independent;
(ii) if 47>1 then each a; (1<i<iy) is a root of unity;
(iii) for k=1,...,7—1, o; is multiplicatively dependent on {a;,, ..., ;, } for all ¢ with

1 <U<lpp1-
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Obviously
Q:Q(b) with b:= {ail,...,air}. (87)

By applying [14, Theorem 3] for a lower bound of hg(ay,) ... ho(a;,) and using the in-
equalities

)

n " < »; "(n+5) nd " S A
1 (n+5) edn rler 7 e

we get
Jplogp
dlog?2

o Won (a4 1)" 2 (n+5)
~ peblog2

Ci(n,d,p,b)Qmax{log B, f, log p}

(log e*(n+1)d) f, log p > 2100.

el nln

By (8.3), with ay, replaced by ay,, (8.6) and (8.8), we may assume that

B 1 fologp
- *(n,d
1ogB>< 2100) g C1(mdp.b)

h() (an) '

We consider three cases:
(1) ir<n. We apply [14, Theorem 3] for a lower bound of hg(a,) ... ho(cw,.).
(2) ir=n with r>2. We apply [14, Theorem 3] for a lower bound of

ho(()éil) hO(Oéir_l)~

(3) ip,=n with r=1. We use (3.15).
We see that, in all three cases, (8.9) implies that

B aD &
>50( — €2 d. 8.10
log B ( n ¢ ) ( )

We now prove Theorem 1 by induction on n, using Lemma 8.1. Suppose that
Theorem 1 holds for n—1 with n>2. We proceed to prove that Theorem 1 holds for n.
Note that (1.9) and (1.22) give

Ci(n,d,p.b) _ aD(nt+1)"+?2 d

> . 11
C¥(n—1,d,p,b) (n—1)"~1n2 max{n, f, logp} (8.11)

Suppose now i;=1 (we treat the case i1 >1 at the end of the proof). Let m be the
largest integer such that i1=1,...;7,,=m. So 1<m<r. If m<r, then i, <m+1<ip,11;
if m=r, then m+1<n. Thus a,,+; is multiplicatively dependent on {«;, ..., @, }. There
exist ji,...,J¢ in Z with 1<j; <...<j <m such that «;, , ..., oj,, am41 are multiplicatively

dependent and any ¢ numbers from o;,, ..., q;,, m41 are multiplicatively independent.
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By [14, Corollary 3.2], there are non-zero rational integers ki, ..., k¢, k1 (k1 >0) such

k1 ke km41 _
that o} ..o} a7 =1 and

tlet ho(mit) T
<o 25 ) at+ (log* a) O 0mrL) :
max{|k1|, 7|kt‘7‘km+l|} Q( # )d (Og d) hO(ajl) Tl;[lh’o(a]T)

- 1Bdh " (1),  if m+1=n,
D %B, if m+1<n,

(8.12)

where g is given by (3.13) and the second inequality is deduced from (1.20), (1.21), (8.7)
and (8.9) by applying [14, Theorem 3]. Set

Q' =1 hole) T A" V(e) witha”={as,...,an}\{om1}. (8.13)

ach aca’’\b

We may assume that =Fm+1 —1+£0, since otherwise ord,(E—1)<(d/f,logp)log2 and
Theorem 1 holds trivially by (8.8). Now, by the inductive hypothesis and by (8.10) and
(8.12), we obtain

ordy (E—1) < ordp((alil o abn)kmit 1)

t
bj km4+1—bmi1kr I | bikm
:ordp ( | I aiT +1 +1 . a. +1 _1)
Jr ?

=1 1<i<n

i¢{j1,pdem+1} (8.14)
<Ci(n—1,d,p,b)Q" max{log(B* exp((4e) "Ldh™ (am+1))), f» log p}

1 dh"™ (apmyr)

<Ci(n—1 Q" log B, f, 1 24— —— Mt

01 (n 7dap7 b) max{ Og 7fp ng}( +46 max{n, fp 10gp}>’

where Cf(n—1,d,p,b) is replaced by 51-5Ci(n—1,d,p,b) when r=1. By (1.20), (1.21),
(8.7) and (8.13), we have

QO n+4 n—r—1 7’L+4 n—2
— >p"(q,, — > 1™ (o, —) . 8.15
> 1 i) (25 ] e (815
It can be verified that )
(n+1)"*2 (44"
=1~ TrZ \ 5 >e(n+5) (8.16)

for n>2. By (1.20), (8.11) and (8.14)—(8.16) in order to prove Theorem 1 in the case

when i, =1, it suffices to show that

1 1
_ (a(l)e(n+5) — 4) >2.

#1(n+5) e
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The above inequality follows from the definition of a(!) and ¢ in §1.3. Thus Theorem 1
is proved in the case when i;=1.

Finally, if 47 >1, then oy is a root of unity. We may assume that Z*% —1z£0, since
otherwise ord,(E—1)<(d/ f, logp)log 2 and Theorem 1 follows from (8.8). Now

ord, (2—1) ord, (2¥% —1) = ord, (ab?® ... abrwx —1).
Note that Waldschmidt [29, p.276] and (8.10) give wx <4dloglog 6d< B, whence
lbiwr| <B? (2<i<n).

Thus we can prove Theorem 1 similarly to the case when i; =1. The proof of Theorem 1

is complete. O

9. Further remarks on the solution of the problem of Erdds

Our exposition here follows basically Stewart [25], with some modifications, in order to
be more streamlined with respect to the p-adic theory of logarithmic forms. Especially,
we shall analyze the role of [40] and the role of the present paper in the solution of this
problem.

Recall the definition of P(m) and the definition of Lucas numbers u,, and Lehmer
numbers 4, given in §1.1.

For any integer n>0 and any pair of complex numbers « and 3, denote by

o, 8) =] (a=¢'8) (9.1)

the nth cyclotomic polynomial in « and (3, where ( is a primitive nth root of unity and
[1’ signifies that j runs through a reduced set of residues (mod n). From (9.1), we deduce
that

a" =" =] ®ale, B). (9-2)

dln

By [24], we see that ®,(«, 8)€Z for n>2 if (a+3)?€Z and af€Z. Hence Lucas numbers
u, (n>0) and Lehmer numbers @,, (n>0) are rational integers. From (9.2) and the fact
that @1 («, 8)=a—p and ®3(a, B)=a+f, we see that

P(up) =2 P(®,(a, ) and P(ty,) > P(®,(«a,B)) for n>2. (9.3)

Let w(m) denote the number of distinct prime divisors of meZ when m#0.
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THEOREM. (Stewart [25, Theorem 1.1]) Let o and B be complex numbers such that
(a+B)? and afB are non-zero rational integers and a/f3 is not a root of unity. Then
there exists a positive number C, which is effectively computable in terms of w(afB) and
the discriminant of Q(a/p), such that, for all n>C,

logn
P(®,(a, — . 4
(®nle 6))>neXp<104loglogn> (0.4)
Clearly (9.3) and (9.4) prove the conjecture of Erdés from 1965 and its generaliza-
tions P Pl
M — o0 and M — 00, respectively, asn— oo, (9.5)
n n
to Lucas and Lehmer numbers.

Henceforth we shall always assume that
laf >8]
As pointed out in [25], we may assume, without loss of generality, that

ged((a+6)?%, aB) =1. (9.6)

Denote by ¢(n) Euler’s g-function. By [25, Lemma 4.2], there exists an effectively

computable positive number ¢; such that if n>c¢; then
log|®n (e, B)| = 30(n) log |al. (9.7)

(Note that the proof of [25, Lemma 4.2] depends ultimately upon an estimate for a linear
form in two logarithms of algebraic numbers due to Baker [2], [3]; see [25, §4] for details.)
On the other hand,

log |®,(a, B)| = Z ord, ®,(c, B)-logp for n>2. (9.8)
p|®n(a,B)
Observe that o and 32 are in the ring Oq(a/p) of algebraic integers in Q(a/3). Let p be

a prime ideal of Og(.,g), lying above the prime number p. We now show two facts.
Fact 1. If n>2 and p|®,(, B), then ord, o*=ord, f?=ord,(a/3)=0.

Proof. If n is even, then a”—p"€0g(,/p). From p|®,(a,3) and (9.2) we have
p|(a™—pB"). Assume that ord, a0, then we would have p|a? and whence p|32, con-
tradicting (9.6). Thus ord, a*=0. Similarly, we get ord, 32=0.

If n is odd, then from p|®,(a, ) and (9.2) we have p|(a"T!—af"+a"3—p"T1)
(=tn(a?—B%)€Og(a/p))- Assume that ord, a?7£0, then we would have p|a? and plaf
(since p|(aB)?) and whence p|3?, contradicting (9.6). Thus ord, a?=0. Similarly we
obtain ord, (5%)=0.

Now ordy(a/3)=0 follows from 2ord,(a/3)=ordy(a?/B?)=0. This completes the
proof of Fact 1. O
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Fact 2. If n>2 and p|®,(a, B), then ord, ®,(c, B)<ord,((a/B)"—1).

Proof. If n is even, then (9.2) and Fact 1 give

ord, ®,(a, ) <ordy(a” —8") = ord, a,%ﬁ =ordy ((Z)‘l)

If n is odd, then (9.2) and Fact 1 give

a"—p" (a/B)"—1 aY
= < -] —-1).
g apr <0 \\3
This completes the proof of Fact 2. O

ord, @, (o, B) <ord,

By (9.7), (9.8) and Fact 2, we obtain, for n>co=max{cy, 2},

bemoglal< 3 ordy((5) -1) 10g. (99

p|®n (a,B)

The strategy to prove [25, Theorem 1.1] is to apply [25, Lemma 4.3] to (essentially)
our inequality (9.9) and then to combine [25, Lemmas 2.1 and 2.3] to finish the proof.
We see that [25, Lemma 4.3] is one of the core results of [25].

We now state [25, Lemma 4.3] and give some remarks on its proof. Suppose that «
and 3 are complex numbers such that (a+/3)? and af3 are non-zero rational integers and

such that a/f is not a root of unity and |«|>|5|.

LEMMA. (Stewart [25, Lemma 4.3]) Let n>1 be an integer, p be a prime with ptaf
and p be a prime ideal of Oq(a/p), lying above p, which does not ramify. There ex-
ists a positive number C, which is effectively computable in terms of w(aB) and the
discriminant of Q(a/B), such that if p>C then

al log p
d — | -1 ——— |1 I . 9.10
or p((ﬂ) )<pexp< 51.910g10gp> og|allogn ( )

We may assume henceforth, without loss of generality, that (9.6) is satisfied. Note
that «/f is a zero of
afz’ —((a+p)? —2aB)r+af € Zlz].

As such a//f is rational with the absolute logarithmic Weil height ho(a/8) satisfying
« 1 a?
or /B is algebraic of degree 2 with

(056> < %) = 5 (1ogapl+10g ZD —log|al,

| =
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where the lower bound (log 6) 2 follows from [28, Corollary 1]. In the latter case, there
exist meZ and d€Z, with d#1 square-free, such that

(2—p2)2=m2d and @(2):@(\/&). (9.11)

Observe that if [Q(a/3):Q]=[Q(V/d):Q]=2 and p>2 is a prime, then p is ramified
if and only if p|d. A prime p>2 with p{d splits completely in Q(«/S) if the Legendre
symbol (d/p) takes value 1 and is inert in Q(«/f3) otherwise (see [12, p.498]).

We consider the following cases:

(i) [Q(a/B):Q=1;

(9.12)
(ii) [Q(a/B): Q] =2, with sub-cases (ii.1) (d/p)=1 and (ii.2) (d/p) =—1;

and assert that [40, Theorem 1] together with Stewart’s device (see §1.1) is already
sufficient for proving (9.10) with 51.9 replaced by 118.4 (or any number >16¢?) in case
(i) and for proving (9.10) with 51.9 replaced by 236.8 (or any number >32¢?) in case
(ii.1). However, [40] does not suffice to obtain any inequality of the quality (with respect
to the dependence on p) as in (9.10) in case (ii.2).

Now we verify the above assertion. Recall that log”z=log max{z, e} for any z>0.

We first deduce from [40, Theorem 1] the following lemma.

LEMMA 9.1. Let K be a number field with d=[K:Q], p=5 be a prime and p be a
prime ideal of Ok lying above p with ramification index e, =1 and residue class degree
fp- We assume that

ordy(p/* —1)=1 or (€K, (9.13)

and suppose that aq, ..., o, are multiplicatively independent p-adic units in K, by, ..., b,
are rational integers, not all zero, and that B is a real number satisfying
B > max{|bi], ..., |bn|, 3}
Then
ordy (bt ...alr —1) < C3(n, d, p)ho(a1) ... ho(aw) log B,
where

n f n
CBWCLP)=359<n+1>3/2(8ep;) d"*+2(log"d) (log ¢* (n+1)d) < 7 )

fplogp \ fplogp

Remark 9.2. Note that (9.13) is just (1.5)%* for the case ¢=2, i.e., p>2.
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Proof. We apply [40, Theorem 1] for cases (IIT) and (IV) (see (1.35)%). Note that
for case (III), by (9.13), we have d>2 and u>2, and for case (IV) we have u>1. Observe
that

max{loge*(n+1)d, ey, fp logp}

(9.14)
< (log e (n+1)d)(f, log p) max{(f, logp)~*, (log 2¢*d) '}
By a formula for I'(z) given in Whittaker and Watson [30, p. 253], we see that
(n+1)"*+2 1 +1 3/2
< e (n+1 . 9.15
<= (9.15)
Now Lemma 9.1 follows from [40, Theorem 1] at once. O

We now discuss case (i). We may assume p{6a and write p=pZ. If p=3 (mod 4),
then ordy(p/» —1)=1. Thus we may work in Q, using Lemma 9.1 with K =Q and, at the
end, obtain (9.10) with 51.9 replaced by 59.2. We omit the details here. If p=1 (mod 4),
then in order to satisfy (9.13), we have to work in K=Q((4)=Q(yv/—1). Let 8 be a prime
ideal of O lying above p=pZ. Then ep=fp=1, since (—1/p)=1. Our assumption
pt6af implies that p>5 and ordg(a/B)=0. Following [25], we introduce

B log p
~ | 118.35loglog p
and see that k>2 when p>cs. For j>2, let p; be the (j—1)-th smallest prime such that

pjtpap. (9.16)

We write
«
B:alpg...pk (9.17)

ord, < (g)ﬂ 1) = ordy (<g)ﬂ 1) = ordgs (apl ... pp—1). (9.18)

From (9.16), pt6aS and the fact that /8 is not a root of unity, we see that «y,pa, ..., pk

and obtain

are multiplicatively independent B-adic units in K. An application of Lemma 9.1 to
(9.18) gives

ord, <<g> —1) < Cs(k,2,PB)ho(ar1) logps ... log p -2 log n.

Taking advantage of the fact that foz=1, this ultimately leads to (9.10) with 51.9 replaced
by 118.4 in case (i) (see [25] for more details).
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We observe that along with the strategy of [25, §5] (namely to apply (9.10) with
51.9 replaced by 118.4 to our inequality (9.9) and then to combine [25, Lemmas 2.1 and
2.3] to finish the proof), Lemma 9.1, a consequence of [40, Theorem 1], together with
Stewart’s device yields (9.4) with 104 replaced by 237 in case (i), thereby proving the
conjecture of Erdds from 1965.

We should emphasize here the following point. Recall that the second major im-
provement achieved in [40] (see p.192%*), which is based on Loher and Masser [14], is
that the product of absolute logarithmic Weil heights

ho(Ozl) ho(an)

appears in the main theorem of [40] (see (1.17)*), in place of the product of the modified
heights

h'(on)...h (e,) with A/ (o) = maX{hO(O‘j)a e lsgp}

in [37] and [38]. It is this improvement which makes Stewart’s device work. By the way,
we notice that the constant 118.4 can be replaced by 51.9 on the basis of the present
paper.

Now we discuss case (ii.1). We may assume that

pt6dap (9.19)

with d as in (9.11). Then p>5 and from (d/p)=1 we deduce that e,=f,=1. If p=3
(mod 4) then ords(p/» —1)=1 and we can apply Lemma 9.1 with K=Q(a//S) to obtain
(9.10) with 51.9 replaced by 118.4. We omit the details here. If p=1 (mod 4), then in
order to satisfy (9.13), we have to work in K=Q(a/3)({4). We need only to consider
the worst situation when (4¢Q(«/f) and [K:Q]=4. Let P be a prime ideal of Ok lying
above p. By the lemma in the appendix of [35], we have ep=ep,=1 and fp=f,=1.

Similar to our discussion in case (i), we introduce

_ logp
1 236.7loglog p

and keep (9.16) and (9.17), and we have (9.18) again. Observe that o, ps,...,pr are

multiplicatively independent $B-adic units in K. An application of Lemma 9.1 with

K=Q(a/B8)(C) to (9.18) gives

ord, < <g>n 1) < C3(k, 4,9)ho(ar)(log ps) ... (log pr)2 log n.

Taking advantage of the fact that foz=1, this ultimately leads to (9.10) with 51.9 replaced
by 236.8 in case (ii.1) (see [25] for more details).



p-ADIC LOGARITHMIC FORMS AND A PROBLEM OF ERDOS 379

Next, we discuss case (ii.2). We may assume (9.19) with d as in (9.11). Then p>5
and from (d/p)=—1 we deduce that e,=1 and f,=2. In order to satisfy (9.13), we have
to work in K=Q(c/B)((4), since now ordy(pr —1)>3. Let P be a prime ideal of O
lying above p. By the lemma in the appendix of [35], we have ep=e,=1 and fyp=/f,=2.
It is evident that [40, Theorem 1] (see Lemma 9.1) together with Stewart’s device can
just give an upper bound for ord, ((a/3)" —1) similar to (9.10), but with p? in place of p.
Applied to (9.9), this cannot yield any lower bound for P(®,,(«, 8)) that would give (9.5)
in case (ii) where [Q(a/8):Q]=2.

Here the second refinement described in §1.1 establishes the basis to overcome this
serious problem. While Stewart deduces for this purpose [25, Lemma 3.1] from our main
theorem, we deduce Lemma 9.3 below, building on our Theorem 1 with r=n (see (1.19)).
Note that the deduction of Theorem 1 with r=n from our main theorem utilizes the
Liouville theorem (see the proof of Lemma 8.1), whence, generally speaking, Lemma 9.3
is sharper than [25, Lemma 3.1].

LEMMA 9.3. Let K be a number field with d=[K:Q] and «g be given by (1.4). Let
p=5 be a prime and p be a prime ideal of O lying above p with ramification index e, =1
and residue class degree f,. Suppose thal aq,...,a, are multiplicatively independent p-

adic units in K, by,...,b, are rational integers, not all zero, and B is a real number

satisfying
B > max{|bi], ..., |bn|,5}.
Then
ordy(ad ...aln —1) < Cy(n, d,p,a)ho(e) ... ho(an) log B,
where

-1\
Cy(n,d, p,a)=376(n-+1)3/2 (7622) d" 2 (log*d) log e*(n+1)d

fe v
D n
X max — ] ,e"f logp}.
{5(50 <fp logp) ’
Remark 9.4. Observe that we do not assume (9.13). This is the benefit of the

first refinement (see §1.1). Note also that (1.7) with ¢=2 implies that aq,...,a, are

multiplicatively independent.

Proof. We apply Theorem 1 with r=n and we may take

p—1

-2

since we are in case (III) of §1.3. Using (9.14), (9.15), 2*>2 and

Jylogp
log 5

Lemma 9.3 follows directly from Theorem 1 with r=n. O

M=1794 and oM =7

max{log B, f, logp} < log B,
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Next, we reformulate [25, Lemma 2.2] for making applications more transparent.

LEMMA 9.5. Let d#1 be a square-free rational integer and K=Q(v/d). Let €O
have degree 2 and let 6" denote the algebraic conjugate of 0 over Q. Suppose that p is a

prime satisfying
p12dN(0) and (Z) =-1,

where N(0)=00" denotes the norm of 0 for K/Q. Let p be a prime ideal of O lying
above p and K be the residue class field of K at p. Then the order of the residue class
¥ of v=0/0" in K* divides p+1.

In [25] Stewart found the way, through his Lemmas 2.2 and 2.4, to apply successfully
his Lemma 3.1, thereby proving his Lemma 4.3 for case (ii). We have carefully worked
out a proof of his Lemma 4.3 for case (ii), where we use Lemma 9.3 in place of his
Lemma 3.1 and Lemma 9.5 in place of his Lemma 2.2. In order to reduce the size of the

present paper, we skip the proof. This completes our exposition.
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