
Acta Math., 211 (2013), 291–314

DOI: 10.1007/s11511-013-0105-y
c© 2013 by Institut Mittag-Leffler. All rights reserved

On divisors of Lucas and Lehmer numbers

by

Cameron L. Stewart

University of Waterloo

Waterloo, ON, Canada

1. Introduction

Let un be the nth term of a Lucas sequence or a Lehmer sequence. In this article we
shall establish an estimate from below for the greatest prime factor of un which is of the
form n exp(log n/104 log log n). In so doing we are able to resolve a question of Schinzel
from 1962 and a conjecture of Erdős from 1965. In addition we are able to give the first
general improvement on results of Bang from 1886 and Carmichael from 1912.

Let α and β be complex numbers such that α+β and αβ are non-zero coprime
integers and α/β is not a root of unity. Put

un =
αn−βn

α−β
for n > 0.

The integers un are known as Lucas numbers and their divisibility properties have been
studied by Euler, Lagrange, Gauss, Dirichlet and others (see [11, Chapter XVII]). In
1876 Lucas [24] announced several new results concerning Lucas sequences {un}∞n=0 and
in a substantial paper in 1878 [25] he gave a systematic treatment of the divisibility
properties of Lucas numbers and indicated some of the contexts in which they appeared.
Much later Matijasevich [26] appealed to these properties in his solution of Hilbert’s 10th
problem.

For any integer m let P (m) denote the greatest prime factor of m with the convention
that P (m)=1 when m is 1, 0 or −1. In 1912 Carmichael [8] proved that if α and β are
real and n>12 then

P (un) >n−1. (1.1)
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Results of this character had been established earlier for integers of the form an−bn,
where a and b are integers with a>b>0. Indeed Zsigmondy [49] in 1892 and Birkhoff
and Vandiver [6] in 1904 proved that, for n>2,

P (an−bn) >n+1, (1.2)

while in the special case that b=1 the result is due to Bang [4] in 1886.
In 1930 Lehmer [23] showed that the divisibility properties of Lucas numbers hold

in a more general setting. Suppose that (α+β)2 and αβ are coprime non-zero integers
with α/β not a root of unity and, for n>0, put

ũn =


αn−βn

α−β
for n odd,

αn−βn

α2−β2
for n even.

Integers of the above form have come to be known as Lehmer numbers. Observe that
Lucas numbers are also Lehmer numbers up to a multiplicative factor of α+β when n is
even. In 1955 Ward [45] proved that if α and β are real then, for n>18,

P (ũn) >n−1, (1.3)

and four years later Durst [13] observed that (1.3) holds for n>12.
A prime number p is said to be a primitive divisor of a Lucas number un if p divides

un but does not divide (α−β)2u2 ... un−1. Similarly p is said to be a primitive divisor of
a Lehmer number ũn if p divides ũn but does not divide (α2−β2)2ũ3 ... ũn−1. For any
integer n>0 and any pair of complex numbers α and β, we denote the n-th cyclotomic
polynomial in α and β by Φn(α, β), so

Φn(α, β) =
n∏

j=1

(j,n)=1

(α−ζjβ),

where ζ is a primitive nth root of unity. One may check, see [38], that Φn(α, β) is an
integer for n>2 if (α+β)2 and αβ are integers. Further, see [38, Lemma 6], if in addition
(α+β)2 and αβ are coprime non-zero integers, α/β is not a root of unity, n>4 and n is
not 6 or 12, then P (n/(3, n)) divides Φn(α, β) to at most the first power and all other
prime factors of Φn(α, β) are congruent to 1 or −1 modulo n. The last assertion can be
strengthened in the case that α and β are coprime integers to the assertion that all other
prime factors of Φn(α, β) are congruent to 1 modulo n. Since

αn−βn =
∏
d|n

Φd(α, β), (1.4)
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Φ1(α, β)=α−β and Φ2(α, β)=α+β, we see that if n exceeds 2 and p is a primitive
divisor of a Lucas number un or Lehmer number ũn, then p divides Φn(α, β). Further, a
primitive divisor of a Lucas number un or Lehmer number ũn is not a divisor of n and
so it is congruent to ±1 (mod n). Estimates (1.1)–(1.3) follow as consequences of the
fact that the nth term of the sequences in question possesses a primitive divisor. It was
not until 1962 that this approach was extended to the case where α and β are not real
by Schinzel [30]. He proved, by means of an estimate for linear forms in two logarithms
of algebraic numbers due to Gel′fond [17], that there is a positive number C, which is
effectively computable in terms of α and β, such that if n exceeds C then ũn possesses
a primitive divisor. In 1974 Schinzel [35] employed an estimate of Baker [2] for linear
forms in the logarithms of algebraic numbers to show that C can be replaced by a positive
number C0, which does not depend on α and β, and in 1977 Stewart [39] showed that C0

could be taken to be e452467. This was subsequently refined by Voutier [43], [44] to 30030.
In addition Stewart [39] proved that C0 can be taken to be 6 for Lucas numbers and 12
for Lehmer numbers with finitely many exceptions and that the exceptions could be
determined by solving a finite number of Thue equations. This program was successfully
carried out by Bilu, Hanrot and Voutier [5], and as a consequence they were able to show
that for n>30 the nth term of a Lucas or Lehmer sequence has a primitive divisor. Thus
(1.1) and (1.3) hold for n>30 without the restriction that α and β be real.

In 1962 Schinzel [31] asked if there exists a pair of integers a and b with ab different
from ±2c2 and ±ch, with h>2, for which P (an−bn) exceeds 2n for all sufficiently large
n. In 1965 Erdős [14] conjectured that

P (2n−1)
n

!∞ as n!∞.

Thirty-five years later Murty and Wong [28] showed that Erdős’ conjecture is a conse-
quence of the abc conjecture [41]. They proved, subject to the abc conjecture, that if ε

is a positive real number and a and b are integers with a>b>0, then

P (an−bn) >n2−ε,

provided n is sufficiently large in terms of a, b and ε. In 2004 Murata and Pomerance [27]
proved, subject to the generalized Riemann hypothesis, that

P (2n−1) >
n4/3

log log n
(1.5)

for a set of positive integers n of asymptotic density 1.
The first unconditional refinement of (1.2) was obtained by Schinzel [31] in 1962.

He proved that if a and b are coprime and ab is a square or twice a square, then

P (an−bn) > 2n+1,
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provided that one excludes the cases n=4, 6, 12 when a=2 and b=1. Schinzel proved his
result by showing that the term an−bn was divisible by at least two primitive divisors.
To prove this result he appealed to an Aurifeuillian factorization of Φn. Rotkiewicz [29]
extended Schinzel’s argument to treat Lucas numbers and then Schinzel [32], [33], [34]
in a sequence of articles gave conditions under which Lehmer numbers possess at least
two primitive divisors and so under which (1.3) holds with n+1 in place of n−1, see also
[21]. In 1975 Stewart [37] proved that if � is a positive real number with �<1/log 2, then
P (an−bn)/n tends to infinity with n provided that n runs through those integers with at
most � log log n distinct prime factors, see also [15]. Stewart [38] in the case that α and
β are real and Shorey and Stewart [36] in the case that α and β are not real generalized
this work to Lucas and Lehmer sequences. Let α and β be complex numbers such that
(α+β)2 and αβ are non-zero relatively prime integers with α/β not a root of unity. For
any positive integer n let ω(n) denote the number of distinct prime factors of n and put
q(n)=2ω(n), the number of square-free divisors of n. Further let ϕ(n) be the number of
positive integers less than or equal to n and coprime with n. They showed, recall (1.4),
if n(>3) has at most � log log n distinct prime factors then

P (Φn(α, β))>C
ϕ(n) log n

q(n)
, (1.6)

where C is a positive number which is effectively computable in terms of α, β and �

only. The proofs depend on lower bounds for linear forms in the logarithms of algebraic
numbers in the complex case when α and β are real and in the p-adic case otherwise.

The purpose of the present paper is to answer in the affirmative the question posed
by Schinzel [31] and to prove Erdős’ conjecture in the wider context of Lucas and Lehmer
numbers.

Theorem 1.1. Let α and β be complex numbers such that (α+β)2 and αβ are
non-zero integers and α/β is not a root of unity. There exists a positive number C,
which is effectively computable in terms of ω(αβ) and the discriminant of Q(α/β), such
that, for n>C,

P (Φn(α, β))>n exp
(

log n

104 log log n

)
. (1.7)

Our result, with the aid of (1.4) gives an improvement of (1.1)–(1.3) and (1.6),
answers the question of Schinzel and proves the conjecture of Erdős. Specifically, if a

and b are integers with a>b>0, then

P (an−bn) >n exp
(

log n

104 log log n

)
(1.8)
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for n sufficiently large in terms of the number of distinct prime factors of ab. We remark
that the factor 104 which occurs on the right-hand side of (1.7) has no arithmetical
significance. Instead it is determined by the current quality of the estimates for linear
forms in p-adic logarithms of algebraic numbers. In fact we could replace 104 by any
number strictly larger than 14e2. The proof depends upon estimates for linear forms in
the logarithms of algebraic numbers in the complex and the p-adic cases. In particular
it depends upon a result of Yu [48], where improvements upon the dependence on the
parameter p in the lower bounds for linear forms in p-adic logarithms of algebraic numbers
are established. This allows us to estimate directly the order of primes dividing Φn(α, β).
The estimates are non-trivial for small primes and, coupled with an estimate from below
for |Φn(α, β)|, they allow us to show that we must have a large prime divisor of Φn(α, β)
since otherwise the total non-archimedean contribution from the primes does not balance
that of |Φn(α, β)|. By contrast for the proof of (1.6), a much weaker assumption on the
greatest prime factor is imposed and it leads to the conclusion that then Φn(α, β) is
divisible by many small primes. This part of the argument from [36] and [38] was also
employed in Murata and Pomerance’s [27] proof of (1.5) and in estimates of Stewart [40]
for the greatest square-free factor of ũn.

My initial proof of the conjecture of Erdős utilized an estimate for linear forms in p-
adic logarithms established by Yu [47]. In order to treat also Lucas and Lehmer numbers,
however, I need the more refined estimate obtained in [48], see §3.

For any non-zero integer x let ordpx denote the p-adic order of x. Our next result
follows from a special case of Lemma 4.3 of this paper. Lemma 4.3 yields a crucial step
in the proof of Theorem 1.1. An unusual feature of the proof of Lemma 4.3 is that we
artificially inflate the number of terms which occur in the p-adic linear form in logarithms
which appear in the argument. We have chosen to highlight it in the integer case.

Theorem 1.2. Let a and b be integers with a>b>0. There exists a number C1,
which is effectively computable in terms of ω(ab), such that if p is a prime number which
does not divide ab and which exceeds C1, and n is an integer with n>2, then

ordp(an−bn) <p exp
(
− log p

52 log log p

)
log a+ordp n. (1.9)

If a and b are integers with a>b>0, n is an integer with n>2 and p is an odd prime
number which does not divide ab and exceeds C1, then

ordp(ap−1−bp−1) <p exp
(
− log p

52 log log p

)
log a.

Yamada [46], using a refinement of an estimate of Bugeaud and Laurent [7] for
linear forms in two p-adic logarithms, proved that there is a positive number C2, which



296 c. l. stewart

is effectively computable in terms of ω(a), such that

ordp(ap−1−1) <C2
p

(log p)2
log a. (1.10)

By following our proof of Theorem 1.1 and using (1.10) in place of Lemma 4.3 it is
possible to show that there exist positive numbers C3, C4 and C5, which are effectively
computable in terms of ω(a), such that if n exceeds C3 then

P (an−1) >C4ϕ(n)(log n log log n)1/2

and so, by Theorem 328 of [19],

P (an−1) >C5n

(
log n

log log n

)1/2

. (1.11)

This gives an alternative proof of the conjecture of Erdős, although the lower bound
(1.11) is weaker than the bound (1.8).

Acknowledgements. The research for this paper was done in part during visits to
the Hong Kong University of Science and Technology, Institut des Hautes Études Sci-
entifiques and the Erwin Schrödinger International Institute for Mathematical Physics,
and I would like to express my gratitude to these institutions for their hospitality. In
addition I wish to thank Professor Kunrui Yu for helpful remarks concerning the presen-
tation of this article and for our extensive discussions on estimates for linear forms in
p-adic logarithms which led to [48].

2. Preliminary lemmas

Let α and β be complex numbers such that (α+β)2 and αβ are non-zero integers and
α/β is not a root of unity. We shall assume, without loss of generality, that

|α|> |β|.

Observe that

α =
√

r+
√

s

2
and β =

√
r−

√
s

2
,

where r and s are non-zero integers with |r| 6=|s|. Further Q(α/β)=Q(
√

rs). Note that
(α2−β2)2=rs, and we may write rs in the form m2d, with m a positive integer and d a
square-free integer so that Q(

√
rs)=Q(

√
d).
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For any algebraic number γ let h(γ) denote the absolute logarithmic height of γ. In
particular if a0(x−γ1) ... (x−γd)∈Z[x] is the minimal polynomial of γ over Z, then

h(γ) =
1
d

(
log a0+

d∑
j=1

log max{1, |γj |}
)

.

Notice that

αβ

(
x−α

β

)(
x− β

α

)
=αβx2−(α2+β2)x+αβ =αβx2−((α+β)2−2αβ)x+αβ

is a polynomial with integer coefficients and so either α/β is rational or the polynomial
is a multiple of the minimal polynomial of α/β. Therefore we have

h

(
α

β

)
6 log |α|. (2.1)

We first record a result describing the prime factors of Φn(α, β).

Lemma 2.1. Suppose that (α+β)2 and αβ are coprime. If n>4 and n /∈{6, 12}
then P (n/(3, n)) divides Φn(α, β) to at most the first power. All other prime factors of
Φn(α, β) are congruent to ±1 (mod n).

Proof. This is Lemma 6 of [38].

Let K be a finite extension of Q and let ℘ be a prime ideal in the ring of algebraic
integers OK of K. Let O℘ consist of 0 and the non-zero elements α of K for which ℘ has
a non-negative exponent in the canonical decomposition of the fractional ideal generated
by α into prime ideals. Then let P be the unique prime ideal of O℘ and put �K℘=O℘/P .
Further for any α in O℘ we let �α be the image of α under the residue class map that
sends α to α+P in �K℘.

Our next result is motivated by work of Lucas [25] and Lehmer [23]. Let p be an
odd prime and d be an integer coprime with p. Recall that the Legendre symbol (d/p)
is 1 if d is a quadratic residue modulo p and −1 otherwise.

Lemma 2.2. Let d be a square-free integer different from 1, θ be an algebraic integer
of degree 2 over Q in Q(

√
d) and let θ′ denote the algebraic conjugate of θ over Q.

Suppose that p is a prime which does not divide 2θθ′. Let ℘ be a prime ideal of the
ring of algebraic integers of Q(

√
d) lying above p. The order of θ/θ′ in

(
Q(
√

d)℘

)× is a
divisor of 2 if p divides (θ2−(θ′)2)2 and a divisor of p−(d/p) otherwise.

Proof. We first note that θ and θ′ are p-adic units. If p divides (θ2−(θ′)2)2 then
either p divides (θ−θ′)2 or p divides θ+θ′ and in both cases (θ/θ′)2≡1 (mod ℘). Hence
the order of θ/θ′ divides 2.
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Thus we may suppose that p does not divide 2θθ′(θ2−(θ′)2)2 and, in particular, p -d.
Since

2θ =(θ+θ′)+(θ−θ′) and 2θ′ =(θ+θ′)−(θ−θ′), (2.2)

we see, on raising both sides of the above equations to the pth power and subtracting,
that 2p(θp−(θ′)p)−2(θ−θ′)p is p(θ−θ′) times an algebraic integer. Hence, since p is odd,

θp−(θ′)p

θ−θ′
≡ (θ−θ′)p−1 (mod p).

But

(θ−θ′)p−1 =((θ−θ′)2)(p−1)/2≡
(

(θ−θ′)2

p

)
(mod p)

and (
(θ−θ′)2

p

)
=

(
d

p

)
,

so
θp−(θ′)p

θ−θ′
≡

(
d

p

)
(mod p). (2.3)

By raising both sides of equation (2.2) to the pth power and adding, we find that

θp+(θ′)p

θ+θ′
≡ (θ+θ′)p−1 (mod p),

and, since ((θ+θ′)2/p)=1,
θp+(θ′)p

θ+θ′
≡ 1 (mod p). (2.4)

If (d/p)=−1, then adding (2.3) and (2.4) we find that

2
θp+1−(θ′)p+1

θ2−(θ′)2
≡ 0 (mod p).

Hence, since p does not divide 2θθ′(θ2−(θ′)2)2,(
θ

θ′

)p+1

≡ 1 (mod ℘)

and the result follows. If (d/p)=1 then subtracting (2.3) and (2.4) we find that

2θθ′
θp−1−(θ′)p−1

θ2−(θ′)2
≡ 0 (mod p).

Thus, since p does not divide 2θθ′(θ2−(θ′)2)2,(
θ

θ′

)p−1

≡ 1 (mod ℘)

and this completes the proof.
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We remark that it is also possible to prove Lemma 2.2 by exploiting the fact that
θ/θ′ is in the subgroup of

(
Q(
√

d)℘

)× of elements of norm 1.
Let ` and n be integers with n>1 and for each real number x let π(x, n, `) denote

the number of primes not greater than x and congruent to ` modulo n. We require a
version of the Brun–Titchmarsh theorem, see [18, Theorem 3.8].

Lemma 2.3. If 16n<x and (n, `)=1 then

π(x, n, `) <
3x

ϕ(n) log(x/n)
.

Our next result gives an estimate for the primes p below a given bound which occur
as the norm of an algebraic integer in the ring of algebraic integers of Q(α/β).

Lemma 2.4. Let d 6=1 be a square-free integer and let pk denote the k-th smallest
prime of the form Nπk=pk, where N denotes the norm from Q(

√
d) to Q and πk is an

algebraic integer in Q(
√

d). Let ε be a positive real number. There is a positive number
C, which is effectively computable in terms of ε and d, such that if k exceeds C then

log pk < (1+ε) log k.

Proof. Let K=Q(
√

d) and denote the ring of algebraic integers of K by OK . A
prime p is the norm of an element π of OK provided that it is representable as the value
of the primitive quadratic form qK(x, y) given by x2−dy2, if d 6≡ 1 (mod 4),

x2+xy+
(

1−d

4

)
y2, if d≡ 1 (mod 4).

By [16, Chapter VII, (2.14)], a prime p is represented by qK(x, y) if and only if p is not
inert in K and the prime ideals ℘ of OK above p have trivial narrow class in the narrow
ideal class group of K. Let KH be the strict Hilbert class field of K. Since KH is normal
over K and G, the Galois group of KH over K, is isomorphic with the narrow ideal class
group of K it follows that |G|=h+, the strict ideal class number of K, see Theorem 7.1.2
of [10]. The prime ideals ℘ of OK which do not ramify in KH and which are principal,
are the only prime ideals of OK which do not ramify in KH and which split completely
in KH , see Theorem 7.1.3 of [10]. These prime ideals may be counted by the Chebotarev
density theorem. Let [

KH/K

℘

]
denote the conjugacy class of Frobenius automorphisms corresponding to prime ideals P

of OKH
above ℘. In particular, for each conjugacy class C of G we define πC(x,KH/K)
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to be the cardinality of the set of prime ideals ℘ of OK which are unramified in KH , for
which [

KH/K

℘

]
=C

and for which NK/Q℘6x. Denote by C0 the conjugacy class consisting of the identity
element of G. Note that the number of inert primes p of OK for which NK/Q p6x is at
most x1/2. Thus the number of primes p up to x for which p is the norm of an element
π of OK is bounded from below by

πC0

(
x,

KH

K

)
−x1/2. (2.5)

It follows from Theorems 1.3 and 1.4 of [22] that there is a positive number C1, which is
effectively computable in terms of d, such that for x greater than C1 the quantity (2.5)
exceeds

x

2h+ log x
.

Further
x

2h+ log x
>k

when x is at least 4h+k log k and
k

log k
> 4h+. (2.6)

Thus, provided (2.6) holds and x exceeds C1,

pk < 4h+k log k. (2.7)

Our result now follows from (2.7) on taking logarithms.

3. Estimates for linear forms in p-adic logarithms of algebraic numbers

Let α1, ..., αn be non-zero algebraic numbers and put K=Q(α1, ..., αn) and d=[K :Q].
Let ℘ be a prime ideal of the ring OK of algebraic integers in K lying above the prime
number p. Denote by e℘ the ramification index of ℘ and by f℘ the residue class degree
of ℘. For α in K with α 6=0 let ord℘α be the exponent to which ℘ divides the principal
fractional ideal generated by α in K and put ord℘0=∞. For any positive integer m let
ζm=e2πi/m and put α0=ζ2u where ζ2u∈K and ζ2u+1 /∈K.

Suppose that α1, ..., αn are multiplicatively independent ℘-adic units in K. Let
�α0, �α1, ..., �αn be the images of α0, α1, ..., αn, respectively, under the residue class map at
℘ from the ring of ℘-adic integers in K onto the residue class field �K℘ at ℘. For any set
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X let |X| denote its cardinality. Let 〈�α0, �α1, ..., �αn〉 be the subgroup of (�K℘)× generated
by �α0, �α1, ..., �αn. We define δ by

δ =1, if [K(α1/2
0 , α

1/2
1 , ..., α1/2

n ) :K]< 2n+1,

and

δ =
pf℘−1

|〈�α0, �α1, ..., �αn〉|
,

if
[K(α1/2

0 , α
1/2
1 , ..., α1/2

n ) :K] = 2n+1. (3.1)

Denote log max{x, e} by log∗ x.

Lemma 3.1. Let p>5 be a prime and let ℘ be an unramified prime ideal of OK

lying above p. Let α1, ..., αn be multiplicatively independent ℘-adic units. Let b1, ..., bn

be integers, not all zero, and put

B =max{2, |b1|, ..., |bn|}.

Then

ord℘(αb1
1 ... αbn

n −1) <Ch(α1) ... h(αn) max{log B, (n+1)(5.4n+log d)},

where

C =376(n+1)1/2

(
7e

p−1
p−2

)n

dn+2 log∗ d log(e4(n+1)d) max
{

pfp

δ

(
n

fp log p

)n

, enfp log p

}
.

Proof. We apply the main theorem of [48] and in [48, (1.18)] we take C1(n, d, ℘, a)h(1)

in place of the minimum. Further [48, (1.17)] holds since our result is symmetric in the
bi’s. Next we note that, as ℘ is unramified and p>5, we may take

c(1) =1794, a(1) =7
p−1
p−2

, a
(1)
0 =2+log 7 and a

(1)
1 = a

(1)
2 =5.25.

We remark that condition (3.1) ensures that we may take {θ1, ..., θn} to be {α1, ..., αn}.
Finally the explicit version of Dobrowolski’s theorem due to Voutier [42] allows us to
replace the first term in the maximum defining h(1) by log B. Therefore we find that

ord℘(αb1
1 ... αbn

n −1) <C1h(α1) ... h(αn) max{log B,G1, (n+1)f℘ log p},

where
G1 =(n+1)((2+log 7)n+5.25+log((2+log 7)n+5.25)+log d),
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and

C1 =1794
(

7
(

p−1
p−2

))n (n+1)n+1

n!
dn+2 log∗ d

2u(f℘ log p)2

×max
{

pf℘

δ

(
n

f℘ log p

)n

, enf℘ log p

}
max{log(e4(n+1)d), f℘ log p}.

Note that 2u>2 and f℘ log p>log 5. Further, by Stirling’s formula, see [1, 6.1.38],

(n+1)n+1

n!
6

en+1(n+1)1/2

√
2π

and so

ord℘(αb1
1 ... αbn

n −1) <C2h(α1) ... h(αn) max
{

log B

log 5
,

G1

log 5
, n+1

}
, (3.2)

where

C2 =
1794

2
e√
2π

(n+1)1/2

(
7e

p−1
p−2

)n

dn+2 log∗ d

×max
{

pf℘

δ

(
n

f℘ log p

)n

, enf℘ log p

}
log(e4(n+1)d)

log 5
.

(3.3)

We next observe that
G1 6 (n+1)(5.4n+log d)

and, as a consequence,

max
{

log B

log 5
,

G1

log 5
, n+1

}
=max

{
log B

log 5
,
(n+1)(5.4n+log d)

log 5

}
. (3.4)

The result now follows from (3.2)–(3.4).

The key new feature in Yu’s main theorem in [48], as compared with his estimate
in [47], is the introduction of the factor δ. It is the presence of δ in the statement of
Lemma 3.1 that allows us to extend our argument to the case when Q(α/β) is different
from Q.

4. Further preliminaries

Let (α+β)2 and αβ be non-zero integers with α/β not a root of unity. We may suppose
that |α|>|β|. Since there is a positive number c0 which exceeds 1 such that |α|>c0,
we deduce from [39, Lemma 3], see also [35, Lemmas 1 and 2], that there is a positive
number c1 which we may suppose exceeds (log c0)−1 such that, for n>0,

log 2+n log |α|> log |αn−βn|> (n−c1 log(n+1)) log |α|. (4.1)
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The proof of (4.1) depends upon an estimate for a linear form in the logarithms of two
algebraic numbers due to Baker [2].

For any positive integer n let µ(n) denote the Möbius function of n. It follows from
(1.4) that

Φn(α, β) =
∏
d|n

(αn/d−βn/d)µ(d). (4.2)

We may now deduce, following the approach of [35] and [39], our next result.

Lemma 4.1. There exists an effectively computable positive number c such that if
n>2 then

|α|ϕ(n)−cq(n) log n 6 |Φn(α, β)|6 |α|ϕ(n)+cq(n) log n, (4.3)

where q(n)=2ω(n).

Proof. By (4.2),

log |Φn(α, β)|=
∑
d|n

µ(d) log |αn/d−βn/d|,

and so, by (4.1),∣∣∣∣log |Φn(α, β)|−
∑
d|n

µ(d)
n

d
log |α|

∣∣∣∣ 6
∑
d|n

µ(d)6=0

c1 log(n+1) log |α|,

since c1 exceeds (log c0)−1. Our result now follows.

Lemma 4.2. There exists an effectively computable positive number c2 such that if
n exceeds c2 then

log |Φn(α, β)|> 1
2ϕ(n) log |α|. (4.4)

Proof. For n sufficiently large

ϕ(n) >
n

2 log log n
and q(n) <n1/log log n.

Since |α|>c0>1, it follows from (4.3) that, if n is sufficiently large,

|Φn(α, β)|> |α|ϕ(n)/2,

as required.
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Lemma 4.3. Let n>1 be an integer, let p be a prime which does not divide αβ and
let ℘ be a prime ideal of the ring of algebraic integers of Q(α/β) lying above p which
does not ramify. Then there exists a positive number C, which is effectively computable
in terms of ω(αβ) and the discriminant of Q(α/β), such that if p exceeds C then

ord℘

((
α

β

)n

−1
)

<p exp
(
− log p

51.9 log log p

)
log |α| log n.

Proof. Let c3, c4, ... denote positive numbers which are effectively computable in
terms of ω(αβ) and the discriminant of Q(α/β). We remark that, since α/β is of degree
at most 2 over Q, the discriminant of Q(α/β) determines the field Q(α/β) and so knowing
it one may compute the class number and regulator of Q(α/β) as well as the strict Hilbert
class field of Q(α/β) and the discriminant of this field. Further let p be a prime which
does not divide 6dαβ, where d is defined as in the first paragraph of §2.

Put K=Q(α/β) and

α0 =
{

i, if i∈K,
−1, otherwise.

Let v be the largest integer for which

α

β
=αj

0θ
2v

, (4.5)

with 06j63 and θ in K. To see that there is a largest such integer, we first note that
either there is a prime ideal q of OK , the ring of algebraic integers of K, lying above a
prime q which occurs to a positive exponent in the principal fractional ideal generated by
α/β, or α/β is a unit. In the former case h(α/β)>2v−1 log q and in the latter case, since
α/β is not a root of unity, there is a positive number c3, see [12], such that h(α/β)>2vc3.

Notice from (4.5) that

h

(
α

β

)
=2vh(θ). (4.6)

Further, by Kummer theory, see Lemma 3 of [3],

[K(α1/2
0 , θ1/2) :K] = 4. (4.7)

Furthermore, since p -αβ and α and β are algebraic integers,

ord℘

((
α

β

)n

−1
)

6 ord℘

((
α

β

)4n

−1
)

. (4.8)

For any real number x let bxc denote the greatest integer less than or equal to x.
Put

k =
⌊

log p

51.8 log log p

⌋
. (4.9)
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Then, for p>c4, we find that k>2 and

max
{

p

(
k

log p

)k

, ek log p

}
= p

(
k

log p

)k

. (4.10)

Our proof splits into two cases. We shall first suppose that Q(α/β)=Q so that α and
β are integers. For any positive integer j with j>2 let pj denote the (j−1)-th smallest
prime which does not divide pαβ. We put

m =n2v+2 (4.11)

and
α1 =

θ

p2 ... pk
.

Then

θm−1 =
(

θ

p2 ... pk

)m

pm
2 ... pm

k −1 =αm
1 pm

2 ... pm
k −1 (4.12)

and, by (4.5), (4.8), (4.11) and (4.12),

ordp

((
α

β

)n

−1
)

6 ordp(αm
1 pm

2 ... pm
k −1). (4.13)

Note that α1, p2, ..., pk are multiplicatively independent since α/β is not a root of
unity and p2, ..., pk are primes which do not divide pαβ. Further, since p2, ..., pk are
different from p and p does not divide αβ, we see that α1, p2, ..., pk are p-adic units.

We now apply Lemma 3.1 with δ=1, d=1, f℘=1 and n=k to conclude that

ordp(αm
1 pm

2 ... pm
k −1) 6 c5(k+1)3

(
7e

p−1
p−2

)k

max
{

p

(
k

log p

)k

, ek log p

}
×(log m)h(α1) log p2 ... log pk.

(4.14)

Put
t =ω(αβ).

Let qi denote the ith prime number. Note that

pk 6 qk+t+1,

and thus
log p2+...+log pk 6 (k−1) log qk+t+1.

By the prime number theorem with error term, for k>c6,

log p2+...+log pk 6 1.001(k−1) log k. (4.15)
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By the arithmetic geometric mean inequality,

log p2 ... log pk 6

(
log p2+...+log pk

k−1

)k−1

,

and so, by (4.15),
log p2 ... log pk 6 (1.001 log k)k−1. (4.16)

Since h(α1)6h(θ)+log p2 ... pk, it follows from (4.15) that

h(α1) 6 c7h(θ)k log k. (4.17)

Further m=2v+2n is at most n2v+2
and so, by (2.1) and (4.6),

h(θ) log m 6 4h

(
α

β

)
log n 6 4 log |α| log n. (4.18)

Thus, by (4.10), (4.13), (4.14), (4.16), (4.17) and (4.18),

ordp

((
α

β

)n

−1
)

<c8k
4

(
7e

p−1
p−2

1.001
k log k

log p

)k

p log |α| log n.

Therefore, by (4.9), for p>c9,

ordp

((
α

β

)n

−1
)

<pe− log p/51.9 log log p log |α| log n. (4.19)

We now suppose that [Q(α/β):Q]=2. Let π2, ..., πk be elements of OK with the
property that N(πi)=pi, where N denotes the norm from K to Q and where pi is the
(i−1)-th smallest rational prime number of this form which does not divide 2dpαβ. We
now put θi=πi/π′i, where π′i denotes the algebraic conjugate of πi in Q(α/β). Notice
that p does not divide πiπ

′
i=pi and if p does not divide (πi−π′i)

2 then(
(πi−π′i)

2

p

)
=

(
d

p

)
,

since Q(α/β)=Q(
√

d)=Q(πi). Thus, by Lemma 2.2, the order of θi in (Q(α/β)℘)× is a
divisor of 2 if p divides (π2

i −(π′i)
2)2 and a divisor of p−(d/p) otherwise. Since p is odd

and p does not divide d we conclude that the order of θi in (Q(α/β)℘)× is a divisor of
p−(d/p).

Put
α1 =

θ

θ2 ... θk
. (4.20)
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Then

θm−1 =
(

θ

θ2 ... θk

)m

θm
2 ... θm

k −1

and, by (4.5), (4.8), (4.11) and (4.20),

ord℘

((
α

β

)n

−1
)

6 ord℘(αm
1 θm

2 ... θm
k −1). (4.21)

Observe that α1, θ2, ..., θk are multiplicatively independent since α/β is not a root
of unity, p2, ..., pk are primes which do not divide αβ and the principal prime ideals [πi]
for i=2, ..., k do not ramify as p -2d. Further, since p2, ..., pk are different from p and p

does not divide αβ, we see that α1, θ2, ..., θk are ℘-adic units.
Notice that

K(α1/2
0 , θ1/2, θ

1/2
2 , ..., θ

1/2
k ) =K(α1/2

0 , α
1/2
1 , θ

1/2
2 , ..., θ

1/2
k ).

Furthermore
[K(α1/2

0 , θ1/2, θ
1/2
2 , ..., θ

1/2
k ) :K] = 2k+1, (4.22)

since otherwise, by (4.7) and Kummer theory, see Lemma 3 of [3], there is an integer i

with 26i6k and integers j0, ..., ji−1 with 06jb61 for b=0, ..., i−1 and an element γ of
K for which

θi =αj0
0 θj1θj2

2 ... θ
ji−1
i−1 γ2. (4.23)

But the order of the prime ideal [πi] on the left-hand side of (4.23) is 1 whereas the order
on the right-hand side of (4.23) is even, which is a contradiction. Thus (4.22) holds.

Since p does not divide the discriminant of K and [K :Q]=2, either p splits, in which
case f℘=1 and (d/p)=1, or p is inert, in which case f℘=2 and (d/p)=−1, see [20].
Observe that if (d/p)=1 then

pf℘

δ
6 p. (4.24)

Let us now determine |〈�α0, θ̄, θ̄2, ..., θ̄k〉| in the case (d/p)=−1. By our earlier
remarks, the order of θ̄i is a divisor of p+1 for i=2, ..., k. Further, by (4.5), since
N(α/β)=1, we find that N(θ)=±1 and so N(θ2)=1. By Hilbert’s Theorem 90, see e.g.
[9, Theorem 14.35], θ2=%/%′ where % and %′ are conjugate algebraic integers in Q(α/β).
Note that we may suppose that the principal ideals [%] and [%′] have no principal ideal
divisors in common. Further, since p does not divide αβ and since (d/p)=−1, [p] is a
principal prime ideal of OK and we note that p does not divide %%′. It follows from
Lemma 2.2 that the order of θ2 in (Q(α/β)℘)× is a divisor of p+1, and hence the order
of θ is a divisor of 2(p+1). Since α4

0=1, we conclude that

|〈�α0, θ̄, θ̄2, ..., θ̄k〉|6 2(p+1)



308 c. l. stewart

and so

δ =
p2−1

|〈�α0, θ̄, θ̄2, ..., θ̄k〉|
>

p−1
2

. (4.25)

We now apply Lemma 3.1 noting, by (4.24) and (4.25), that

pf℘

δ
6

2p2

p−1
.

Thus, by (4.10),

ord℘(αm
1 θm

2 ... θm
k −1) 6 c10(k+1)3

(
7e

p−1
p−2

)k

2kp

(
k

log p

)k

(log m)h(α1)h(θ2) ... h(θk).

(4.26)

Notice that θi=πi/π′i and that pi(x−πi/π′i)(x−π′i/πi)=pix
2−(π2

i +(π′i)
2)x+pi is

the minimal polynomial of θi over the integers, since [πi] is unramified. Either the
discriminant of Q(α/β) is negative, in which case |πi|=|π′i|, or it is positive, in which
case there is a fundamental unit ε>1 in OK . We may replace πi by πiε

u for any integer u

and so without loss of generality we may suppose that p
1/2
i 6|πi|6p

1/2
i ε and consequently

that p
1/2
i ε−16|π′i|6p

1/2
i . Therefore

h(θi) 6 1
2 log piε

2 = 1
2 log pi+log ε for d > 0

and
h(θi) 6 1

2 log pi for d < 0.

Let us put

R =
{

log ε for d > 0,
0 for d < 0.

Then
h(θi) 6 1

2 log pi+R (4.27)

for i=2, ..., k. In a similar fashion we find that

h(θ2 ... θk) 6 1
2 log p2 ... pk+R, (4.28)

and so
h(α1) 6h(θ)+ 1

2 log p2 ... pk+R. (4.29)

Put
t1 =ω(2dpαβ).
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Let qi denote the ith prime number which is representable as the norm of an element of
OK . Note that

pk 6 qk+t1 ,

and thus
log p2+...+log pk 6 (k−1) log qk+t1 .

Therefore, by Lemma 2.4, for k>c11,

log p2+...+log pk 6 1.0005(k−1) log k (4.30)

and so, as for the proof of (4.16),

log p2 ... log pk 6 (1.0005 log k)k−1.

Accordingly, since pk>k, for k>c12,

2k−1h(θ2) ... h(θk) 6 (log p2+2R) ... (log pk+2R) 6 (1.001 log k)k−1. (4.31)

Furthermore, as for the proof of (4.17) and (4.18), we find that from (4.29),

h(α1) 6 c13h(θ)k log k (4.32)

and, from (2.1), (4.6) and (4.11),

h(θ) log m 6 8 log |α| log n. (4.33)

Thus by (4.21), (4.26), (4.29), (4.31), (4.32) and (4.33),

ord℘

((
α

β

)n

−1
)

<c14k
4

(
7e

(
p−1
p−2

)
1.001

k log k

log p

)k

p log |α| log n. (4.34)

Therefore, by (4.9), for p>c15 we again obtain (4.19) and the result follows.

5. Proof of Theorem 1.1

Let c1, c2, ... denote positive numbers which are effectively computable in terms of ω(αβ)
and the discriminant of Q(α/β). Let g be the greatest common divisor of (α+β)2 and
αβ. Note that ϕ(n) is even for n>2 and that

Φn(α, β) = gϕ(n)/2Φn(α1, β1),
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where α1=α/
√

g and β1=β/
√

g. Further (α1+β1)2 and α1β1 are coprime and plainly

P (Φn(α, β))>P (Φn(α1, β1)).

Therefore we may assume, without loss of generality, that (α+β)2 and αβ are coprime
non-zero integers.

By Lemma 4.2, there exists c1 such that if n exceeds c1 then

log |Φn(α, β)|> 1
2ϕ(n) log |α|. (5.1)

On the other hand,

Φn(α, β) =
∏

p|Φn(α,β)

pordp Φn(α,β). (5.2)

If p divides Φn(α, β) then, by (1.4), p does not divide αβ, and so

ordp Φn(α, β) 6 ord℘

((
α

β

)n

−1
)

, (5.3)

where ℘ is a prime ideal of OK lying above p. By Lemma 2.1, if p divides Φn(α, β) and
p is not P (n/(3, n)), then p is at least n−1 and thus, for n>c2, by Lemma 4.3,

ord℘

((
α

β

)n

−1
)

<p exp
(
− log p

51.9 log log p

)
log |α| log n. (5.4)

Put
Pn =P (Φn(α, β)).

Then, by (5.2) and Lemma 2.1,

log |Φn(α, β)|6 log n+
∑

p6Pn

p -n

log p ordp Φn(α, β). (5.5)

Comparing (5.1) and (5.5) and using (5.3) and (5.4) we find that, for n>c3,

ϕ(n) log |α|<
∑

p6Pn

p -n

c4(log p)p exp
(
− log p

51.9 log log p

)
log |α| log n.

Hence
ϕ(n)
log n

< (π(Pn, n, 1)+π(Pn, n,−1))Pn exp
(
− log Pn

51.95 log log Pn

)
,

and, by Lemma 2.3,

c5
ϕ(n)
log n

<
P 2

n

ϕ(n) log(Pn/n)
exp

(
− log Pn

51.95 log log Pn

)
.

Since ϕ(n)>c6n/log log n,

Pn >n exp
(

log n

104 log log n

)
for n>c7, as required.
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6. Proof of Theorem 1.2

Since p does not divide ab,

ordp(an−bn) = ordp

((
a

g

)n

−
(

b

g

)n)
,

where g is the greatest common divisor of a and b. Thus we may assume, without loss
of generality, that a and b are coprime. Put un=an−bn for n=1, 2, ..., and let `=`(p) be
the smallest positive integer for which p divides u`. Certainly p divides up−1. Further,
as in the proof of Lemma 3 of [38], if n and m are positive integers then

(un, um) =u(n,m).

Thus if p divides un then p divides u(n,`). By the minimality of ` we see that (n, `)=`,
so that ` divides n. In particular, ` divides p−1. Furthermore, by (1.4), we see that

ordp u` =ordp Φ`(a, b).

If ` divides n then, by Lemma 2 of [38],(
un

u`
, u`

)
divides

n

`
, (6.1)

and so
ordp up−1 =ordp u`. (6.2)

Suppose that p divides Φn(a, b). Then p divides un and so ` divides n. Put n=t`pk with
(t, p)=1 and k a non-negative integer. Since Φn(a, b) divides un/un/t for t>1, we see
from (6.1), as (t, p)=1, that t=1. Thus n=`pk. For any positive integer m,

ump

um
= pb(m−1)p+

(
p

2

)
b(m−2)pum+...+up−1

m ,

and if p is not 2 and p divides um then ordp(ump/um)=1. It then follows that if p is an
odd prime then

ordp Φ`pk(a, b) = 1 for k =1, 2, ... .

If n is a positive integer not divisible by `=`(p), then |un|p=1. On the other hand, if p

is odd and ` divides n, then

|un|p = |u`|p
∣∣∣∣n`

∣∣∣∣
p

. (6.3)

It now follows from (6.2) and (6.3) and the fact that `6p−1 that, if p is an odd prime
and ` divides n, then

|un|p = |up−1|p |n|p. (6.4)

Therefore, if p is an odd prime and n is a positive integer, then

ordp(an−bn) 6 ordp(ap−1−bp−1)+ordp n, (6.5)

and our result now follows from (6.5) on taking n=p−1 in Lemma 4.3.
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