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1. Introduction

There has been great interest in conformally invariant random curves and fractals in the
plane ever since it was realized that such geometric objects appear naturally in statistical
mechanics models at the critical temperature [13]. A major breakthrough in the field
occurred when O. Schramm [29] introduced the Schramm–Loewner evolution (SLE), a
stochastic process whose sample paths are conjectured (and in several cases proved) to
be the curves occurring in the physical models. We refer to [30] and [32] for a general
overview and some recent work on SLE. The SLE curves come in two varieties: the radial
one, where the curve joins a boundary point (say of the disc) to an interior point, and
the chordal case, where two boundary points are joined.

SLE describes a curve growing in time: the original curve of interest (say a cluster
boundary in a spin system) is obtained as time tends to infinity. In this paper we give a
different construction of random curves which is stationary, i.e. the probability measure
on curves is directly defined without introducing an auxiliary time. We carry out this
construction for closed curves, a case that is not naturally covered by SLE.

Our construction is based on the idea of conformal welding. Consider a Jordan
curve Γ bounding a simply connected region Ω in the plane. By the Riemann mapping
theorem, there are conformal maps f± mapping the unit disc D and its complement to
Ω and its complement. The map f−1

+ �f− extends continuously to the boundary T=∂D
of the disc, and defines a homeomorphism of the circle. Conformal welding is the inverse
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operation where, given a suitable homeomorphism of the circle, one constructs a Jordan
curve on the plane (see §2). In fact, in our case the curve is determined up to a Möbius
transformation of the plane. Thus random curves (modulo Möbius transformations) can
be obtained from random homeomorphisms via welding.

In this paper we introduce a random scale invariant set of homeomorphisms hω: T!T
and construct the welding curves. The model considered here has been proposed by the
second author. The construction depends on a real parameter β (the “inverse temper-
ature”) and the maps are a.s. in ω Hölder continuous for β<βc. For this range of β
the welding map will be a.s. well defined. For β>βc we expect the map hω not to be
continuous and no welding to exist. Our curves are closely related to SLE(�) for �<4,
see the footnote on page 205 and [31]. The case β=βc, presumably corresponding to
SLE(4), is not covered by our analysis.

Since we are interested in random curves that are stochastically self-similar, it is
natural to take h with such properties. Our choice for h is constructed by starting with
the Gaussian random field X on the circle (see §3 for precise definitions) with covariance

EX(z)X(z′) =− log |z−z′|, (1)

where z, z′∈C have modulus 1. X is just the restriction of the 2-dimensional massless
free field (Gaussian free field) on the circle. The exponential of βX gives rise to a random
measure τ on the unit circle T, formally given by

“dτ = eβX(z) dz”. (2)

The proper definition involves a limiting process

τ(dz) = lim
ε!0+

eβXε(z)

EeβXε(z)
dz,

where Xε stands for a suitable regularization of X, see §3.3 below.
Identifying the circle as T=R/Z=[0, 1), our random homeomorphism h: [0, 1)![0, 1)

is defined as

h(θ) =
τ([0, θ))
τ([0, 1))

for θ∈ [0, 1). (3)

The main result of this paper can then be summarized as follows.

For β2<2 and almost surely in ω, formula (3) defines a Hölder continuous circle
homeomorphism, such that the welding problem has a solution Γ, where Γ is a Jordan
curve bounding a domain Ω=f+(D) with a Hölder continuous Riemann mapping f+. For
a given ω, the solution is unique up to a Möbius map of the plane. Moreover, the curve
Γ is continuous in β∈[0,

√
2 ).
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We refer to §5 (Theorems 5.2 and 5.3) for the exact statement of the main result.
With minor changes our method generalizes to the situation where(1) the random

homeomorphism φ is replaced by φ+�φ
−1
− , where φ+ and φ− are random circle homeo-

morphisms having the same distribution as φ with parameters β+ and β−, respectively,
i.e. formally

dφ±∼ eβ±X(z)dz.

In the case where φ± are independent, we have the following result.

For every pair β+, β−<
√

2 and almost surely in ω, the welding problem for the
homeomorphism φ+�φ

−1
− has a solution Γ=Γβ+,β− , where Γβ+,β− is a Jordan curve

bounding the domains Ω+=f+(D) and Ω−=f−(C\	D), with Hölder continuous Riemann
mappings f±. For a given ω, the solution is unique up to a Möbius map of the plane and
the curves Γβ+,β− are continous in β+ and β−.

Apart from connection to SLE, the weldings constructed in this paper should be of
interest to complex analysts as they form a natural family that degenerates as β"

√
2.

It would be of great interest to understand the critical case β=
√

2 as well as the low
temperature “spin glass phase” β>

√
2. It would also be of interest to understand the

connection of our weldings to those arising from stochastic flows [2]. In [2] Hölder con-
tinuous homeomorphisms are considered, but the boundary behavior of the welding and
hence its existence and uniqueness are left open.

In writing the paper we have tried to be generous in providing details on both the
function-theoretic and the stochastics notions and tools needed, in order to serve readers
with varied backgrounds. The structure of the paper is as follows. §2 contains background
material on conformal welding and the geometric-analysis tools we need later on. To be
more specific, §2 recalls the notion of conformal welding and explains how the welding
problem is reduced to the study of the Beltrami equation. Also we recall a useful method
due to Lehto [23] to prove the existence of a solution for a class of non-uniformly elliptic
Beltrami equations, and a theorem by Jones and Smirnov [18] that will be used to verify
the uniqueness of our welding. Finally we recall the Beurling–Ahlfors extension of circle
homeomorphisms to the unit disc. For our purposes we need to estimate carefully the
dependence of the dilatation of the extension in a Whitney cube by just using small
amount of information of the homeomorphism on a ‘shadow’ of the cube.

In §3 we introduce the 1-dimensional trace of the Gaussian free field and recall some
known properties of its exponential that we will use to define and study the random

(1) Heuristic arguments from Liouville quantum gravity suggest [11], [15] that there might be a

more precise relation between SLE and the welding of the homeomorphism φ−1
+ �φ−, which we do not

consider here as it would require considerable changes in our argument.
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circle homeomorphism. §4 is the technical core of the paper as it contains the main
probabilistic estimates we need to control the random dilatation of the extension map.
Finally, in §5 things are put together and the a.s. existence and uniqueness of the welding
map is proven.

Let us conclude by a remark on notation. We denote by c and C generic constants
which may vary between estimates. When the constants depend on parameters such as
β we denote this by C(β).

Acknowledgements. We thank M. Bauer, D. Bernard, I. Binder, M. Nikula, S. Ro-
hde, S. Smirnov and W. Werner for useful discussions.

Note added in proof. After the manuscript was sent to publication, the works [3]
and [31] have appeared. The paper [3] by Airault, Malliavin and Thalmayer continues
the work on the welding of stochastic flows initiated in [2]. Sheffield’s preprint [31]
contains, among other things, confirmation for the close relation between welding of the
homeomorphism φ−1

+ �φ− and SLE, see the footnote on page 205.

2. Conformal welding

In this section we recall for the general readers benefit basic notions and results from
geometric analysis that are needed in our work. In particular, we recall the notion of
conformal welding, Lehto’s method for solving the Beltrami equations, the uniqueness
result for weldings due to Jones and Smirnov, and the last subsection contains estimates
for the Beurling–Ahlfors extension tailored for our needs.

2.1. Welding and Beltrami equation

One of the main methods for constructing conformally invariant families of (Jordan)
curves comes from the theory of conformal welding. Put briefly, in this method we
glue the unit disc D={z∈C:|z|<1} and the exterior disc D∞={z∈Ĉ:|z|>1} along a
homeomorphism φ: T!T, by the identification

x∼ y, when x∈T = ∂D and y=φ(x)∈T = ∂D∞.

The problem of welding is to give a natural complex structure to this topological sphere.
Uniformizing the complex structure then gives us the curve, the image of the unit circle.

More concretely, given a Jordan curve Γ⊂Ĉ, let

f+: D!Ω+ and f−: D∞!Ω−
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be a choice of Riemann mappings onto the components of the complement Ĉ\Γ=Ω+∪Ω−.
By Carathéodory’s theorem, f− and f+ both extend continuously to ∂D=∂D∞, and thus

φ= f−1
+ �f− (4)

is a homeomorphism of T. In the welding problem we are asked to invert this process;
given a homeomorphism φ: T!T we are to find a Jordan curve Γ and conformal mappings
f± onto the complementary domains Ω± so that (4) holds.

It is clear that the welding problem, when solvable, has natural conformal invariance
attached to it; any image of the curve Γ under a Möbius transformation of Ĉ is equally a
welding curve. Similarly, if φ: T!T admits a welding, then so do all its compositions with
Möbius transformations of the disc. Note, however, that not all circle homeomorphisms
admit a welding, for examples see [26] and [34].

The most powerful tool in solving the welding problem is given by the Beltrami
differential equation, defined in a domain Ω by

∂f

∂z̄
=µ(z)

∂f

∂z
for a.e. z ∈Ω, (5)

where we look for homeomorphic solutions f∈W 1,1
loc (Ω). Here (5) is an elliptic system

whenever |µ(z)|<1 almost everywhere, and uniformly elliptic if ‖µ‖∞<1.
In the uniformly elliptic case, homeomorphic solutions to (5) exist for every co-

efficient with ‖µ‖∞<1, and they are unique up to post-composing with a conformal
mapping [5, p. 179]. In fact, it is this uniqueness property that gives us a way to produce
the welding. To see this, suppose first that

φ= f |T, (6)

where f∈W 1,2
loc (D; D)∩C(	D) is a homeomorphic solution to (5) in the disc D. Find then

a homeomorphic solution to the auxiliary equation

∂F

∂z̄
=χD(z)µ(z)

∂F

∂z
for a.e. z ∈C. (7)

Now Γ=F (T) is a Jordan curve. Moreover, as ∂z̄F=0 for |z|>1, we can set f− :=F |D∞
and Ω− :=F (D∞) to define a conformal mapping

f−: D∞!Ω−.

On the other hand, since both f and F solve the equation (5) in the unit disc D, by
uniqueness of the solutions we have

F (z) = f+�f(z), z ∈D, (8)
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for some conformal mapping f+: D=f(D)!Ω+ :=F (D). Finally, on the unit circle,

φ(z) = f |T(z) = f−1
+ �f−(z), z ∈T. (9)

Thus we have found a solution to the welding problem, under the assumption (6). That
the welding curve Γ is unique up to a Möbius transformation of C follows from [5,
Theorem 5.10.1]; see also Corollary 2.5 below.

To complete this circle of ideas, we need to identify the homeomorphisms φ: T!T
that admit the representation (5), (6) with uniformly elliptic µ in (5). It turns out
[5, Lemma 3.11.3 and Theorem 5.8.1] that such φ’s are precisely the quasisymmetric
mappings of T, mappings that satisfy

K(φ) := sup
s,t∈R

|φ(e2πi(s+t))−φ(e2πis)|
|φ(e2πi(s−t))−φ(e2πis)|

<∞. (10)

2.2. Existence in the degenerate case: the Lehto condition

The previous subsection describes an obvious model for constructing random Jordan
curves, by first finding random homeomorphisms of the circle and then solving for each
of them the associated welding problem. In the present work, however, we are faced with
the obstruction that circle homeomorphisms with the exponentiated Gaussian free field
as derivative almost surely do not satisfy the quasisymmetry assumption (10). Thus
we are forced outside the uniformly elliptic partial differential equations and need to
study (5) with degenerate coefficients with only |µ(z)|<1 almost everywhere. We are
even outside the much studied class of maps of exponentially integrable distortion, see
[5, §20.4.] In such generality, however, the homeomorphic solutions to (5) may fail to
exist, or the crucial uniqueness properties of (5) may similarly fail.

In his important work [23], Lehto gave a very general condition in the degenerate
setting for the existence of homeomorphic solutions to (5). To recall his result, assume
we are given the complex dilatation µ=µ(z), and write then

K(z) =
1+|µ(z)|
1−|µ(z)|

, z ∈Ω,

for the associated distortion function. Note that K(z) is bounded precisely when the
equation (5) is uniformly elliptic, i.e. ‖µ‖∞<1. Thus the question is how strongly K(z)
can grow for the basic properties of (5) still to remain true. In order to state Lehto’s
condition we fix some notation. For given z∈C and radii 06r<R<∞, let us denote the
corresponding annulus by

A(z, r, R) := {w∈C : r < |w−z|<R}.
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In the Lehto approach, one needs to control the conformal moduli of image annuli in a
suitable way. This is done by introducing, for any annulus A(w, r,R) and for the given
distortion function K, the following quantity, which we call the Lehto integral :

L(z, r, R) :=LK(z, r, R) :=
∫ R

r

1∫ 2π

0
K(z+%eiθ) dθ

d%

%
. (11)

For the following formulation of Lehto’s theorem see [5, p. 584].

Theorem 2.1. Suppose µ is measurable and compactly supported with |µ(z)|<1 for
almost every z∈C. Assume that the distortion function

K(z) =
1+|µ(z)|
1−|µ(z)|

is locally integrable, that is
K ∈L1

loc(C), (12)

and that for some R0>0 the Lehto integral satisfies

LK(z, 0, R0) =∞ for all z ∈C. (13)

Then the Beltrami equation

∂f

∂z̄
(z) =µ(z)

∂f

∂z
(z) for a.e. z ∈C (14)

admits a homeomorphic W 1,1
loc -solution f : C!C.

As a consequence, the welding extends beyond the class of quasisymmetric functions.

Corollary 2.2. Suppose that φ: T!T extends to a homeomorphism f : C!C sat-
isfying (12)–(14) together with the condition

K(z)∈L∞loc(D). (15)

Then φ admits a welding : there are a Jordan curve Γ⊂Ĉ and conformal mappings
f± onto the complementary domains of Γ such that

φ(z) = f−1
+ �f−(z), z ∈T.

Proof. Given the extension f : C!C, let us again look at the auxiliary equation

∂F

∂z̄
=χD(z)µ(z)

∂F

∂z
for a.e. z ∈C. (16)
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Since Lehto’s condition holds as well for the new distortion function

K(z) =
1+|χD(z)µ(z)|
1−|χD(z)µ(z)|

,

we see from Theorem 2.1 that the auxiliary equation (16) admits a homeomorphic solution
F : C!C. Arguing as in (6)–(9), it will then be sufficient to show that

F (z) = f+�f(z), z ∈D,

where f+ is conformal in D. But this is a local question; every point z∈D has a neigh-
borhood where K(z) is uniformly bounded, by (15). In such a neighborhood the usual
uniqueness results to solutions of (5) apply; see [5, p. 179]. Thus f+ is holomorphic, and
as a homeomorphism it is conformal. This proves the claim.

Consequently, in the study of random circle homeomorphisms φ=φω, a key step for
the conformal welding of φω will be to show that almost surely each such mapping admits
a homeomorphic extension to C, where the distortion function satisfies a condition such
as (13). In our setting where the derivative of φ is given by the exponentiated trace of
a Gaussian free field, the extension procedure is described in §2.4 and the appropriate
estimates it requires are proven in §4.

Actually, in §5, when proving our main theorem, we need to present a variant of
Lehto’s argument where it will be enough to estimate the Lehto integral only at a suitable
countable set of points z∈T. We also utilize there the fact that the extension of our
random circle homeomorphism φ satisfies (15). In verifying the Hölder continuity of the
ensuing map, we shall apply a useful estimate (Lemma 2.3 below) that estimates the
geometric distortion of an annulus under a quasiconformal map.

Given a bounded (topological) annulus A⊂C, with E being the bounded component
of C\A, we denote by DO(A):=diam(A) the outer diameter, and by DI(A):=diam(E)
the inner diameter of A.

Lemma 2.3. Let f be a quasiconformal mapping on the annulus A(w, r,R), with
distortion function Kf . It then holds that

DO(f(A(w, r,R)))
DI(f(A(w, r,R)))

>
1
16
e2π

2LKf
(w,r,R).

Proof. Recall first that for a rigid annulus A=A(w, r,R), we define its conformal
modulus by

mod(A) = 2π log
R

r
,
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while for any topological annulus A, one sets

mod(A) =mod(g(A)),

where g is a conformal map of A onto a rigid annulus. Then we have [5, Corollary 20.9.2]
the following basic estimate for the modulus of the image annulus in terms of the Lehto
integrals:

mod(f(A(w, r,R)))> 2πLKf
(w, r,R). (17)

On the other hand, by combining [35, Lemma 7.38 and Corollary 7.39] and [4, Exer-
cise 5.68 (16)] we obtain for any bounded topological annulus A⊂C,

1
16
eπmod(A) 6

DO(A)
DI(A)

.

Put together, the desired estimate follows.

2.3. Uniqueness of the welding

An important issue of the welding is its uniqueness, that the curve Γ is unique up to com-
posing with a Möbius transformation of Ĉ. As the above argument indicates, this is es-
sentially equivalent to the uniqueness of solutions to the appropriate Beltrami equations,
up to a Möbius transformation. However, in general the assumptions of Theorem 2.1
alone are much too weak to imply this.

In fact, in our case the uniqueness of solutions to the Beltrami equation (16) is
equivalent to the conformal removability of the curve F (T). Recall that a compact set
B⊂Ĉ is conformally removable if every homeomorphism of Ĉ which is conformal off B

is conformal in the whole sphere, and hence a Möbius transformation.
It follows easily that e.g. images of circles under quasiconformal mappings, i.e.

homeomorphisms satisfying (5), with ‖µ‖∞<1, are conformally removable, while Jor-
dan curves of positive area are never conformally removable.

For general curves the removability is a deep problem; no characterization of confor-
mally removable Jordan curves is known to this date. What saves us in the present work
is that we have the remarkable result of Jones and Smirnov in [18] available. We will not
need their result in its full generality, as the following special case will be sufficient for
our purposes.

Theorem 2.4. (Jones–Smirnov [18]) Let Ω⊂Ĉ be a simply connected domain such
that the Riemann mapping ψ: D!Ω is α-Hölder continuous for some α>0.

Then the boundary ∂Ω is conformally removable.

Adapting this result to our setting, we obtain the following result.
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Corollary 2.5. Suppose that φ: T!T is a homeomorphism that admits a welding

φ(z) = f−1
+ �f−(z), z ∈T,

where f± are conformal mappings of D and D∞, respectively, onto complementary Jordan
domains Ω±.

Assume that f− (or f+) is α-Hölder continuous on the boundary ∂D∞=T. Then
the welding is unique: any other welding pair (g+, g−) of φ is of the form

g± =Φ�f±,

where Φ: Ĉ!Ĉ is a Möbius transformation.

Proof. Suppose we have Riemann mappings g± onto complementary Jordan domains
such that

g−1
+ �g−(z) =φ(z) = f−1

+ �f−(z), z ∈T.

Then the formula

Ψ(z) =
{
g+�f

−1
+ (z), if z ∈ f+(D),

g−�f
−1
− (z), if z ∈ f−(D∞)

defines a homeomorphism of Ĉ which is conformal outside Γ=f±(T). From the Jones–
Smirnov theorem we see that Ψ extends conformally to the entire sphere, and thus it is
a Möbius transformation.

As we shall see in Theorem 5.1, for circle homeomorphisms φ with the exponentiated
Gaussian free field as derivative, the solutions F to the auxiliary equation (16) will
be Hölder continuous almost surely. Then f−=F |D∞ is a Riemann mapping onto a
complementary component of the welding curve of φ=φω. It follows that almost surely
φ=φω admits a welding curve Γ=Γω which is unique, up to composing with a Möbius
transformation.

2.4. Extension of the homeomorphism

In this section we discuss in detail suitable methods for extending homeomorphisms
φ: T!T to the unit disc; by reflecting across T, the map then extends to C. Extensions of
homeomorphisms h: R!R of the real line are convenient to describe, and it is not difficult
to find constructions that sufficiently well respect the conformally invariant features of h.
Given a homeomorphism φ: T!T on the circle, we hence represent it in the form

φ(e2πix) = e2πih(x), (18)
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where h: R!R is a homeomorphism of the line with h(x+1)=h(x)+1. We may assume
that φ(1)=1, with h(0)=0.

We will now extend the 1-periodic mapping h to the upper (or lower) half-plane so
that it becomes the identity map at large height. Then a conjugation to a mapping of
the disc is easily done. For the extension we use the classical Beurling–Ahlfors extension
[10] modified suitably far away from the real axis.

Thus, given a homeomorphism h: R!R such that

h(x+1) =h(x)+1, x∈R, with h(0)= 0, (19)

we define our extension F as follows. For 0<y<1 let

F (x+iy) =
1
2

∫ 1

0

(h(x+ty)+h(x−ty)) dt+i
∫ 1

0

(h(x+ty)−h(x−ty)) dt. (20)

Then F=h on the real axis, and F is a continuously differentiable homeomorphism.
Moreover, by (19), it follows that for y=1,

F (x+i) =x+i+c0,

where c0=
∫ 1

0
h(t) dt− 1

2∈
[
− 1

2 ,
1
2

]
. Thus, for 16y62, we set

F (z) = z+(2−y)c0, (21)

and finally have an extension of h with the extra properties

F (z)≡ z when y=Imm(z) > 2, (22)

F (z+k) =F (z)+k, k∈Z. (23)

The original circle mapping admits a natural extension to the disc,

Ψ(z) = exp
(

2πiF
(

log z
2πi

))
, z ∈D. (24)

From (18) and (23) we see that this is a well-defined homeomorphism of the disc with
Ψ|T=φ and Ψ(z)≡z for |z|6e−4π. The distortion properties are not altered under this
locally conformal change of variables,

K(z,Ψ)=K(w,F ), z= e2πiw, w∈H, (25)

so we will reduce all distortion estimates for Ψ to the corresponding ones for F . Since F
is conformal for y>2, it suffices to restrict the analysis to the strip

S= R×[0, 2]. (26)
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To estimate K(w,F ) we introduce some notation. Let

Dn = {[k2−n, (k+1)2−n] : k∈Z}

be the set of all dyadic intervals of length 2−n and write

D= {Dn :n> 0}.

Consider the measure
τ([a, b])=h(b)−h(a).

For a pair of intervals J={J1, J2} let us introduce the following quantity

δτ (J) =
τ(J1)
τ(J2)

+
τ(J2)
τ(J1)

. (27)

If J1 and J2 are the two halves of an interval I, then δτ (J) measures the local doubling
properties of the measure τ . In such a case we define δτ (I)=δτ (J). In particular, (10)
holds for the circle homeomorphism φ(e2πix)=e2πih(x) if and only if the quantities δτ (I)
are uniformly bounded, for all (not necessarily dyadic) intervals I.

The local distortion of the extension F will be controlled by sums of the expressions
δτ (J) in the appropriate scale. For this, let us pave the strip S by Whitney cubes {CI}I∈D
defined by

CI = {(x, y) :x∈ I and 2−n−1 6 y6 2−n}

for I∈Dn, n>0, and CI=I×
[
1
2 , 2
]

for I∈D0. Given an I∈Dn let j(I) be the union of I
and its neighbors in Dn and

J (I) := {J=(J1, J2) :J1, J2 ∈Dn+5 and J1, J2⊂ j(I)}. (28)

We then define
Kτ (I) :=

∑
J∈J (I)

δτ (J). (29)

With these notions we have the basic geometric estimate for the distortion function,
in terms of the boundary homeomorphism.

Theorem 2.6. Let h: R!R be a 1-periodic homeomorphism and let F : H!H be its
extension. Then, for each I∈D,

sup
z∈CI

K(z, F ) 6C0Kτ (I), (30)

with a universal constant C0.
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Proof. The distortion properties of the Beurling–Ahlfors extension are well studied
in the existing litterature, but none of these works gives directly Theorem 2.6, as the
main point for us is the linear dependence on the local distortion Kτ (I). The most
elementary extension operator is due to Jerison and Kenig [17] (see also [5, §5.8]), but
for this extension the linear dependence fails.

For the reader’s convenience we sketch a proof of the theorem. We will modify the
approach of Reed [27], and start with a simple lemma.

Lemma 2.7. For each dyadic interval

I = [k2−n, (k+1)2−n],

with left half I1=
[
k2−n,

(
k+ 1

2

)
2−n

]
and right half I2=I\I1, we have

1
1+δτ (I)

|τ(I)|6 |τ(Ij)|6
δτ (I)

1+δτ (I)
|τ(I)|,

j=1, 2, with
1
|I|

∫
I

(h(t)−h(k2−n)) dt6 3δτ (I)
1+3δτ (I)

|τ(I)|

and
1
|I|

∫
I

(h((k+1)2−n)−h(t)) dt6 3δτ (I)
1+3δτ (I)

|τ(I)|.

Proof. The definition of δτ (I) gives the first estimate. As h(t)6h
((
k+ 1

2

)
2−n

)
on

the left half and h(t)6h((k+1)2−n) on the right half of I, we have

1
|I|

∫
I

(h(t)−h(k2−n)) dt6
(

1
2

δτ (I)
1+δτ (I)

+
1
2

)
|τ(I)|6 3δτ (I)

1+3δτ (I)
|τ(I)|.

The last estimate follows similarly.

To continue with the proof of Theorem 2.6, the pointwise distortion of the extension
F is easy to calculate explicitly, and we obtain [10], [27] the following estimate, sharp up
to a multiplicative constant,

K(x+iy, F ) 6

(
α(x, y)
β(x, y)

+
β(x, y)
α(x, y)

)[
α̃(x, y)
α(x, y)

+
β̃(x, y)
β(x, y)

]−1

, (31)

where
α(x, y) =h(x+y)−h(x), β(x, y) =h(x)−h(x−y)

and

α̃(x, y) =h(x+y)− 1
y

∫ x+y

x

h(t) dt, β̃(x, y) =
1
y

∫ x

x−y
h(t) dt−h(x−y).
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Now the argument of Reed [27, pp. 461–464], combined with Lemma 2.7 and its estimates,
precisely shows that K(x+iy, F )624 max δτ (Ĩ), where Ĩ runs over the intervals with
endpoints contained in the set {

x, x± 1
4y, x±

1
2y, x±y

}
. (32)

Thus, for example, if we fix k∈Z and n∈N, we get for the corner point z=k2−n+i2−n

of the Whitney cube CI the estimate

K(k2−n+i2−n, F ) 6 24
∑
J

δτ (J), J=(J1, J2), J1, J2 ∈Dn+3, (33)

where J1, J2⊂j(I) as above. For a general point z=x+iy∈CI , we have to take a few
more generations of dyadic intervals. Here

[
x, x+ 1

4y
]

has length at least 2−n−3. On the
other hand, for any (non-dyadic) interval Ĩ with 2−m6|Ĩ|<2−m+1, one observes that it
contains a dyadic interval of length 2−m−1 and is contained inside a union of at most
three dyadic intervals of length 2−m. By this manner, one estimates

δτ (Ĩ) 6
∑
J

δτ (J), where J=(J1, J2), Jk ∈Dm+2 and Jk∩Ĩ 6= ∅, k=1, 2.

Choosing the endpoints of Ĩ from the set in (32) then gives the bound (30). Note that
the estimates hold also for n=0, since by (21) we have K(z, F )6 5

4 whenever y>1. Hence
the proof of Theorem 2.6 is complete.

3. Exponential of GFF and random homeomorphisms of T

3.1. Trace of the Gaussian free field

Let us recall that the 2-dimensional Gaussian free field (in other words, the massless free
field) Y in the plane has the covariance

EY (x)Y (x′) = log
1

|x−x′|
, x, x′ ∈R2.

Actually, the definition of this field in the whole plane has to be done carefully, because
of the blowup of the logarithm at infinity. However, the definition of the trace X :=Y |T
on the unit circle T avoids this problem, since it is formally obtained by requiring (in the
convenient complex notation) that

EX(z)X(z′) = log
1

|z−z′|
, z, z′ ∈T. (34)
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The above definition needs to be made precise. In order to serve also readers with less
background in non-smooth stochastic fields, let us first recall the definition of Gaussian
random variables with values in the space of distributions D′(T). An element in F∈D′(T)
is real-valued if it takes real values on real-valued test functions. Identifying T with [0, 1),
a real-valued F may be written as

F = a0+
∞∑
n=1

(an cos 2πnt+bn sin 2πnt),

with real coefficients satisfying |an|, |bn|=O(na) for some a∈R. Conversely, every such
Fourier series converges in D′(T).

Let (Ω,F ,P) stand for a probability space. A map X: Ω!D′(T) is a (real-valued)
centered D′(T)-valued Gaussian if for every (real-valued) ψ∈C∞0 (T) the map

ω 7−! 〈X(ω), ψ〉

is a centered Gaussian on Ω. Here 〈· , ·〉 refers to the standard distributional duality.
Alternatively, one may define such a random variable by requiring that a.s.

X(ω) =A0(ω)+
∞∑
n=1

(AN (ω) cos 2πnt+Bn(ω) sin 2πnt),

where An and Bn are centered Gaussians satisfying EA2
n,EB2

n=O(na) for some a∈R.
The random variable X is stationary if and only if the coefficients A0, A1, ..., B1, B2, ...

are independent.
Due to Gaussianity, the distribution of X is uniquely determined by the knowledge

of the covariance operator CX :C∞(T)!D′(T), where

〈CXψ1, ψ2〉 := E〈X(ω), ψ1〉〈X(ω), ψ2〉.

In case the covariance operator has an integral kernel, we use the same symbol for the
kernel, and in this case for almost every z∈T one has

(CXψ)(z) =
∫

T
CX(z, w)ψ(w)m(dw),

where m stands for the normalized Lebesgue measure on T. Most of the above definitions
and statements carry over directly on S ′(R)-valued random variables, but the above
knowledge is enough for our purposes.

The exact definition of (34) is understood in the above sense.
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Definition 3.1. The trace X of the 2-dimensional GFF (Gaussian free field) on T is
a centered D′(T)-valued Gaussian random variable such that its covariance operator has
the integral kernel

CX(z, z′) = log
1

|z−z′|
, z, z′ ∈T.

Observe that in the identification T=[0, 1) the covariance of X takes the form

CX(t, u) = log
1

2 sinπ|t−u|
for t, u∈ [0, 1). (35)

The existence of such a field is most easily established by writing down the Fourier
expansion:

X =
∞∑
n=1

1√
n

(An cos 2πnt+Bn sin 2πnt), t∈ [0, 1), (36)

where all the coefficients An, Bn∼N(0, 1), n>1, are independent standard Gaussians.
Writing X as

∞∑
n=1

1√
n

(αnzn+ᾱnz̄n)

with |z|=1 and α= 1
2 (A+iB), it is readily checked that it has the stated covariance.

What makes the trace X of the 2-dimensional GFF particularly natural for the
circle homeomorphisms is its invariance properties, that X is Möbius invariant modulo
constants. To see this, note that the covariance C(z, z′)=log(1/|z−z′|) satisfies the
transformation rule

C(g(z), g(z′))=C(z, z′)+A(z)+B(z′),

where A (resp. B) is independent of z′ (resp. z), whence the last two terms vanish in
integration against mean-zero test-functions.

It is well known that, with probability 1, X(ω) is not an element in L1(T) (or a
measure on T), but it just barely fails to be a function-valued field. Namely, if ε>0
and one considers the ε-smoothened field (1−∆)−εX, one computes that this field has a
Hölder-continuous covariance, whence its realization belongs to C(T) almost surely. This
follows from the following fundamental result of Dudley which we will use repeatedly.

Theorem 3.2. Let (Yt)t∈T be a centered Gaussian field indexed by the set T , where
T is a compact metric space with distance d. Define the (pseudo)distance d′ on T by
setting d′(t1, t2)=(E|Yt1−Yt2 |2)1/2 for t1, t2∈T . Assume that d′:T×T!R is continu-
ous. For δ>0 denote by N(δ) the minimal number of balls of radius δ in the d′-metric
needed to cover T . If ∫ 1

0

√
logN(δ) dδ <∞, (37)

then Y has a continuous version, i.e. almost surely the map T3t 7!Yt is continuous.
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For a proof we refer to [1, Theorem 1.3.5] or [19, Chapter 15, Theorem 4]. The second
result we will need is an inequality due to C. Borell and, independently, to B. Tsirelson,
I. Ibragimov and V. Sudakov. According to the inequality, the tail of the supremum is
dominated by a Gaussian tail:

P
(

sup
t∈T

|Yt|>u
)

6AeBu−u
2/2σ2

T , (38)

where σT :=maxt∈T (EY 2
t )1/2, and the constants A and B depend on (T, d′), see [1, §2.1].

We shall also need an explicit quantitative version of this inequality in the special case
where T is an interval.

Lemma 3.3. Let T=[x0, x0+`], and suppose that the covariance is Lipschitz contin-
uous with constant L, i.e. E|Yt−Yt′ |26L|t−t′| for t, t′∈T . Assume also that Yt0≡0 for
a t0∈T . Then

P
(

sup
t∈T

|Yt|>
√
L`u

)
6 c(1+u)e−u

2/2,

where c is a universal constant.

Proof. The result is essentially due to Samorodnitsky [28] and Talagrand [33]. It
is a direct consequence of [1, Theorem 4.1.2], since after scaling it is possible to assume
that L=1=`, and then σT61 and N(ε)61/ε2.

3.2. White noise expansion

The Fourier series expansion (36) is often not the most suitable representation of X for
explicit calculations. Instead, we shall apply a representation that uses white noise in
the upper half-plane, due to Bacry and Muzy [6]. The white noise representation is very
convenient, since it allows one to consider correlation between different scales both on the
stochastic side and on T in a flexible and geometrically transparent manner. Moreover,
as we define the exponential of the field X in the next subsection we are then able to
refer to known results in [6] and elsewhere.

To commence with, let λ stand for the hyperbolic area measure in the upper half-
plane H,

λ(dx dy) =
dx dy

y2
.

Denote by w a white noise in H with respect to the measure λ. More precisely, w is a
centered Gaussian process indexed by Borel sets A∈Bf (H), where

Bf (H) :=
{
A⊂H Borel :λ(A)<∞ and sup

(x,y),(x′,y′)∈A
|x′−x|<∞

}
,
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H+x

V +x

x

Figure 1. White noise dependence of the fields H(x) and V (x).

i.e. Borel sets of finite hyperbolic area and finite width, and with the covariance structure

E(w(A1)w(A2))=λ(A1∩A2), A1, A2 ∈Bf (H).

We shall need a periodic version of w, which can be identified with a white noise on
T×R+. Thus, define W as the centered Gaussian process, also indexed by Bf (H), and
with covariance

E(W (A1)W (A2))=λ

(
A1∩

⋃
n∈Z

(A2+n)
)
.

We will represent the trace X using the following random field H(x). Consider the
wedge shaped region

H :=
{

(x, y)∈H :−1
2
<x<

1
2

and y >
2
π

tan |πx|
}

and formally set
H(x) :=W (H+x), x∈R/Z;

see Figure 1. The reader should think about the y-axis as parametrizing the spatial scale.
Roughly, the white noise at level y contributes to H(x) in that spatial scale.

To define H rigorously we introduce a short distance cutoff parameter ε>0 and,
given any A∈Bf (H), let Aε :={(x, y)∈A:y>ε}. Then set

Hε(x) :=W (Hε+x). (39)

According to Dudley’s Theorem 3.2, one may pick a version of the white noise W
in such a way that the map

(0, 1)×R3 (ε, x) 7−!Hε(x)

is continuous. In the limit ε!0+, we nicely recover X.
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Lemma 3.4. One may assume that the version of the white noise is chosen so that
for any ε>0 the map x 7!Hε(x) is continuous, and as ε!0+ it converges in D′(T) to a
random field H. Moreover

H ∼X+G,

where G∼N(0, 2 log 2) is a (scalar) Gaussian factor, independent of X.

Proof. Observe first that we may compute formally (as H( ·) is not well defined
pointwise) for t∈(0, 1),

EH(0)H(t) =λ(H∩(H+t))+λ(H∩(H+t−1)).

The first term in the right-hand side can be computed as

λ(H∩(H+t))= 2
∫ 1/2

t/2

(∫ ∞

2(tanπx)/π

dy

y2

)
dx=π

∫ 1/2

t/2

(cotπx) dx= log
1

sin 1
2πt

.

Hence we obtain by symmetry that

EH(0)H(t) = log
1

sin 1
2πt

+log
1

sin 1
2π(1−t)

= 2 log 2+log
1

2 sinπt
. (40)

The stated relation between X and H follows immediately from this as soon as we prove
the rest of the theorem. Observe that the covariance of the smooth field Hε( ·) on T
converges to the above pointwise for t 6=0. A computation (that e.g. applies the fact that
the singularity of the kernel of the operator (1−∆)−δ is of order |x−y|2δ−1) shows that
for any δ>0 the covariance of the field

[0, 1]×[0, 1)3 (ε, x) 7−! (1−∆)−δHε(x) :=Hε,δ(x)

(at ε=0 one applies the covariance computed in (40)) is Hölder continuous on the compact
set [0, 1]×T, whence Dudley’s theorem yields the existence of a continuous version on
that set, especially Hε,δ( ·)!H0,δ( ·) in C(T), and hence in D′(T). By applying (1−∆)δ

on both sides we obtain the stated convergence. Especially, we see that the convergence
takes place in any of the Zygmund spaces C−δ(T), with δ>0.

The logarithmic singularity in the covariance of H(x) is produced by the asymptotic
shape of the region H near the real axis. It will often be convenient to work with the
following auxiliary field, which is geometrically slightly easier to tackle while for small
scales it does not distinguish between w and its periodic counterpart W . Thus, consider
this time the triangular set

V :=
{
(x, y)∈H :− 1

4 <x<
1
4 and 2|x|<y< 1

2

}
, (41)



222 k. astala, p. jones, a. kupiainen and e. saksman

and let Vε(x)=W (Vε+x) (see Figure 1). The existence of the limit V (x):=limε!0+ Vε( ·)
is established just like for H, and we get the covariance

EV (x)V (x′) = log
1

2|x−x′|
+2|x−x′|−1 (42)

for |x−x′|6 1
2 (while for |x−x′|> 1

2 the periodicity must be taken into account).
Since the regions H and V have the same slope at the real axis, the difference

H( ·)−V ( ·) is a quite regular field.

Lemma 3.5. Set
ξ := sup

x∈[0,1)

ε∈(0,1/2]

|Vε(x)−Hε(x)|.

Then, almost surely, ξ<∞. Moreover, Eeaξ<∞ for all a>0.

Proof. We may write for ε∈
[
0, 1

2

]
,

Vε(x)−Hε(x) =Tε(x)−G(x),

where Tε(x) and G(x) are constructed as Vε(x) out of the sets

G :=
{
(x, y)∈H : y> 1

2

}
and T :=V \

{
(x, y)∈H : y < 1

2

}
.

Observe first that G(x) is independent of ε and it clearly has a Lipschitz covariance
in x. Thus, by Dudley’s theorem and (38), almost surely the map G( ·)∈C(T) and,
moreover, the tail of ‖G( ·)‖C(T) is dominated by a Gaussian, whence its exponential
moments are finite.

In a similar manner, the exponential integrability of

sup
x∈[0,1)

ε∈[0,1]

|Tε(x)|

is deduced from Dudley’s theorem and (38) as soon as we verify that there is an exponent
α>0 such that for any |x−x′|6 1

2 we have

E|Tε(x)−Tε′(x′)|2 6 c(|x−x′|+|ε−ε′|)α. (43)

In order to verify this it is enough to change one variable at a time. Observe first that if
1>ε>ε′>0, then

E|Tε(x)−Tε′(x)|2 =λ({(x, y)∈T : ε′<y<ε}) 6
∫ ε

ε′
cx3 dx6 c′|ε′−ε|,
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where we applied the inequality

0 6
t

2
−

arctan 1
2πt

π
6 2t3.

Next we estimate the dependence on x. Set z :=|x−x′|6 1
2 . We note that for any

y0∈
(
0, 1

2

)
the linear measure of the intersection {(x, y):y=y0}∩(T∆(T+z)) is bounded

by min{2z, 4y3
0}. Hence, by the definition of Tε and the fact that for z=|x−x′|6 1

2 the
periodicity of W has no effect on estimating T , we obtain

E|Tε(x)−Tε(x′)|2 6 E|T0(x)−T0(x′)|2 =λ(T∆(T+z))

6 2z
∫ 1/2

z1/3

dy

y2
+
∫ z1/3

0

4y3

y2
dy6 cz2/3,

which finishes the proof of the lemma.

3.3. Exponential of X and the random homeomorphism h

We are now ready to define the exponential of the free field discussed in the introduction
and use it to define the random circle homeomorphisms.

By stationarity, the covariance

γH(ε) := Cov(Hε(x))= E|Hε(x)|2

is independent of x, as is the quantity γV (ε) defined analogously. Fix β>0 (this parameter
could be thought of as an “inverse temperature”). Directly from the definitions, for any x
and any bounded Borel function g on [0, 1), the processes

ε 7−! eβHε(x)−β2γH(ε)/2, (44)

ε 7−!
∫ 1

0

eβHε(u)−β2γH(ε)/2g(u) du (45)

are L1-martingales with respect to decreasing ε∈
(
0, 1

2

]
, whence they converge almost

surely. Especially, the L1-norm stays bounded and the Fourier coefficients of the density
eβHε(x)−β2γH(ε)/2 converge as ε!0+.

Now comparing these expressions with (2) and Lemma 3.4, we are led to the exact
definition of our desired exponential

“dτ = eβX(z) dz”.
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Indeed, by the weak∗-compactness of the set of bounded positive measures, we have the
existence of the almost sure limit measure(2)

a.s. lim
ε!0+

eβHε(x)−β2γH(ε)/2e−βG
dx

2β2 =: τ(dx) w∗ in M(T), (46)

where M(T) stands for bounded Borel measures on T and G∼N(0, 2 log 2) is a Gaussian
(scalar) random variable.

In a similar manner one deduces the existence of the almost sure limit

lim
ε!0+

eβVε(x)−β2γV (ε)/2 dx
w∗=: ν(dx). (47)

Lemma 3.5 and stationarity immediately yield the following result.

Lemma 3.6. There are versions of τ and ν on a common probability space, together
with an almost surely finite and positive random variable G1, with EGa1<∞ for all a∈R,
so that for all Borel sets B one has

1
G1

τ(B) 6 ν(B) 6G1τ(B).

Observe that the random variableG1 is independent of the setB. Thus, the measures
are a.s. comparable.

Limit measures of above type, i.e. measures that are obtained as martingale limits of
products (discrete, or continuous as in our case) of exponentials of independent Gauss-
ian fields have been extensively studied in the literature. The study of “multiplicative
chaos” starts with Kolmogorov and Yaglom, various versions of multiplicative cascade
models were advocated by Mandelbrot [24] and others, and Kahane (also together with
Peyrière) made fundamental contributions to the rigorous mathematical theory, see [20],
[21] and [22]. We shall make use of these works, and [6], in particular, which study in
detail random measures closely related to our ν. We refer the reader to the papers of
Barral and Mandelbrot [7]–[9] for a thorough treatment of multifractal measures in terms
of the hidden cascade like structure.

For us the key points in constructing and understanding the random circle homeo-
morphism are the following properties of the measure τ and its variant ν.

(2) Observe that the limit measure is weak∗-measurable in the sense that for any f∈C(T) the
integral

∫
T f(t) τ(dt) is a well-defined random variable. In this paper all our random measures on T are

measurable (i.e. they are measure-valued random variables) in this sense. A simple limiting argument
then shows that e.g. τ(I) is a random variable for any interval I⊂T.
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Theorem 3.7. (i) Assume that β<
√

2. There are a1=a1(β), a2=a2(β)>0 and an
almost surely finite random constant c=c(ω, β)>0 such that for all subintervals I⊂[0, 1)
we have

1
c(ω, β)

|I|a1 6 τ(I) 6 c(ω, β)|I|a2 .

Especially, almost surely τ is non-atomic and non-trivial on every subinterval.
(ii) Assume that β<

√
2. Then for every subinterval I⊂[0, 1) the measure τ satisfies

τ(I)∈Lp(ω), p∈
(
−∞,

2
β2

)
. (48)

(iii) Let p∈(1, 2) be fixed and set

Dp :=
{
β=β1+iβ2 :

p

2
β2

1 +
p

2(p−1)
β2

2 < 1
}
.

Then there is a version of τ such that almost surely for every subinterval I⊂[0, 1) the
map β 7!τ(I) extends to an analytic function in Dp with the moment bound

E|τ(I)|p 6 c(S)|I|ζp(β) for β ∈S, (49)

where S⊂Dp is any compact subset. Here the (complex ) multifractal spectrum is given
by the function

ζp(β) := p− 1
2 ((p2−p)β2

1 +pβ2
2)> 1 for β=β1+iβ2 ∈Dp.

(iv) One can replace τ by the measure ν in the statements (i)–(iii).

Proof. We shall make use of one more auxiliary field, which (together with its ex-
ponential) is described in detail in [6].(3) Define

U :=
{
(x, y)∈H :− 1

2 <x<
1
2 and 2|x|<y

}
,

and for x∈R let U(x)=w(U+x). Here note in particular that w is a non-periodic white
noise.

The covariance of U( ·) is easily computed (see [6, equation (25), p. 458]), and we
obtain

EU(x)U(x′) = log
1

min{y, 1}
, where y := |x−x′|. (50)

As before define the cutoff field Uε(x)=w(Uε+x). Then Uε is (locally) very close to our
field Vε( ·). Indeed, let I be an interval of length |I|= 1

2 . Then V ( ·)|I is equal in law

(3) U0 corresponds to the simple case of log-normal multifractal random measure, see [6, equa-
tion (28), p. 462], and T =1 in [6, equation (15), p. 455].
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to w( ·+V )|I , since the periodicity of the white noise W will not enter. Thus we may
realize Uε|I and Vε|I for ε∈

(
0, 1

2

)
in the same probability space so that

Uε−Vε :=Z =w
(
x+
{
(x, y)∈U : y > 1

2

})
.

We may again apply Dudley’s theorem and equation (38) to the random variable

ξ1 := sup
x∈I

ε∈(0,1/2]

|Vε(x)−Uε(x)|<∞ a.s. (51)

Especially, Eeaξ1<∞ for all a>0. In a similar manner as for the measures τ and ν one
deduces the existence of the almost sure limit

lim
ε!0+

eβUε(x)−β2γU (ε)/2 dx=: η(dx), (52)

where the limit takes place locally weak∗ on the space of locally finite Borel measures on
the real axis. By letting G2 :=eaξ1 , we thus have an analogue of Lemma 3.6,

1
G2

τ(B) 6 ν(B) 6G2τ(B) (53)

for all B⊂I, and the auxiliary variable G2 satisfies EGp2<∞ for all p∈R. As an aside,
note that we cannot have (53) for the full interval I=[0, 1], as V is 1-periodic, while U
is not.

Now, for proving the theorem, by (51) and Lemma 3.5 it is enough to check the
corresponding claims (i)–(iii) for the random measure η, as one may clearly assume that
|I|6 1

2 .
With this reduction in mind, we start with claim (ii), which in the case of positive

moments is due to Kahane (see [22] and [20]). Bacry and Muzy [6, Appendix D] gave
a proof for the measure η by adapting the argument of Kahane and Peyrière [22] (who
considered a cascade model). In Appendix A we discuss the case of complex β which, as
a consequence, gives a self-contained proof for the positive moments.

Finiteness of negative moments is stated in [9, Theorem 5.5]. For the reader’s con-
venience we include the details in Appendix B, following the lines of [25] that considers
a cascade model. The non-degeneracy of the measure τ is based on Lp-martingale esti-
mates (p>1) for τ(I). At the critical point β=

√
2 the Lp bounds blow up for any p>1.

In fact, one may show that for β>
√

2 the measure τ degenerates almost surely.
For the claim (iii), the fact (49) for η and 0<β<

√
2 is [6, Theorem 4]. In this case

(49) is actually a direct consequence of the exact scaling law (54) below. The observation
that the dependence β 7!η(I) extends analytically into a suitable open subset is due to
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Barral [7]. The complex multifractal spectrum exponent ζp(β) is not explicitely computed
there, and for that reason we include a proof of (49) in Appendix A.

In order to treat the rightmost inequality in (i), choose p∈(1, 2/β2) and let a2>0
be so small that b:=ζp(β)−pa2>1. Chebyshev’s inequality in combination with (49)
yields that P(η(I)>|I|a2).|I|b. In particular,

∑
I P(η(I)>|I|a2)<∞, where one sums

over the dyadic subintervals of [0, 1). The same holds true if one sums over the dyadic
subintervals shifted by their half-length. This observation in combination with the Borel–
Cantelli lemma yields the desired upper estimate in (i).

In turn, the finiteness of negative moments, together with a direct computation that
uses the exact scaling law (54) below, yields

Eη(I)p =C(p, β)|I|ζp(β) for all p∈
(
−∞,

2
β2

)
with ζp(β)=p− 1

2β
2(p2−p). Set r=−ζ−1(β)>0. By Chebyshev’s inequality, we get

P(η(I)< |I|1+2r) = P(η(I)−1> |I|−1−2r) . |I|1+2r|I|−r = |I|1+r.

The argument for the lower bound in (i) is then concluded as in the case of the upper
bound, and one may choose a2=1+2r.

Note that the exact scaling law of the measure η we used in the above proof is given
in [6, Theorem 4]. Indeed, for any ε, λ∈(0, 1) one has the equivalence of laws

Uελ(λ ·)|[0,1]∼Gλ+Uε|[0,1],

where Gλ∼N(0, log(1/λ)) is a Gaussian independent of U . Therefore, one has the equiv-
alence of laws for measures on [0, 1],

η(λ ·)∼λeβGλ+log(λ)β2/2η, (54)

and hence scale invariance of the ratios
η([λx, λy])
η([λa, λb])

∼ η([x, y])
η([a, b])

. (55)

In turn, the exact scaling law of τ is best described in terms of Möbius transformations
of the circle. We do not state it, as we do not need it later on.

To finish this section, we are now able to define our circle homeomorphism h.

Definition 3.8. Assume that β2<2. The random homeomorphism φ: T!T is ob-
tained by setting

φ(e2πix) = e2πih(x), (56)

where we let

h(x) =hβ(x) =
τ([0, x])
τ([0, 1])

for x∈ [0, 1), (57)

and extend periodically over R.
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Theorem 3.7 (i) shows that φ is indeed a well-defined homeomorphism almost surely.
Moreover, we have the following consequence.

Corollary 3.9. Assume that β2<2. Then almost surely both φ and its inverse
map φ−1 are Hölder continuous.

Remark 3.10. As an aside, let us note that defining τε as in the left-hand side of
equation (46), we have limε!0+ τε=0 for β2>2. However, it is a natural conjecture
that letting hε to be given by (57) with τ replaced by τε, the limit for hε exists in a
suitable (quite weak) sense as ε!0+ also for β2>2. Indeed, the normalized measure in
equation (57) appears in the physics literature as the Gibbs measure of a random energy
model for logarithmically correlated energies [12], [14], [16] and β2>2 corresponds to a
low temperature “spin glass” phase. However, we do not expect the limiting h to be
continuous if β2>2.

4. Probabilistic estimates for Lehto integrals

4.1. Notation and statement of the main estimate

We will now study the Lehto integral of equation (11) for the random homeomorphism
constructed in the previous section. As explained in §2.4, it suffices to work in the
infinite strip S=R×[0, 2], where the extension F of the random homeomorphism h is
non-trivial. We use the bound (30) for the (random) pointwise distortion K=K(z, F ) of
this extension, and hence it turns out convenient to define Kτ in the upper half-plane by
setting

Kτ (z) :=Kτ (I) whenever z ∈CI . (58)

A lower bound for the Lehto integral (11) is then obtained by replacing K there by Kτ .
We similarly define Kν(z) for z∈H, via the modified Beurling–Ahlfors extension of the
periodic homeomorphism defined by the measure ν.

It turns out that we only need to control Lehto integrals centered at the real axis
and with some (arbitrarily small, but fixed) outer radius. For this purpose fix (large)
p∈N and choose %=2−p, where the final choice of p will be done in §4.3 below.

Our main probabilistic estimate is the following result.

Theorem 4.1. Let w0∈R and let β<
√

2. Then there exists b>0 and %0>0 together
with δ(%)>0 such that for positive %<%0 and δ<δ(%) the Lehto integral satisfies the
estimates

P(LKν (w0, %
N , 2%)<Nδ) 6 %(1+b)N , N ∈N. (59)
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Observe that the estimates in the theorem are in terms of Kν instead of Kτ , which is
the majorant for the distortion of the extension of the actual homeomorphism. However,
this discrepancy will easily be taken care of later on in the proof of Theorem 5.1 using
the bounds in Lemma 3.5. The proof of the theorem will occupy most of the present
section, namely §§4.2–4.4 below. Finally, we consider the almost sure integrability of the
distortion in §4.5.

We next fix the notation that will be used for the rest of the present section, and
explain the philosophy behind the theorem. Given w0 we may choose the dyadic intervals
in Theorem 2.6 as w0+I. Then, by stationarity, we may assume that w0=0. Let Sr
denote the circle of radius r>0 with center at the origin. Define (with slight abuse), for
r62%,

Kν(r) :=
∑

I:CI∩Sr 6=∅
|I|Kν(I), (60)

and observe that

LKν (0, %N , 2%) > c

N∑
n=1

Mn, (61)

where

Mn =
∫ 2%n

%n

dr

Kν(r)
. (62)

Thus, in order to prove the theorem, it is enough to verify for β<
√

2 that for small
enough %>0 and 0<δ<δ(%) one has

P
( N∑
n=1

Mn<Nδ

)
6 %(1+b)N . (63)

If the summands Mj in (63) were independent, the estimate would follow easily
from basic large deviation estimates. However, they are far from being independent.
Nevertheless, by the geometry of the setup in the white noise upper half-plane, one
expects that there is some kind of exponential decay of dependence, but due to the
complicated structure of the Lehto integrals we need to go through a non-trivial technical
analysis in order to be able to get hold on the exponential decay.

4.2. Correlation structure of the Mj’s

In this section we will study how the random variables Mn are correlated with each
other. As one can easily gather from the representation of the field ν in terms of the
white noise, all of the variables Mn with n=1, 2, ... are correlated with each other. Our
basic strategy is to estimate Mn from below by the quantity

M ′
n =mnsnσn
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(see (84) below), where the random variables mn depend only on the white noise on the
scale ∼%n and form an independent set. The variables sn will provide an estimate of
upscale correlations, i.e. the dependence of M ′

n on the white noise over the larger spatial
scales {(x, y):|x|&%n−1}. In turn, the variables σn measure the downscale correlations
that corresponds to the dependence of M ′

n on the white noise over {(x, y):|x|.%n+1}. It
turns out that the downscale correlations are harder to estimate.

We start with the upscale correlations and introduce some terminology. For a Borel
set S⊂H let BS be the σ -algebra generated by the randoms variables W (A), where A
runs over Borel subsets A⊂S. We will call a BS measurable random variable for short S
measurable. Let

VI :=
⋃
x∈I

(V +x),

where we recall that V is given by (41). Then ν(I)/ν(J) is VI∪J measurable and, by (29),
we see that Kν(I) is Vj(I) measurable (recall that j(I) denotes the union of I with its
neighboring dyadic intervals). From (60) we deduce that Mn is VBn measurable, where
Bn :=B(0, 4%n). Indeed, the Whitney cubes CI that intersect the annulus

An :=B(0, 2%n)\B(0, %n)

have I⊂B(0, 2%n) and thus j(I)⊂B(0, 4%n).
We now decompose V ( ·)|Bn to scales using the white noise. In general, for 06ε<ε′,

let

V (x, ε, ε′) :=W ((V +x)∩{ε<y <ε′}). (64)

Set, for n>1,

ψn(x) =V (x, 0, %n−1/2) (65)

and, for k>0,

ζk(x) =V (x, %k+1/2, %k−1/2). (66)

Letting

Λn = {z ∈H : y6 %n−1/2}, (67)

we see that in any open set U the field ψn is
(⋃

y∈U Vy
)
∩Λn measurable. In a similar

way, ζk(x) is Vx∩(Λk\Λk+1) measurable, and, since these regions are disjoint, the field
V decomposes into a sum of independent fields

V =ψn+
n−1∑
k=0

ζk :=ψn+zn. (68)
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Let νn be the measure defined as ν but with V replaced by ψn. Inserting the second
decomposition in (68) to the measure ν we have, for any I, J⊂Bn,

ν(I)
ν(J)

6
νn(I)
νn(J)

supx∈Bn
eβzn(x)

infx∈Bn
eβzn(x)

. (69)

The first decomposition in (68) then gives

supx∈Bn
eβzn(x)

infx∈Bn e
βzn(x)

6 e
∑n−1

k=0 tn,k := s−1
n , (70)

where

tn,k := log
supx∈Bn

eβζk(x)

infx∈Bn e
βζk(x)

. (71)

Thus, if we let

Mn =
∫ 2%n

%n

dr

Kνn(r)
, (72)

we arrive at the following lower bound for Mn:

Mn >Mnsn. (73)

This is the desired decoupling upscale. Note that the fields ζk become more regular as k
decreases. This will lead to the following result.

Proposition 4.2. The random variables tn,k satisfy

P(tn,k >u%(n−k)/2−1/4) 6 ce−u
2/c, k=0, ..., n−1, (74)

where c is independent of %, n and k. Moreover, tn,k and tn′,k′ are independent if k 6=k′.

The proof of this proposition is postponed to §4.4 below.
The decoupling downscale is done to the random variables Mn in (72). Obviously

Mn and Mm are dependent. However, as in (60), most of the terms Kn,I :=Kνn(I) are
independent of Mm if m>n. The few which are not we will process further in a moment.

So let us first look at the dependence of the Kn,I on the white noise. For U⊂R set
V nU :=VU∩Λn. Then Kn,I is V nj(I) measurable andMm is V mBm

measurable. Some drawing
will convince the reader that if dist(j(I), 0) is not too smallKn,I andMm are independent
for m>n. Indeed, consider the ball B′n=B(0, 2%n+1/2) so that Bn+1⊂B′n⊂Bn. The
regions V nBn\B′n

are disjoint (see Figure 2). Thus the σ-algebras BV n
Bn

\V n
B′n

are independent
of each other for n=1, 2, ... .
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vn−1

vn

Figure 2. A schematic picture of the regions V n
Bn\B′n

:=vn, where the mn are measurable.

Let In be the set of I∈D such that the Whitney cube CI intersects the annulus
A(0, %n, 2%n) and j(I)∩B′n 6=∅ (some drawing shows such I∈Dnp+j for j=0,±1). More-
over, for each fixed r∈(%n, 2%n) let In(r) consist of those intervals I for which CI∩Sr 6=∅
and j(I)∩B′n=∅. By (60) we then have

Kνn(r) 6 %n
( ∑
I∈In

Kn,I+
∑

I∈In(r)

%−n|I|Kn,I

)
:= %n(Ln+Ln(r)), r∈ (%n, 2%n). (75)

Thus inserting (75) into (72) we get

Mn >
∫ 2%n

%n

1
Ln(r)+Ln

%−n dr. (76)

The term Ln(r) in the integrand (76) is independent of Mm, m>n. However Ln is
not and we will decouple it now. From (75) and (29) we get

Ln 6
∑
J

δνn
(J), (77)

where the sum runs over a set of J=(J1, J2) with Jk∈
⋃
j=0,±1Dnp+5+j and Jk⊂Bn,

k=1, 2. In particular

|Jk\B′n|> 2−np−7 =2−7%n, k=1, 2. (78)

The sum in (77) has an n -independent number of terms (with multiplicities).
Next, estimate δνn(J) in terms of a V nBn\B′n

measurable term and perturbation:

δνn(J) =
νn(J1\B′n)+νn(J1∩B′n)
νn(J2\B′n)+νn(J2∩B′n)

+
νn(J2\B′n)+νn(J2∩B′n)
νn(J1\B′n)+νn(J1∩B′n)

6
νn(J1\B′n)+νn(J1∩B′n)

νn(J2\B′n)
+
νn(J2\B′n)+νn(J2∩B′n)

νn(J1\B′n)

= δνn(J1\B′n, J2\B′n)+
νn(J1∩B′n)
νn(J2\B′n)

+
νn(J2∩B′n)
νn(J1\B′n)

.
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Then decompose the perturbation further downscale

νn(Jk∩B′n) =
∞∑

m=n+1

νn(Jk∩(B′m−1\B′m)), k=1, 2,

and (recalling (28)) define

Ln,n =
∑

(J1,J2)∈J (I)

I∈In

δνn(J1\B′n, J2\B′n) (79)

and

Ln,m =
∑

(J1,J2)∈J (I)

I∈In

(
νn(J1∩(B′m−1\B′m))

νn(J2\B′n)
+
νn(J2∩(B′m−1\B′m))

νn(J1\B′n)

)
(80)

for m>n+1. Then

Ln 6
∞∑
m=n

Ln,m.

Defining

mn =
∫ 2%n

%n

1
1+Ln(r)+Ln,n

%−n dr (81)

and using the inequality

Ln(r)+Ln 6 (1+Ln(r)+Ln,n)
(

1+
∞∑

m=n+1

Ln,m

)
,

we get from (76) that
Mn >mnσn, (82)

with

σn :=
(

1+
∞∑

m=n+1

Ln,m

)−1

(83)

Combining this with (73) we arrive at the desired bound of Mn in terms of random
variables localized in the white noise:

Mn >mnsnσn :=M ′
n. (84)

Proposition 4.3. (i) The random variables mn are V nBn\B′n
measurable, 06mn61,

and they form an independent set. Moreover,

P(mn 6x) 6Cx for x> 0,

where C is independent of % and n.
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(ii) There exist a>0, q>1 and C<∞ (independent of n, m and %) such that for
all m>n>1 the random variable Ln,m satisfies the estimate

P(Ln,m>λ) 6Cλ−q%(m−n−1/2)(1+a). (85)

Moreover, Ln,m is V nBn\B′m
measurable. Especially, Ln,m and Ln′,m′ are independent if

n>m′ or n′>m.

The proof of this proposition is postponed to §4.4.

4.3. Law of large numbers and proof of Theorem 4.1

Here we prove our main probabilistic estimate assuming Propositions 4.2 and 4.3. By
(84), we need to consider

PN := P
( N∑
n=1

M ′
n<Nδ

)
= Eχ

( N∑
n=1

mnsnσn 6 δN

)
=: EχDN

, (86)

where

DN :=
{
ω :

N∑
n=1

mnsnσn 6 δN

}
.

For the sake of notational clarity, we used above (and will often use later on) the short-
hand χ(A) for the characteristic function χA. In order to obtain the desired bound for
PN , we insert suitable auxiliary characteristic functions in the expectation. Define

χn :=
∞∏

m=n+1

χ(Ln,m 6 2n−mδ−1/4)
n−1∏
m=0

χ
(
tn,m 6 2m−n log 1

2δ
−1/4

)
:=
∏
m6=n

χn,m. (87)

On the support of χn we have

∞∑
m=n+1

Ln,m 6 δ−1/4,

and thus (for δ<1, say)
σn > 1

2δ
1/4.

Similarly,
∑n−1
m=0 tn,m6log 1

2δ
−1/4, and so

sn > 2δ1/4.

Insert next

1 =
N∏
n=1

(χn+(1−χn)) :=
N∏
n=1

(χn+χcn)
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in the expectation in (86), and expand to get

PN =
∑

A⊂{1,...,N}

EχDN
χAχ

c
Ac ,

where χA=
∏
n∈A χn and χcAc =

∏
n∈Ac χcn. On the support of χDN

χAχ
c
Ac one has

Nδ>
N∑
n=1

mnsnσn > δ1/2
∑
n∈A

mn,

so

PN 6
∑

|A|>αN

Eχ
(∑
n∈A

mn 6 δ1/2N

)
+
∑

|A|6αN

EχcAc , (88)

where we choose α:= 1
8 min{1, a}, with a taken from Proposition 4.3 (ii). Observe that α

is independent of %, δ and N .
Let us consider the two sums on the right-hand side of (88) in turn. For the first

one we use independence: if mA :=
∑
n∈Amn then

P (mA<δ
1/2N) 6 eδ

1/2tNEe−tmA = eδ
1/2tN

∏
n∈A

Ee−tmn . (89)

By Proposition 4.3 (i),
Ee−tmn 6Cx+e−tx 6 2e−tx(t), (90)

where the auxiliary variable x=x(t) is chosen so that Cx(t)=e−tx(t). Here x(t)!0 and
tx(t)!∞ as t!∞. Thus, assuming δ small enough and taking t=t(δ) such that

x(t) =
2δ1/2

α
,

in the case |A|>αN the right-hand side of (89) is bounded by 2Ne−δ
1/2t(δ)N , where

δ1/2t(δ)!∞ as δ!0+. Hence∑
|A|>αN

Eχ
(∑
n∈A

mn 6 δ1/2N

)
6 2Ne−g(δ)N , (91)

where g(δ)!∞ as δ!0+.
For the second sum in (88) we need to bound

EχcB := E
∏
n∈B

(1−χn)

for |B|>(1−α)N . For that purpose, we shall make use of the elementary identity

1−
∞∏
j=1

(1−aj) =
∞∑
j=1

aj

j−1∏
r=1

(1−ar), (92)
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valid for any sequence {aj}j>1 with aj∈[0, 1] for all j>1. Recall equation (87) and set
χcn,m :=1−χn,m. We also set χcn,m :=0 for m<0. For any fixed n arrange the variables
χcn,m with m∈Z into a sequence in some order, and apply the identity (92) to write

1−χn =1−
∏
m∈Z
m6=n

(1−χcn,m) =
∑
l∈Z
l 6=0

χcn,n+lχ̃n,l, (93)

with certain variables χ̃n,l satisfying 06χ̃n,l61. Set

χ+
n :=

∑
l>0

χcn,n+lχ̃n,l and χ−n :=
∑
l<0

χcn,n+lχ̃n,l. (94)

Then χ±n61 (since χ+
n+χ−n=1−χn) and

χ±n 6
∑
±l>0

χcn,n+l. (95)

We may then estimate∏
n∈B

(1−χn) =
∏
n∈B

(χ+
n+χ−n) =

∑
{sn=±}n∈B

∏
n∈B

χsn
n

6
∑

s:N+>(1−2α)N

∏
n:sn=+

χ+
n+

∑
s:N+6(1−2α)N

∏
n:sn=−

χ−n ,
(96)

where N+ is the number of n in the set B such that sn=+. We estimate the expectations
of the two products on the right-hand side in turn.

For the first product, let D⊂{1, ..., N} with p:=|D|>(1−2α)N . List the elements
of D as n1<n2<...<np. Then, as 06χ+

nj
61,

Eχ+
n1
... χ+

np
6
∑
l1>0

Eχcn1,n1+l1χ
+
n2
... χ+

np
6
∑
l1>0

Eχcn1,n1+l1χ
+
ni2

... χ+
np
, (97)

where ni2 is the smallest nj larger than n1+l1. Iterating we get

Eχ+
n1
... χ+

np
6

p∑
r=1

∑
(l1,...,lr)

E
r∏
j=1

χcnij
,nij

+lj , (98)

where nij+1 is the smallest nj larger than nij +lj , and ni1 =n1. Since the intervals
[nj , nj+lj ] cover the set D, the r -tuples (l1, ..., lr) in the above sum satisfy

r∑
j=1

lj > p−r. (99)
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Next, by Proposition 4.3 (ii), the factors in the product in (98) are independent, and
thus

E
r∏
j=1

χcnij
,nij

+lj =
r∏
j=1

Eχcnij
,nij

+lj .

From (85) and (87) we deduce that

Eχcnj ,nj+lj 6C(%)δq/4(2q%1+a)lj ,

whereby

Eχ+
n1
... χ+

np
6

p∑
r=1

∑
(l1,...,lr)

(C(%)δq/4)r(2q%1+a)
∑r

j=1 lj . (100)

Using (99), we see that the right-hand side is bounded by

%(1+a/2)p

p∑
r=1

(C(%)δq/4)r
∑

(l1,...,lr)

(2q%a/2)
∑r

j=1 lj .

For an upper bound, drop the constraints on lj to bound (100) by

%(1+a/2)p

p∑
r=1

(C(%)δq/4)r
( ∞∑
l=1

(2q%a/2)l
)r
.

Choosing first % small enough and then δ6δ(%), this is bounded by

C(%)δ1/4%(1+a/2)p 6C(%)δ1/4%(1+a/2)(1−2α)N 6C(%)δ1/4%(1+2b)N

with a constant b>0 by our choice of α. The expectation of the first sum in equation
(96) is then bounded by

C(%)2Nδ1/4%(1+2b)N . (101)

Consider finally the second sum in equation (96). We proceed as for the first sum,
this time considering a setD⊂{1, ..., N} with elements n1>n2>...>np with p>αN . Now
we write χ−n1

6
∑
l1>0 χ

c
n1,n1−l1 and end up with the analogue of equation (98):

Eχ−n1
... χ−np

6
p∑
r=1

∑
(l1,...,lr)

r∏
j=1

Eχcnij
,nij

−lj , (102)

where nij+1 is the largest nj smaller than nij−lj and ni1 =n1, and this time Proposi-
tion 4.2 was used for independence. From the same proposition we also get

Eχcn,n−l 6 ce−c2
−2l%−l+1/2(log δ)2 .
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For small enough % we have 2−2l%−l+1/2>(l+%−1/8)%−1/8 for all l>1. Hence

r∏
j=1

Eχcnij
,nij

−lj 6 cr exp
(
−c(log δ)2%−1/8

(
r%−1/8+

r∑
j=1

lj

))
.

As %<1, by (99) we also have

r%−1/8+
r∑
j=1

lj >
1
2

(
p+

r∑
j=1

lj

)
.

Thus
r∏
j=1

Eχcnij
,nij

−lj 6

(
exp

c%−1/8(log δ)2p
2

)
cr exp

(
−c(log δ)2%−1/8

r∑
j=1

lj

)
.

Now recall that p>αN , take δ small enough, and proceed as above by summing first
over the lj ’s, and then performing a geometric sum over r in order to conclude that the
second sum in (96) has the upper bound

2 exp
(
−c%

−1/8(log δ)2Nα
2

)
.

For small δ this is by far dominated by the bound (101), and therefore

EχcB 6 2N+1δ1/4%(1+2b)N . (103)

Going back to equation (88), and recalling (91) with (101) and (103), we conclude that,
for δ6δ(%),

PN 6 22N+2δ1/4%(1+2b)N , (104)

which gives the claim of Theorem 4.1.

4.4. Proofs of the propositions

We will now prove Propositions 4.2 and 4.3 of §4.2, describing the statistics of mn, Ln,m
and tn,k. We start by noting that the random measures νn( ·) and %n−1ν1(%1−n ·) are
equal in law. Especially, the mn are independent and identically distributed, so that it
suffices to study m1. Similarly ζk|Bn equals in law with ζ1|Bn−k+1 and thus tn,k equals
tn−k+1,1 in law. The value k=0 is slightly different, but it can be treated exactly in the
same manner as the case k>1. Finally, Ln,m and L1,m−n+1 are equal in law.

We first need the following lemma. Actually, only the statement (105) is needed for
the proofs of Propositions 4.2 and 4.3. The stronger claim (106) will be necessary only
later in the proof of Theorem 5.3.
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Lemma 4.4. There exist q, q1>1 and C>0 (each independent of %) such that for
all intervals J, I⊂

[
− 1

4 ,
1
4

]
satisfying |J |62|I|, and with mutual distance at most 100|I|,

one has

P
(
ν(J)
ν(I)

>λ

)
6Cλ−q

(
|J |
|I|

)q1
. (105)

Even a stronger statement is true: given βmax∈(0,
√

2 ), one may choose q=q(βmax),
q1=q1(βmax)>1 and C=C(βmax)>0 so that

P
(

sup
β∈(0,βmax)

ν(J)
ν(I)

>λ

)
6Cλ−q

(
|J |
|I|

)q1
. (106)

Proof. We use the comparison (53) with the measure η in order to estimate

ν(J)
ν(I)

6G2
η(J)
η(I)

, (107)

where we recall that all the moments of the variable G2 are finite. Next, in case |I|6 1
100 ,

we may scale further by using the exact scaling law (55), and apply the translation invari-
ance of η to deduce that η(J)/η(I)∼η(J ′)/η(I ′), where now I ′, J ′⊂[0, 1] with 1

100 6|I ′|
and |J ′|6|J |/|I|6100|J ′|. In case |I|> 1

100 , no scaling is needed.
In this situation, if r<∞ it follows from Theorem 3.7, or (130) in Appendix B, that

η(I ′)−1∈Lr uniformly with respect to I ′. We can thus fix exponents 1<q<q̃<p<2/β2

and get, by (107), Hölder’s inequality and Theorem 3.7,

∥∥∥∥ν(J)
ν(I)

∥∥∥∥
q

6C

∥∥∥∥η(J)
η(I)

∥∥∥∥
q̃

=C

∥∥∥∥η(J ′)η(I ′)

∥∥∥∥
q̃

6C‖η(J ′)‖p 6C

(
|J |
|I|

)ζ(p)/p
, (108)

where ζ(p)>1. The constant C depends only on the exponents q, q̃ and p. Thus

P
(
η(J)
η(I)

>λ

)
6Cλ−q

(
|J |
|I|

)qζ(p)/p
. (109)

The desired bound (105) follows by choosing the exponent q>1 close enough to p in order
to ensure that q1 :=qζ(p)/p>1.

In order to consider the maximal estimate (106), choose p>1 and ε0>0 small enough
so that [0, βmax]+B(0, 3ε0)⊂Dp. A standard application of the Cauchy integral formula
and Theorem 3.7 (iii) and (iv) yield that

E
∣∣∣ sup
β∈(0,βmax)

ν(I)
∣∣∣p 6 c|I|q2 and E

∣∣∣ sup
β∈(0,βmax)

d

dβ
ν(I)

∣∣∣p 6 c|I|q2 , (110)
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where q2=q2(p, βmax)>1 and c=c(p, βmax). In turn, when considering the needed esti-
mate for the negative moments,

E
(

sup
β∈(0,βmax)

ν(I)−r
)
<∞ for all r > 1, (111)

we are not interested in the explicit dependence on |I|. We compute by applying Theo-
rem 3.7 (ii), Hölder’s inequality and (110),

E
(

sup
β∈(0,βmax)

ν(I)−r
)

6 Eν(I)−r+rE
∫ βmax

0

∣∣∣∣ ddβ ν(I)
∣∣∣∣ν(I)−r−1 dβ

.C+
(

E
∣∣∣∣ sup
β∈(0,βmax)

d

dβ
ν(I)

∣∣∣∣p)1/p(∫ βmax

0

Eν(I)−(r+1)p′ dβ

)1/p′
.

Note above that, by the argument of Appendix B, for each t, the expectation

Eν(I)−t = Eνβ(I)−t

is locally bounded for β∈[0,
√

2 ).
The proof of the lemma is now finished, exactly as in case of (105), by applying

the estimates (110) and (111), and noting that in the scaling argument the maximal
analogue of the variable G2 is just the original variable G2 corresponding to the value
β=βmax.

Let us then discuss m1. Observe that the denominator of the integrand in (81) can
be dominated as

1+L1,1+L1(r) 6 1+L1,1+
∞∑
m=0

2−mkm(r), (112)

where for r∈(%, 2%) and m>0 one sets

km(r) :=
∑

I∈Dp+m

K1,I1CI∩Sr 6=∅. (113)

For any fixed r∈(%, 2%) the sum (113) has at most four non-zero terms.
For m>0 denote by Hm the set of all pairs J=(J1, J2) that contribute to km(r)

in (113) for some r∈(%, 2%). To estimate δν1(J), we may scale by the factor %−1/2 in
order to consider instead the identically distributed quantity ν(J ′1)/ν(J

′
2), where now

J ′1, J
′
2⊂
[
− 1

4 ,
1
4

]
. Thus Lemma 4.4 applies. As we additionally have |J1|=|J2|, there is

q>1 and a constant C>0 such that

P(δν1(J)>R) 6CR−q for all J∈
∞⋃
m=0

Hm. (114)
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Choose next α>0 and γ∈(0, 1) such that

4α
∞∑
m=0

2m(γ−1) 6 1

together with γq>1. Fix R>0. We observe that by these choices

δν1(J) 6α2γmR for all J∈Hm, m> 0 =⇒ L1(r) 6R for all r∈ (%, 2%).

Since we have the obvious estimate #Hm6c2m for the number of pairs in Hm, by com-
bining the above implication with the uniform estimate (114), one may estimate

P(L1(r(σ))>R for some r∈ (%, 2%))6
∞∑
m=0

∑
J∈Hm

P(δν1(J)>α2γmR)

6CR−q
∞∑
m=0

c2m2−qγm 6CR−q.

In a similar vain we may apply Lemma 4.4 to immediately obtain the corresponding
tail estimate for L1,1. Indeed, by (79) this depends only on a finite (% -independent)
number of ratios δν1(I1, I2), with I1, I2⊂[−4%, 4%] and |I1|, |I2|>2−7%; see (78). Putting
things together, we obtain (for R>1, say) the bound

P
(
m1<

1
R

)
6CR−q 6CR−1, (115)

where C is independent of %.
Consider next Ln,m with m>n and use Ln,m∼L1,m−n+1. By (80), L1,m−n+1 is

bounded from above by a sum of terms (with %-independent upper bound for their
number)

ν1(J)
ν1(I)

,

where 2−8%6|I|62−4% and |J |6%m−n+1/2, and in addition I, J⊂[−4%, 4%]. The constant
C above is independent of m, n and %. Via scaling the desired bound (85) is now a direct
consequence of Lemma 4.4, as we observe that |J |/|I|6C%m−n−1/2.

Finally we turn to tn,1 given in (71). By scaling, we may take the sup and the
inf over x∈Bn∩R of eβψ̃, where ψ̃ :=ψ( · , %3/2, %1/2), and we may replace there ψ̃ by
ψ̂ :=ψ̃( ·)−ψ̃(0). The covariance of ψ̂ is clearly c%−3/2-Lipschitz and the length of the
interval Bn∩R is 8%n. Lemma 3.3 yields that

P(|ψ̃|>λc%n/2−3/4) 6C(1+λ)e−λ
2/2,

which finishes the proof of the remaining Proposition 4.2.
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4.5. Integrability of Kν

In the next section we shall also make use of the the following observation.

Lemma 4.5. Let β<
√

2. Then almost surely Kν∈L1([0, 1]×[0, 2]).

Proof. Recall that S=R×[0, 2] is tiled by the Whitney squares CI . By definition,
on such a square Kν is a finite sum of ratios ν(J1)/ν(J2) with |J1|=|J2|62−4 and of con-
trolled mutual distance as in Lemma 4.4. Thus, for |Jk| small enough Jk lie on a common
interval of length 1

2 and we have a uniform bound for Eν(J1)/ν(J2)6‖ν(J1)/ν(J2)‖q,
q<2/β2, from Lemma 4.4 (or more directly from (108)). For the finitely many Jk not
fitting to such an interval we use again (108). Hence there is also a uniform bound for
EKν(I) and one obtains

E
∫

[0,1]×[0,2]

Kν dz6
∑

I⊂D([0,1])

|CI |EKν(I) 6C
∑
I

|CI |<∞.

5. Conclusion of the proof

In this final section we give a precise formulation to our main result as a theorem and
prove it using the work done in the previous sections. In order to make the setup clear,
let us recall that our random circle homeomorphism was defined in §3 via formulae (56)
and (57). Its extension to the unit disc is constructed by the method described in §2.4,
and formula (24) in particular.

The welding method described in §2 requires estimates for the Lehto integral of the
distortion function in D. Theorem 2.6 reduces these bounds to the boundary function,
and here the crucial estimates are provided by our Theorem 4.1 in §4.

Theorem 5.1. Assume that β2<2. Let φ: T!T be the random circle homeomor-
phism from Definition 3.8, and let Ψ: D!D be its extension as in (20)–(24). Let

µ=µΨ :=
∂z̄Ψ
∂zΨ

be the complex dilatation of the extension on D, and set µ=0 outside D.
Then almost surely there exists a (random) homeomorphic W 1,1

loc -solution f : C!C
to the Beltrami equation

∂z̄f =µ∂zf, a.e. in C, (116)

that satisfies the normalization f(z)=z+o(1) as z!∞. Moreover, there exists α>0
such that the restriction f : T!C is a.s. α-Hölder continuous.
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Proof. We sketch the proof along the lines of [5, Theorem 20.9.4], to which presen-
tation we refer for further details and background.

For any integer n>1 choose Nn=[%−(1+b/2)n]∈N, where b is as in Theorem 4.1. Set

ζn,k := e2πik/Nn for k=1, ..., Nn.

Write also Gn :={ζn,1, ..., ζn,Nn
}. Thus the distance on T to the set Gn is bounded by

π/Nn∼%(1+b/2)n.
For a given n>1 and k∈{1, ..., Nn} let us denote by An,k the event

An,k =
{
ω :LKν

(
k

Nn
, %n, 2%

)
<nδ

}
,

and set An=
⋃Nn

k=1An,k. Note that here we consider Lehto integrals in the half-plane.
Theorem 4.1 combined with stationarity yields that

∞∑
n=1

P(An) 6
∞∑
n=1

Nn∑
k=1

P(An,k) 6
∞∑
n=1

Nn%
(1+b)n 6

∞∑
n=1

%bn/2<∞.

Borel–Cantelli’s lemma yields that almost every ω belongs to the complement of the
event ⋃

n>n0(ω)

An.

Also, we obtain by Lemma 3.6 that

Kτ 6E2Kν ,

where almost surely E<∞.
From Theorem 2.6 and (58) we see that K(z, F ), the distortion of the extension of

h, is bounded by a constant times Kτ (z). Hence Lemma 4.5 implies that almost surely∫
[0,1]×[0,2]

K(z, F ) dz6C0

∫
[0,1]×[0,2]

Kτ dz6C0E
2

∫
[0,1]×[0,2]

Kν dz <∞.

We may thus forget the probabilistic setup by fixing an event ω0∈Ω so that we are in
the following situaton: we are given the complex dilatation µ on D, so that the distortion

K =
1+|µ|
1−|µ|

satisfies pointwise

K(e2πiz) 6C0Kτ (z) 6C0E(ω0)2Kν(z), z ∈H.
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Further, from the definition in (24) we have K≡1 for |z|6e−4π. Also, Kν∈L1∩L∞loc on
the square [0, 1]×(0, 2], and for each n>n0 and k∈{1, ..., Nn} it holds that

LKτ

(
k

Nn
, %n, 2%

)
>E(ω0)−2LKν

(
k

Nn
, %n, 2%

)
>nδE(ω0)−2 =:nδ′.

We next proceed as in the standard proof of Lehto’s theorem by approximating µ
by e.g. the sequence

µl :=
l

l+1
µ, l∈N.

Let fl denote the corresponding normalized solution of the Beltrami equation with co-
efficient µl, i.e. with the asymptotics fl(z)=z+o(1) as z!∞. Then every fl is a quasi-
conformal homeomorphism of C.

To show that (116) has a homeomorphic W 1,1-solution, we need to control the
approximations fl. For this we first apply [5, Lemma 20.2.3], which tells that the inverse
maps gl=f−1

l have the following modulus of continuity:

|gl(z)−gl(w)|6 16π2

log(e+1/|z−w|)

(
|z|2+|w|2+

∫
D

1+|µl(ζ)|
1−|µl(ζ)|

dζ

)
, z, w∈C.

Here the integrals are uniformly bounded as

1+|µl(ζ)|
1−|µl(ζ)|

6K(ζ) 6C0Kτ (z), ζ = e2πiz,

and Kτ∈L1([0, 1]×[0, 2]). Thus the inverse maps gl=f−1
l form an equicontinuous family.

In order to check the equicontinuity of the family {fl}l>1 itself, we first consider a
point z∈D. Writing 2a=1−|z|, observe that K is bounded in B(z, a) and, as

Kl :=K( · , fl) 6K,

we have, for any l>1 and u∈
(
0, 1

2a
)
,

LKl
(z, u, 1) >LK(z, u, a) >

1
‖K‖L∞(B(z,a))

log
a

u
!∞, as u! 0+.

Moreover, by Koebe’s theorem or [5, Corollary 2.10.2], we obtain

f(2D)⊂ 5D. (117)

Thus, diam(fl(B(z, 1)))65, which may be combined with Lemma 2.3 to obtain

diam(fl(B(z, u)))! 0, as u! 0+, uniformly in l.
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This proves the equicontinity at interior points z∈D. Equicontinuity at exterior points
follows e.g. from Koebe’s theorem.

In order to next consider the uniform behavior on T, note that it suffices to prove
local equicontinuity on points of [0, 1] for the family

Fl(z) = fl(e2πiz), l∈N.

We first estimate the diameter of the image Fl(B(k/Nn, %n)), assuming that n>n0.
Applying the fact that diam(Fl(B(k/Nn, 2%)))6diam(fl(B(ζn,k, 1)))65 and using this
together with Lemma 2.3, we obtain

diam(Fl(B(k/Nn, %n)))6diam(Fl(B(k/Nn, 2%)))16e−2π2nδ′ 6 80e−nc
′
. (118)

From these estimates we get the required equicontinuity. Namely, working now on
the circle T, since the set Gn is evenly spread on T, the balls B(ζn,k, %n+1) cover a %n+2-
neighborhood of T in such a way that any two points that are in this neighborhood, with
distance not exceeding %n+2, lie in the same ball. Since this holds for every n>n0, we
infer from (118) that there are ε0>0 and α>0 such that, uniformly in l,

|fl(z)−fl(w)|6C|z−w|α if |z|=1, 1−ε0 6 |w|6 1+ε0 and |z−w|6 ε0. (119)

One may actually take α=c′/log(1/%). This clearly yields equicontinuity at the points
of T, and hence on Ĉ. We may now pass to a limit and one obtains W 1,1-homeomorphic
solution f(z)=liml!∞ fl(z) to the Beltrami equation as in [5, p. 585].

At the same time the estimate (119) shows that f : T!C is Hölder continuous. Since
f is analytic outside the disc, with f(z)=z+o(1) at infinity, in fact it follows that f is
Hölder continuous on C\D.

Collecting the results established, we now arrive at the main theorem of this paper.

Theorem 5.2. Let φ=φω be the random circle homeomorphism, with the exponen-
tiated GFF as derivative, as defined in (56) and (57).

Then, for β2<2 and almost surely in ω, the mapping φ admits a conformal welding.
That is, there are a random Jordan curve

Γ =Γω,β (120)

and conformal mappings f± onto the complementary domains of Γ such that φ=f−1
+ �f−

on T.
Moreover, almost surely in ω, the Jordan curve Γ in (120) is unique, up to composing

with a Möbius transformation Φ=Φω of the Riemann sphere.
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Proof. We argue as in §2. Extend φ to a homeomorphism Ψ: D!D and using this
define the complex dilatation µ(z) as in Theorem 5.1. Applying the theorem, we then
find a homeomorphic solution f to the auxiliary equation (116). This is conformal out-
side the disc, so we set f−=f |C\D. Inside the disc, K(z, f) is locally bounded, so the
uniqueness of the Beltrami equation gives f(z)=f+�Ψ(z), z∈D, where f+ is a conformal
homeomorphism defined on D. Since the boundary ∂f+(D)=∂f−(C\D)=f(T)=Γ is a
Jordan curve, f± extend to T, where we have

φ= f−1
+ �f−.

Finally, according to the proof of Theorem 5.1, f− is Hölder continuous in C\D, and thus
the uniqueness of the welding curve follows from the Jones–Smirnov Theorem 2.4.

Once the random families of curves Γω,β have been constructed, it is natural to
enquire for their dependence on the parameter β. In fact, according to Theorem 3.7 (iii),
the circle homeomorphisms φ depend analytically on β. More precisely, in any compact
subinterval of [0,

√
2 ), the dependence β 7!τ(I), and hence β 7!φ(x), is analytic when

the measures are computed using the same fixed realization of the white noise W in the
upper half-plane.

We show that, in the same manner, the welding curves themselves depend continu-
ously on β. This should be compared with the analogous question for SLE curves which
is still open.

Theorem 5.3. Almost surely the random welding curve is continuous in the param-
eter β∈(0,

√
2 ).

Proof. After the maximal estimate (106), the proof follows closely the proof of The-
orem 5.2, and hence we only sketch the argument. By (106) in Lemma 4.4, we may
run through the proofs of Propositions 4.2 and 4.3, and obtain the analoguous maximal
versions. Actually, for Proposition 4.2, this is simple since the dependence of tn,k on β

is linear. In turn, for Proposition 4.3, one uses fully the bound (106).
The argument of §4.3 now yields an estimate for the Lehto integral which is uniform

in β∈(0, βmax): for positive %<%0(βmax) and δ<δ(%, βmax), with βmax<
√

2,

P(LKν (w0, %
N , 2%)<Nδ for all β ∈ (0, βmax))6 %(1+b)N . (121)

In addition, we obtain a maximal version of Lemma 4.5:

sup
β∈(0,βmax)

Kν ∈L1([0, 1]×[0, 2]). (122)
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Let us fix a realization of the white noise so that the estimates (121) and (122)
hold true for all βmax<

√
2, with the understanding that the appropriate constants may

depend on βmax. Assume that βj!β∞∈(0,
√

2 ). Let us denote by f±,j (resp. µj and
Kj) the corresponding conformal maps (resp. random dilatation and distortion in D)
obtained in Theorem 5.2.

First of all, Theorem 2.6 yields a local uniform boundedness of K∞ and supj>1Kj

in D. These facts together with (121) and (122) yield equicontinuity for the maps f±,j
and their inverses (and even uniform local Hölder continuity for f−,j).

Next, since the random homeomorphism φ depends continuously on β, the complex
dilatations µj converge pointwise to µ∞. At this stage a well-known argument (see e.g.
the proof of [5, Theorem 20.9.4]) shows that fj has a subsequence that converges to
a solution of the Beltrami equation with dilatation µ∞. In particular, one applies the
estimate (122) to obtain uniform integrability for the derivatives of the solutions.

Finally, the uniqueness of the welding in the present situation is inherited for the nor-
malized solutions of the Beltrami equation, and this yields the local uniform convergence
for the whole sequences f±,j to f±,∞, as was to be shown.

Remark 5.4. One may easily verify that the distortion function K of our Beurling–
Ahlfors extension has a.s. the property K /∈Ls(D), where the exponent s=s(β)!2 as
β"
√

2. Especially, this shows that our random setting lies far from the setup where the
general (deterministic) theory of existence and uniqueness for solutions to degenerate
Beltrami equations still works. In fact, even the optimal deterministic results roughly
require an exponential type integrability of the distortion K(z)=(1+|µ|)/(1−|µ|), for
details see [5, Theorems 20.3.1 and 20.5.2].

Finally, we state and prove the generalization of the previous two theorems for a
composition of two independent copies of our random homeomorphism discussed in the
introduction. Since the argument is essentially identical, we only sketch the needed
changes in the proof.

Theorem 5.5. Let 06β+, β−<
√

2. Assume that φ+ and φ− are two independent
copies of the random homeomorphism (56) with parameters β±. Then, almost surely in
ω, the welding problem for the homeomorphism φ+�φ

−1
− has a solution Γ=Γβ+,β− , where

Γβ+,β− is a Jordan curve bounding the domains Ω+=f(D) and Ω−=f−(D∞), with Hölder
continuous Riemann mappings f±. For a given ω, the solution is unique up to a Möbius
map of the plane and the curves Γβ+,β− are continous in β+ and β−.

Proof. Let us extend the circle homeomorphism φ+ inside the unit disc by the
Beurling–Ahlfors extension as in §2.4, and we now denote by φ+ also the extension.
Moreover, let µ+ stand for the dilatation of φ+ in D. In a similar manner, define the
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Beurling–Ahlfors extension of φ− into 	C\	D by φ−(1/z̄)=1/φ−(z), and denote by µ− its
dilatation. Set

µ(z) =
{
µ+(z), if z ∈D,
µ−(z), if z ∈	C\	D.

Due to our specific choice of the extension, µ has a compact support, see (22) and (24).
Since the estimates for the Lehto integral of the distortion function

K(z) =
1+|µ|
1−|µ|

in the new situation are identical to those presented in Theorem 4.1, the proof of The-
orem 5.1 carries through with only notational changes, yielding as before a solution to
the Beltrami equation

∂F

∂z̄
(z) =µ(z)

∂F

∂z
(z) for almost every z ∈C,

with the normalization F (z)−z=o(1) as z!∞. In addition, F |T is Hölder continuous.
Next we define the analytic maps f+: D!C and f−:	C\	D!	C via

F (z) = f+�φ+(z), z ∈D, and F (z) = f−�φ−(z), z ∈	C\	D.

Especially, one obtains the key formula

f+�φ+ = f−�φ− on T, (123)

which shows that the maps f± solve the stated welding problem. Uniqueness of the
solution is deduced as before by observing that f+|T is a Hölder map since f+=F �φ−1

+ ,
where φ−1

+ is Hölder continuous according to Corollary 3.9. Finally, the proof of The-
orem 5.3 can be repeated in order to verify the stated continuity with respect to β±.
In the argument one needs to additionally observe that almost surely φ−1

+ is uniformly
Hölder continuous with respect to β+, when the parameter is varying over any compact
subinterval of [0,

√
2 ). In turn, this follows from the proof of the lower bound in Theo-

rem 3.7 (i) combined with a quantitative version of the inequality (111), obtained easily
from the scaling law (54).

Appendix A. Analytic dependence

The analyticity of the dependence of multifractal random measures on the parameter β
was established by Barral in [7]. We will prove the analyticity of β 7!η(I) (the proofs for
β 7!τ(I) and β 7!ν(I) are analogous) and the statements formulated in Theorem 3.7 (iii)
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via the techniques of that paper. To start with, we may clearly assume that I is dyadic,
more specifically I=[0, 2−m] with m>1. We apply the notation of §3, and denote, for
integers n>1, by Fn the σ-algebra generated by the restriction of the white noise w to
{(x, y):y>2−n}.

Define

U(x, n) :=w((U+x)∩{y > 2−n}),

and set, for β∈C and x∈R,

fn(x, β) := eβU(x,n)−β2γU (n)/2, (124)

where γU (n)=Cov(U(x, n))=1+n log 2. Then fn(x, β) is Fn-measurable, and, by def-
inition, {fn(x, β)}n>1 is a complex martingale sequence with respect to the filtration
{Fn}n>1. By considering the real part in the exponent, we compute, for β=β1+iβ2,

E|fn(β, x)|p = c(β, p)2n((p2−p)β2
1+pβ2

2)/2 with p> 1, (125)

where c(β, p)=e((p
2−p)β2

1+pβ2
2)/2. The proof below basically uses only this fact together

with the underlying hidden cascade-like structure of the hyperbolic white noise.
Set

Xn :=
∫
I

fn(x, β) dx=
∫ 2−m

0

fn(x, β) dx. (126)

Obviously {Xn}n>1 is a complex martingale sequence. Let

gn+1(x, β) =−1+
fn+1(x, β)
fn(x, β)

. (127)

Then the gn(x, β), n∈N, are independent. In particular, gn+1(x, β) is independent of Fn.
Let also In,j :=[(j−1)2−n, j2−n] for 16j62n.

Assume next that n>m and write

Xn+1−Xn =
∫ 2−m

0

fn(x, β)gn+1(x, β) dx

=

(
2n−m∑
j=1

j odd

+
2n−m∑
j=1
j even

)∫
In,j

fn(x, β)gn+1(x, β) dx=:Y +Y ′.

Conditioned on Fn, the quantities gn+1( · , β)|In,j , for odd j, are independent by con-
struction. Hence the Burkholder–Gundy inequality and the simple estimate ‖ · ‖`2 6‖ · ‖`p
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imply that

E(|Y |p|Fn) . E

((
2n−m∑
j=1

j odd

∣∣∣∣∫
In,j

fn(x, β)gn+1(x, β) dx
∣∣∣∣2
)p/2∣∣∣∣∣Fn

)

6 E
( 2n−m∑

j=1

∣∣∣∣∫
In,j

fn(x, β)gn+1(x, β) dx
∣∣∣∣pFn).

Taking expectations and applying Hölder’s inequality inside the integral yields

E|Y |p .
2n−m∑
j=1

|In,j |p−1

∫
In,j

E|fn(x, β)gn+1(x, β)|p dx

.
2n−m∑
j=1

|In,j |p(E|fn(0, β)|p+E|fn+1(0, β)|p)

. 2n−m2−np2n((p2−p)β2
1+pβ2

2)/2.

A similar estimate holds for Y ′ and, by recalling that |I|=2−m, it follows that

‖Xn+1−Xn‖p 6 |I|ζp(β)/p2−(n−m)(ζp(β)−1)/p for n>m. (128)

In turn, by applying directly (125) together with Hölder’s inequality in (126), we obtain

‖Xm‖p 6 |I|ζp(β)/p. (129)

As the geometric convergence of the estimate (128) is uniform in any compact subset of
Dp, we get by a standard application of Cauchy’s integral formula and Borel–Cantelli’s
lemma, the a.s. limit

X := lim
n!∞

Xn,

and the convergence is locally uniform with respect to the parameter β∈Dp. Hence, X
is a.s. analytic in Dp and, by summing up the estimates (128) and (129), we obtain in
any compact subset β∈S⊂Dp the estimate

‖X‖p 6C(S)|I|ζp(β)/p,

as was to be shown.
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Appendix B. Negative moments

Here we prove the finiteness of all negative moments for the measure η, defined in the
proof of Theorem 3.7. One first needs to verify non-degeneracy of η over any subinterval
([20], [21]; see also [6, Theorems 1 and 2]), and to this end we recall the functions fn and
gn from (124) and (127). We may write η as the a.s. limit

η(dx) =w*-lim
n!∞

fn(x, β;ω) dx=w*-lim
n!∞

n∏
j=0

(1+gj) dx,

where the densities gj=gj(x, β, ω) are independent. Moreover, Efn(x)=1 for each x and
n, and fn(x) are a.s. bounded from below by a positive constant.

Let I be a dyadic subinterval and set Yn(ω):=
∫
I
fn(x, ω) dx. By Kolmogorov’s 0-1

law, the probability for limn!∞ Yn=0 is either zero or one. The second alternative can
be ruled out by observing that EYn=|I| for all n and that {Yn}n>1 is an Lp-martingale
with p>1, according to Theorem 3.7.

We are now ready to start the proof of

Eη(I)−q 6C <∞, 0<q<∞, (130)

for β2<2. Here the constant C=C(q, |I|, β) depends only on the exponent q, the length
|I| and the parameter β. Fix t>0. Define, for ε>0, the set Uε,t :={(x, y)∈U :ε<y6t}.
As in (52) one deduces the existence of the limit measure

ηt(dx) := lim
ε!0+

eβUε,t(x)−β2 Cov(Uε,t)/2 dx. (131)

Set M :=η1/2([0, 1]), M1 :=η1/8
([

0, 1
4

])
and M2 :=η1/8

([
3
4 , 1
])

. By scaling and translation
invariance the random variables M1, M2 and M are identically distributed. Moreover,
by comparing the exponents as in the proof of Lemma 3.5, we see that

M >B(M1+M2), (132)

where
B := einfx∈[0,1] βU1/8,1/2(x)−β2 Cov(U1/8,1/2)/2

has all moments finite. By construction, the random variables M1, M2 and B are inde-
pendent.

Similarly, by comparing η and η1/2, we see that it is enough to prove that

EM−q <∞ for q > 0. (133)
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We first prove this for small values of q. To this end, consider for s>0 the Laplace
transform

ΨM (s) := Ee−sM 6 Ee−sB(M1+M2) 6 EΨM1(sB)ΨM2(sB) = EΨM (sB)2. (134)

Since especially EB−1<∞, we may estimate P(B<1/s)6c/s. By substituting s2 in place
of s in (134) and applying this inequality, we obtain

ΨM (s2) 6
c

s
+Ψ2

M (s), (135)

where one may assume that c>2.
Set f(s):=(c/s1/2+ΨM (s)). Then (135) yields

f(s2) =
c

s
+ΨM (s2) 6 f2(s). (136)

Since ΨM (s)!0 as s!∞ (while P(M=0)=0), we may choose s0>0 with ΨM (s0)6 1
2 ,

whence (136) iterates to f(s2
k

0 )62−2k

for k>1. Together with the monotonicity of f ,
this yields δ>0 such that f(s)6cs−δ for s>0, especially ΨM (s)6cs−δ.

We obtain that
EM−δ/2 = c

∫ ∞

0

Ee−sMsδ/2−1 ds<∞.

In order to cover all values of q in (133) we employ a simple bootstrapping argument.
Assume that EM−q<∞ for some q>0. By applying the inequality between the arithmetic
and geometric mean, the independence of B, M1 and M2, and the fact that B has all
negative moments finite, we may estimate

EM−2q 6 E(B(M1+M2))−2q 6 cE(M1M2)−q = c(EM−q)2<∞. (137)

By induction, this finishes the proof.
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tions: a Jubilee of Benôıt Mandelbrot, Proc. Sympos. Pure Math., 72, Part 2, pp. 53–90.
Amer. Math. Soc., Providence, RI, 2004.

[8] Barral, J. & Mandelbrot, B.B., Introduction to infinite products of independent
random functions (Random multiplicative multifractal measures I), in Fractal Geome-
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