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Landau damping may be the single most famous mystery of classical plasma physics.
For the past sixty years it has been treated in the linear setting at various degrees of
rigor; but its non-linear version has remained elusive, since the only available results [13],
[41] prove the existence of some damped solutions, without telling anything about their
genericity.
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In the present work we close this gap by treating the non-linear version of Landau
damping in arbitrarily large times, under assumptions which cover both attractive and
repulsive interactions, of any regularity down to Coulomb–Newton.

This will lead us to discover a distinctive mathematical theory of Landau damping,
complete with its own functional spaces and functional inequalities. Let us make it clear
that this study is not just for the sake of mathematical rigor: indeed, we shall get new
insights into the physics of the problem, and identify new mathematical phenomena.

The plan of the paper is as follows.

In §1 we provide an introduction to Landau damping, including historical comments
and a review of the existing literature. Then in §2 we state and comment on our main
result about “non-linear Landau damping” (Theorem 2.6).

In §3 we provide a rather complete treatment of linear Landau damping, slightly
improving on the existing results both in generality and simplicity. This section can be
read independently of the rest.

In §4 we define the spaces of analytic functions which are used in the remainder of
the paper. The careful choice of norms is one of the keys of our analysis; the complexity
of the problem will naturally lead us to work with norms having up to five parameters.
As a first application, we shall revisit linear Landau damping within this framework.

In §§5–7 we establish four types of new estimates (deflection estimates, short-term
and long-term regularity extortion, echo control); these are the key sections containing
in particular the physically relevant new material.

In §8 we adapt the Newton algorithm to the setting of the non-linear Vlasov equation.
Then in §§9–11 we establish some iterative estimates along this scheme. (§11 is devoted
specifically to a technical refinement allowing us to handle Coulomb–Newton interaction.)

From these estimates our main theorem is easily deduced in §12.

An extension to non-analytic perturbations is presented in §13.

Some counterexamples and asymptotic expansions are studied in §14.

Final comments about the scope and range of applicability of these results are pro-
vided in §15.

Even though it basically proves one main result, this paper is very long. This is
due partly to the intrinsic complexity and richness of the problem, partly to the need
to develop an adequate functional theory from scratch, and partly to the inclusion of
remarks, explanations and comments intended to help the reader to understand the proof
and the scope of the results. The whole process culminates in the extremely technical
iteration performed in §10 and §11. A short summary of our results and methods of
proofs can be found in the expository paper [69].

This project started from an unlikely conjunction of discussions of the authors with
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various people, most notably Yan Guo, Dong Li, Freddy Bouchet and Étienne Ghys.
We also got crucial inspiration from the books [9] and [10] by James Binney and Scott
Tremaine; and [2] by Serge Alinhac and Patrick Gérard. Warm thanks to Julien Barré,
Jean Dolbeault, Thierry Gallay, Stephen Gustafson, Gregory Hammett, Donald Lynden-
Bell, Michael Sigal, Éric Séré and especially Michael Kiessling for useful exchanges and
references; and to Francis Filbet and Irene Gamba for providing numerical simulations.
We are also grateful to Patrick Bernard, Freddy Bouchet, Emanuele Caglioti, Yves
Elskens, Yan Guo, Zhiwu Lin, Michael Loss, Peter Markowich, Govind Menon, Yann
Ollivier, Mario Pulvirenti, Jeff Rauch, Igor Rodnianski, Peter Smereka, Yoshio Sone,
Tom Spencer, and the team of the Princeton Plasma Physics Laboratory for further con-
structive discussions about our results. Finally, we acknowledge the generous hospitality
of several institutions: Brown University, where the first author was introduced to Lan-
dau damping by Yan Guo in early 2005; the Institute for Advanced Study in Princeton,
who offered the second author a serene atmosphere of work and concentration during the
best part of the preparation of this work; Cambridge University, who provided repeated
hospitality to the first author thanks to the Award No. KUK-I1-007-43, funded by the
King Abdullah University of Science and Technology; and the University of Michigan,
where conversations with Jeff Rauch and others triggered a significant improvement of
our results.

Our deep thanks go to the referees for their careful examination of the manuscript.
We dedicate this paper to two great scientists who passed away during the elaboration of
our work. The first one is Carlo Cercignani, one of the leaders of kinetic theory, author of
several masterful treatises on the Boltzmann equation, and a long-time personal friend of
the second author. The other one is Vladimir Arnold, a mathematician of extraordinary
insight and influence; in this paper we shall uncover a tight link between Landau damping
and the theory of perturbation of completely integrable Hamiltonian systems, to which
Arnold has made major contributions.

1. Introduction to Landau damping

1.1. Discovery

Under adequate assumptions (collisionless regime, non-relativistic motion, heavy ions,
no magnetic field), a dilute plasma is well described by the non-linear Vlasov–Poisson
equation

∂f

∂t
+v ·∇xf+

F

m
·∇vf = 0, (1.1)
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where f=f(t, x, v)�0 is the density of electrons in phase space (x is the position and v the
velocity), m is the mass of an electron, and F =F (t, x) is the mean-field (self-consistent)
electrostatic force:

F =−eE, E =∇Δ−1(4π�). (1.2)

Here e>0 is the absolute electron charge, E=E(t, x) is the electric field, and �=�(t, x)
is the density of charges

� = �i−e

∫
R3

f dv, (1.3)

�i being the density of charges due to ions. This model and its many variants are of
tantamount importance in plasma physics [1], [5], [49], [54].

In contrast to models incorporating collisions [92], the Vlasov–Poisson equation is
time-reversible. However, in 1946 Landau [52] stunned the physical community by pre-
dicting an irreversible behavior on the basis of this equation. This “astonishing result”
(as it was called in [88]) relied on the solution of the Cauchy problem for the linearized
Vlasov–Poisson equation around a spatially homogeneous Maxwellian (Gaussian) equilib-
rium. Landau formally solved the equation by means of Fourier and Laplace transforms,
and after a study of singularities in the complex plane, concluded that the electric field
decays exponentially fast; he further studied the rate of decay as a function of the wave
vector k. Landau’s computations are reproduced in [54, §34] and [1, §4.2].

An alternative argument appears in [54, §30]: there the thermodynamical formalism
is used to compute the amount of heat Q which is dissipated when a (small) oscillating
electric field E(t, x)=Eei(k·x−ωt) (k is a wave vector and ω>0 a frequency) is applied to
a plasma whose distribution f0 is homogeneous in space and isotropic in velocity space;
the result is

Q =−|E|2 πme2ω

|k|2 φ′
(

ω

|k|
)

, (1.4)

where

φ(v1) =
∫

R3

∫
R3

f0(v1, v2, v3) dv2 dv3.

In particular, (1.4) is always positive (see the last remark in [54, §30]), which means that
the system reacts against the perturbation, and thus possesses some “active” stabilization
mechanism.

A third argument [54, §32] consists of studying the dispersion relation, or equiva-
lently searching for the (generalized) eigenmodes of the linearized Vlasov–Poisson equa-
tion, now with complex frequency ω. After appropriate selection, these eigenmodes are
all decaying (Im ω<0) as t!∞. This again suggests stability, although in a somewhat
weaker sense than the computation of heat release.
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The first and third arguments also apply to the gravitational Vlasov–Poisson equa-
tion, which is the main model for non-relativistic galactic dynamics. This equation is
similar to (1.1), but now m is the mass of a typical star (!), and f is the density of
stars in phase space; moreover the first equation of (1.2) and the relation (1.3) should
be replaced by

F =−GmE and � = m

∫
R3

f dv, (1.5)

where G is the gravitational constant, E is the gravitational field and � is the density
of mass. The books [9] and [10] by Binney and Tremaine constitute excellent references
about the use of the Vlasov–Poisson equation in stellar dynamics—where it is often called
the “collisionless Boltzmann equation”, see footnote on p. 276 in [10]. On “intermediate”
time scales, the Vlasov–Poisson equation is thought to be an accurate description of very
large star systems [28], which are now accessible to numerical simulations.

Since the work of Lynden-Bell [58] it has been recognized that Landau damping, and
wilder collisionless relaxation processes generically dubbed “violent relaxation”, consti-
tute a fundamental stabilizing ingredient of galactic dynamics. Without these still poorly
understood mechanisms, the surprisingly short time scales for relaxation of the galaxies
would remain unexplained.

One main difference between the electrostatic and the gravitational interactions is
that in the latter case Landau damping should occur only at wavelengths smaller than
the Jeans length [10, §5.2]; beyond this scale, even for Maxwellian velocity profiles, the
Jeans instability takes over and governs planet and galaxy aggregation.(1)

On the contrary, in (classical) plasma physics, Landau damping should hold at all
scales under suitable assumptions on the velocity profile; and in fact one is in general not
interested in scales smaller than the Debye length, which is roughly defined in the same
way as the Jeans length.

Nowadays, not only has Landau damping become a cornerstone of plasma physics,(2)
but it has also made its way into other areas of physics (astrophysics, but also wind waves,
fluids, superfluids, etc.) and even biophysics. One may consult the concise survey papers
[76], [81] and [91] for a discussion of its influence and some applications.

(1) Or at least would do, if galactic matter was smoothly distributed; in presence of “microscopic”
heterogeneities, a phase transition for aggregation can occur far below this scale [48]. In the language
of statistical mechanics, the Jeans length corresponds to a “spinodal point” rather than a phase transi-
tion [87].

(2) Ryutov [81] estimated in 1998 that “approximately every third paper on plasma physics and
its applications contains a direct reference to Landau damping”.
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1.2. Interpretation

True to his legend, Landau deduced the damping effect from a mathematical-style
study,(3) without bothering to give a physical explanation of the underlying mecha-
nism. His arguments anyway yield exact formulae, which in principle can be checked
experimentally, and indeed provide good qualitative agreement with observations [59].

A first set of problems in the interpretation is related to the arrow of time. In
the thermodynamic argument, the exterior field is awkwardly imposed from time −∞
onwards; moreover, reconciling a positive energy dissipation with the reversibility of
the equation is not obvious. In the dispersion argument, one has to arbitrarily impose
the location of the singularities taking into account the arrow of time (via the Plemelj
formula); then the spectral study requires some thinking. All in all, the most convincing
argument remains Landau’s original one, since it is based only on the study of the Cauchy
problem, which makes more physical sense than the study of the dispersion relation (see
the remark in [9, p. 682]).

A more fundamental issue resides in the use of analytic function theory, with contour
integration, singularities and residue computation, which has played a major role in the
theory of the Vlasov–Poisson equation ever since Landau [54, Chapter 32], see also [10,
§5.2.4], and helps little, if at all, to understand the underlying physical mechanism.(4)

The most popular interpretation of Landau damping considers the phenomenon from
an energetic point of view, as the result of the interaction of a plasma wave with particles
of nearby velocity [36, p. 18], [10, p. 412], [1, §4.2.3], [54, p. 127]. In a nutshell, the
argument says that dominant exchanges occur with those particles which are “trapped”
by the wave because their velocity is close to the wave velocity. If the distribution
function is a decreasing function of |v|, among trapped particles more are accelerated
than are decelerated, so the wave loses energy to the plasma—or the plasma surfs on the
wave—and the wave is damped by the interaction.

Appealing as this image may seem, to a mathematically-oriented mind it will prob-
ably make little sense at first hearing.(5) A more down-to-earth interpretation emerged
in the fifties from the “wave packet” analysis of van Kampen [45] and Case [14]: Landau
damping would result from phase mixing. This phenomenon, well known in galactic dy-
namics, describes the damping of oscillations occurring when a continuum is transported

(3) Not completely rigorous from the mathematical point of view, but formally correct, in contrast
to the previous studies by Landau’s fellow physicists—as Landau himself pointed out without mercy [52].

(4) van Kampen [45] summarizes the conceptual problems posed to his contemporaries by Landau’s
treatment, and comments on more or less clumsy attempts to resolve the apparent paradox caused by
the singularities in the complex plane.

(5) Escande [25, Chapter 4, footnote 6] points out some misconceptions associated with the surfer
image.
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in phase space along an anharmonic Hamiltonian flow [10, pp. 379–380]. The mixing
results from the simple fact that particles following different orbits travel at different
angular(6) speeds, so perturbations start “spiraling” (see Figure 4.27 on p. 379 in [10])
and homogenize by fast spatial oscillation. From the mathematical point of view, phase
mixing results in weak convergence; from the physical point of view, this is just the con-
vergence of observables, defined as averages over the velocity space (this is sometimes
called “convergence in the mean”).

At first sight, both points of view seem hardly compatible: Landau’s scenario sug-
gests a very smooth process, while phase mixing involves tremendous oscillations. The
coexistence of these two interpretations did generate some speculation on the nature of
the damping, and on its relation to phase mixing, see e.g. [46] or [10, p. 413]. There is
actually no contradiction between the two points of view: many physicists have rightly
pointed out that Landau damping should come with filamentation and oscillations of
the distribution function [45, p. 962], [54, p. 141], [1, Vol. 1, pp. 223–224], [57, pp. 294–
295]. Nowadays these oscillations can be visualized spectacularly due to deterministic
numerical schemes, see e.g. [95], [39, Figure 3] and [27]. In Figure 1.2 we reproduce some
examples provided by Filbet.

In any case, there is still no definite interpretation of Landau damping: as noted by
Ryutov [81, §9], papers devoted to the interpretation and teaching of Landau damping
were still appearing regularly fifty years after its discovery; to quote just a couple of
more recent examples let us mention works by Elskens and Escande [23], [24], [25]. The
present paper will also contribute a new point of view.

1.3. Range of validity

The following issues are addressed in the literature [42], [46], [61], [95] and slightly con-
troversial:

• Does Landau damping really hold for gravitational interaction? The case seems
thinner in this situation than for plasma interaction, all the more as there are many
instability results in the gravitational context; up to now there has been no consensus
among mathematical physicists [79]. (Numerical evidence is not conclusive because of
the difficulty of accurate simulations in very large time—even in one dimension of space.)

• Does the damping hold for unbounded systems? Counterexamples from [30] and
[31] show that some kind of confinement is necessary, even in the electrostatic case. More
precisely, Glassey and Schaeffer show that a solution of the linearized Vlasov–Poisson

(6) “Angular” here refers to action-angle variables, and applies even for straight trajectories in a
torus.
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Figure 1. A slice of the distribution function (relative to a homogeneous equilibrium) for
gravitational Landau damping, at two different times.

equation in the whole space (linearized around a homogeneous equilibrium f0 of infinite
mass) decays at best like O(t−1), modulo logarithmic corrections, for f0(v)=c/(1+|v|2);
and like O((log t)−α) if f0 is a Gaussian. In fact, Landau’s original calculations already
indicated that the damping is extremely weak at large wavenumbers; see the discussion
in [54, §32]. Of course, in the gravitational case, this is even more dramatic because of
the Jeans instability.

• Does convergence hold in infinite time for the solution of the “full” non-linear
equation? This is not clear at all since there is no mechanism that would keep the
distribution close to the original equilibrium for all times. Some authors do not believe
that there is convergence as t!∞; others believe that there is convergence but argue
that it should be very slow [42], say O(1/t). In the first mathematically rigorous study
of the subject, Backus [4] notes that in general the linear and non-linear evolution break
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Figure 2. Time-evolution of the norm of the field, for electrostatic (left) and gravitational
(right) interactions. Notice the fast Langmuir oscillations in the electrostatic case.

apart after some (not very large) time, and questions the validity of the linearization.(7)
O’Neil [75] argues that relaxation holds in the “quasilinear regime” on larger time scales,
when the “trapping time” (roughly proportional the inverse square root of the size of the
perturbation) is much smaller than the damping time. Other speculations and arguments
related to trapping appear in many sources, e.g. [61] and [64]. Kaganovich [44] argues
that non-linear effects may quantitatively affect Landau damping related phenomena by
several orders of magnitude.

The so-called “quasilinear relaxation theory” [54, §49], [1, §9.1.2], [49, Chapter 10]
uses second-order approximation of the Vlasov equation to predict the convergence of the
spatial average of the distribution function. The procedure is most esoteric, involving av-

(7) From the abstract: “The linear theory predicts that in stable plasmas the neglected term will
grow linearly with time at a rate proportional to the initial disturbance amplitude, destroying the validity
of the linear theory, and vitiating positive conclusions about stability based on it.”
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eraging over statistical ensembles, and diffusion equations with discontinuous coefficients,
acting only near the resonance velocity for particle-wave exchanges. Because of these dis-
continuities, the predicted asymptotic state is discontinuous, and collisions are invoked
to restore smoothness. Linear Fokker–Planck equations(8) in velocity space have also
been used in astrophysics [58, p. 111], but only on phenomenological grounds (the ad-hoc
addition of a friction term leading to a Gaussian stationary state); and this procedure
has been exported to the study of 2-dimensional incompressible fluids [15], [16].

Even if it were more rigorous, quasilinear theory only aims at second-order cor-
rections, but the effect of higher-order perturbations might be even worse. Think of
something like

e−t
∑

n∈N0

εntn√
n!

(where N0={0, 1, 2, ... }), then truncation at any order in ε converges exponentially fast
as t!∞, but the whole sum diverges to infinity.

Careful numerical simulation [95] seems to show that the solution of the non-linear
Vlasov–Poisson equation does converge to a spatially homogeneous distribution, but only
as long as the size of the perturbation is small enough. We shall call this phenomenon
non-linear Landau damping. This terminology summarizes the problem well, still it is
subject to criticism since (a) Landau himself sticked to the linear case and did not discuss
the large-time convergence of the distribution function; (b) damping is expected to hold
when the regime is close to linear, but not necessarily when the non-linear term domi-
nates;(9) and (c) this expression is also used to designate related but different phenomena
[1, §10.1.3]. It should be kept in mind that in the present paper, non-linearity does mani-
fest itself, not because there is a significant initial departure from equilibrium (our initial
data will be very close to equilibrium), but because we are addressing very large times,
and this is all the more tricky to handle, as the problem is highly oscillating.

• Is Landau damping related to the more classical notion of stability in orbital
sense? Orbital stability means that the system, slightly perturbed at initial time from
an equilibrium distribution, will always remain close to this equilibrium. Even in the
favorable electrostatic case, stability is not granted; the most prominent phenomenon
being the Penrose instability [77] according to which a distribution with two deep bumps
may be unstable. In the more subtle gravitational case, various stability and instability
criteria are associated with the names of Chandrasekhar, Antonov, Goodman, Doremus,
Feix, Baumann, etc. [10, §7.4]. There is a widespread agreement (see e.g. the comments

(8) These equations act on some ensemble average of the distribution; they are different from the
Vlasov–Landau equation.

(9) Although phase mixing might still play a crucial role in violent relaxation or other unclassified
non-linear phenomena.
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in [95]) that Landau damping and stability are related, and that Landau damping cannot
be hoped for if there is no orbital stability.

1.4. Conceptual problems

Summarizing, we can identify three main conceptual obstacles which make Landau damp-
ing mysterious, even sixty years after its discovery:

(i) The equation is time-reversible, yet we are looking for an irreversible behavior as
t!∞ (or t!−∞). The value of the entropy does not change in time, which physically
speaking means that there is no loss of information in the distribution function. The
spectacular experiment of the “plasma echo” illustrates this conservation of microscopic
information [32], [60]: a plasma which is apparently back to equilibrium after an initial
disturbance, will react to a second disturbance in a way that shows that it has not
forgotten the first one.(10) And at the linear level, if there are decaying modes, there
also have to be growing modes!

(ii) When one perturbs an equilibrium, there is no mechanism forcing the system
to go back to this equilibrium in large time; so there is no justification in the use of
linearization to predict the large-time behavior.

(iii) At the technical level, Landau damping (in Landau’s own treatment) rests on
analyticity, and its most attractive interpretation is in terms of phase mixing. But both
phenomena are incompatible in the large-time limit : phase mixing implies an irreversible
deterioration of analyticity. For instance, it is easily checked that free transport induces
an exponential growth of analytic norms as t!∞—except if the initial datum is spatially
homogeneous. In particular, the Vlasov–Poisson equation is unstable (in large time) in
any norm incorporating velocity regularity. (Space-averaging is one of the ingredients
used in the quasilinear theory to formally get rid of this instability.)

How can we respond to these issues?
One way to solve the first problem (time-reversibility) is to appeal to van Kampen

modes as in [10, p. 415]; however these are not so physical, as noticed in [9, p. 682]. A
simpler conceptual solution is to invoke the notion of weak convergence: reversibility
manifests itself in the conservation of the information contained in the density function;
but information may be lost irreversibly in the limit when we consider weak convergence.
Weak convergence only describes the long-time behavior of arbitrary observables, each of
which does not contain as much information as the density function.(11) As a very simple

(10) Interestingly enough, this experiment was suggested as a way to evaluate the strength of ir-
reversible phenomena going on inside a plasma, e.g. the collision frequency, by measuring attenuations
with respect to the predicted echo. See [86] for an interesting application and striking pictures.

(11) In Lynden-Bell’s appealing words [57, p. 295], “a system whose density has achieved a steady
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illustration, consider the time-reversible evolution defined by u(t, x)=eitxui(x), and no-
tice that it does converge weakly to 0 as t!±∞; this convergence is even exponentially
fast if the initial datum ui is analytic. (Our example is not chosen at random: although
it is extremely simple, it may be a good illustration of what happens in phase mixing.) In
a way, microsocopic reversibility is compatible with macroscopic irreversibility, provided
that the “microscopic regularity” is destroyed asymptotically.

Still in respect to this reversibility, it should be noted that the “dual” mechanism
of radiation, according to which an infinite-dimensional system may lose energy towards
very large scales, is relatively well understood and recognized as a crucial stability mech-
anism [3], [85].

The second problem (lack of justification of the linearization) only indicates that
there is a wide gap between the understanding of linear Landau damping, and that of
the non-linear phenomenon. Even if unbounded corrections appear in the linearization
procedure, the effect of the large terms might be averaged over time or other variables.

The third problem, maybe the most troubling from an analyst’s perspective, does not
dismiss the phase mixing explanation, but suggests that we shall have to keep track of the
initial time, in the sense that a rigorous proof cannot be based on the propagation of some
phenomenon. This situation is of course in sharp contrast with the study of dissipative
systems possessing a Lyapunov functional, as do many collisional kinetic equations [92],
[93]; it will require completely different mathematical techniques.

1.5. Previous mathematical results

At the linear level, the first rigorous treatments of Landau damping were performed in
the sixties; see Saenz [82] for rather complete results and a review of earlier works. The
theory was rediscovered and renewed at the beginning of the eighties by Degond [20], and
Maslov and Fedoryuk [63]. In all these works, analytic arguments play a crucial role (for
instance for the analytic extension of resolvent operators), and asymptotic expansions
for the electric field associated with the linearized Vlasov–Poisson equation are obtained.

Also at the linearized level, there are counterexamples by Glassey–Schaeffer [30], [31]
showing that there is in general no exponential decay for the linearized Vlasov–Poisson
equation without analyticity, or without confining.

In a non-linear setting, the only rigorous treatments so far are those by Caglioti–
Maffei [13], and later Hwang–Vélazquez [41]. Both sets of authors work in the 1-
dimensional torus and use fixed-point theorems and perturbative arguments to prove
the existence of a class of analytic solutions behaving, asymptotically as t!∞, and in a

state will have information about its birth still stored in the peculiar velocities of its stars.”
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strong sense, like perturbed solutions of free transport. Since solutions of free transport
weakly converge to spatially homogeneous distributions, the solutions constructed by this
“scattering” approach are indeed damped. The weakness of these results is that they say
nothing about the initial perturbations leading to such solutions, which could be very
special. In other words: damped solutions do exist, but do we ever reach them?

Sparse as it may seem, this list is kind of exhaustive. On the other hand, there is a
rather large mathematical literature on the orbital stability problem, due to Guo, Rein,
Strauss, Wolansky and Lemou–Méhats–Raphaël. In this respect see for instance [35] for
the plasma case, and [34] and [53] for the gravitational case; these sources contain many
references on the subject. This body of works has confirmed the intuition of physicists,
although with quite different methods. The gap between a formal, linear treatment and
a rigorous, non-linear one is striking: compare the appendix of [34] to the rest of the
paper. In the gravitational case, these works do not consider homogeneous equilibria,
but only localized solutions.

Our treatment of Landau damping will be performed from scratch, and will not rely
on any of these results.

2. Main result

2.1. Modeling

We shall work in adimensional units throughout the paper, in d dimensions of space and
d dimensions of velocity (d∈N={1, 2, ... }).

As should be clear from our presentation in §1, to observe Landau damping, we
need to put a restriction on the length scale (anyway plasmas in experiments are usually
confined). To achieve this we shall take the position space to be the d-dimensional torus
of sidelength L, namely Td

L=Rd/LZd. This is admittedly a bit unrealistic, but it is
commonly done in plasma physics (see e.g. [5]).

In a periodic setting the Poisson equation has to be reinterpreted, since Δ−1� is
not well defined unless

∫
Td

L
� dx=0. The natural solution consists of removing the mean

value of �, independently of any “neutrality” assumption. Let us sketch a justification
in the important case of Coulomb interaction: due to the screening phenomenon, we
may replace the Coulomb potential V by a potential V exhibiting a “cutoff” at large
distances (typically V could be of Debye type [5]; anyway the choice of approximation
has no influence on the result). If ∇V ∈L1(Rd), then ∇V ∗� makes sense for a periodic
�, and moreover

(∇V ∗�)(x) =
∫

Rd

∇V (x−y)�(y) dy =
∫

[0,L]d
∇V (L)(x−y)�(y) dy,
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where V
(L)(z)=

∑
l∈Zd V (z+lL). Passing to the limit as !0 yields

∫
[0,L]d

∇V (L)(x−y)�(y) dy =
∫

[0,L]d
∇V (L)(x−y)(�−〈�〉)(y) dy =−∇Δ−1

L (�−〈�〉),

where Δ−1
L is the inverse Laplace operator on Td

L.

In the case of galactic dynamics there is no screening; however it is customary to
remove the zeroth-order term of the density. This is known as the Jeans swindle, a trick
considered as efficient but logically absurd. In 2003, Kiessling [47] reopened the case
and acquitted Jeans, on the basis that his “swindle” can be justified by a simple limit
procedure, similar to the one presented above; however, the physical basis for the limit is
less transparent and subject to debate. For our purposes, it does not matter much: since
anyway periodic boundary conditions are not realistic in a cosmological setting, we may
just as well say that we adopt the Jeans swindle as a simple phenomenological model.

More generally, we may consider any interaction potential W on Td
L, satisfying the

natural symmetry assumption W (−z)=W (z) (that is, W is even), as well as certain
regularity assumptions. Then the self-consistent field will be given by

F =−∇W ∗�, �(x) =
∫

Rd

f(x, v) dv,

where now ∗ denotes the convolution on Td
L.

In accordance with our conventions from Appendix A.3, we shall write

Ŵ (L)(k) =
∫

Td
L

e−2iπk·x/LW (x) dx.

In particular, if W is the periodization of a potential Rd!R (still denoted W by abuse
of notation), i.e.,

W (x) =W (L)(x) =
∑
l∈Zd

W (x+lL),

then

Ŵ (L)(k) = Ŵ

(
k

L

)
, (2.1)

where

Ŵ (ξ) =
∫

Rd

e−2iπξ·xW (x) dx

is the original Fourier transform in the whole space.
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2.2. Linear damping

It is well known that Landau damping requires some stability assumptions on the unper-
turbed homogeneous distribution function, say f0(v). In this paper we shall use a very
general assumption, expressed in terms of the Fourier transform

f̃ 0(η) =
∫

Rd

e−2iπη·vf0(v) dv, (2.2)

the length L, and the interaction potential W . To state it, we define, for t�0 and k∈Zd,

K0(t, k) =−4π2Ŵ (L)(k)f̃ 0

(
kt

L

) |k|2t
L2

; (2.3)

and, for any ξ∈C, we define a function L via the following Fourier–Laplace transform of
K0 in the time variable:

L(ξ, k) =
∫ ∞

0

e2πξ∗|k|t/LK0(t, k) dt, (2.4)

where ξ∗ is the complex conjugate to ξ. Our linear damping condition is expressed as
follows:

(L) There are constants C0, λ, >0 such that |f̃ 0(η)|�C0e
−2πλ|η| for any η∈Rd;

and for any ξ∈C with 0�Re ξ<λ,

inf
k∈Zd

|L(ξ, k)−1|� .

We shall prove in §3 that (L) implies Landau damping. For the moment, let us give
a few sufficient conditions for (L) to be satisfied. The first one can be thought of as a
smallness assumption on either the length, or the potential, or the velocity distribution.
The other conditions involve the marginals of f0 along arbitrary wave vectors k:

ϕk(v) =
∫

kv/|k|+k⊥
f0(w) dw, v ∈R. (2.5)

All studies known to us are based on one of these assumptions, so (L) appears as a
unifying condition for linear Landau damping around a homogeneous equilibrium.

Proposition 2.1. Let f0=f0(v) be a velocity distribution such that f̃ 0 decays ex-
ponentially fast at infinity, let L>0 and let W be an even interaction potential on Td

L,
W∈L1(Td). If any of the following conditions is satisfied :

(a) smallness:

4π2
(

max
k∈Zd∗

|Ŵ (L)(k)|
)

sup
|σ|=1

∫ ∞

0

|f̃ 0(rσ)|r dr < 1; (2.6)
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(b) repulsive interaction and decreasing marginals: for all k∈Zd and v∈R,

Ŵ (L)(k) � 0 and ϕ′
k(v)
{

> 0, if v < 0,
< 0, if v > 0,

(2.7)

(c) generalized Penrose condition on marginals: for all k∈Zd,

ϕ′
k(w) = 0 =⇒ Ŵ (L)(k)

(
p.v.
∫

R

ϕ′
k(v)

v−w
dv

)
< 1 for all w∈R; (2.8)

then (L) holds true for some C0, λ, >0.

Remark 2.2. ([54, problem in §30]) If f0 is radially symmetric and positive, and
d�3, then all marginals of f0 are decreasing functions of |v|. Indeed, if

ϕ(v) =
∫

Rd−1
f
(√

v2+|w|2 ) dw,

then after differentiation and integration by parts we find that

ϕ′(v) =

⎧⎨⎩ −(d−3)v
∫

Rd−1
f
(√

v2+|w|2 ) dw

|w|2 , if d � 4,

−2πvf(|v|), if d = 3.

Example 2.3. Take a gravitational interaction and Mawellian background:

Ŵ (k) =− G
π|k|2 and f0(v) = �0 e−|v|2/2T

(2πT )d/2
.

Recalling (2.1), we see that (2.6) becomes

L<

√
πT

G�0
=:LJ(T, �0). (2.9)

The length LJ is the celebrated Jeans length [10], [47], so criterion (a) can be applied,
all the way up to the onset of the Jeans instability.

Example 2.4. If we replace the gravitational interaction by the electrostatic interac-
tion, the same computation yields

L<

√
πT

e2�0
=:LD(T, �0), (2.10)

and now LD is essentially the Debye length. Then criterion (a) becomes quite restrictive,
but because the interaction is repulsive we can use criterion (b) as soon as f0 is a strictly
monotone function of |v|; this covers in particular Maxwellian distributions, independently
of the size of the box. Criterion (b) also applies if d�3 and f0 has radial symmetry. For a
given L>0, the condition (L) being open, it will also be satisfied if f0 is a small (analytic)
perturbation of a profile satisfying (b); this includes the so-called “small bump on tail”
stability. Then if the distribution presents two large bumps, the Penrose instability will
take over.
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Example 2.5. For the electrostatic interaction in dimension 1, (2.8) becomes

(f0)′(w) = 0 =⇒
∫

R

(f0)′(v)
v−w

dv <
π

e2L2
. (2.11)

This is a variant of the Penrose stability condition [77]. This criterion is in general sharp
for linear stability (up to the replacement of the strict inequality by the non-strict one,
and assuming that the critical points of f0 are non-degenerate); see [55, Appendix] for
precise statements.

We shall show in §3 that (L) implies linear Landau damping (Theorem 3.1); then
we shall prove Proposition 2.1 at the end of that section. The general ideas are close
to those appearing in previous works, including Landau himself; the only novelties lie in
the more general assumptions, the elementary nature of the arguments, and the slightly
more precise quantitative results.

2.3. Non-linear damping

As others have done before in the study of the Vlasov–Poisson equation [13], we shall
quantify the analyticity by means of natural norms involving Fourier transform in both
variables (also denoted with a tilde in the sequel). So we define

‖f‖λ,μ = sup
k∈Zd

η∈Rd

|f̃ (L)(k, η)|e2πλ|η|e2πμ|k|/L, (2.12)

where k varies in Zd, η∈Rd, λ and μ are positive parameters, and we recall the dependence
of the Fourier transform on L (see Appendix A.3 for conventions). Now we can state our
main result as follows.

Theorem 2.6. (Non-linear Landau damping) Let f0: Rd!R+ be an analytic veloc-
ity profile. Let L>0 and let W : Td

L!R be an even interaction potential satisfying

|Ŵ (L)(k)|� CW

|k|1+γ
for all k∈Zd (2.13)

for some constants CW >0 and γ�1. Assume that f0 and W satisfy the stability con-
dition (L) from §2.2, with some constants λ, >0; further assume that, for the same
parameter λ,

sup
η∈Rd

|f̃ 0(η)|e2πλ|η| �C0 and
∑

n∈Nd
0

λn

n!
‖∇n

v f0‖L1(Rd) �C0 <∞. (2.14)
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Then for any 0<λ′<λ, β>0 and 0<μ′<μ, there is

ε = ε(d, L, CW , C0, , λ, λ′, μ, μ′, β, γ)

with the following property : if fi=fi(x, v) is an initial datum satisfying

δ := ‖fi−f0‖λ,μ+
∫

Td
L

∫
Rd

|fi−f0|eβ|v| dv dx � ε, (2.15)

then
• the unique classical solution f to the non-linear Vlasov equation

∂f

∂t
+v ·∇xf−(∇W ∗�)·∇vf = 0, �=

∫
Rd

f dv, (2.16)

with initial datum f(0, ·)=fi, converges in the weak topology as t!±∞, with rate
O(e−2πλ′|t|), to a spatially homogeneous equilibrium f±∞ (that is, it converges to f∞
as t!∞, and to f−∞ as t!−∞);

• the distribution function composed with the backward free transport f(t, x+vt, v)
converges strongly to f±∞ as t!±∞;

• the density �(t, x)=
∫

Rd f(t, x, v) dv converges in the strong topology as t!±∞,
with rate O(e−2πλ′|t|), to the constant density

�∞ =
1
Ld

∫
Td

L

∫
Rd

fi(x, v) dv dx;

in particular the force F =−∇W ∗� converges exponentially fast to 0;
• the space average 〈f〉(t, v)=

∫
Td

L
f(t, x, v) dx converges in the strong topology as

t!±∞, with rate O(e−2πλ′|t|), to f±∞.
More precisely, there are C>0, and spatially homogeneous distributions f∞(v) and

f−∞(v), depending continuously on fi and W , such that

sup
t∈R

‖f(t, x+vt, v)−f0(v)‖λ′,μ′ �Cδ,

|f̃±∞(η)−f̃ 0(η)|�Cδe−2πλ′|η| for all η ∈Rd

(2.17)

and

|L−df̃ (L)(t, k, η)−f̃±∞(η)1k=0|= O(e−2πλ′|t|/L) as t!±∞, for all (k, η)∈Zd×Rd,

‖f(t, x+vt, v)−f±∞(v)‖λ′,μ′ = O(e−2πλ′|t|/L) as t!±∞,

‖�(t, ·)−�∞‖Cr(Td) = O(e−2πλ′|t|/L) as |t|!∞, for all r∈N, (2.18)

‖F (t, ·)‖Cr(T1d) = O(e−2πλ′|t|/L) as |t|!∞, for all r∈N, (2.19)

‖〈f(t, · , v)〉−f±∞‖Cr
σ(Rd

v) = O(e−2πλ′|t|/L) as t!±∞, for all r∈N and σ > 0.

(2.20)
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In this statement Cr stands for the usual norm on r-times continuously differentiable
functions, and Cr

σ involves in addition moments of order σ, namely

‖f‖Cr
σ

= sup
r′�r

v∈Rd

|f (r′)(v)(1+|v|σ)|.

These results can be reformulated in a number of alternative norms, both for the strong
and for the weak topology.

2.4. Comments

Let us start with a list of remarks about Theorem 2.6.
• The decay of the force field, statement (2.19), is the experimentally measurable

phenomenon which may be called Landau damping.
• Since the energy

E =
1
2

∫
Td

L

∫
Td

L

�(x)�(y) W (x−y) dx dy+
∫

Td
L

∫
Rd

f(x, v)
|v|2
2

dv dx

(= potential + kinetic energy) is conserved by the non-linear Vlasov evolution, there is
a conversion of potential energy into kinetic energy as t!∞ (kinetic energy goes up for
Coulomb interaction and goes down for Newton interaction). Similarly, the entropy

S =−
∫

Td
L

∫
Rd

f log f dv dx =−
(∫

Td
L

� log � dx+
∫

Td
L

∫
Rd

f log
f

�
dv dx

)
(= spatial + kinetic entropy) is preserved, and there is a transfer of information from
spatial to kinetic variables in large time.

• Our result covers both attractive and repulsive interactions, as long as the linear
damping condition is satisfied; it covers the Newton–Coulomb potential as a limit case
(γ=1 in (2.13)). The proof breaks down for γ<1; this is a non-linear effect, as any γ>0
would work for the linearized equation. The singularity of the interaction at short scales
will be the source of important technical problems.(12)

• Condition (2.14) could be replaced by

|f̃ 0(η)|�C0e
−2πλ|η| and

∫
Rd

f0(v)eβ|v| dv �C0. (2.21)

(12) In a related subject, this singularity is also the reason why the Vlasov–Poisson equation is still
far from being established as a mean-field limit of particle dynamics (see [37] for partial results covering
much less singular interactions).
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But condition (2.14) is more general, in view of Theorem 4.20 below. For instance,
f0(v)=1/(1+v2) in dimension d=1 satisfies (2.14) but not (2.21); this distribution is
commonly used in theoretical and numerical studies, see e.g. [39]. We shall also establish
slightly more precise estimates under slightly more stringent conditions on f0, see (12.1).

• Our conditions are expressed in terms of the initial datum, which is a considerable
improvement over [13] and [41]. Still it is of interest to pursue the “scattering” program
started in [13], e.g. in hope of better understanding of the non-perturbative regime.

• The smallness assumption on fi−f0 is expected, for instance in view of the work
of O’Neil [75], or the numerical results of [95]. We also make the standard assumption
that fi−f0 is well localized.

• No convergence can be hoped for if the initial datum is only close to f0 in the weak
topology: indeed there is instability in the weak topology, even around a Maxwellian [13].

• The well-posedness of the non-linear Vlasov–Poisson equation in dimension d�3
was established by Pfaffelmoser [78] and Lions–Perthame [56] in the whole space. Pfaf-
felmoser’s proof was adapted to the case of the torus by Batt and Rein [6]; however, like
Pfaffelmoser, these authors imposed a stringent assumption of uniformly bounded veloc-
ities. Building on Schaeffer’s simplification [84] of Pfaffelmoser’s argument, Horst [40]
proved well-posedness in the whole space assuming only inverse polynomial decay in the
velocity variable. Although this has not been done explicitly, Horst’s proof can easily
be adapted to the case of the torus, and covers in particular the setting which we use in
the present paper. (The adaptation of [56] seems more delicate.) Propagation of ana-
lytic regularity is not studied in these works. In any case, our proof will provide a new
perturbative existence theorem, together with regularity estimates which are consider-
ably stronger than what is needed to prove the uniqueness. We shall not come back to
these issues which are rather irrelevant for our study: uniqueness only needs local-in-time
regularity estimates, while all the difficulty in the study of Landau damping consists in
handling (very) large time.

• We note in passing that while blow-up is known to occur for certain solutions of
the Newtonian Vlasov–Poisson equation in dimension 4, blow-up does not occur in this
perturbative regime, whatever the dimension. There is no contradiction since blow-up
solutions are constructed with negative energy initial data, and a nearly homogeneous so-
lution automatically has positive energy. (Also, blow-up solutions have been constructed
only in the whole space, where the virial identity is available; but it is plausible, although
not obvious, that blow-up is still possible in bounded geometry.)

• f(t, ·) is not close to f0 in analytic norm as t!∞, and does not converge to
anything in the strong topology, so the conclusion cannot be improved much. Still we
shall establish more precise quantitative results, and the limit profiles f±∞ are obtained
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by a constructive argument.
• Estimate (2.17) expresses the orbital “traveling stability” around f0; it is much

stronger than the usual orbital stability in Lebesgue norms [34], [35]. An equivalent
formulation is that if (Tt)t∈R stands for the non-linear Vlasov evolution operator, and
(T 0

t )t∈R for the free transport operator, then in a neighborhood of a homogeneous equi-
librium satisfying the stability criterion (L), T 0

−t Tt remains uniformly close to Id for all
t. Note the important difference: unlike in the usual orbital stability theory, our conclu-
sions are expressed in functional spaces involving smoothness, which are not invariant
under the free transport semigroup. This a source of difficulty (our functional spaces are
sensitive to the filamentation phenomenon), but it is also the reason for which this “an-
alytic” orbital stability contains much more information, and in particular the damping
of the density.

• Compared with known non-linear stability results, and even forgetting about the
smoothness, estimate (2.17) is new in several respects. In the context of plasma physics,
it is the first one to prove stability for a distribution which is not necessarily a decreasing
function of |v| (“small bump on tail”); while in the context of astrophysics, it is the first
one to establish stability of a homogeneous equilibrium against periodic perturbations
with wavelength smaller than the Jeans length.

• While analyticity is the usual setting for Landau damping, both in mathematical
and physical studies, it is natural to ask whether this restriction can be dispensed with.
(This can be done only at the price of losing the exponential decay.) In the linear case,
this is easy, as we shall recall later in Remark 3.5; but in the non-linear setting, leaving
the analytic world is much more tricky. In §13, we shall present the first results in this
direction.

With respect to the questions raised above, our analysis brings the following answers:
(a) Convergence of the distribution f does hold for t!∞; it is indeed based on phase

mixing, and therefore involves very fast oscillations. In this sense it is right to consider
Landau damping as a “wild” process. But on the other hand, the spatial density (and
therefore the force field) converges strongly and smoothly.

(b) The space average 〈f〉 does converge in large time. However the conclusions are
quite different from those of quasilinear relaxation theory, since there is no need for extra
randomness, and the limiting distribution is smooth, even without collisions.

(c) Landau damping is a linear phenomenon, which survives non-linear perturbation
due to the structure of the Vlasov–Poisson equation. The non-linearity manifests itself
by the presence of echoes. Echoes were well known to specialists of plasma physics [54,
§35], [1, §12.7], but were not identified as a possible source of unstability. Controlling
the echoes will be a main technical difficulty; but the fact that the response appears in
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this form, with an associated time-delay and localized in time, will in the end explain
the stability of Landau damping. These features can be expected in other equations
exhibiting oscillatory behavior.

(d) The large-time limit is in general different from the limit predicted by the lin-
earized equation, and depends on the interaction and initial datum (more precise state-
ments will be given in §14); still the linearized equation, or higher-order expansions, do
provide a good approximation. We shall also set up a systematic recipe for approximat-
ing the large-time limit with arbitrarily high precision as the strength of the perturbation
becomes small. This justifies a posteriori many known computations.

(e) From the point of view of dynamical systems, the non-linear Vlasov equation
exhibits a truly remarkable behavior. It is not uncommon for a Hamiltonian system to
have many, or even countably many heteroclinic orbits (there are various theories for
this, a popular one being the Melnikov method); but in the present case we see that
heteroclinic/homoclinic orbits(13) are so numerous as to fill up a whole neighborhood
of the equilibrium. This is possible only because of the infinite-dimensional nature of
the system, and the possibility to work with non-equivalent norms; such a behavior has
already been reported for other systems [50], [51], in relation with infinite-dimensional
KAM (Kolmogorov–Arnold–Moser) theory.

(f) As a matter of fact, non-linear Landau damping has strong similarities with the
KAM theory. It has been known since the early days of the theory that the linearized
Vlasov equation can be reduced to an infinite system of uncoupled Volterra equations,
which makes this equation completely integrable in some sense. (Morrison [66] gave a
more precise meaning to this property.) To see a parallel with classical KAM theory,
one step of our result is to prove the preservation of the phase-mixing property under
non-linear perturbation of the interaction. (Although there is no ergodicity in phase
space, the mixing will imply an ergodic behavior for the spatial density.) The analogy
is reinforced by the fact that the proof of Theorem 2.6 shares many features with the
proof of the KAM theorem in the analytic (or Gevrey) setting. (Our proof is close
to Kolmogorov’s original argument, exposed in [18].) In particular, we shall invoke a
Newton scheme to overcome a loss of “regularity” in analytic norms, only in a trickier
sense than in KAM theory. If one wants to push the analogy further, one can argue that
the resonances which cause the phenomenon of small divisors in KAM theory find an
analogue in the time-resonances which cause the echo phenomenon in plasma physics.
A notable difference is that in the present setting, time-resonances arise from the non-
linearity at the level of the partial differential equation, whereas small divisors in KAM

(13) Here we use these words just to designate solutions connecting two distinct/equal equilibria,
without any mention of stable or unstable manifolds.
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theory arise at the level of the ordinary differential equation. Another major difference
is that in the present situation there is a time-averaging which is not present in KAM
theory.

Thus we see that three of the most famous paradoxical phenomena from twentieth
century classical physics: Landau damping, echoes and the KAM theorem are intimately
related (only in the non-linear variant of Landau’s linear argument!). This relation, which
we did not expect, is one of the main discoveries of the present paper.

2.5. Interpretation

A successful point of view adopted in this paper is that Landau damping is a relaxation
by smoothness and by mixing. In a way, phase mixing converts the smoothness into
decay. Thus Landau damping emerges as a rare example of a physical phenomenon in
which regularity is not only crucial from the mathematical point of view, but also can
be “measured” by a physical experiment.

2.6. Main ingredients

Some of our ingredients are similar to those in [13]: in particular, the use of the Fourier
transform to quantify analytic regularity and to implement phase mixing. New ingredi-
ents used in our work include the following.

• The introduction of a time-shift parameter to keep memory of the initial time
(§4 and §5), thus getting uniform estimates in spite of the loss of regularity in large
time. We call this the gliding regularity : it shifts in phase space from low to high modes.
Gliding regularity automatically comes with an improvement of the regularity in x, and
a deterioration of the regularity in v, as time passes by.

• The use of carefully designed flexible analytic norms behaving well with respect
to composition (§4). This requires care, because analytic norms are very sensitive to
composition, contrary to, say, Sobolev norms.

• A control of the deflection of trajectories induced by the force field, to reduce the
problem to homogenization of free flow (§5) via composition. The physical meaning is
the following: when a background with gliding regularity acts on (say) a plasma, the
trajectories of plasma particles are asymptotic to free transport trajectories.

• New functional inequalities of bilinear type, involving analytic functional spaces,
integration in time and velocity variables, and evolution by free transport (§6). These
inequalities morally mean the following: when a plasma acts (by forcing) on a smooth
background of particles, the background reacts by lending a bit of its (gliding) regularity
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to the plasma, uniformly in time. Eventually the plasma will exhaust itself (the force
will decay). This most subtle effect, which is at the heart of Landau’s damping, will be
mathematically expressed in the formalism of analytic norms with gliding regularity.

• A new analysis of the time response associated with the Vlasov–Poisson equation
(§7), aimed ultimately at controlling the self-induced echoes of the plasma. For any
interaction less singular than that of Coulomb–Newton, this will be done by analyzing
time-integral equations involving a norm of the spatial density. To treat the Coulomb–
Newton potential we shall refine the analysis, considering individual modes of the spatial
density.

• A Newton iteration scheme, solving the non-linear evolution problem as a succes-
sion of linear ones (§10). Picard iteration schemes still play a role, since they are run at
each step of the iteration process, to estimate the deflection.

It is only in the linear study of §3 that the length scale L will play a crucial role,
via the stability condition (L). In all the rest of the paper we shall normalize L to 1 for
simplicity.

2.7. About phase mixing

A physical mechanism transferring energy from large scales to very fine scales, asymp-
totically in time, is sometimes called weak turbulence. Phase mixing provides such a
mechanism, and in a way our study shows that the Vlasov–Poisson equation is subject to
weak turbulence. But the phase mixing interpretation provides a more precise picture.
While one often sees weak turbulence as a “cascade” from low to high Fourier modes,
the relevant picture would rather be a 2-dimensional figure with an interplay between
spatial Fourier modes and velocity Fourier modes. More precisely, phase mixing transfers
the energy from each non-zero spatial frequency k, to large velocity frequences η, and
this transfer occurs at a speed proportional to k. This picture is clear from the solution
of free transport in Fourier space, and is illustrated in Figure 3. (Note the resemblance
with a shear flow.) So there is transfer of energy from one variable (here x) to another
(here v); homogenization in the first variable going together with filamentation in the
second one. The same mechanism may also underlie other cases of weak turbulence.

The fact that the high modes are ultimately damped by some “random” micro-
scopic process (collisions, diffusion, etc.) not described by the Vlasov–Poisson equation
is certainly undisputed in plasma physics [54, §41],(14) but is the object of debate in
galactic dynamics; anyway this is a different story. Some mathematical statistical theo-

(14) See [54, Problem 41]: due to Landau damping, collisions are expected to smooth the distribution
quite efficiently; this is a hypoellipticity issue.



54 c. mouhot and c. villani

initial configuration (t=0)

−η

(kinetic modes)

k
(spatial modes)

t=t1 t=t2 t=t3

Figure 3. Schematic picture of the evolution of energy by free transport, or perturbation
thereof; marks indicate localization of energy in phase space. The energy of the spatial mode
k is concentrated in large time around η�−kt.

0

0.1

0.2

0.3

0.4

−6
−4

−2
0

2
4

6x

v

Figure 4. The distribution function in phase space (position, velocity) at a given time; notice
how the fast oscillations in v contrast with the slower variations in x.

ries of Euler and Vlasov–Poisson equations do postulate the existence of some small-scale
coarse graining mechanism, but resulting in mixing rather than dissipation [80], [90].

3. Linear damping

In this section we establish Landau damping for the linearized Vlasov equation. Before-
hand, let us recall that the free transport equation

∂f

∂t
+v ·∇xf = 0 (3.1)

has a strong mixing property: any solution of (3.1) converges weakly in large time to
a spatially homogeneous distribution equal to the space-averaging of the initial datum.
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Let us sketch the proof.
If f solves (3.1) in Td×Rd, with initial datum fi=f(0, ·), then

f(t, x, v) = fi(x−vt, v),

so the space-velocity Fourier transform of f is given by the formula

f̃(t, k, η) = f̃i(k, η+kt). (3.2)

On the other hand, if f∞ is defined by

f∞(v) = 〈fi( · , v)〉=
∫

Td

fi(x, v) dx,

then f̃∞(k, η)=f̃i(0, η)1k=0. So, by the Riemann–Lebesgue lemma, for any fixed (k, η)
we have

|f̃(t, k, η)−f̃∞(k, η)|! 0 as |t|!∞,

which shows that f converges weakly to f∞. The convergence holds as soon as fi is
merely integrable; and by (3.2), the rate of convergence is determined by the decay of
f̃i(k, η) as |η|!∞, or equivalently the smoothness in the velocity variable. In particular,
the convergence is exponentially fast if (and only if) fi(x, v) is analytic in v.

This argument obviously works independently of the size of the box. But when we
turn to the Vlasov equation, length scales will matter, so we shall introduce a length L>0,
and work in Td

L=Rd/LZd. Then the length scale will appear in the Fourier transform:
see Appendix A.3. (This is the only section in this paper where the scale will play a
non-trivial role, so in all the rest of the paper we shall take L=1.)

Any velocity distribution f0=f0(v) defines a stationary state for the non-linear
Vlasov equation with interaction potential W . Then the linearization of that equation
around f0 yields ⎧⎪⎪⎨⎪⎪⎩

∂f

∂t
+v ·∇xf−(∇W ∗�)·∇vf0 = 0,

� =
∫

Rd

f dv.
(3.3)

Note that there is no force term in (3.3), due to the fact that f0 does not depend
on x. This equation describes what happens to a plasma density f which tries to force
a stationary homogeneous background f0; equivalently, it describes the reaction exerted
by the background which is acted upon. (Imagine that there is an exchange of matter
between the forcing gas and the forced gas, and that this exchange exactly compensates
the effect of the force, so that the density of the forced gas does not change after all.)
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Theorem 3.1. (Linear Landau damping) Let f0=f0(v), L>0, W : Td
L!R be such

that W (−z)=W (z) and ‖∇W‖L1 �CW <∞ and let fi=fi(x, v) be such that
(i) condition (L) from §2.2 holds for some constants λ, >0;
(ii) for all η∈Rd, |f̃ 0(η)|�C0e

−2πλ|η| for some constant C0>0;
(iii) for all k∈Zd and all η∈Rd, |f̃ (L)

i (k, η)|�Cie
−2πα|η| for some α, Ci>0.

Then, as t!∞, the solution f(t, ·) to the linearized Vlasov equation (3.3) with
initial datum fi converges weakly to f∞=〈fi〉 defined by

f∞(v) =
1
Ld

∫
Td

L

fi(x, v) dx;

and �(x)=
∫

Rd f(x, v) dv converges strongly to the constant

�∞ =
1
Ld

∫
Td

L

∫
Rd

fi(x, v) dv dx.

More precisely, for any λ′<min{λ, α},{
‖�(t, ·)−�∞‖Cr = O(e−2πλ′|t|/L) for all r∈N,

|f̃ (L)(t, k, η)−f̃
(L)
∞ (k, η)|= O(e−2πλ′|kt|/L) for all (k, η)∈Zd×Zd.

Remark 3.2. Even if the initial datum is more regular than analytic, the convergence
will in general not be better than exponential (except in some exceptional cases [38]).
See [10, pp. 414–416] for an illustration. Conversely, if the analyticity width α for the
initial datum is smaller than the “Landau rate” λ, then the rate of decay will not be
better than O(e−αt). See [7] and [19] for a discussion of this fact, often overlooked in the
physical literature.

Remark 3.3. The fact that the convergence is to the average of the initial datum
will not survive non-linear perturbation, as shown by the counterexamples in §14.

Remark 3.4. Dimension does not play any role in the linear analysis. This can be
attributed to the fact that only longitudinal waves occur, so everything happens “in
the direction of the wave vector”. Transversal waves arise in plasma physics only when
magnetic effects are taken into account [1, Chapter 5].

Remark 3.5. The proof can be adapted to the case when f0 and fi are only C∞; then
the convergence is not exponential, but still O(t−∞). The regularity can also be further
decreased, down to W s,1, at least for any s>2; more precisely, if f0∈W s0,1 and fi∈W si,1,
there will be damping with a rate O(t− ) for any <max{s0−2, si}. (Compare with [1,
Volume 1, p. 189].) This is independent of the regularity of the interaction.
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The proof of Theorem 3.1 relies on the following elementary estimate for Volterra
equations. We use the notation of §2.2.

Lemma 3.6. Assume that (L) holds true for some constants C0, , λ>0. Let

CW = ‖W‖L1(Td
L)

and let K0 be defined by (2.3). Then any solution ϕ(t, k) of

ϕ(t, k) = a(t, k)+
∫ t

0

K0(t−τ, k)ϕ(τ, k) dτ (3.4)

satisfies, for any k∈Zd and any λ′<λ,

sup
t�0

|ϕ(t, k)|e2πλ′|k|t/L � (1+C0CW C(λ, λ′, )) sup
t�0

|a(t, k)|e2πλ|k|t/L.

Here C(λ, λ′, )=C(1+ −1(1+(λ−λ′)−2)) for some universal constant C.

Remark 3.7. It is standard to solve these Volterra equations by Laplace transforms;
but, with a view to the non-linear setting, we shall prefer a more flexible and quantitative
approach.

Proof. If k=0 this is obvious since K0(t, 0)=0; so we assume k �=0. Consider λ′<λ,
multiply (3.4) by e2πλ′|k|t/L, and write

Φ(t, k) =ϕ(t, k)e2πλ′|k|t/L and A(t, k) = a(t, k)e2πλ′|k|t/L;

then (3.4) becomes

Φ(t, k) =A(t, k)+
∫ t

0

K0(t−τ, k)e2πλ′|k|(t−τ)/LΦ(τ, k) dτ. (3.5)

A particular case. The proof is extremely simple if we make the stronger assumption∫ ∞

0

|K0(τ, k)|e2πλ′|k|τ/L dτ � 1− , ∈ (0, 1).

Then from (3.5),

sup
0�t�T

|Φ(t, k)|� sup
0�t�T

|A(t, k)|

+
(

sup
0�t�T

∫ t

0

|K0(t−τ, k)|e2πλ′|k|(t−τ)/L dτ

)
sup

0�τ�T
|Φ(τ, k)|,
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whence

sup
0�τ�t

|Φ(τ, k)|� sup0�τ�t |A(τ, k)|
1−∫∞

0
|K0(τ, k)|e2πλ′|k|τ/L dτ

�
sup0�τ�t |A(τ, k)|

,

and therefore

sup
t�0

|ϕ(t, k)|e2πλ′|k|t/L �
supt�0 |a(t, k)|e2πλ′|k|t/L

.

The general case. To treat the general case we take the Fourier transform in the
time variable, after extending K, A and Φ by 0 at negative times. (This presentation
was suggested to us by Sigal, and appears to be technically simpler than the use of the
Laplace transform.) Denoting the Fourier transform with a hat and recalling (2.4), we
have, for ξ=λ′+iωL/|k|,

Φ̂(ω, k) = Â(ω, k)+L(ξ, k) Φ̂(ω, k).

By assumption L(ξ, k) �=1, so

Φ̂(ω, k) =
Â(ω, k)

1−L(ξ, k)
.

From there, it is traditional to apply the Fourier (or Laplace) inversion transform.
Instead, we apply Plancherel’s identity to find (for each k)

‖Φ‖L2(dt) �
‖A‖L2(dt)

.

We then plug this into the equation (3.5) to get

‖Φ‖L∞(dt) � ‖A‖L∞(dt)+‖K0e2πλ′|k|t/L‖L2(dt) ‖Φ‖L2(dt)

� ‖A‖L∞(dt)+
‖K0e2πλ′|k|t/L‖L2(dt) ‖A‖L2(dt)

.
(3.6)

It remains to bound the second term. On the one hand,

‖A‖L2(dt) =
(∫ ∞

0

|a(t, k)|2e4πλ′|k|t/L dt

)1/2

�
(∫ ∞

0

e−4π(λ−λ′)|k|t/L dt

)1/2

sup
t�0

|a(t, k)|e2πλ|k|t/L

=
(

L

4π|k|(λ−λ′)

)1/2

sup
t�0

|a(t, k)|e2πλ|k|t/L.

(3.7)
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On the other hand,

‖K0e2πλ′|k|t/L‖L2(dt) = 4π2|Ŵ (L)(k)| |k|
2

L2

(∫ ∞

0

e4πλ′|k|t/L

∣∣∣∣f̃ 0

(
kt

L

)∣∣∣∣2t2 dt

)1/2

= 4π2|Ŵ (L)(k)| |k|
1/2

L1/2

(∫ ∞

0

e4πλ′u|f̃ 0(σu)|2u2 du

)1/2

,

(3.8)

where σ=k/|k| and u=|k|t/L. The estimate follows since

∫ ∞

0

e−4π(λ−λ′)uu2 du = O((λ−λ′)−3/2).

(Note that the factor |k|−1/2 in (3.7) cancels with |k|1/2 in (3.8).)

It seems that we only used properties of the function L in a strip Re ξ�λ; but this
is an illusion. Indeed, we have taken the Fourier transform of Φ without checking that
it belongs to (L1+L2)(dt), so what we have established is only an a-priori estimate. To
convert it into a rigorous result, one can use a continuity argument after replacing λ′ by
a parameter α which varies from −ε to λ′. (By the integrability of K0 and Grönwall’s
lemma, ϕ is obviously bounded as a function of t; so ϕ(k, t)e−ε|k|t/L is integrable for any
ε>0, and continuous as ε!0.) Then assumption (L) guarantees that our bounds are
uniform in the strip 0�Re ξ�λ′, and the proof goes through.

Proof of Theorem 3.1. Without loss of generality, we assume t�0. Considering (3.3)
as a perturbation of free transport, we apply Duhamel’s formula to get

f(t, x, v) = fi(x−vt, v)+
∫ t

0

[(∇W ∗�)·∇vf0](τ, x−v(t−τ), v) dτ. (3.9)

Integration in v yields

�(t, x) =
∫

Rd

fi(x−vt, v) dv+
∫ t

0

∫
Rd

[(∇W ∗�)·∇vf0](τ, x−v(t−τ), v) dv dτ. (3.10)

Of course, ∫
Td

L

�(t, x) dx =
∫

Td
L

∫
Rd

fi(x, v) dv dx.
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For k �=0, taking the Fourier transform of (3.10), we obtain

�̂(L)(t, k) =
∫

Td
L

∫
Rd

fi(x−vt, v)e−2iπk·x/L dv dx

+
∫ t

0

∫
Td

L

∫
Rd

[(∇W ∗�)·∇vf0](τ, x−v(t−τ), v)e−2iπk·x/L dv dx dτ

=
∫

Td
L

∫
Rd

fi(x, v)e−2iπk·x/Le−2iπk·vt/L dv dx

+
∫ t

0

∫
Td

L

∫
Rd

[(∇W ∗�)·∇vf0](τ, x, v)e−2iπk·x/Le−2iπk·v(t−τ)/L dv dx dτ

= f̃
(L)
i

(
k,

kt

L

)
+
∫ t

0

̂(∇W ∗�)(L)(τ, k)·∇̃vf0

(
k(t−τ)

L

)
dτ

= f̃
(L)
i

(
k,

kt

L

)
+
∫ t

0

(
2iπ

k

L
Ŵ (L)(k)�̂(L)(τ, k)

)
·
(

2iπ
k(t−τ)

L
f̃ 0

(
k(t−τ)

L

))
dτ.

In conclusion, we have established the closed equation for �̂(L):

�̂(L)(t, k) = f̃
(L)
i

(
k,

kt

L

)
−4π2Ŵ (L)(k)

∫ t

0

�̂(L)(τ, k)f̃ 0

(
k(t−τ)

L

) |k|2
L2

(t−τ) dτ. (3.11)

Recalling (2.3), this is the same as

�̂(L)(t, k) = f̃
(L)
i

(
k,

kt

L

)
+
∫ t

0

K0(t−τ, k)�̂(L)(τ, k) dτ.

Without loss of generality λ�α, where α appears in Theorem 3.1. By assumption (L)
and Lemma 3.6,

|�̂(L)(t, k)|�C0CW C(λ, λ′, )Cie
−2πλ′|k|t/L.

In particular, for k �=0 we have

|�̂(L)(t, k)|= O(e−2πλ′′t/Le−2π(λ′−λ′′)|k|/L) for all t � 1;

so any Sobolev norm of �−�∞ converges to zero like O(e−2πλ′′t/L), where λ′′ is arbitrarily
close to λ′ and therefore also to λ. By Sobolev embedding, the same is true for any Cr

norm.

Next, we go back to (3.9) and take the Fourier transform in both variables x and v,
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to find

f̃ (L)(t, k, η) =
∫

Td
L

∫
Rd

fi(x−vt, v)e−2iπk·x/Le−2iπη·v dv dx

+
∫ t

0

∫
Td

L

∫
Rd

(∇W ∗�)(τ, x−v(t−τ))·∇vf0(v)e−2iπk·x/Le−2iπη·v dv dx dτ

=
∫

Td
L

∫
Rd

fi(x, v)e−2iπk·x/Le−2iπk·vt/Le−2iπη·v dv dx

+
∫ t

0

∫
Td

L

∫
Rd

(∇W ∗�)(τ, x)·∇vf0(v)

×e−2iπk·x/Le−2iπk·v(t−τ)/Le−2iπη·v dv dx dτ

= f̃
(L)
i

(
k, η+

kt

L

)
+
∫ t

0

∇̂W
(L)

(k)�̂(L)(τ, k)·∇̃vf0

(
η+

k(t−τ)
L

)
dτ.

So

f̃ (L)

(
t, k, η− kt

L

)
= f̃

(L)
i (k, η)+

∫ t

0

∇̂W
(L)

(k)�̂(L)(τ, k)·∇̃vf0

(
η− kτ

L

)
dτ. (3.12)

In particular, for any η∈Rd,

f̃ (L)(t, 0, η) = f̃
(L)
i (0, η); (3.13)

in other words, 〈f〉=L−d
∫

Td
L

f dx remains equal to 〈fi〉 for all times.
On the other hand, if k �=0, then∣∣∣∣f̃ (L)

(
t, k, η− kt

L

)∣∣∣∣
� |f̃ (L)

i (k, η)|+
∫ t

0

|∇̂W
(L)

(k)| |�̂(L)(τ, k)|
∣∣∣∣∇̃vf0

(
η− kτ

L

)∣∣∣∣ dτ

�Cie
−2πα|η|+

∫ t

0

CW C(λ, λ′, )Cie
−2πλ′|k|τ/L

(
2πC0

∣∣∣∣η− kτ

L

∣∣∣∣e−2πλ|η−kτ/L|
)

dτ

�C

(
e−2πα|η|+

∫ t

0

e−2πλ′|k|τ/Le−π(λ′+λ)|η−kτ/L| dτ

)
,

(3.14)

where we have used that λ′< 1
2 (λ′+λ)<λ, and C only depends on CW , Ci, λ, λ′ and .

In the end,∫ t

0

e−2πλ′|k|τ/Le−π(λ′+λ)|η−kτ/L| dτ �
∫ t

0

e−2πλ′|η|e−π(λ−λ′)|η−kτ/L| dτ

� L

π(λ−λ′)
e−2π[λ′−(λ−λ′)/2]|η|.
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Plugging this back into (3.14), we obtain, with λ′′=λ′− 1
2 (λ−λ′),∣∣∣∣f̃ (L)

(
t, k, η− kt

L

)∣∣∣∣�Ce−2πλ′′|η|. (3.15)

In particular, for any fixed η and k �=0,

|f̃ (L)(t, k, η)|�Ce−2πλ′′|η+kt/L| = O(e−2πλ′′|t|/L).

We conclude that f̃ (L) converges pointwise, exponentially fast, to the Fourier transform
of 〈fi〉. Since λ′ and then λ′′ can be taken as close to λ as wanted, this ends the proof.

We close this section by proving Proposition 2.1.

Proof of Proposition 2.1. First assume (a). Since f̃ 0 decreases exponentially fast,
we can find λ, >0 such that

4π2 max |Ŵ (L)(k)
∣∣ sup
|σ|=1

∫ ∞

0

|f̃ 0(rσ)|re2πλr dr � 1− .

Performing the change of variables kt/L=rσ inside the integral, we deduce that∫ ∞

0

4π2|Ŵ (L)(k)|
∣∣∣∣f̃ 0

(
kt

L

)∣∣∣∣ |k|2tL2
e2πλ|k|t/L dt � 1− ,

and this obviously implies (L).
The choice w=0 in (2.8) shows that condition (b) is a particular case of (c), so

we only treat the latter assumption. The reasoning is more subtle than for case (a).
Throughout the proof we shall abbreviate Ŵ (L) by Ŵ . As a start, let us assume d=1
and k>0 (so k∈N). Then we compute: for any ω∈R,∫ ∞

0

e2iπωkt/LK0(t, k) dt

= lim
λ!0+

∫ ∞

0

e−2πλkt/Le2iπωkt/L K0(t, k) dt

=−4π2Ŵ (k) lim
λ!0+

∫ ∞

0

∫
R

f0(v)e−2iπkvt/Le−2πλkt/Le2iπωkt/L k2

L2
t dv dt

=−4π2Ŵ (k) lim
λ!0+

∫ ∞

0

∫
R

f0(v)e−2iπvte−2πλte2iπωtt dv dt.

(3.16)

Then by integration by parts, assuming that (f0)′ is integrable,∫
R

f0(v)e−2iπvtt dv =
1

2iπ

∫
R

(f0)′(v)e−2iπvt dv.
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Plugging this back into (3.16), we obtain the expression

2iπŴ (k) lim
λ!0+

∫
R

(f0)′(v)
∫ ∞

0

e−2π[λ+i(v−ω)]t dt dv.

Next, recall that for any λ>0,∫ ∞

0

e−2π[λ+i(v−ω)]t dt =
1

2π[λ+i(v−ω)]
;

indeed, both sides are holomorphic functions of z=λ+i(v−ω) in the half-plane {z∈C:
Re z>0}, and they coincide on the real half-axis {z∈R:z>0}, so they have to coincide
everywhere. We conclude that∫ ∞

0

e2iπωkt/LK0(t, k) dt = Ŵ (k) lim
λ!0+

∫
R

(f0)′(v)
v−ω−iλ

dv. (3.17)

The celebrated Plemelj formula states that

1
z−i0

= p.v.

(
1
z

)
+iπδ0, (3.18)

where the left-hand side should be understood as the limit, in weak sense, of 1/(z−iλ) as
λ!0+. The abbreviation p.v. stands for principal value, that is, simplifying the possibly
divergent part by using compensations by symmetry when the denominator vanishes.
Formula (3.18) is proven in Appendix A.5, where the notion of principal value is also
precisely defined. Combining (3.17) and (3.18), we end up with the identity∫ ∞

0

e2iπωkt/LK0(t, k) dt = Ŵ (k)
[(

p.v.

∫
R

(f0)′(v)
v−ω

dv

)
+iπ(f0)′(ω)

]
. (3.19)

Since W is even, Ŵ is real-valued, so the above formula yields the decomposition of the
limit into real and imaginary parts. The problem is to check that the real part cannot
approach 1 at the same time as the imaginary part approaches 0.

As soon as (f0)′(v)=O(1/|v|), we have∫
R

(f0)′(v)
v−ω

dv = O

(
1
|ω|
)

as |ω|!∞,

so the real part in the right-hand side of (3.19) becomes small when |ω| is large, and we
can restrict to a bounded interval |ω|�Ω.

Then the imaginary part, Ŵ (k)π(f0)′(ω), can become small only in the limit k!∞
(but then also the real part becomes small) or if ω approaches one of the zeroes of (f0)′.
Since ω varies in a compact set, by continuity it will be sufficient to check the condition
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only at the zeroes of (f0)′. In the end, we have obtained the following stability criterion:
for any k∈N,

(f0)′(ω) = 0 =⇒ Ŵ (k)
∫

R

(f0)′(v)
v−ω

dv �= 1 for all ω ∈R. (3.20)

Now, if k<0, we can restart the computation as follows:∫ ∞

0

e2iπω|k|t/LK0(t, k) dt

=−4π2Ŵ (k) lim
λ!0+

∫ ∞

0

∫
R

f0(v)e−2iπkvt/Le−2πλ|k|t/Le2iπω|k|t/L |k|2
L2

t dv dt.

Then the change of variable v 
!−v brings us back to the previous computation with k

replaced by |k| (except in the argument of W ) and f0(v) replaced by f0(−v). However,
it is immediately checked that (3.20) is invariant under reversal of velocities, that is, if
f0(v) is replaced by f0(−v).

Finally, let us generalize this to several dimensions. If k∈Zd\{0} and ξ∈C, we can
use the splitting

v =
k

|k|r+w, w⊥k, r =
k

|k| ·v

and Fubini’s theorem to rewrite

L(ξ, k)

=−4π2Ŵ (k)
|k|2
L2

∫ ∞

0

∫
Rd

f0(v)e−2iπkt·v/Lte2π|k|ξ∗t/L dv dt

=−4π2Ŵ (k)
|k|2
L2

∫ ∞

0

∫
R

(∫
kr/|k|+k⊥

f0

(
k

|k|r+w

)
dw

)
e−2iπ|k|rt/Lte2π|k|ξ∗t/L dr dt,

where k⊥ is the hyperplane orthogonal to k. So everything is expressed in terms of the
1-dimensional marginals of f0. If f is a given function of v∈Rd, and σ is a unit vector,
let us write σ⊥ for the hyperplane orthogonal to σ, and

fσ(v) =
∫

vσ+σ⊥
f(w) dw for all v ∈R. (3.21)

Then the computation above shows that the multi-dimensional stability criterion reduces
to the 1-dimensional criterion in each direction k/|k|, and the claim is proven.

4. Analytic norms

In this section we introduce some functional spaces of analytic functions on the spaces
Rd, Td=Rd/Zd and most importantly Td×Rd. (Changing the sidelength of the torus
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only results in some changes in the constants.) Then we establish a number of functional
inequalities which will be crucial in the subsequent analysis. At the end of this section
we shall reformulate the linear study in this new setting.

Throughout the whole section, d is a positive integer. Working with analytic func-
tions will force us to be careful with combinatorial issues, and proofs will at times involve
summation over many indices.

4.1. Single-variable analytic norms

Here “single-variable” means that the variable lives in either Rd or Td, but d may be
greater than 1.

Among many possible families of norms for analytic functions, two will be of partic-
ular interest for us; they will be denoted by Cλ;p and Fλ;p. The Cλ;p norms are defined
for functions on Rd or Td, while the Fλ;p norms are defined only for Td (although we
could easily cook up a variant in Rd). We shall write Nd

0 for the set of d-tuples of integers
(the subscript being here to insist that 0 is allowed). If n∈Nd

0 and λ�0 we shall write
λn=λ|n|. Conventions about the Fourier transform and multi-dimensional differential
calculus are gathered in the appendix.

Definition 4.1. (One-variable analytic norms) For any p∈[1,∞] and λ�0, we define

‖f‖Cλ;p :=
∑

n∈Nd
0

λn

n!
‖f (n)‖Lp and ‖f‖Fλ;p :=

( ∑
k∈Zd

e2πλp|k||f̂(k)|p
)1/p

, (4.1)

the latter expression standing for supk∈Zd |f̂(k)|e2πλ|k| if p=∞. We further write

Cλ := Cλ;∞ and Fλ :=Fλ;1. (4.2)

Remark 4.2. The parameter λ can be interpreted as a radius of convergence.

Remark 4.3. The norms Cλ and Fλ are of particular interest because they are alge-
bra norms.

We shall sometimes abbreviate ‖ · ‖Cλ;p or ‖ · ‖Fλ;p into ‖ · ‖λ;p when no confusion is
possible, or when the statement works for either norm.

The norms in (4.1) extend to vector-valued functions in a natural way: if f is
valued in Rd or Td or Zd, define f (n)=(f (n)

1 , ..., f
(n)
d ) and f̂(k)=(f̂1(k), ..., f̂d(k)); then

the formulae in (4.1) make sense provided that we choose a norm on Rd or Td or Zd.
Which norm we choose will depend on the context; the choice will always be done in such
a way to get the duality right in the inequality |a·b|�‖a‖ ‖b‖∗. For instance if f is valued



66 c. mouhot and c. villani

in Zd and g in Td, and we have to estimate f ·g, we may norm Zd by |k|=∑d
j=1 |kj | and

Td by |x|=supj |xj |.(15) This will not pose any problem, and the reader can forget about
this issue; we shall just make remarks about it whenever needed. For the rest of this
section, we shall focus on scalar-valued functions for simplicity of exposition.

Next, we define “homogeneous” analytic seminorms by removing the zeroth-order
term. We write Nd

∗=Nd
0\{0} and Zd

∗=Zd\{0}.
Definition 4.4. (One-variable homogeneous analytic seminorms) For p∈[1,∞] and

λ�0 we write

‖f‖Ċλ;p =
∑

n∈Nd∗

λn

n!
‖f (n)‖Lp and ‖f‖Ḟλ;p =

( ∑
k∈Zd∗

e2πλp|k||f̂(k)|p
)1/p

.

It is interesting to note that affine functions x 
!a·x+b can be included in Ċλ=Ċλ;∞,
even though they are unbounded; in particular ‖a·x+b‖Ċλ =λ|a|. On the other hand,
linear forms x 
!a·x do not naturally belong to Ḟλ, because their Fourier expansion is
not even summable (it decays like 1/k).

The spaces Cλ;p and Fλ;p enjoy remarkable properties, summarized in Proposi-
tions 4.5, 4.8 and 4.10 below. Some of these properties are well known, others not so.

Proposition 4.5. (Algebra property) (i) For any λ�0 and p, q, r∈[1,∞] such that
1/p+1/q=1/r, we have

‖fg‖Cλ;r � ‖f‖Cλ;p‖g‖Cλ;q .

(ii) For any λ�0 and p, q, r∈[1,∞] such that 1/p+1/q=1/r+1, we have

‖fg‖Fλ;r � ‖f‖Fλ;p‖g‖Fλ;q .

(iii) As a consequence, for any λ�0, Cλ=Cλ;∞ and Fλ=Fλ;1 are normed algebras:
for either space,

‖fg‖λ � ‖f‖λ‖g‖λ.

In particular, ‖fn‖λ�‖f‖n
λ for any n∈N0, and ‖ef‖λ�e‖f‖λ .

Remark 4.6. Ultimately, property (iii) relies on the fact that L∞ and L1 are normed
algebras for the multiplication and convolution, respectively.

Remark 4.7. It follows from the Fourier inversion formula and Proposition 4.5 that
‖f‖Cλ �‖f‖Fλ (and ‖f‖Ċλ �‖f‖Ḟλ); this is a special case of Proposition 4.8 (iv) below.
The reverse inequality does not hold, because ‖f‖∞ does not control ‖f̂‖L1 .

(15) Of course all norms are equivalent, still the choice is not innocent when the estimates are
iterated infinitely many times; an advantage of the supremum norm on Rd is that it has the algebra
property.
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Analytic norms are very sensitive to composition; think that if a>0 then

‖f (a Id)‖Cλ;p = a−d/p‖f‖Caλ;p ;

so we typically lose on the functional space. This is a major difference with more tra-
ditional norms used in partial differential equations theory, such as Hölder or Sobolev
norms, for which composition may affect constants but not regularity indices. The next
proposition controls the loss of regularity implied by composition.

Proposition 4.8. (Composition inequality) (i) For any λ>0 and any p∈[1,∞],

‖f H‖Cλ;p � ‖(det∇H)−1‖1/p
∞ ‖f‖Cν;p , ν = ‖H‖Ċλ ,

where H is possibly unbounded.
(ii) For any λ>0, any p∈[1,∞] and any a>0,

‖f (a Id +G)‖Cλ;p � a−d/p‖f‖Caλ+ν;p , ν = ‖G‖Cλ .

(iii) For any λ>0,

‖f (Id +G)‖Fλ � ‖f‖Fλ+ν , ν = ‖G‖Ḟλ .

(iv) For any λ>0 and any a>0,

‖f (a Id +G)‖Cλ � ‖f‖Faλ+ν , ν = ‖G‖Ċλ .

Remark 4.9. Inequality (iv), with C on the left and F on the right, will be most
useful. The reverse inequality is not likely to hold, in view of Remark 4.7.

The last property of interest for us is the control of the loss of regularity involved
by differentiation.

Proposition 4.10. (Control of gradients) For any λ̄>λ and any p∈[1,∞],

‖∇f‖Cλ;p � 1
λe log(λ̄/λ)

‖f‖Ċλ̄;p , (4.3)

‖∇f‖Fλ;p � 1
2πe(λ̄−λ)

‖f‖Ḟ λ̄;p . (4.4)

The proofs of Propositions 4.5–4.10 will be preparations for the more complicated
situations considered in the sequel.
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Proof of Proposition 4.5. (i) Denoting the norm of Cλ;p by ‖ · ‖λ;p and using the
multi-dimensional Leibniz formula from Appendix A.2, we have

‖fg‖λ;r =
∑
l∈Nd

0

‖(fg)(l)‖Lr

λl

l!

�
∑

l,m∈Nd
0

m�l

(
l

m

)
‖f (m)g(l−m)‖Lr

λl

l!

�
∑

l,m∈Nd
0

m�l

(
l

m

)
‖f (m)‖Lp‖g(l−m)‖Lq

λl

l!

=
∑

l,m∈Nd
0

m�l

‖f (m)‖Lpλm

m!
‖g(l−m)‖Lqλl−m

(l−m)!

= ‖f‖λ;p‖g‖λ;q.

(ii) Denoting now the norm of Fλ;p by ‖ · ‖λ;p and applying Young’s convolution
inequality, we get

‖fg‖λ;r =
( ∑

k∈Zd

|f̂g(k)|re2πλr|k|
)1/r

�
( ∑

k∈Zd

(∑
l∈Zd

|f̂(l)| |ĝ(k−l)|e2πλ|k−l|e2πλ|l|
)r )1/r

�
( ∑

k∈Zd

|f̂(k)|pe2πλp|k−l|
)1/p(∑

l∈Zd

|ĝ(l)|qe2πλq|l|
)1/q

.

Proof of Proposition 4.8. (i) We use the (multi-dimensional) Faà di Bruno formula:

(f H)(n) =
∑

∑n
j=1 jmj=n

n!
m1! ...mn!

(f (m1+...+mn) H)
n∏

j=1

(
H(j)

j!

)mj

;

so

‖(f H)(n)‖Lp �
∑

∑n
j=1 jmj=n

n!
m1! ...mn!

‖f (m1+...+mn) H‖Lp

n∏
j=1

∥∥∥∥H(j)

j!

∥∥∥∥mj

∞
;



on landau damping 69

and thus∑
n�1

λn

n!
‖(f H)(n)‖Lp

� ‖(det∇H)−1‖1/p
∞

∞∑
k=1

‖f (k)‖Lp

∑
∑n

j=1 jmj=n∑n
j=1 mj=k

λn

m1! ...mn!

n∏
j=1

∥∥∥∥H(j)

j!

∥∥∥∥mj

∞

= ‖(det∇H)−1‖1/p
∞
∑
k�1

‖f (k)‖Lp

1
k!

(∑
|l|�1

λl

l!
‖H(l)‖∞

)k
,

where the last step follows from the multi-dimensional binomial formula.
(ii) We decompose h(x):=f(ax+G(x)) as

h(x) =
∑

n∈Nd
0

f (n)(ax)
n!

G(x)n

and we apply ∇k:

∇kh(x) =
∑

k1,k2∈Nd
0

k1+k2=k

∑
n∈Nd

0

k!ak1

k1!k2!n!
∇k1+nf(ax)∇k2Gn(x).

Then we take the Lp norm, multiply by λk/k! and sum over k:

‖h‖Cλ;p � |a|−d/p
∑

k1,k2,n�0

λk1+k2 |a|k1

k1!k2!n!
‖∇k1+nf‖Lp‖∇k2Gn‖∞

= |a|−d/p
∑

k1,n�0

λk1 |a|k1

k1!n!
‖∇k1+nf‖Lp‖Gn‖Cλ

� |a|−d/p
∑

k1,n�0

λk1 |a|k1

k1!n!
‖∇k1+nf‖Lp‖G‖n

Cλ

= |a|−d/p
∑
m�0

(aλ+‖G‖Cλ)m

m!
‖∇mf‖Lp ,

where Proposition 4.5 (iii) was used in the second-last step.
(iii) In this case we write, with G0=Ĝ(0),

h(x) = f(x+G(x)) =
∑
k∈Zd

f̂(k)e2iπk·xe2iπk·G0e2iπk·(G(x)−G0);

so
ĥ(l) =

∑
k∈Zd

f̂(k)e2iπk·G0 [e2iπk·(G−G0) ]̂ (l−k).



70 c. mouhot and c. villani

Then, using again Proposition 4.5,∑
l∈Zd

|ĥ(l)|e2πλ|l| �
∑

l,k∈Zd

|f̂(k)|e2πλ|k|e2πλ|l−k||[e2iπk·(G−G0) ]̂ (l−k)|

=
∑
k∈Zd

|f̂(k)|e2πλ|k|‖e2iπk·(G−G0)‖λ

�
∑
k∈Zd

|f̂(k)|e2πλ|k|e‖2πk·(G−G0)‖λ

�
∑
k∈Zd

|f̂(k)|e2πλ|k|e2π|k|‖G−G0‖λ

= ‖f‖λ+‖G−G0‖λ

= ‖f‖λ+ν ,

where ν=‖G‖Ḟλ .

(iv) We actually have the more precise result

‖f H‖Cλ �
∑
k∈Zd

|f̂(k)|e2π|k|‖H‖Ċλ . (4.5)

Writing f H=
∑

k∈Zd f̂(k)e2iπk·H , we see that (4.5) follows from

‖eih‖Cλ � e‖h‖Ċλ . (4.6)

To prove (4.6), let Pn be the polynomial in the variables Xm, m�n, defined by the
identity

(ef )(n) = Pn((f (m))m�n)ef ;

this polynomial (which can be made more explicit from the Faà di Bruno formula) has
non-negative coefficients, so ‖(eif )(n)‖∞�Pn((‖f (m)‖)m�n). The conclusion will follow
from the identity (between formal series!)

1+
∑

n∈Nd∗

λn

n!
Pn((Xm)m�n) = exp

( ∑
k∈Nd∗

λk

k!
Xk

)
. (4.7)

To prove (4.7), it is sufficient to note that the left-hand side is the expansion of eg in
powers of λ at 0, where

g(λ) =
∑
k∈Nd∗

λk

k!
Xk.
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Proof of Proposition 4.10. (a) Writing ‖ · ‖λ;p=‖ · ‖Cλ;p , we have

‖∂jf‖λ;p =
∑

n∈Nd
0

λn

n!
‖∂n

x ∂jf‖Lp ,

where ∂j =∂/∂xj . If 1j is the d-tuple of integers with 1 in position j and 0 elsewhere,
then (n+1j)!�(|n|+1)n!, so

‖∂jf‖λ;p � sup
n∈Nd

0

(|n|+1)λn

λ̄n+1

∑
|m|�1

λ̄m

m!
‖∇mf‖Lp ,

and the proof of (4.3) follows easily.
(b) Writing ‖ · ‖λ;p=‖ · ‖Fλ;p , we have

‖∂jf‖λ;p =
( ∑

k∈Zd

|kj |p|f̂(k)|pe2πλp|k|
)1/p

�
(

sup
k∈Zd

|k|e2π(λ−λ̄)|k|
)( ∑

k∈Zd

|f̂(k)|pe2πλ̄p|k|
)1/p

,

and (4.4) follows.

4.2. Analytic norms in two variables

To estimate solutions and trajectories of kinetic equations we will work on the phase space
Td

x×Rd
v, and use three parameters: λ (gliding analytic regularity), μ (analytic regularity

in x) and τ (time-shift along the free transport semigroup). The regularity quantified by
λ is said to be gliding because for τ =0 this is an analytic regularity in v, but as τ grows
the regularity is progressively transferred from velocity to spatial modes, according to
the evolution by free transport. This catch is crucial to our analysis: indeed, the solution
of a transport equation like free transport or Vlasov cannot be uniformly analytic(16) in
v as time goes by—except of course if it is spatially homogeneous. Instead, the best we
can do is compare the solution at time τ to the solution of free transport at the same
time.

The parameters λ and μ will be non-negative; τ will vary in R, but often be restricted
to R+, just because we shall work in positive time. When τ is not specified, this means
τ =0. Sometimes we shall abuse notation by writing ‖f(x, v)‖ instead of ‖f‖, to stress
the dependence of f on the two variables.

Putting aside the time-shift for a moment, we may generalize the norms Cλ and Fλ

in an obvious way.

(16) By this we mean of course that some norm or seminorm quantifying the degree of analytic
smoothness in v will remain uniformly bounded.
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Definition 4.11. (Two-variables analytic norms) For any λ, μ�0, we define

‖f‖Cλ,μ =
∑

m∈Nd
0

∑
n∈Nd

0

λn

n!
μm

m!
‖∇m

x ∇n
v f‖L∞(Td

x×Rd
v), (4.8)

‖f‖Fλ,μ =
∑
k∈Zd

∫
Rd

|f̃(k, η)|e2πλ|η|e2πμ|k| dη. (4.9)

Of course one might also introduce variants based on Lp or �p norms (with two
additional parameters p and q, since one can make different choices for the space and
velocity variables).

The norm (4.9) is better adapted to the periodic nature of the problem, and is
very well suited to estimate solutions of kinetic equations (with fast decay as |v|!∞);
but in the sequel we shall also have to estimate characteristics (trajectories) which are
unbounded functions of v. We could hope to play with two different families of norms,
but this would entail considerable technical difficulties. Instead, we shall mix the two
recipes to get the following hybrid norms.

Definition 4.12. (Hybrid analytic norms) For any λ, μ�0, let

‖f‖Zλ,μ =
∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|‖∇̂n

v f(l, v)‖L∞(Rd
v). (4.10)

More generally, for any p∈[1,∞], we define

‖f‖Zλ,μ;p =
∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|‖∇̂n

v f(l, v)‖Lp(Rd
v). (4.11)

Now let us introduce the time-shift τ . We denote by (S0
τ )τ�0 the geodesic semigroup:

(S0
τ )(x, v)=(x+vτ, v). Recall that the backward free transport semigroup is defined by

(f S0
τ )τ�0, and the forward semigroup by (f S0

−τ )τ�0.

Definition 4.13. (Time-shift pure and hybrid analytic norms)

‖f‖Cλ,μ
τ

= ‖f S0
τ‖Cλ,μ =

∑
m∈Nd

0

∑
n∈Nd

0

λn

n!
μm

m!
‖∇m

x (∇v+τ∇x)nf‖L∞(Td
x×Rd

v), (4.12)

‖f‖Fλ,μ
τ

= ‖f S0
τ‖Fλ,μ =

∑
k∈Zd

∫
Rd

|f̃(k, η)|e2πλ|kτ+η|e2πμ|k| dη, (4.13)

‖f‖Zλ,μ
τ

= ‖f S0
τ‖Zλ,μ =

∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|‖(∇v+2iπτ l)nf̂(l, v)‖L∞(Rd

v), (4.14)

‖f‖Zλ,μ;p
τ

=
∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|‖(∇v+2iπτ l)nf̂(l, v)‖Lp(Rd

v). (4.15)
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This choice of norms is one of the cornerstones of our analysis: first, because of their
hybrid nature, they will connect well to both periodic (in x) estimates on the force field,
and uniform (in v) estimates on the “deflection maps” studied in §5. Secondly, they
are well behaved with respect to the properties of free transport, allowing us to keep
track of the initial time. Thirdly, they will satisfy the algebra property (for p=∞), the
composition inequality and the gradient inequality (for any p∈[1,∞]). Before going on
with the proof of these properties, we note the following alternative representations.

Proposition 4.14. The norm Zλ,μ;p
τ admits the following alternative representa-

tions:

‖f‖Zλ,μ;p
τ

=
∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|‖∇n

v (f̂(l, v)e2iπτl·v)‖Lp(Rd
v), (4.16)

‖f‖Zλ,μ;p
τ

=
∑

n∈Nd
0

λn

n!
|||(∇v+τ∇x)nf |||μ;p, (4.17)

where
|||g|||μ;p =

∑
l∈Zd

e2πμ|l|‖ĝ(l, v)‖Lp(Rd
v). (4.18)

4.3. Relations between functional spaces

The next propositions are easily checked.

Proposition 4.15. With the notation from §4.2, for any τ∈R,
(i) if f is a function only of x then

‖f‖Cλ,μ
τ

= ‖f‖Cλ|τ|+μ and ‖f‖Fλ,μ
τ

= ‖f‖Zλ,μ
τ

= ‖f‖Fλ|τ|+μ ;

(ii) if f is a function only of v then

‖f‖Cλ,μ;p
τ

= ‖f‖Zλ,μ;p
τ

= ‖f‖Cλ;p and ‖f‖Fλ,μ
τ

= ‖f‖Fλ ;

(iii) for any function f=f(x, v), if 〈 ·〉 stands for spatial average then

‖〈f〉‖Cλ;p � ‖f‖Zλ,μ;p
τ

;

(iv) for any function f=f(x, v),∥∥∥∥∫
Rd

f dv

∥∥∥∥
Fλ|τ|+μ

� ‖f‖Zλ,μ;1
τ

.
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Remark 4.16. Note, in Proposition 4.15 (i) and (iv), how the regularity in x is im-
proved by the time-shift.

Proof. Only (iv) requires some explanations. Let

�(x) =
∫

Rd

f(x, v) dv.

Then for any k∈Zd,

�̂(k) =
∫

Rd

f̂(k, v) dv;

so for any n∈Nd
0,

(2iπtk)n�̂(k) =
∫

Rd

(2iπtk)nf̂(k, v) dv =
∫

Rd

(∇v+2iπtk)nf̂(k, v) dv.

Recalling the conventions from Appendix A.1 we deduce∑
k∈Zd

n∈Nd
0

e2πμ|k| |2πλtk|n
n!

|�̂(k)|�
∑
k∈Zd

n∈Nd
0

e2πμ|k|λ
n

n!

∫
Rd

|(∇v+2iπtk)nf̂(k, v)| dv = ‖f‖Zλ,μ;1
t

.

Proposition 4.17. With the notation from §4.2,

λ �λ′ and μ�μ′ =⇒ ‖f‖Zλ,μ
τ

� ‖f‖Zλ′,μ′
τ

.

Moreover, for τ, τ̄∈R and any p∈[1,∞],

‖f‖Zλ,μ;p
τ̄

� ‖f‖Zλ,μ+λ|τ̄−τ|;p
τ

. (4.19)

Remark 4.18. Note carefully that the spaces Zλ,μ
τ are not ordered with respect to

the parameter τ , which cannot be thought of as a regularity index. We could dispend
with this parameter if we were working in time O(1); but (4.19) is of course of absolutely
no use. This means that errors on the exponent τ should remain somehow small, in order
to be controllable by small losses on the exponent μ.

Finally we state an easy proposition which follows from the time invariance of the
free transport equation.

Proposition 4.19. For any X∈{C,F ,Z} and any t, τ∈R,

‖f S0
t ‖Xλ,μ

τ
= ‖f‖Xλ,μ

t+τ
.

Now we shall see that the hybrid norms, and certain variants thereof, enjoy properties
rather similar to those of the single-variable analytic norms studied before. This will
sometimes be technical, and the reader who would like to reconnect to physical problems
is advised to go directly to §4.11.
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4.4. Injections

In this section we relate Zλ,μ;p
τ norms to more standard norms entirely based on Fourier

space. In the next theorem we write

‖f‖Yλ,μ
τ

:= ‖f‖Fλ,μ;∞
τ

= sup
k∈Zd

sup
η∈Rd

e2πμ|k|e2πλ|η+kτ ||f̃(k, η)|. (4.20)

Theorem 4.20. (Injections between analytic spaces) (i) If λ, μ�0 and τ∈R then

‖f‖Yλ,μ
τ

� ‖f‖Zλ,μ;1
τ

. (4.21)

(ii) If 0<λ<λ̄, 0<μ<μ̄�M and τ∈R, then

‖f‖Zλ,μ
τ

� C(d, μ̄)
(λ̄−λ)d(μ̄−μ)d

‖f‖Yλ̄,μ̄
τ

. (4.22)

(iii) If 0<λ<λ̄�Λ, 0<μ<μ̄�M and b�β�B, then there is C=C(Λ,M, b,B, d)
such that

‖f‖Zλ,μ;1
τ

�C1/min{λ̄−λ,μ̄−μ}

×
(
‖f‖Yλ̄,μ̄

τ
+max

{∫
Td

∫
Rd

|f(x, v)|eβ|v| dv dx,

(∫
Td

∫
Rd

|f(x, v)|eβ|v| dv dx

)2})
.

Remark 4.21. The combination of (ii) and (iii), plus elementary Lebesgue interpo-
lation, enables us to control all norms Zλ,μ;p

τ , 1�p�∞.

Proof. By the invariance under the action of free transport, it is sufficient to do the
proof for τ =0.

By integration by parts in the Fourier transform formula, we have

f̃(k, η) =
∫

Rd

f̂(k, v)e−2iπη·v dv =
∫

Rd

∇m
v f̂(k, v)

e−2iπη·v

(2iπη)m
dv.

So
|f̃(k, η)|� 1

(2π|η|)m

∫
Rd

|∇m
v f̂(k, v)| dv;

and therefore

e2πμ|k|e2πλ|η||f̃(k, η)|� e2πμ|k| ∑
n∈Nd

0

(2πλ)n

n!
|η|n|f̃(k, η)|

� e2πμ|k| ∑
n∈Nd

0

λn

n!

∫
Rd

|∇n
v f̃(k, v)| dv.
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This establishes (i).
Next, by differentiating the identity

f̂(k, v) =
∫

Rd

f̃(k, η)e2iπη·v dη,

we get

∇m
v f̂(k, v) =

∫
Rd

f̃(k, η)(2iπη)me2iπη·v dη. (4.23)

Then we deduce (ii) by writing∑
k∈Zd

m∈Nd
0

e2πμ|k|λ
m

m!
‖∇m

v f̂(k, v)‖L∞(dv)

�
∑
k∈Zd

e2πμ|k|
∫

Rd

e2πλ|η||f̃(k, η)| dη

�
( ∑

k∈Zd

e−2π(μ̄−μ)|k|
)(∫

Rd

e−2π(λ̄−λ)|η| dη

)
sup
k∈Zd

η∈Rd

|f̃(k, η)|e2πλ̄|η|e2πμ̄|k|.

The proof of (iii) is the most tricky. We start again from (4.23), but now we integrate
by parts in the η variable:

∇m
v f̂(k, v) = (−1)q

∫
Rd

∇q
η[f̃(k, η)(2iπη)m]

e2iπη·v

(2iπv)q
dv, (4.24)

where q=q(v) is a multi-index to be chosen.
We split Rd

v into 2d disjoint regions Δ(i1, ..., in), where i1, ..., in are distinct indices
in {1, ..., d}:

Δ(I) = {v ∈Rd : |vj |� 1 for all j ∈ I and |vj |< 1 for all j /∈ I}.

If v∈Δ(i1, ..., in) we apply (4.24) with the multi-index q defined by

qj =
{

2, if j ∈{i1, ..., in},
0, otherwise.

This gives∫
Δ(i1,...,in)

|∇m
v f̂(k, v)| dv

�
(

1
(2π)2n

∫
Δ(i1,...,in)

dvi1 ... dvin

|vi1 |2 ... |vin
|2
)

sup
k∈Zd

η∈Rd

|∇q
η[f̃(k, η)(2iπη)m]|.
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Summing up all pieces and using the Leibniz formula, we get∫
Rd

|∇m
v f̂(k, v)| dv �C(d)(1+m2d) sup

k∈Zd

η∈Rd

sup
|q|�2d

|∇q
η f̃(k, η)| |2πη|m−q.

At this point we apply Lemma 4.22 below with

ε =
1
4

min
{

λ̄−λ

λ̄
,
μ̄−μ

μ̄

}
,

and we get, for q�2d,

|∇q
η f̃(k, η)|�C(d)max{λ̄/(λ̄−λ),μ̄/(μ̄−μ)}K(b, B)e−π(λ+λ̄)|η|

(
sup
η∈Rd

|f̃(k, η)|e2πλ̄|η|
)1−ε

×max

{(
sup
l∈Nd

0

η∈Rd

βl‖∇l
η f̃‖∞
l!

)ε
,

(
sup
l∈Nd

0

η∈Rd

βl‖∇l
η f̃‖∞
l!

)2ε}
.

Of course,

βl|∇l
η f̃(k, η)|
l!

� (2πβ)l

∫
Rd

|f̂(k, v)| |v|
l

l!
dv

�
∫

Rd

|f(x, v)|(2πβ)l |v|l
l!

dv �
∫

Rd

|f(x, v)|e2πβ|v| dv.

So, all in all,∑
k∈Zd

m∈Nd
0

e2πμ|k|λ
m

m!

∫
Rd

|∇m
v f̂(k, v)| dv

�
∑

|q|�2d

C(d, Λ,M, b,B)1/min{λ̄−λ,μ̄−μ}

×
(

sup
η∈Rd

e−π(λ+λ̄)|η| ∑
m∈Nd

0

λm(1+m)2d|2πη|m−q

m!

)

×
( ∑

k∈Zd

e−2π(μ̄(1−ε)−μ)|k|
)(

sup
k∈Zd

η∈Rd

|f̃(k, η)|e2πμ̄|k|e2πλ̄|η|
)1−ε

×max
{(∫

Rd

|f(x, v)|eβ|v| dv

)ε
,

(∫
Rd

|f(x, v)|eβ|v| dv

)2ε}
.

Since ∑
m∈Nd

0

λm(1+m)2d|2πη|m−q

m!
�C(q, Λ)eπ(λ+λ̄)|η|

and ∑
k∈Zd

e−2π(μ̄(1−ε)−μ)|k| �
∑
k∈Zd

e−π(μ̄−μ)|k| � C

(μ̄−μ)d
,

we easily end up with the desired result.
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Lemma 4.22. Let f : Rd!C and let α>0, A�1 and q∈Nd
0. Let further β be such

that 0<b�β�B. If |f(x)|�Ae−α|x| for all x, then for any ε∈(0, 1
4

)
, one has

|∇qf(x)|�C(q, d)1/εK(b, B)A1−εe−(1−2ε)α|x|

× sup
r∈Nd

0

max
{(

βr ‖∇rf‖∞
r!

)ε
,

(
βr ‖∇rf‖∞

r!

)2ε}
.

(4.25)

Remark 4.23. One may conjecture that the optimal constant in the right-hand side
of (4.25) is in fact polynomial in 1/ε; if this conjecture holds true, then the constants
in Theorem 4.20 (iii) can be improved accordingly. Mironescu communicated to us a
derivation of polynomial bounds for the optimal constant in the related inequality

‖f (k)‖L∞(R) �C(k)‖f‖1/(k+2)
L1(R) ‖f (k+1)‖(k+1)/(k+2)

L∞(R) ,

based on a real interpolation method.

Proof. Let us first see f as a function of x1, and treat x′=(x2, ..., xd) as a param-
eter. Thus the assumption is |f(x1, x

′)|�(Ae−α|x′|)e−α|x1|. By a more or less standard
interpolation inequality [22, Lemma A.1],

|∂1f(x1, x
′)|� 2

√
Ae−α|x′|

√
e−α|x1|‖∂2

1f(x1, x
′)‖1/2

∞ = 2
√

Ae−α|x|
√
‖∂2

1f‖∞. (4.26)

Let Cq1,r1 be the optimal constant (not smaller than 1) such that

|∂q1
1 f(x1, x

′)|�Cq1,r1(Ae−α|x|)1−q1/r1‖∂r1
r f(x1, x

′)‖q1/r1∞ . (4.27)

By iterating (4.26), we find Cq1,r1 �2
√

Cq1−1,r1Cq1+1,r1 . It follows by induction that

Cq,r � 2q(r−q).

Next, using (4.27) and interpolating according to the second variable x2 as in (4.26),
we get

|∂q2
2 ∂q1

1 f(x)|
�Cq2,r2(Cq1,r1(Ae−α|x|)1−q1/r1‖∂r1

1 f‖q1/r1∞ )1−q2/r2‖∂r2
2 ∂q1

1 f‖q2/r2∞

�Cq1,r1Cq2,r2(Ae−α|x|)(1−q1/r1)(1−q2/r2)‖∂r1
1 f‖(q1/r1)(1−q2/r2)∞ ‖∂r2

2 ∂q1
1 f‖q2/r2∞ .

We repeat this until we get

|∇qf(x)|�Cq1,r1 ... Cqd,rd
(Ae−α|x|)(1−q1/r1)...(1−qd/rd)

×‖∂r1
1 f‖(q1/r1)(1−q2/r2)...(1−qd/rd)

∞ ‖∂q1
1 ∂r2

2 f‖(q2/r2)(1−q3/r3)...(1−qd/rd)

... ‖∂q1
1 ∂q2

2 ... ∂
qd−1
d−1 ∂rd

d f‖qd/rd . (4.28)
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Choose rj , 1�j�d, in such a way that

ε

d
� qj

rj
� 2ε

d
;

this is always possible for ε< 1
4d. Then Cqj ,rj

�(2dq2
j )1/ε, and (4.28) implies that

|∇qf(x)|� (2d|q|2)1/ε(Ae−α|x|)1−ε max
s�r+q

{‖∇sf‖ε
∞, ‖∇sf‖2ε

∞}.

Then, since 2(r+q)ε�3dq, we have, by a crude application of Stirling’s formula (in
quantitative form), for s�r+q,

‖∇sf‖ε
∞ �
(

βs‖∇sf‖∞
s!

)ε(
s!
βs

)ε
�
(

sup
n∈Nd

0

βn‖∇nf‖∞
n!

)ε
C(β, q, d)ε−3dq,

and the result easily follows.

4.5. Algebra property in two variables

In this section we only consider the norms Zλ,μ;p
τ ; but similar results would hold true for

the two-variables spaces C and F , and could be proven with the same methods as those
used for the one-variable spaces Fλ and Cλ, respectively (note that the Leibniz formula
still applies because ∇x and ∇v+τ∇x commute).

Proposition 4.24. (i) For any λ, μ�0, any τ∈R and any p, q, r∈[1,∞] such that
1/p+1/q=1/r, we have

‖fg‖Zλ,μ;r
τ

� ‖f‖Zλ,μ;p
τ

‖g‖Zλ,μ;q
τ

.

(ii) As a consequence, Zλ,μ
τ =Zλ,μ;∞

τ is a normed algebra:

‖fg‖Zλ,μ
τ

� ‖f‖Zλ,μ
τ

‖g‖Zλ,μ
τ

.

In particular, ‖fn‖Zλ,μ
τ

�‖f‖n
Zλ,μ

τ
for any n∈N0, and ‖ef‖Zλ,μ

τ
�e

‖f‖Zλ,μ
τ .

Proof. First we note that (with the notation (4.18)) |||·|||μ;r satisfies the “(p, q, r)
property”: whenever p, q, r∈[1,∞] satisfy 1/p+1/q=1/r, we have

|||fg|||μ;r =
∑
l∈Zd

e2πμ|l|‖f̂g(l, ·)‖Lr(Rd
v)

=
∑
l∈Zd

e2πμ|l|
∥∥∥∥∑

k∈Zd

f̂(k, ·)ĝ(l−k, ·)
∥∥∥∥

Lr(Rd
v)

�
∑
l∈Zd

∑
k∈Zd

e2πμ|k|e2πμ|l−k|‖f̂(k, ·)‖Lp(Rd
v)‖ĝ(l−k, ·)‖Lq(Rd

v)

= |||f |||μ;p|||g|||μ;q.
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Next, we write

|||fg|||Zλ,μ;r
τ

=
∑

n∈Nd
0

λn

n!
|||(∇v+τ∇x)n(fg)|||μ;r

=
∑

n∈Nd
0

λn

n!

∣∣∣∣∣∣∣∣∣∣∣∣ ∑
m�n

(
n

m

)
(∇v+τ∇x)mf(∇v+τ∇x)n−mg

∣∣∣∣∣∣∣∣∣∣∣∣
μ;r

�
∑

n∈Nd
0

λn

n!

∑
m�n

(
n

m

)
|||(∇v+τ∇x)mf |||μ;p|||(∇v+τ∇x)n−mg|||μ;q

=
( ∑

m∈Nd
0

λm

m!
|||(∇v+τ∇x)mf |||μ;p

)∑
l∈Nd

0

λl

l!
|||(∇v+τ∇x)lf |||μ;q

= |||f |||Zλ,μ;p
τ

|||g|||Zλ,μ;q
τ

.

(We could also reduce to τ =0 by means of Proposition 4.19.)

4.6. Composition inequality

Proposition 4.25. (Composition inequality in two variables) For any λ, μ�0 and
any p∈[1,∞], τ∈R, σ∈R, a∈R\{0} and b∈R,

‖f(x+bv+X(x, v), av+V (x, v))‖Zλ,μ;p
τ

� |a|−d/p‖f‖Zα,β;p
σ

, (4.29)

where
α = λ|a|+‖V ‖Zλ,μ

τ
and β = μ+λ|b+τ−aσ|+‖X−σV ‖Zλ,μ

τ
. (4.30)

Remark 4.26. The norms in (4.30) for X and V have to be based on L∞, not just
any Lp. Also note that the fact that the second argument of f has the form av+V (and
not av+cx+V ) is related to Remark 4.7.

Proof. The proof is a combination of the arguments in Proposition 4.8. In a first
step, we do it for the case τ =σ=0, and we write ‖ · ‖λ,μ;p=‖ · ‖Zλ,μ;p

0
.

From the expansion f(x, v)=
∑

k∈Zd f̂(k, v)e2iπk·x we deduce that

h(x, v) := f(x+bv+X(x, v), av+V (x, v))

=
∑
k∈Zd

f̂(k, av+V )e2iπk·(x+bv+X)

=
∑
k∈Zd

m∈Nd
0

∇m
v f̂(k, av)· V

m

m!
e2iπk·xe2iπk·bve2iπk·X .
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Taking the Fourier transform in x, we see that for any l∈Zd,

ĥ(l, v) =
∑
k∈Zd

m∈Nd
0

∇m
v f̂(k, av)e2iπk·bv

∑
j∈Zd

(V̂ m)(j)
m!

(e2iπk·X )̂ (l−k−j).

Differentiating n times via the Leibniz formula (here applied to a product of four func-
tions), we get

∇n
v ĥ(l, v) =

∑
k,j∈Zd

m,n1,n2,n3,n4∈Nd
0

n1+n2+n3+n4=n

n!an1

n1!n2!n3!n4!
∇m+n1

v f̂(k, av)

×∇n2
v (V̂ m)(j)

m!
∇n3

v (e2iπk·X )̂ (l−k−j, v)(2iπbk)n4e2iπk·bv.

Multiplying by λne2πμ|l|/n! and summing over n and l, taking Lp norms and using
‖fg‖Lp �‖f‖Lp‖g‖L∞ , we finally obtain

‖h‖λ,μ

� |a|−d/p
∑

k,j,l∈Zd

m,n,n1,n2,n3,n4∈Nd
0

n1+n2+n3+n4=n

λne2πμ|l||a|n1

n1!n2!n3!n4!
‖∇m+n1

v f̂(k, ·)‖Lp

∥∥∥∥∇n2
v (V̂ m)(j)

m!

∥∥∥∥
∞

×‖∇n3
v (e2iπk·X )̂ (l−k−j)‖∞(2π|b| |k|)n4

= |a|−d/p
∑

k,j,l∈Zd

m,n1,n2,n3,n4∈Nd
0

λn1+n2+n3+n4e2πμ|k|e2πμ|j|e2πμ|l−k−j||a|n1

n1!n2!n3!n4!
‖∇m+n1

v f̂(k, ·)‖Lp

×
∥∥∥∥∇n2

v (V̂ m)(j)
m!

∥∥∥∥
∞
‖∇n3

v (e2iπk·X )̂ (l−k−j)‖∞(2π|b| |k|)n4

� |a|−d/p
∑
k∈Zd

n1,m∈Nd
0

λn1 |a|n1

n1!
‖∇n1+m

v f̂(k, ·)‖Lp e2πμ|k|

×
(

1
m!

∑
j∈Zd

n2∈Nd
0

λn2

n2!
e2πμ|j|‖∇n2

v (V̂ m)(j)‖∞
)

×
( ∑

h∈Zd

n3∈Nd
0

λn3

n3!
e2πμ|h|‖∇n3

v (e2iπk·X )̂ (h)‖∞
) ∑

n4∈Nd
0

(2πλ|b| |k|)n4

n4!

= |a|−d/p
∑
k∈Zd

n1,m∈Nd
0

(λ|a|)n1

n1!
e2πμ|k|‖∇n1+m

v f̂(k, ·)‖Lp

‖V m‖λ,μ

m!
‖e2iπk·X‖λ,μe2πλ|b| |k|
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� |a|−d/p
∑
k∈Zd

n1,m∈Nd
0

(λ|a|)n1

n1!
e2π(μ+λ|b|)|k|‖∇n1+m

v f̂(k, ·)‖Lp

‖V ‖m
λ,μ

m!
e2π|k| ‖X‖λ,μ

= |a|−d/p
∑
k∈Zd

n∈Nd
0

1
n!

(λ|a|+‖V ‖λ,μ)n‖∇n
v f̂(k, ·)‖Lp̄ e2π|k|(μ+λ|b|+‖X‖λ,μ)

= |a|−d/p‖f‖λ|a|+‖V ‖λ,μ,μ+λ|b|+‖X‖λ,μ
.

Now we generalize this to arbitrary values of σ and τ . By Proposition 4.19,

‖f(x+bv+X(x, v), av+V (x, v))‖Zλ,μ;p
τ

= ‖f(x+v(b+τ)+X(x+vτ, v), av+V (x+vτ, v))‖Zλ,μ;p

= ‖f S0
σ S0

−σ(x+v(b+τ)+X(x+vτ, v), av+V (x+vτ, v))‖Zλ,μ;p

= ‖(f S0
σ)(x+v(b+τ−aσ)+(X−σV )(x+vτ, v), av+V (x+vτ, v))‖Zλ,μ;p

= ‖(f S0
σ)(x+v(b+τ−aσ)+Y (x, v), av+W (x, v))‖Zλ,μ;p ,

where
W (x, v) =V S0

τ (x, v) and Y (x, v) = (X−σV ) S0
τ (x, v).

Applying the result for τ =0, we deduce that the norm of

h(x, v) = f(x+bv+X(x, v), av+V (x, v))

in Zλ,μ
τ is bounded by

‖f S0
σ‖Zα,β;p = ‖f‖Zα,β;p

σ
,

where
α = λ|a|+‖V S0

τ‖Zλ,μ = |a|λ+‖V ‖Zλ,μ
τ

and

β = μ+λ|b+τ−aσ|+‖(X−σV ) S0
τ‖Zλ,μ = μ+λ|b+τ−aσ|+‖X−σV ‖Zλ,μ

τ
.

This establishes the desired bound.

4.7. Gradient inequality

In the next proposition we shall write

‖f‖Żλ,μ
τ

=
∑
l∈Zd∗

∑
n∈Nd

0

λn

n!
‖(∇v+2iπτ l)nf̂(l, v)‖L∞(Rd

v) e2πμ|l|. (4.31)

This is again a homogeneous (in the x variable) seminorm.
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Proposition 4.27. For λ̄>λ�0 and μ̄>μ�0, we have the functional inequalities

‖∇xf‖Zλ,μ;p
τ

� C(d)
μ̄−μ

‖f‖Żλ,μ̄;p
τ

,

‖(∇v+τ∇x)f‖Zλ,μ;p
τ

� C(d)
λ log(λ̄/λ)

‖f‖Zλ̄,μ;p
τ

.

In particular, for τ �0 we have

‖∇vf‖Zλ,μ;p
τ

�C(d)
(

1
λ log(λ̄/λ)

‖f‖Zλ̄,μ̄;p
τ

+
τ

μ̄−μ
‖f‖Żλ̄,μ̄;p

τ

)
.

The proof is similar to that of Proposition 4.10; the constant C(d) arises in the
choice of norm on Rd. As a consequence, if 1<λ̄/λ�2, we have e.g. the bound

‖∇f‖Zλ,μ;p
τ

�C(d)
(

1
λ̄−λ

+
1+τ

μ̄−μ

)
‖f‖Zλ̄,μ̄;p

τ
.

4.8. Inversion

From the composition inequality follows an inversion estimate.

Proposition 4.28. (Inversion inequality) (i) Let λ, μ�0, τ∈R and consider a func-
tion F : Td×Rd!Td×Rd. Then there is ε=ε(d) such that if F satisfies

‖∇(F−Id)‖Zλ′,μ′
τ

� ε(d),

where
λ′ = λ+2‖F−Id ‖Zλ,μ

τ
and μ′ = μ+2(1+|τ |)‖F−Id ‖Zλ,μ

τ
,

then F is invertible and

‖F−1−Id ‖Zλ,μ
τ

� 2‖F−Id ‖Zλ,μ
τ

. (4.32)

(ii) More generally, if F,G: Td×Rd!Td×Rd are such that

‖∇(F−Id)‖Zλ′,μ′
τ

� ε(d), (4.33)

where
λ′ = λ+2‖F−G‖Zλ,μ

τ
and μ′ = μ+2(1+|τ |)‖F−G‖Zλ,μ

τ
,

then F is invertible and

‖F−1 G−Id ‖Zλ,μ
τ

� 2‖F−G‖Zλ,μ
τ

. (4.34)
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Remark 4.29. The conditions become very stringent as τ becomes large: basically,
F−Id (or F−G in case (ii)) should be of order o(1/τ) for Proposition 4.28 to be appli-
cable.

Remark 4.30. By Proposition 4.27, a sufficient condition for (4.33) to hold is that
there be λ′′ and μ′′ such that λ�λ′′�2λ, μ�μ′′ and

‖F−Id ‖Zλ′′,μ′′
τ

� ε′(d)
1+τ

min{λ′′−λ′, μ′′−μ′}.
However, this condition is in practice hard to fulfill.

Proof. We prove only (ii), being (i) a particular case. Let f=F−Id, h=F−1 G−Id
and g=G−Id, so that Id +g=(Id +f) (Id +h), or equivalently

h = g−f (Id +h).

Thus h is a fixed point of
Φ: Z 
−! g−f (Id +Z).

Note that Φ(0)=g−f . If Φ is 1
2 -Lipschitz on the ball B(0, 2‖f−g‖) in Zλ,μ

τ , then (4.34)
will follow by fixed-point iteration as in Theorem A.2. (Here B(x, r):={y :‖x−y‖�r}.)

So let Z and Z̃ be given with

‖Z‖Zλ,μ
τ

, ‖Z̃‖Zλ,μ
τ

� 2‖f−g‖Zλ,μ
τ

.

We have

Φ(Z)−Φ(Z̃) = f(Id +Z̃)−f(Id +Z) = (Z̃−Z)·
∫ 1

0

∇f(Id +(1−θ)Z+θZ̃) dθ.

By Proposition 4.24,

‖Φ(Z)−Φ(Z̃)‖Zλ,μ
τ

� ‖Z̃−Z‖Zλ,μ
τ

∫ 1

0

‖∇f(Id +(1−θ)Z+θZ̃)‖Zλ,μ
τ

dθ.

For any θ∈[0, 1], by Proposition 4.25,

‖∇f(Id +(1−θ)Z+θZ̃)‖Zλ,μ
τ

� ‖∇f‖Zλ̂,μ̂
τ

,

where
λ̂ = λ+max{‖Z‖, ‖Z̃‖}�λ+2‖f−g‖Zλ,μ

τ

and, writing Z=(Zx, Zv) and Z̃=(Z̃x, Z̃v),

μ̂= μ+max{‖Zx−τZv‖, ‖Z̃x−τZ̃v‖}�μ+2(1+|τ |)‖f−g‖Zλ,μ
τ

.

If F and G satisfy the assumptions of Proposition 4.28, we deduce that

‖Φ‖Lip(B(0,2)) �C(d)ε(d),

and this is bounded above by 1
2 if ε(d) is small enough.
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4.9. Sobolev corrections

We shall need to quantify Sobolev regularity corrections to the analytic regularity, in the
x variable.

Definition 4.31. (Hybrid analytic norms with Sobolev corrections) For λ, μ, γ�0,
τ∈R and p∈[1,∞] we define

‖f‖Zλ,(μ,γ);p
τ

=
∑
l∈Zd

∑
n∈Nd

0

λn

n!
e2πμ|l|(1+|l|)γ‖(∇v+2iπτ l)nf̂(l, v)‖Lp(Rd

v),

‖f‖Fλ,γ =
∑
k∈Zd

e2πλ|k|(1+|k|)γ |f̂(k)|.

Proposition 4.32. Let λ, μ, γ�0, τ∈R and p∈[1,∞]. We have the following func-
tional (in)equalities.

(i) ‖f‖Zλ,(μ,γ);p
t+τ

=‖f S0
t ‖Zλ,(μ,γ);p

τ
;

(ii) If 1/p+1/q=1/r then ‖fg‖Zλ,(μ,γ);r
τ

�‖f‖Zλ,(μ,γ);p
τ

‖g‖Zλ,(μ,γ);q
τ

, and therefore in

particular Zλ,(μ,γ)
τ =Zλ,(μ,γ);∞

τ is a normed algebra;
(iii) If f depends only on x then ‖f‖Zλ,(μ,γ)

τ
=‖f‖Fλ|τ|+μ,γ ;

(iv) ‖f‖Zλ,(μ,γ);p
τ̄

�‖f‖Zλ,(μ+λ|τ−τ̄|,γ);p
τ

;
(v) For any σ∈R, a∈R\{0} and b∈R,

‖f(x+bv+X(x, v), av+V (x, v))‖Zλ,(μ,γ);p
τ

� |a|−d/p‖f‖Zα,(β,γ);p
σ

,

where
α = λ|a|+‖V ‖Zλ,(μ,γ)

τ
and β = μ+λ|bτ−aσ|+‖X−σV ‖Zλ,(μ,γ)

τ
;

(vi) Gradient inequality:

‖∇xf‖Zλ,(μ,γ);p
τ

� C(d)
μ̄−μ

‖f‖Zλ,(μ̄,γ);p
τ

,

‖∇f‖Zλ,(μ,γ);p
τ

�C(d)
(

1
λ̄−λ

+
1+τ

μ̄−μ

)
‖f‖Zλ̄,(μ̄,γ);p

τ
;

(vii) Inversion: if F,G: Td×Rd!Td×Rd are such that

‖∇(F−Id)‖Zλ′,(μ′,γ)
τ

� ε(d),

where
λ′ = λ+2‖F−G‖Zλ,(μ,γ)

τ
and μ′ = μ+2(1+|τ |)‖F−G‖Zλ,(μ,γ)

τ
,

then
‖F−1 G−Id ‖Zλ,(μ,γ)

τ
� 2‖F−G‖Zλ,(μ,γ)

τ
. (4.35)
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Proof. The proofs are the same as for the “plain” hybrid norms; the only notable
point is that for the proof of (ii) we use, in addition to e2πλ|k|�e2πλ|k−l|e2πλ|l|, the
inequality

(1+|k|)γ � (1+|k−l|)γ(1+|l|)γ .

Remark 4.33. Of course, some of the estimates in Proposition 4.32 can be “im-
proved” by taking advantage of γ; e.g. for γ�1 we have

‖∇xf‖Zλ,μ;p
τ

�C(d)‖f‖Zλ,(μ,γ);p
τ

.

4.10. Individual mode estimates

To handle very singular cases, we shall at times need to estimate Fourier modes individ-
ually, rather than full norms. If f=f(x, v), we write

(Pkf)(x, v) = f̂(k, v)e2iπk·x. (4.36)

In particular the following estimates will be useful.

Proposition 4.34. For any λ, μ�0, τ∈R, Lebesgue exponents 1/r=1/p+1/q and
k∈Zd, we have the estimate

‖Pk(fg)‖Zλ,μ;r
τ

�
∑
l∈Zd

‖Plf‖Zλ,μ;p
τ

‖Pk−lg‖Zλ,μ;q
τ

.

Proposition 4.35. For any λ>0, μ̄�μ�0, τ∈R, p∈[1,∞] and k∈Zd, we have the
estimate

‖Pk[f(x+X(x, v), v)]‖Zλ,μ;p
τ

�
∑
l∈Zd

e−2π(μ̄−μ)|k−l|‖Plf‖Zλ,ν;p
τ

, ν = μ+‖X‖Zλ,μ̄
τ

.

These estimates also have variants with Sobolev corrections. Note that when μ=μ̄,
Proposition 4.35 is a direct consequence of Proposition 4.25 with V =0, b=0 and a=1:

‖Pk[f(x+X(x, v), v)]‖Zλ,μ;p
τ

� ‖f(x+X(x, v), v)‖Zλ,μ;p
τ

� ‖f‖Zλ,ν;p
τ

, ν = μ+‖X‖Zλ,μ
τ

.

Proof of Propositions 4.34 and 4.35. The proof of Proposition 4.34 is quite similar
to the proof of Proposition 4.24. (It is no restriction to choose τ =0 because Pk commutes
with the free transport semigroup.) Proposition 4.35 needs a few words of explanation.
As in the proof of Proposition 4.25 we let h(x, v)=f(x+X(x, v), v), and readily obtain

‖Pkh‖Zλ,μ;p
τ

=
∑

n∈Nd
0

λne2πμ|k|

n!
‖∇n

v ĥ(k, v)‖Lp(dv)

�
∑

n∈Nd
0

l∈Zd

λne2πμ|k|

n!
‖∇n

v f̂(l, v)‖Lp(dv)

∑
m∈Nd

0

λm

m!
‖∇m

v (e2iπlX )̂ (k−l, v)‖L∞(dv).
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At this stage we write

e2πμ|k| � e2πμ|l|e−2π(μ̄−μ)|k−l|e2πμ̄|k−l|,

and use the following crude bound, which holds for all l∈Zd:

e2πμ̄|k−l|‖∇m
v (e2iπlX )̂ (k−l, v)‖L∞(dv) �

∑
j∈Zd

e2πμ̄|j|‖∇m
v (e2iπlX )̂ (j, v)‖L∞(dv).

The rest of the proof is as in Proposition 4.25.

4.11. Measuring solutions of kinetic equations in large time

As we already discussed, even for the simplest kinetic equation, namely free transport, we
cannot hope to have uniform-in-time regularity estimates in the velocity variable: rather,
because of filamentation, we may have ‖∇vf(t, ·)‖=O(t), ‖∇2

vf(t, ·)‖=O(t2), etc. For
analytic norms we may at best hope for exponential growth.

But the invariance of the “gliding” norms Zλ,μ
τ under free transport (Proposi-

tion 4.19) makes it possible to look for uniform estimates such as

‖f(τ, ·)‖Zλ,μ
τ

= O(1) as τ!∞. (4.37)

Of course, by Proposition 4.27, (4.37) implies that

‖∇vf(τ, ·)‖Zλ′,μ′
τ

= O(τ) for λ′ <λ and μ′ <μ, (4.38)

and nothing better as far as the asymptotic behavior of ∇vf is concerned; but (4.37) is
much more precise than (4.38). For instance it implies that

‖(∇v+τ∇x)f(τ, ·)‖Zλ′,μ′
τ

= O(1) for λ′ <λ and μ′ <μ.

Another way to get rid of filamentation is to average over the spatial variable x, a
common sense procedure which has already been used in physics [54, §49]. Think that, if
f evolves according to free transport, or even according to the linearized Vlasov equation
(3.3), then its space-average

〈f〉(τ, v) :=
∫

Td

f(τ, x, v) dx (4.39)

is time-invariant. (We used these infinite number of conservation laws to determine the
long-time behavior in Theorem 3.1.)
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The bound (4.37) easily implies a bound on the space average: indeed,

‖〈f〉(τ, ·)‖Cλ = ‖〈f〉(τ, ·)‖Zλ,μ
τ

� ‖f(τ, ·)‖Zλ,μ
τ

= O(1) as τ!∞; (4.40)

and in particular, for λ′<λ,

‖〈∇vf〉(τ, ·)‖Cλ′ = O(1) as τ!∞. (4.41)

Again, (4.37) contains a lot more information than (4.41).

Remark 4.36. The idea to estimate solutions of a non-linear equation by comparison
with some unperturbed (reversible) linear dynamics is already present in the definition
of Bourgain spaces Xs,b [12]. The analogy stops here, since time is a dummy variable in
Xs,b spaces, while in Zλ,μ

t spaces it is frozen and appears as a parameter, on which we
shall play later.

4.12. Linear damping revisited

As a simple illustration of the functional analysis introduced in this section, let us recast
the linear damping (Theorem 3.1) in this language. This will be the first step for the
study of the non-linear damping. For simplicity we set L=1.

Theorem 4.37. (Linear Landau damping again) Let f0=f0(v), W : Td!R with
‖∇W‖L1 �CW and fi(x, v) be such that

(i) condition (L) from §2.2 holds for some constants C0, λ, >0;
(ii) ‖f0‖Cλ;1 �C0;
(iii) ‖fi‖Zλ,μ;1 �δ for some μ, δ>0;
Then for any λ′<λ and μ′<μ, the solution of the linearized Vlasov equation (3.3)

satisfies
sup
t∈R

‖f(t, ·)‖Zλ′,μ′;1
t

�Cδ (4.42)

for some constant C=C(d, CW , C0, λ, λ′, μ, μ′, ). In particular, �=
∫

Rd f dv satisfies

sup
t∈R

‖�(t, ·)‖Fλ′|t|+μ′ �Cδ. (4.43)

As a consequence, as |t|!∞, � converges strongly to

�∞ =
∫

Td

∫
Rd

fi(x, v) dv dx,

and f converges weakly to 〈fi〉=
∫

Td
fi dx, at rate O(e−λ′′|t|) for any λ′′<λ′.

If moreover ‖f0‖Cλ;p �C0 and ‖fi‖Zλ,μ;p �δ for all p in some interval [1, p̄ ], then
(4.42) can be reinforced into

sup
t∈R

‖f(t, ·)‖Zλ′,μ′;p
t

�Cδ, 1 � p � p̄. (4.44)
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Remark 4.38. The notions of weak and strong convergence are the same as those
in Theorem 3.1. With respect to that statement, we have added an extra analyticity
assumption in the x variable; in this linear context this is an overkill (as the proof will
show), but later in the non-linear context this will be important.

Proof. Without loss of generality we restrict our attention to t�0. Although (4.43)
follows from (4.42) by Proposition 4.15, we shall establish (4.43) first, and deduce (4.42)
due to the equation. We shall write C for various constants depending only on the
parameters in the statement of the theorem.

As in the proof of Theorem 3.1, we have

�̂(t, k) = f̃i(k, kt)+
∫ t

0

K0(t−τ, k)�̂(τ, k) dτ

for any t�0 and k∈Zd. By Lemma 3.6, for any λ′<λ and μ′<μ,

sup
t�0

( ∑
k∈Zd

|�̂(t, k)|e2π(λ′t+μ′)|k|
)

�C(λ, λ′, )
( ∑

k∈Zd

e−2π(μ−μ′)|k|
)

sup
t�0

sup
k∈Zd

|f̃i(k, kt)|e2π(λ′t+μ)|k|

� C(λ, λ′, )
(μ−μ′)d

sup
t�0

∑
k∈Zd

|f̃i(k, kt)|e2π(λt+μ)|k|.

Equivalently,

sup
t�0

‖�(t, ·)‖Fλ′t+μ′ �C sup
t�0

∥∥∥∥∫
Rd

fi S0
−t dv

∥∥∥∥
Fλt+μ

. (4.45)

By Propositions 4.15 and 4.19,∥∥∥∥∫
Rd

fi S0
−t dv

∥∥∥∥
Fλt+μ

� ‖fi S0
−t‖Zλ,μ;1

t
= ‖fi‖Zλ,μ;1

0
� δ.

This and (4.45) imply (4.43).
To deduce (4.42), we first write

f(t, ·) = fi S0
−t+
∫ t

0

((∇W ∗�τ ) S0
−(t−τ))·∇vf0 dτ,

where �τ =�(τ, ·). Then for any λ′′<λ′ we have, by Propositions 4.24 and 4.15, for all
t�0,

‖f‖Zλ′′,μ′;1
t

� ‖fi S0
−t‖Zλ′′,μ;1

t
+
∫ t

0

‖(∇W ∗�τ ) S0
−(t−τ)‖Zλ′′,μ′;∞

t
‖∇vf0‖Zλ′′,μ;1

t
dτ

= ‖fi‖Zλ′′,μ;1 +‖∇vf0‖Cλ′′;1

∫ t

0

‖∇W ∗�τ‖Fλ′′τ+μ′ dτ. (4.46)



90 c. mouhot and c. villani

Since ∇̂W (0)=0, we have, for any τ �0,

‖∇W ∗�τ‖Fλ′′τ+μ � e−2π(λ′′−λ′)τ‖∇W ∗�τ‖Fλ′τ+μ′

� ‖∇W‖L1 e−2π(λ′′−λ′)τ‖�τ‖Fλ′τ+μ′

�CW Cδe−2π(λ′′−λ′)τ ;

in particular ∫ t

0

‖∇W ∗�τ‖Fλ′′+μ′ dτ � Cδ

λ′′−λ′ . (4.47)

Also, by Proposition 4.10, for 1<λ′/λ′′�2 we have

‖∇vf0‖Cλ′′;1 � C

λ−λ′′ ‖f0‖Cλ;1 � C C0

λ−λ′′ . (4.48)

Plugging (4.47) and (4.48) into (4.46), we deduce (4.42). The end of the proof is an easy
exercise if one recalls that 〈f(t, ·)〉=〈fi〉 for all t.

5. Deflection estimates

Let a small time-dependent force field, denoted by εF (t, x), be given on Td×Rd, whose
analytic regularity improves linearly in time. (Think of εF as the force created by a
damped density.) This force field perturbs the trajectories S0

τ,t of the free transport (τ is
the initial time and t the current time) into trajectories Sτ,t. The goal of this section is
to get an estimate on the maps Ωt,τ =St,τ S0

τ,t (so that St,τ =Ωt,τ S0
t,τ ). These bounds

should be in an analytic class about as good as F , with a loss of analyticity depending
on ε; they should also be, for 0�τ �t,

• uniform in t�τ ,
• small as τ!∞,
• small as τ!t.
We shall call Ωt,τ the deflection map (from time τ to time t). The idea is to com-

pare the free (= without interaction) evolution to the true evolution is at the basis of the
interaction representation, wave operators, and most famously the scattering transforms
(in which the whole evolution from t!−∞ to t!∞ is replaced by well-chosen asymp-
totics). For all these methods which are of constant use in classical and quantum physics
one can consult [21].

Remark 5.1. The order of composition in Ωt,τ =St,τ S0
τ,t is the only one which leads

to useful asymptotics: it is easy to check that in general S0
τ,t St,τ does not converge to

anything as t!∞, even if the force is compactly supported in time.
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5.1. Formal expansion

Before stating the main result, we sketch a heuristic perturbation study. Let us write a
formal expansion of V0,t(x, v) as a perturbation series:

V0,t(x, v) = v+εv(1)(t, x, v)+ε2v(2)(t, x, v)+... .

Then we deduce that

X0,t(x, v) =x+vt+ε

∫ t

0

v(1)(s, x, v) ds+ε2

∫ t

0

v(2)(s, x, v) ds+...,

with v(i)(t=0)=0.
So

∂2X0,t

∂t2
= ε

∂v(1)

∂t
+ε2 ∂v(2)

∂t
+... .

On the other hand,

εF (t, X0,t) = ε
∑
k∈Zd

F̂ (t, k)e2iπk·xe2iπk·vte2iπk·(ε ∫ t
0 v(1) ds+ε2 ∫ t

0 v(2) ds+... )

= ε
∑
k∈Zd

F̂ (t, k)e2iπk·xe2iπk·vt

×
(

1+2iπεk ·
∫ t

0

v(1) ds+2iπε2k ·
∫ t

0

v(2) ds−(2π)2ε2

(
k ·
∫ t

0

v(1) ds

)2
+...

)
.

By successive identification,
∂v(1)

∂t
=
∑
k∈Zd

F̂ (t, k)e2iπk·xe2iπk·vt,

∂v(2)

∂t
=
∑
k∈Zd

F̂ (t, k)e2iπk·xe2iπk·vt2iπk ·
∫ t

0

v(1) ds,

∂v(3)

∂t
=
∑
k∈Zd

F̂ (t, k)e2iπk·xe2iπk·vt

(
2iπk ·

∫ t

0

v(2) ds−(2π)2ε2

(
k ·
∫ t

0

v(1) ds

)2)
,

etc.
In particular notice that ∣∣∣∣∂v(1)

∂t

∣∣∣∣� ∑
k∈Zd

|F̂ (t, k)|,

so ∫ ∞

0

∣∣∣∣∂v(1)

∂t

∣∣∣∣ dt �
∫ ∞

0

∑
k∈Zd

|F̂ (t, k)| dt

�
∫ ∞

0

∑
k∈Zd

|F̂ (t, k)|e2πμte−2πμt dt �CF

∫ ∞

0

e−2πμt dt =
CF

2πμ
.

Thus, under our uniform analyticity assumptions we expect V0,t(x, v) to be a uniformly
bounded analytic perturbation of v.
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5.2. Main result

On Td
x we consider the dynamical system

d2X

dt2
= εF (t, X);

its phase space is Td×Rd. Although this system is reversible, we shall only consider t�0.
The parameter ε is here only to recall the perturbative nature of the estimate.

For any (x, v)∈Td×Rd and any two times τ, t∈R+, let Sτ,t be the transform mapping
the state of the system at time τ to the state of the system at time t. In more precise
terms, Sτ,t is described by the equations

Sτ,t(x, v) = (Xτ,t(x, v), Vτ,t(x, v)), Xτ,τ (x, v) =x, Vτ,τ (x, v) = v,

d

dt
Xτ,t(x, v) =Vτ,t(x, v) and

d

dt
Vτ,t(x, v) = ε F (t, Xτ,t(x, v)). (5.1)

From the definition we have the composition identity

St2,t3 St1,t2 = St1,t3 ; (5.2)

in particular St,τ is the inverse of Sτ,t.
We also write S0

τ,t for the same transform in the case of the free dynamics (ε=0); in
this case there is an explicit expression:

S0
τ,t(x, v) = (x+v(t−τ), v), (5.3)

where x+v(t−τ) is evaluated modulo Zd. Finally, we define the deflection map associated
with εF :

Ωt,τ = St,τ S0
τ,t. (5.4)

(There is no simple semigroup property for the transforms Ωt,τ .)
In this section we establish the following estimates.

Theorem 5.2. (Analytic estimates on deflection in hybrid norms) Let ε>0 and let
F =F (t, x) on R+×Td satisfy

F̂ (t, 0) = 0 and sup
t�0

(‖F (t, ·)‖Fλt+μ +‖∇xF (t, ·)‖Fλt+μ) �CF (5.5)

for some parameters λ, μ>0 and CF >0. Let t�τ �0 and let

Ωt,τ = (ΩXt,τ , ΩVt,τ )
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be the deflection associated with εF . Let 0�λ′<λ, 0�μ′<μ and τ ′�0 be such that

λ′(τ ′−τ) � 1
2 (μ−μ′). (5.6)

Let {
R1(τ, t) =CF e−2π(λ−λ′)τ min{t−τ, (2π(λ−λ′))−1},
R2(τ, t) =CF e−2π(λ−λ′)τ min

{
1
2 (t−τ)2, (2π(λ−λ′))−2}.

Assume that
εR2(τ, t) � 1

4 (μ−μ′) for all 0 � τ � t, (5.7)

and
εCF � 2π2(λ−λ′)2. (5.8)

Then
‖ΩXt,τ −Id ‖Zλ′,μ′

τ′
� 2εR2(τ, t) for all 0 � τ � t, (5.9)

and
‖ΩVt,τ −Id ‖Zλ′,μ′

τ′
� εR1(τ, t) for all 0 � τ � t. (5.10)

Remark 5.3. The proof of Theorem 5.2 is easily adapted to include Sobolev correc-
tions. It is important to note that the deflection map is smooth uniformly in time, not
just in gliding regularity (τ ′=0 is admissible in (5.6)).

Proof. For a start, let us make the ansatz

St,τ (x, v) = (x−v(t−τ)+εZt,τ (x, v), v+ε∂τZt,τ (x, v)),

with
Zt,t(x, v) = 0 and ∂τZt,τ |τ=t(x, v) = 0.

Then it is easily checked that

Ωt,τ −Id = ε (Z, ∂τZ) S0
t−τ ;

in particular
‖Ωt,τ −Id ‖Zλ′,μ′

τ′
= ε ‖(Z, ∂τZ)‖Zλ′,μ′

t+τ′−τ

.

To estimate this we shall use a fixed-point argument based on the equation for St,τ ,
namely

d2Xt,τ

dτ2
= εF (τ,Xt,τ ),

or equivalently
d2Zt,τ

dτ2
= F (τ, x−v(t−τ)+εZt,τ ).
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So let us fix t and define

Ψ: (Wt,τ )0�τ�t 
−! (Zt,τ )0�τ�t

such that (Zt,τ )0�τ�t is the solution of⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂2Zt,τ

∂τ2
= F (τ, x−v(t−τ)+εWt,τ ),

Zt,t = 0,

(∂τZt,τ )|τ=t = 0.

(5.11)

What we are after is an estimate of the fixed point of Ψ. We do this in two steps.

Step 1. Estimate of Ψ(0). Let Z0=Ψ(0). By integration of (5.11) (for W =0) we
have

Z0
t,τ =

∫ t

τ

(s−τ)F (s, x−v(t−s)) ds.

Let σ be such that λ′σ� 1
2 (μ−μ′). Applying the Zλ′,μ′

t+σ norm and using Proposi-
tion 4.19, we get

‖Z0
t,τ‖Zλ′,μ′

t+σ
�
∫ t

τ

(s−τ)‖F (s, ·)‖Zλ′,μ′
s+σ

ds =
∫ t

τ

(s−τ)‖F (s, ·)‖Fλ′s+λ′σ+μ′ ds.

Of course λ′σ+μ′�μ, so in particular

λ′s+λ′σ+μ′ �−(λ−λ′)s+λs+μ.

Combining this with the assumption F̂ (s, 0)=0 yields

‖F (s, ·)‖Fλ′s+λ′σ+μ′ � ‖F (s, ·)‖Fλs+μe−2π(λ−λ′)s �CF e−2π(λ−λ′)s.

So

‖Z0
t,τ‖Zλ′,μ′

t+σ
�CF

∫ t

τ

(s−τ)e−2π(λ−λ′)s ds

�CF e−2π(λ−λ′)τ min
{

(t−τ)2

2
,

1
(2π(λ−λ′))2

}
�R2(τ, t).

With t still fixed, we define the norm

||||(Zt,τ )0�τ�t|||| := sup

{‖Zt,τ‖Zλ′,μ′
t+σ

R2(τ, t)
: 0 � τ � t, σ+t � 0 and λ′σ � μ−μ′

2

}
. (5.12)
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The above estimates show that ||||Ψ(0)||||�1. (Since t+(τ ′−τ)�t−τ �0, we may assume
that t+σ�0, and we aim at finally choosing σ=τ ′−τ .)

Step 2. Lipschitz constant of Ψ. We shall prove that under our assumptions, Ψ
is 1

2 -Lipschitz on the ball B(0, 2) in the norm |||| · ||||. Let W, W̃∈B(0, 2), Z=Ψ(W ) and
Z̃=Ψ(W̃ ). By solving the differential inequality for Z−Z̃, we get

Zt,τ −Z̃t,τ = ε(Wt,s−W̃t,s)·
∫ 1

0

∫ t

τ

(s−τ)∇xF (s, x−v(t−s)+ε(θWt,s+(1−θ)W̃t,s)) ds dθ.

We divide by R2(τ, t), take the Z norm and note that R2(s, t)�R2(τ, t) to obtain

||||(Zt,τ −Z̃t,τ )0�τ�t||||� ε||||(Wt,s−W̃t,s)0�s�t||||A(t)

with

A(t) = sup
σ,τ

∫ 1

0

∫ t

τ

(s−τ)‖∇xF (s, x−v(t−s)+ε(θWt,s+(1−θ)W̃t,s))‖Zλ′,μ′
t+σ

ds dθ.

By Proposition 4.25 (composition inequality),

A(t) �
∫ t

τ

(s−τ)‖∇xF (s, ·)‖Zλ′,μ′+e(t,s,σ)
s+σ

ds =
∫ t

τ

(s−τ)‖∇xF (s, ·)‖Fλ′s+λ′σ+μ′+e(t,s,σ) ds,

with
e(t, s, σ) := ε‖θWt,s+(1−θ)W̃t,s‖Zλ′,μ′

t+σ
� 2εR2(s, t) � 2εR2(τ, t).

Using (5.7), we get

λ′s+λ′σ+μ′+e(s, t, σ) �λ′s+λ′σ+μ′+2εR2(τ, t) �λ′s+μ = (λs+μ)−(λ−λ′)s.

By again using the bound on ∇xF and the assumption F̂ (s, 0)=0, we deduce that

A(t) � sup
τ

∫ t

τ

(s−τ)CF e−2π(λ−λ′)s ds �R2(0, t) � CF

4π2(λ−λ′)2
.

Using (5.8), we conclude that

||||(Zt,τ −Z̃t,τ )0�τ�t||||� 1
2 ||||(Wt,s−W̃t,s)0�s�t||||.

So Ψ is 1
2 -Lipschitz on B(0, 2), and we can conclude the proof of (5.9) by applying

Theorem A.2 and choosing σ=τ ′−τ .

It remains to control the velocity component of Ω, i.e., establish (5.10); this will
follow from the control of the position component. Indeed, if we write

Qt,τ = ε−1(ΩVt,τ −Id)(x, v),
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we have

Qt,τ =
∫ t

τ

F (s, x−v(t−s)+εWt,s) ds,

so we can estimate as before

‖Qt,τ‖Zλ′,μ′
t+(τ′−τ)

�
∫ t

τ

‖F (s, ·)‖Fλ′s+λ′(τ′−τ)+μ′+e(t,s,τ′−τ) ds

to get

‖Qt,τ‖Zλ′,μ′
t+(τ′−τ)

�
∫ t

τ

CF e−2π(λ−λ′)s ds �R1(τ, t).

Thus the proof is complete.

Remark 5.4. Instead of directly studying St,τ S0
τ,t, one can study S0

t,τ Sτ,t and then
invert with the help of Proposition 4.28 (inversion inequality); in the end the results are
similar.

Remark 5.5. Loss and Bernard independently suggested to compare the estimates
in the present section with the Nekhoroshev theorem in dynamical systems theory [71],
[72]. The latter theorem roughly states that for a perturbation of a completely integrable
system, trajectories remain close to those of the unperturbed system for a time growing
exponentially in the inverse of the size of the perturbation (unlike KAM theory, this
result is not global in time; but it is more general in the sense that it also applies outside
invariant tori). In the present setting the situation is better since the perturbation decays.

6. Bilinear regularity and decay estimates

To introduce this crucial section, let us reproduce and improve a key computation from §3.
Let G be a function of v, and R a time-dependent function of x with R̂(0)=0; both G

and R are vector-valued in Rd. (Think of G(v) as ∇vf(v) and of R(τ, x) as ∇W ∗�(τ, x).)
From now on we shall always use the supremum norm over the coordinates in the following
sense

‖F‖Z := max
1�j�d

‖Fj‖Z and ‖F‖F := max
1�j�d

‖Fj‖F .

Let further

σ(t, x) =
∫ t

0

∫
Rd

G(v)·R(τ, x−v(t−τ)) dv dτ.



on landau damping 97

Then

σ̂(t, k) =
∫ t

0

∫
Td

∫
Rd

G(v)·R(τ, x−v(t−τ))e−2iπk·x dv dx dτ

=
∫ t

0

∫
Td

∫
Rd

G(v)·R(τ, x)e−2iπk·xe−2iπk·v(t−τ) dv dx dτ

=
∫ t

0

G̃(k(t−τ))·R̂(τ, k) dτ.

Let us assume that G has a “high” gliding analytic regularity λ̄, and estimate σ in
regularity λt, with λ<λ̄. Let α=α(t, τ) satisfy

0 �α(t, τ) � (λ̄−λ) (t−τ).

Then, with Zd
∗=Zd\{0},

‖σ(t)‖Fλt � d
∑

k∈Zd∗

∫ t

0

e2πλt|k||G̃(k(t−τ))| |R̂(τ, k)| dτ

� d

∫ t

0

(
sup
k∈Zd∗

|G̃(k(t−τ))|e2π(λ(t−τ)+α)|k|
)( ∑

k∈Zd

e2π(λτ−α)|k||R̂(τ, k)|
)

dτ

� d
(

sup
η∈Zd

e2πλ̄|η||G̃(η)|
)(

sup
0�τ�t

‖R(τ, ·)‖Fλτ−α

)∫ t

0

e−2π((λ̄−λ)(t−τ)−α) dτ,

where we have used that

k∈Zd
∗ =⇒ 2π(λ(t−τ)+α)|k|� 2πλ̄|k|(t−τ)−((λ̄−λ)(t−τ)−α).

Let us choose
α(t, τ) = 1

2 (λ̄−λ) min{1, t−τ}.
Then ∫ t

0

e−2π((λ̄−λ)(t−τ)−α) dτ �
∫ t

0

e−π(λ̄−λ)(t−τ) dτ � 1
π(λ̄−λ)

.

So in the end

‖σ(t)‖Fλt � d‖G‖X λ̄

π(λ̄−λ)
sup

0�τ�t
‖R(τ)‖Fλτ−α(t,τ) ,

where ‖G‖X λ̄ =supη∈Zd |G̃(η)|e2πλ̄|η|.
In the preceding computation there are three important things to notice, which lie

at the heart of Landau damping:
• The natural index of analytic regularity of σ in x increases linearly in time: this

is an automatic consequence of the gliding regularity, already observed in §4.
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• A bit α(t, τ) of analytic regularity of G was transferred from G to R, however no
more than a fraction of (λ̄−λ)(t−τ). We call this the regularity extortion: if f forces
f̄ , i.e. if it satisfies an equation of the form ∂tf+v ·∇xf+F [f ]·∇v f̄=S, then f̄ will give
away some (gliding) smoothness to �=

∫
Rd f dv.

• The combination of higher regularity of G and the assumption R̂(0)=0 has been
converted into a time-decay, so that the time-integral is bounded, uniformly as t!∞.
Thus there is decay by regularity.

The main goal of this section is to establish quantitative variants of these effects in
some general situations when G is not only a function of v and R not only a function of
t and x. Note that we shall have to work with regularity indices depending on t and τ !

Regularity extortion is related to velocity-averaging regularity, well known in kinetic
theory [43]; what is unusual though is that we are working in analytic regularity, and in
large time, while velocity-averaging regularity is mainly a short-time effect. In fact we
shall study two distinct mechanisms for the extortion: the first one will be well suited
for short times (t−τ small), and will be crucial later to get rid of small deteriorations in
the functional spaces due to composition; the second one will be well adapted to large
times (t−τ!∞) and will ensure convergence of the time-integrals.

The estimates in this section lead to a serious twist on the popular view on Landau
damping, according to which the wave gives energy to the particles that it forces; instead,
the picture here is that the wave gains regularity from the background, and regularity is
converted into decay.

For the sake of pedagogy, we shall first establish the basic, simple bilinear estimate,
and then discuss the two mechanisms once at a time.

6.1. Basic bilinear estimate

Proposition 6.1. (Basic bilinear estimate in gliding regularity) Let G=G(τ, x, v)
and R=R(τ, x, v) be valued in Rd,

β(τ, x) =
∫

Rd

(G·R)(τ, x−v(t−τ), v) dv,

σ(t, x) =
∫ t

0

β(τ, x) dτ.

Then
‖β(τ, ·)‖Fλt+μ � d‖G‖Zλ,μ;1

τ
‖R‖Zλ,μ

τ
; (6.1)

and

‖σ(t, ·)‖Fλt+μ � d

∫ t

0

‖G‖Zλ,μ;1
τ

‖R‖Zλ,μ
τ

dτ. (6.2)
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Proof. Obviously (6.2) follows from (6.1). To prove (6.1) we apply successively
Propositions 4.15, 4.19 and 4.24, obtaining

‖β(τ, ·)‖Fλt+μ �
∥∥∥∥∫

Rd

(G·R) S0
τ−t dv

∥∥∥∥
Fλt+μ

� ‖(G·R) S0
τ−t‖Zλ,μ;1

t

= ‖G·R‖Zλ,μ;1
τ

� d‖G‖Zλ,μ;1
τ

‖R‖Zλ,μ
τ

.

6.2. Short-term regularity extortion by time cheating

Proposition 6.2. (Short-term regularity extortion) Let G=G(x, v) and R=R(x, v)
be valued in Rd, and

β(x) =
∫

Rd

(G·R)(x−v(t−τ), v) dv.

Then for any λ, μ, t�0 and any b>−1, we have

‖β‖Fλt+μ � d‖G‖Zλ(1+b),μ;1
τ−bt/(1+b)

‖R‖Zλ(1+b),μ
τ−bt/(1+b)

. (6.3)

Moreover, if Pk stands for the projection on the k-th Fourier mode as in (4.36), one has

e2π(λt+μ)|k||β̂(k)|� d
∑
l∈Zd

‖PlG‖Zλ(1+b),μ;1
τ−bt/(1+b)

‖Pk−lR‖Zλ(1+b),μ
τ−bt/(1+b)

. (6.4)

Remark 6.3. If R only depends on t and x, then the norm of R in the right-hand
side of (6.3) is ‖R‖Fν with

ν = λ(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+μ = (λτ +μ)−b(t−τ),

as soon as τ �bt/(1+b). Thus, some regularity has been gained with respect to Propo-
sition 6.1. Even if R is not a function of t and x alone, but rather a function of t and
x composed with a function depending on all the variables, this gain will be preserved
through the composition inequality.

Proof. By applying successively Propositions 4.15 (iv), 4.19 and 4.24 (i), we get∥∥∥∥∫
Rd

(G·R)(x−v(t−τ), v) dv

∥∥∥∥
Fλt+μ

� ‖(G·R)(x−v(t−τ, v))‖Zλ(1+b),μ;1
t/(1+b)

= ‖G·R‖Zλ(1+b),μ;1
τ−bt/(1+b

� d‖G‖Zλ(1+b),μ;1
τ−bt/(1+b)

‖R‖Zλ(1+b),μ;∞
τ−bt/(1+b)

,

which is the desired result (6.3).
Inequality (6.4) is obtained in a similar way with the help of Proposition 4.34.
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Remark 6.4. Let us sketch an alternative proof of Proposition 6.2, which is longer but
has the interest to rely on commutators involving ∇v, ∇x and the transport semigroup, all
of them classically related to hypoelliptic regularity and velocity averaging. Let S=S0

τ−t,
so that R S(x, v)=R(x−v(t−τ), v); and let

D = Dτ,t,b := (τ−b(t−τ))∇x+(1+b)∇v.

Then, by direct computation,

t∇x(R S) = (DR) S−(1+b)∇v(R S); (6.5)

and since ∇x commutes with ∇v and D, and with the composition by S as well, this can
be generalized by induction into

(t∇x)n(R S) =
∑

m∈Nd
0

m�n

(
n

m

)
[−(1+b)∇v]m((Dn−mR) S). (6.6)

Applying this formula with R replaced by G·R and integrating in v yields

(t∇x)n

∫
Rd

(G·R) S0
τ−t dv =

∫
Rd

Dn(G·R) S0
τ−t dv =

∫
Rd

Dn(G·R) dv.

It follows by taking Fourier transform that

(2iπtk)nβ̂(k) =
∫

Rd

[Dn(G·R)]̂ dv =
∫

Rd

((1+b)∇v+2iπ(τ−b(t−τ))k)n(Ĝ·R)(k, v) dv,

whence∑
k∈Zd

n∈Nd
0

e2πμ|k| |2πλtk|n
n!

|β̂(k)|

�
∑
k∈Zd

n∈Nd
0

e2πμ|k| (λ(1+b))n

n!

∥∥∥∥[∇v+2iπ

(
τ− bt

1+b

)
k

]n
(Ĝ·R)(k, v)

∥∥∥∥
L1(dv)

= ‖G·R‖Zλ(1+b),μ;1
τ−bt/(1+b)

,

and then (6.3) follows by Proposition 4.24.

Let us conclude this subsection with some comments on Proposition 6.2. When we
wish to apply it, what constraints on b(t, τ) (assumed to be non-negative to fix the ideas)
does this presuppose? First, b should be small, so that λ(1+b)�λ̄. But most importantly,
we have estimated Gτ in a norm Zτ ′ instead of Zτ (this is the time cheating), where
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|τ ′−τ |=bt/(1+b). To compensate for this discrepancy, we may apply (4.19), but for this
to work bt/(1+b) should be small, otherwise we would lose a large index of analyticity
in x, or at best we would inherit an undesirable exponentially growing constant. So all
we are allowed is b(t, τ)=O(1/(1+t)). This is not enough to get the time-decay which
would lead to Landau damping. Indeed, if R=R(x) with R̂(0)=0, then

‖R‖Zλ(1+b),μ
τ−bt/(1+b)

= ‖R‖Fλτ+μ−λb(t−τ) � e−λb(t−τ)‖R‖Fλτ+μ ;

so we gain a coefficient e−λb(t−τ), but then∫ t

0

e−λb(t−τ) dτ �
∫ t

0

e−λε(t−τ)/t dτ =
(

1−e−λε

λε

)
t,

which of course diverges in large time.
To summarize: Proposition 6.2 is helpful when t−τ =O(1), or when some extra

time-decay is available. This will already be very useful; but for long-time estimates we
need another, complementary mechanism.

6.3. Long-term regularity extortion

To search for the extra decay, let us refine the computation of the beginning of this
section. Assume that Gτ =∇vgτ , where (gτ )τ�0 solves a transport-like equation, so
G̃(τ, k, η)=2iπηg̃(τ, k, η), and

|G̃(τ, k, η)|� 2π|η|e−2πμ̄|k|e−2πλ̄|η+kτ |.

Up to slightly increasing λ̄ and μ̄, we may assume that

|G̃(τ, k, η)|� (1+τ)e−2πμ̄|k|e−2πλ̄|η+kτ |. (6.7)

Let then �(τ, x)=
∫

Rd f(τ, x, v) dv, where also f solves a transport equation, but has a
lower analytic regularity; and R=∇W ∗�. Assuming that |∇̂W (k)|=O(|k|−γ) for some
γ�0, we have

|R̂(τ, k)|� e−2π(λτ+μ)|k|1k �=0

1+|k|γ . (6.8)

Let again

σ(t, x) =
∫ t

0

∫
Rd

G(τ, x−v(t−τ), v)·R(τ, x−v(t−τ)) dv dτ.
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As t!∞, G in the integrand of σ oscillates wildly in phase space, so it is not clear that
it will help at all. But let us compute

σ̂(t, k) =
∫ t

0

∫
Td

∫
Rd

G(τ, x−v(t−τ), v)·R(τ, x−v(t−τ))e−2iπk·x dv dx dτ

=
∫ t

0

∫
Td

∫
Rd

G(τ, x, v)·R(τ, x)e−2iπk·xe−2iπk·v(t−τ) dv dx dτ

=
∫ t

0

∫
Rd

Ĝ·R(τ, k, v)e−2iπk·v(t−τ) dv dτ

=
∫ t

0

∫
Rd

∑
l∈Zd

Ĝ(τ, l, v)·R̂(τ, k−l)e−2iπk·v(t−τ) dv dτ

=
∫ t

0

∑
l∈Zd

G̃(τ, l, k(t−τ))·R̂(τ, k−l) dτ.

At this level, the difference with respect to the beginning of this section lies in the fact
that there is a summation over l∈Zd, instead of just choosing l=0. Note that

σ̂(t, 0) =
∫ t

0

∫
Td

∫
Rd

G(τ, x, v)·R(τ, x) dv dx dτ = 0,

because G is a v-gradient.
From (6.7) and (6.8) we deduce that∑

k∈Zd

|σ̂(t, k)|e2π(λt+μ)|k|

�
∫ t

0

(1+τ)
∑

k,l∈Zd

0 �=k �=l

e2πμ|k|e2πλt|k|e−2πμ̄|l|e−2πλ̄|k(t−τ)+lτ |e−2πμ|k−l| e
−2πλτ |k−l|

1+|k−l|γ dτ.

Using the inequalities

e−2πμ|k−l|e2πμ|k|e−2πμ̄|l| � e−2π(μ̄−μ)|l|

and

e−2πλτ |k−l|e2πλt|k|e−2πλ̄|k(t−τ)+lτ | � e−2π(λ̄−λ)|k(t−τ)+lτ |,

we end up with

‖σ(t)‖Fλt+μ �
∑

k,l∈Zd

0 �=k �=l

e−2π(μ̄−μ)|l|

1+|k−l|γ
∫ t

0

e−2π(λ̄−λ)|k(t−τ)+lτ |(1+τ) dτ.
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If it were not for the negative exponential, the time-integral would be O(t2) as t!∞.
The exponential helps only a bit: its argument vanishes e.g. for d=1, k>0, l<0 and
τ =kt/(k+|l|). Thus we have the essentially optimal bounds∫ t

0

e−2π(λ̄−λ)|k(t−τ)+lτ | dτ � 1
π(λ̄−λ)|k−l| (6.9)

and ∫ t

0

e−2π(λ̄−λ)|k(t−τ)+lτ | τ dτ � 1
2π2(λ̄−λ)2|k−l|2 +

1
π(λ̄−λ)

|k|t
|k−l| . (6.10)

From this computation we conclude that:
• The higher regularity of G has allowed us to reduce the time-integral due to a factor

e−α|k(t−τ)+lτ |; but this factor is not small when τ/t is equal to k/(k−l). As discussed in
the next section, this reflects an important physical phenomenon called (plasma) echo,
which can be assimilated to a resonance.

• If we had (in “gliding” norm) ‖Gτ‖=O(1) this would ensure a uniform bound on
the integral, as soon as γ>0, due to (6.9) and∑

k,l∈Zd

e−α|l|

(1+|k−l|)1+γ
<∞.

• But Gτ is a velocity gradient, so (unless of course G depends only on v) ‖Gτ‖
diverges like O(τ) as τ!∞, which implies a divergence of our bounds in large time, as
can be seen from (6.10). If γ�1 this comes with a divergence in the k variable, since in
this case ∑

k,l∈Zd

e−α|l||k|
(1+|k−l|)1+γ

=∞.

(The Coulomb case corresponds to γ=1, so in this respect it has a borderline divergence.)
The following estimate adapts this computation to the formalism of hybrid norms,

and at the same time allows for a time cheating similar to the one in Proposition 6.2.
Fortunately, we shall only need to treat the case when R=R(τ, x); the more general case
with R=R(τ, x, v) would be much more tricky.

Theorem 6.5. (Long-term regularity extortion) Let G=G(τ, x, v), R=R(τ, x) and

σ(t, x) =
∫ t

0

∫
Rd

G(τ, x−v(t−τ), v)·R(τ, x−v(t−τ)) dv dτ.

Let λ, λ̄, μ, μ̄, μ′=μ′(t, τ) and M�1 be such that (1+M)λ�λ̄>λ>0 and μ̄�μ′>μ>0,
and let γ�0 and b=b(t, τ)�0. Then

‖σ(t, ·)‖Ḟλt+μ �
∫ t

0

KG
0 (t, τ)‖Rτ‖Fν dτ +

∫ t

0

KG
1 (t, τ)‖Rτ‖Fν,γ dτ, (6.11)
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where

ν = max
{
λτ +μ′− 1

2λb(t−τ), 0
}
, (6.12)

KG
0 (t, τ) = de−π(λ̄−λ)(t−τ)

∥∥∥∥∫
Td

G(τ, x, ·) dx

∥∥∥∥
Cλ̄(1+b);1

, (6.13)

KG
1 (t, τ) =

(
sup

0�τ�t

‖Gτ‖Zλ̄(1+b),μ̄
τ−bt/(1+b)

1+τ

)
K1(t, τ), (6.14)

K1(t, τ)

= (1+τ)d sup
k,l∈Zd∗

e−π(μ̄−μ)|l|e−π(λ̄−λ)|k(t−τ)+lτ |/Me−2π[μ′−μ+λb(t−τ)/2]|k−l|

1+|k−l|γ . (6.15)

Remark 6.6. It is essential in (6.11) to separate the contribution of Ĝ(τ, 0, v) from
the rest. Indeed, if we removed the restriction l �=0 in (6.15) the kernel K1 would be too
large to be correctly controlled in large time. What makes this separation reasonable is
that, although in cases of application G(τ, x, v) is expected to grow like O(τ) in large
time, the spatial average

∫
Td G(τ, x, v) dx is expected to be bounded. Also, we will not

need to take advantage of the parameter γ to handle this term.

Proof. Without loss of generality we may assume that G and R are scalar-valued.
(This explains the constant d in front of the right-hand sides of (6.13) and (6.15).) First
we assume that Ĝ(τ, 0, v)=0, and we write as before

σ̂(t, k) =
∫ t

0

(∑
l∈Zd∗

∫
Rd

Ĝ(τ, l, v)R̂(τ, k−l)e−2iπk·v(t−τ) dv

)
dτ,

|σ̂(t, k)|�
∫ t

0

(∑
l∈Zd∗

∣∣∣∣∫
Rd

Ĝ(τ, l, v)e−2iπk·v(t−τ) dv

∣∣∣∣|R̂(τ, k−l)|
)

dτ. (6.16)

Next we let τ ′=τ−b(t−τ) and write

e2π(λt+μ)|k| � e−2π(μ̄−μ)|l|e−2πλ(τ−τ ′)|k−l|e−2π(μ′−μ)|k−l|e−2π(λ̄−λ)|k(t−τ ′)+lτ ′|

×e2πμ̄|l|e2π(λτ+μ′)|k−l|e2πλ̄|k(t−τ ′)+lτ ′|.
(6.17)

Since 0�λ̄−λ�Mλ, we have

e−2π(λ̄−λ)|k(t−τ ′)+lτ ′| � e−π(λ̄−λ)|k(t−τ)+lτ |/Meπλ(τ−τ ′)|k−l|;

so (6.17) implies that

e2π(λt+μ)|k| � e−2π(μ̄−μ)|l|e−π(λ̄−λ)|k(t−τ)+lτ |/Me−2π[μ′−μ+λ(τ−τ ′)/2]|k−l|

×e2πμ̄|l|e2π(λτ+μ′)|k−l| ∑
n∈Nd

0

|2iπλ̄(k(t−τ ′)+lτ ′)|n
n!

.
(6.18)



on landau damping 105

For each n∈Nd
0,

|2iπλ̄(k(t−τ ′)+lτ ′)|n
n!

∣∣∣∣∫
Rd

Ĝ(τ, l, v)e−2iπk·v(t−τ) dv

∣∣∣∣
=

λ̄n

n!

∣∣∣∣∫
Rd

Ĝ(τ, l, v)[2iπ(k(t−τ ′)+lτ ′)]ne−2iπk·v(t−τ) dv

∣∣∣∣
=

λ̄n

n!

(
t−τ ′

t−τ

)n∣∣∣∣∫
Rd

Ĝ(τ, l, v)
[
2iπ

(
k(t−τ)+lτ ′

(
t−τ

t−τ ′

))]n
e−2iπk·v(t−τ) dv

∣∣∣∣
=

λ̄n

n!

(
t−τ ′

t−τ

)n∣∣∣∣∫
Rd

Ĝ(τ, l, v)
[
−∇v+2iπlτ ′

(
t−τ

t−τ ′

)]n
e−2iπk·v(t−τ) dv

∣∣∣∣
=

λ̄n

n!

(
t−τ ′

t−τ

)n∣∣∣∣∫
Rd

[
∇v+2iπlτ ′

(
t−τ

t−τ ′

)]n
Ĝ(τ, l, v)e−2iπk·v(t−τ) dv

∣∣∣∣
� λ̄n

n!

(
t−τ ′

t−τ

)n∥∥∥∥(∇v+2iπlτ ′
(

t−τ

t−τ ′

))n
Ĝ(τ, l, v)

∥∥∥∥
L1(dv)

=
λ̄n(1+b)n

n!

∥∥∥∥(∇v+2iπl

(
τ− bt

1+b

))n
Ĝ(τ, l, v)

∥∥∥∥
L1(dv)

.

Combining this with (6.16) and (6.18), and summing over k, we deduce that

‖σ(t, ·)‖Ḟλt+μ

=
∑
k∈Zd∗

e2π(λt+μ)|k||σ̂(t, k)|

�
∫ t

0

∑
k,l∈Zd

n∈Nd
0

e−2π(μ̄−μ)|l|e−π(λ̄−λ)|k(t−τ)+lτ |/Me−2π[μ′−μ+λ(τ−τ ′)/2]|k−l|

1+|k−l|γ

×e2πμ̄|l|e2π[λτ+μ′−λb(t−τ)/2]|k−l| λ̄
n(1+b)n

n!
|R̂(τ, k−l)|

×
∥∥∥∥(∇v+2iπl

(
τ− bt

1+b

))n
Ĝ(τ, l, v)

∥∥∥∥
L1(dv)

dτ,

and the desired estimate follows readily.
Finally we consider the contribution of

Ĝ(τ, 0, v) =
∫

Td

G(τ, x, v) dx.

This is done in the same way, noting that

sup
k∈Zd∗

e−2π(λ̄−λ)|k|(t−τ)

1+|k|γ � e−2π(λ̄−λ)(t−τ).
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To conclude this section we provide a “mode-by-mode” variant of Theorem 6.5; this
will be useful for very singular interactions (γ=1 in Theorem 2.6).

Theorem 6.7. Under the same assumptions as in Theorem 6.5, for all k∈Zd we
have the estimate

e2π(λt+μ)|k||σ̂(t, k)|�
∫ t

0

KG
0 (t, τ)(e2πν|k||R̂(τ, k)|) dτ

+
∫ t

0

∑
l∈Zd

KG
k,l(t, τ)e2πν|k−l|(1+|k−l|γ)|R̂(τ, k−l)| dτ,

(6.19)

where KG
0 is defined by (6.13), ν by (6.12) and

KG
k,l(t, τ) =

(
sup

0�τ�t

‖G‖Zλ̄(1+b),μ̄;1
τ−bt/(1+b)

1+τ

)
Kk,l(t, τ),

Kk,l(t, τ) =
(1+τ)de−2π(μ̄−μ)|l|e−π(λ̄−λ)|k(t−τ)+lτ |/Me−2π[μ′−μ+λb(t−τ)/2]|k−l|

1+|k−l|γ .

Proof. The proof is similar to that of Theorem 6.5, except that k is fixed and we
use, for each l, the crude bound

e2πμ̄|l|
∥∥∥∥(∇v+2iπl

(
τ− bt

1+b

))n
Ĝ(τ, l, v)

∥∥∥∥
L1(dv)

�
∑
j∈Zd

e2πμ̄|j|
∥∥∥∥(∇v+2iπj

(
τ− bt

1+b

))n
Ĝ(τ, j, v)

∥∥∥∥
L1(dv)

.

7. Control of the time-response

To motivate this section, let us start from the linearized equation (3.3), but now assume
that f0 depends on t, x and v, and that there is an extra source term S, decaying in
time. Thus the equation is

∂f

∂t
+v ·∇xf−(∇W ∗�)·∇vf0 = S,

and the equation for the density �, as in the proof of Theorem 3.1, is

�(t, x) =
∫

Rd

fi(x−vt, v) dv

+
∫ t

0

∫
Rd

∇vf0(τ, x−v(t−τ), v)·(∇W ∗�)(τ, x−v(t−τ)) dv dτ

+
∫ t

0

∫
Rd

S(τ, x−v(t−τ), v) dv dτ.

(7.1)
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Hopefully we may apply Theorem 6.5 to deduce from (7.1) an integral inequality on
ϕ(t):=‖�(t)‖Fλt+μ , which will look like

ϕ(t) �A+c

∫ t

0

K(t, τ)ϕ(τ) dτ, (7.2)

where A is the contribution of the initial datum and the source term, and K(t, τ) is a
kernel looking like, say, (6.15).

How do we proceed from (7.2)? Assume for a start that a smallness condition of the
form (a) in Proposition 2.1 is satisfied. Then the simple and natural way, as in §3, would
be to write

ϕ(t) �A+c

(∫ t

0

K(t, τ) dτ

)
sup

0�τ�t
ϕ(τ)

and deduce that

ϕ(t) � A

1−c
∫ t

0
K(t, τ) dτ

(7.3)

(assuming of course the denominator to be positive). However, if K is given by (6.15), it
is easily seen that

∫ t

0
K(t, τ) dτ � t as t!∞, where >0; then (7.3) is useless. In fact

(7.2) does not prevent ϕ from tending to ∞ as t!∞. Nevertheless, its growth may be
controlled under certain assumptions, as we shall see in this section. Before embarking
on cumbersome calculations, we shall start with a qualitative discussion.

7.1. Qualitative discussion

The kernel K in (6.15) depends on the choice of μ′=μ(t, τ). How large μ′−μ can be
depends in turn on the amount of regularization offered by the convolution with the
interaction ∇W . We shall distinguish several cases according to the regularity of the
interaction.

7.1.1. Analytic interaction

If ∇W is analytic, there is σ>0 such that

‖�∗∇W‖Fν+σ �C‖�‖Fν for all ν � 0;

then in (6.15) we can afford to choose, say, μ′−μ=σ and γ=0. Thus, assuming that

b =
B

1+t
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with B so small that (μ′−μ)−λb(t−τ)� 1
2σ, K is bounded by

K(α)(t, τ) = (1+τ) sup
l,k∈Zd∗

e−α|l|e−α|k−l|e−α|k(t−τ)+lτ |, (7.4)

where α= 1
2 min{λ̄−λ, μ̄−μ, σ}. To fix ideas, let us work in dimension d=1. The goal is

to estimate solutions of

ϕ(t) � a+c

∫ t

0

K(α)(t, τ)ϕ(τ) dτ. (7.5)

Whenever τ/t is a rational number distinct from 0 or 1, there are k, l∈Z such that
|k(t−τ)+lτ |=0, and the size of K(α)(t, τ) mainly depends on the minimum admissible
values of k and k−l. Looking at values of τ/t of the form 1/(n+1) or n/(n+1) suggests
the approximation

K(α) � (1+τ) min{e−ατ/(t−τ)e−2α, e−2α(t−τ)/τe−α}. (7.6)

But this estimate is terrible: the time-integral of the right-hand side is much larger than
the integral of K(α). In fact, the fast variation and “wiggling” behavior of K(α) are
essential to get decent estimates.

To get a better feeling for K(α), let us only retain the term for k=1 and l=−1; this
seems reasonable since we have an exponential decay as k or l tend to infinity (anyway,
throwing away all other terms can only improve the estimates). So we look at

K̃(α)(t, τ) = (1+τ)e−3αe−α|t−2τ |.

Let us time-rescale by setting kt(θ)=tK̃(α)(t, tθ) for θ∈[0, 1] (the t factor appears because
dτ =t dθ); then it is not hard to see that

kt

t
! e−3α

2α
δ1/2.

This suggests the following baby model for (7.5):

ϕ(t) � a+ctϕ
(

1
2 t
)
. (7.7)

The important point in (7.7) is that, although the kernel has total mass O(t), this
mass is located far from the endpoint τ =t; this is what prevents the fast growth of ϕ.
Compare with the inequality ϕ(t)�a+ctϕ(t), which implies no restriction at all on ϕ.

To be slightly more quantitative, let us look for a power series

Φ(t) =
∞∑

k=0

aktk
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Figure 5. The kernel K(α)(t, τ), together with the approximate upper bound in (7.6), for
α=0.5 and t=10, t=100 and t=1000, respectively.
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achieving equality in (7.7). This yields a0=a and ak+1=cak2−k, so

Φ(t) = a

∞∑
k=0

cktk

2k(k−1)/2
. (7.8)

The function Φ exhibits a truly remarkable behavior: it grows faster than any polynomial,
but slower than any fractional exponential exp(ctν), ν∈(0, 1); essentially it behaves like
A(log t)2 (as can also be seen directly from (7.7)). One may conjecture that solutions of
(7.5) exhibit a similar kind of growth.

Let us interpret these calculations. Typically, the kernel K controls the time vari-
ation of (say) the spatial density � which is due to binary interaction of waves. When
two waves of distinct frequencies interact, the effect over a long time-period is most of
the time very small; this is a consequence of the oscillatory nature of the evolution, and
the resulting time-averaging. But at certain particular times, the interaction becomes
strong: this is known in plasma physics as the plasma echo, and can be thought of as
a kind of resonance. Spectacular experiments by Malmberg and collaborators are based
on this effect [32], [60]. Namely, if one starts a wave at frequency l at time 0, and forces
it at time τ by a wave of frequency k−l, a strong response is obtained at time t and
frequency k such that

k(t−τ)+lτ = 0 (7.9)

(which of course is possible only if k and l are parallel to each other, with opposite
directions).

In the present non-linear setting, whatever variation the density function is subject
to, will result in echoes at later times. Even if each echo in itself will eventually decay,
the problem is whether the accumulation of echoes will trigger an uncontrolled growth
(unstability). As long as the expected growth is eaten by the time-decay coming from the
linear theory, non-linear Landau damping is expected. In the present case, the growth of
(7.8) is very slow in regard of the exponential time-decay due to the analytic regularity.

7.1.2. Sobolev interaction

If ∇W only has Sobolev regularity, we cannot afford in (6.15) to take μ′(t, τ) larger than
μ+η(t−τ)/t (because the amount of regularity transferred in the bilinear estimates is
only O((t−τ)/t), recall the discussion at the end of §6.2). On the other hand, we have
γ>0 such that

‖∇W ∗�‖Fν,γ �C‖�‖Fν for all ν � 0.
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and then we can choose this γ in (6.15). So, assuming b=B/(1+t) with B so small that
(μ′−μ)−λb(t−τ)�η(t−τ)/2t, K in (6.15) will be controlled by

K(α),γ(t, τ) = (1+τ)d sup
l,k∈Z∗

e−α|l|e−α(t−τ)|k−l|/te−α|k(t−τ)+lτ |

1+|k−l|γ , (7.10)

where α= 1
2 min{λ̄−λ, μ̄−μ, η}. The equation we are considering now is

ϕ(t) � a+
∫ t

0

K(α),γ(t, τ)ϕ(τ) dτ. (7.11)

For, say, τ � 1
2 t, we have K(α)�K(α/2), and the discussion is similar to that in §7.1.1.

But when τ aproaches t, the term e−α(t−τ)|k−l|/t hardly helps. Keeping only k>0 and
l=−1 (because of the exponential decay in l) leads us to consider the kernel (for simplicity
we set d=1 without loss of generality)

K(α)(t, τ) = (1+τ) sup
k∈Z∗

e−α|kt−(k+1)τ |

1+(k+1)γ
.

Once again we perform a time-rescaling, setting ǩt(θ)=tK(α)(t, tθ), and let t!∞. In
this limit each exponential e−α|kt−(k+1)τ | becomes localized in a neighborhood of size
O(t/k) around θ=k/(k+1), and contributes a Dirac mass at θ=k/(k+1), with amplitude
2/α(k+1). We get that

ǩt

t
! 2

α

∑
k∈Z

1
1+(k+1)γ

k

(k+1)2
δ1−1/(k+1) as t!∞.

This leads us to the following baby model for (7.11):

ϕ(t) � a+ct
∞∑

k=1

1
k1+γ

ϕ

((
1− 1

k

)
t

)
. (7.12)

If we search for
∑∞

n=0 antn achieving equality, this yields

a0 = a, an+1 = c

( ∞∑
k=1

1
k1+γ

(
1− 1

k

)n)
an.

To estimate the behavior of the
∑

k above, we compare it with∫ ∞

1

1
t1+γ

(
1− 1

t

)n
dt =
∫ t

0

uγ−1(1−u)n du = B(γ, n+1) =
Γ(γ)Γ(n+1)
Γ(n+γ+1)

= O

(
1
nγ

)
,

where B(γ, n+1) is the beta function. All in all, we may expect ϕ in (7.11) to behave
qualitatively like

Φ(t) = a

∞∑
n=0

cntn

(n!)γ
.

Notice that Φ is subexponential for γ>1 (it grows essentially like the fractional expo-
nential exp(t1/γ)) and exponential for γ=1. In particular, as soon as γ>1, we expect
non-linear Landau damping again.
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7.1.3. Coulomb–Newton interaction (γ=1)

When γ=1, as is the case for Coulomb or Newton interaction, the previous analysis
becomes borderline, since we expect (7.12) to be compatible with an exponential growth,
and the linear decay is also exponential. To handle this more singular case, we shall work
mode-by-mode, rather than on just one norm. Starting again from (7.1), we consider,
for each k∈Zd,

ϕk(t) = e2π(λt+μ)|k||�̂(t, k)|,
and hope to get, via Theorem 6.7, an inequality which will roughly take the form

ϕk(t) �Ak+c

∫ t

0

∑
l∈Zd

Kk,l(t, τ)ϕk−l(τ) dτ. (7.13)

(Note that summing over k would yield an inequality worse than (7.11).) To fix the
ideas, let us work in dimension d=1, and set k�1 and l=−1. Reasoning as in §7.1.2, we
obtain the baby model

ϕk(t) �Ak+
ct

(k+1)1+γ
ϕk+1

(
kt

k+1

)
. (7.14)

The gain with respect to (7.12) is clear: for different values of k, the “dominant times”
are distinct. From the physical point of view, we are discovering that, in some sense,
echoes occurring at distinct frequencies are asymptotically well separated.

Let us search again for power series solutions: we set

ϕk(t) =
∞∑

m=0

ak,mtm, ak,0 = Ak.

By identification,

ak,m = ak+1,m−1c(k+1)−(1+γ)

(
k

k+1

)m−1

,

and by induction

ak,m = Ak+mcm

(
k!

(k+m)!

)1+γ
km−1cm

(k+1)(k+2) ... (k+m)
�Ak+m

(
k!

(k+m)!

)γ+2

km−1cm.

We may expect that Ak+m�Ae−a(k+m); then

ak,m �A(ke−ak)kmcm e−am

(m!)γ+2
,

and in particular

ϕk(t) �Ae−ak/2
∞∑

m=0

(ckt)m

(m!)γ+2
�Ae(1−α)(ckt)α

, α =
1

γ+2
.

This behaves like a fractional exponential even for γ=1, and we can now believe in non-
linear Landau damping for such interactions! (The argument above works even for more
singular interactions; but in the proof later the condition γ�1 will be required for other
reasons, see pp. 152 and 161.)
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7.2. Exponential moments of the kernel

Now we start to estimate the kernel K(α),γ from (7.10), without any approximation this
time. Eventually, instead of proving that the growth is at most fractionally exponential,
we shall compare it with a slow exponential eεt. For this, the first step consists in
estimating exponential moments of the kernel e−εt

∫ t

0
K(t, τ)eετ dτ . (To get more precise

estimates, one can study e−εtα∫ t

0
K(t, τ)eετα

dτ , but such a refinement is not needed for
the proof of Theorem 2.6.)

The first step consists of estimating exponential moments.

Proposition 7.1. (Exponential moments of the kernel) Let γ∈[1,∞) be given. For
any α∈(0, 1), let K(α),γ be defined by (7.10). Then for any γ<∞ there is α=α(γ)>0
such that if α�α and ε∈(0, 1), then for any t>0,

e−εt

∫ t

0

K(α),γ(t, τ)eετ dτ

�C

(
1

αεγtγ−1
+

1
αεγtγ

log
1
α

+
1

α2ε1+γt1+γ
+
(

1
α3

+
1

α2ε
log

1
α

)
e−εt/4+

e−αt/2

α3

)
,

where C=C(γ). In particular,
• if γ>1 and ε�α, then

e−εt

∫ t

0

K(α),γ(t, τ)eετ dτ � C(γ)
α3ε1+γtγ−1

;

• if γ=1 then

e−εt

∫ t

0

K(α),γ(t, τ)eετ dτ � C

α3

(
1
ε
+

1
ε2t

)
.

Remark 7.2. Much stronger estimates can be obtained if the interaction is ana-
lytic; that is, when K(α),γ is replaced by K(α) defined in (7.4). A notable point about
Proposition 7.1 is that for γ=1 we do not have any time-decay as t!∞.

Proof. To simplify notation we shall not recall the dependence of K on γ, and we
shall set d=1 without loss of generality. We first assume that γ<∞, and consider τ � 1

2 t,
which is the favorable case. We write

K(α)(t, τ) � (1+τ) sup
l∈Z

k∈Z∗

e−α|l|e−α|k−l|/2e−α|k(t−τ)+lτ |.

Since we got rid of the condition l �=0, the right-hand side is now a non-increasing function
of d. (To see this, pick up a non-zero component of k, and recall our norm conventions
from Appendix A.1.) So we assume d=1. By symmetry we may also assume that k>0.
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Explicit computations yield

∫ t/2

0

e−α|k(t−τ)+lτ |(1+τ) dτ �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
α(l−k)

+
1

α2(l−k)2
, if l > k,

e−αkt

(
t

2
+

t2

8

)
, if l = k,

e−α(k+l)t/2

α|k−l|
(

1+
t

2

)
, if −k � l < k,

2
α|k−l|+

2kt

α|k−l|2 +
1

α2|k−l|2 , if l <−k.

In all cases,∫ t/2

0

e−α|k(t−τ)+lτ |(1+τ) dτ

�
(

3
α|k−l|+

1
α2|k−l|2 +

2t

α|k−l|
)

1k �=l+e−αkt

(
t

2
+

t2

8

)
1l=k.

So

e−εt

∫ t/2

0

e−α|k(t−τ)+lτ |(1+τ)eετ dτ

� e−εt/2

(
3

α|k−l|+
1

α2|k−l|2 +
2t

α|k−l|
)

1k �=l+e−αkt

(
t

2
+

t2

8

)
1l=k

� e−εt/4

(
3

α|k−l|+
1

α2|k−l|2 +
8z

αε|k−l|
)

1k �=l+e−tα/2

(
z

α
+

8z2

α2

)
1l=k,

where z=supx xe−x=e−1. Then

eεt

∫ t/2

0

K(α)(t, τ)eετ dτ � e−εt/4
∑

l,k∈Z

0 �=k �=l

e−α|l|e−α|k−l|/2

(
3

α|k−l|+
1

α2|k−l|2 +
8z

αε|k−l|
)

+e−tα/2
∑
l∈Z

e−α|l|
(

z

α
+

8z2

α2

)
.

Using the bounds (for α∼0+)∑
l∈Z

e−αl = O

(
1
α

)
,
∑
l∈Z

e−αl

l
= O

(
log

1
α

)
and

∑
l∈Z

e−αl

l2
= O(1),

we end up, for α� 1
4 , with a bound like

Ce−εt/4

(
1
α2

log
1
α

+
1
α3

+
1

α2ε
log

1
α

)
+Ce−αt/2

(
1
α2

+
1
α3

)
�C

[
e−εt/4

(
1
α3

+
1

α2ε
log

1
α

)
+

e−αt/2

α3

]
.
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(Note that the last term is O(t−3), so it is anyway negligible in front of the other terms
if γ�4; in this case the restriction ε�α can be dispended with.)

• Next we turn to the more delicate contribution of τ � 1
2 t. For this case we write

K(α)(t, τ) � (1+τ) sup
l∈Zd∗

e−α|l| sup
k∈Zd

e−α|k(t−τ)+lτ |

1+|k−l|γ , (7.15)

and the upper bound is a non-increasing function of d, so we assume that d=1. Without
loss of generality, we restrict the supremum to l>0.

The function x 
!(1+|x−l|γ)−1e−α|x(t−τ)+lτ | is decreasing for x�l, increasing for
x�−lτ/(t−τ); and on the interval [−lτ/(t−τ), l] its logarithmic derivative goes

from
(
−α+

γ/lt

1+((t−τ)/lt)γ

)
(t−τ) to −α(t−τ).

So, if t�γ/α, there is a unique maximum at x=−lτ/(t−τ), and the supremum in (7.15)
is achieved for k equal to either the lower integer part, or the upper integer part of
−lτ/(t−τ). Thus a given integer k occurs in the supremum only for some times τ

satisfying k−1<−lτ/(t−τ)<k+1. Since only negative values of k occur, let us change
the sign so that k is non-negative. The equation

k−1 <
lτ

t−τ
<k+1

is equivalent to
k−1

k+l−1
t < τ <

k+1
k+l+1

t.

Moreover, τ > 1
2 t implies that k�l. Thus, for t�γ/α, we have

e−εt

∫ t

t/2

K(α)(t, τ)eετ dτ

� e−εt
∞∑

l=1

e−αl
∞∑

k=l

∫ (k+1)t/(k+l+1)

(k−1)t/(k+l−1)

(1+τ)
e−α|k(t−τ)−lτ |eετ

1+(k+l)γ
dτ.

(7.16)

For t�γ/α we have the trivial bound

e−εt

∫ t

t/2

K(α)(t, τ)eετ dτ � γ

2α
;

so in the sequel we shall just focus on the estimate of (7.16).
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To evaluate the integral in the right-hand side of (7.16), we separate according to
whether τ is smaller or larger than kt/(k+l); we use trivial bounds for eετ inside the
integral, and in the end we get the explicit bounds

e−εt

∫ kt/(k+l)

(k−1)t/(k+l−1)

(1+τ)e−α|k(t−τ)−lτ |eετ dτ � e−εlt/(k+l)

(
1

α(k+l)
+

kt

α(k+l)2

)
,

e−εt

∫ (k+1)t/(k+l+1)

kt/(k+l)

(1+τ)e−α|k(t−τ)−lτ |eετ dτ � e−εlt/(k+l+1)

×
(

1
α(k+l)

+
kt

α(k+l)2
+

1
α2(k+l)2

)
.

All in all, there is a numeric constant C such that (7.16) is bounded above by

C

∞∑
l=1

e−αl
∞∑

k=l

(
1

α2(k+l)2+γ
+

1
α(k+l)1+γ

+
kt

α(k+l)2+γ

)
e−εlt/(k+l), (7.17)

together with an additional similar term where e−εlt/(k+l) is replaced by e−εlt/(k+l+1),
and which will satisfy similar estimates.

We consider separately the three contributions in the right-hand side of (7.17). The
first one is

1
α2

∞∑
l=1

e−αl
∞∑

k=l

e−εlt/(k+l)

(k+l)2+γ
.

To evaluate the behavior of this sum, we compare it to the 2-dimensional integral

I(t) =
1
α2

∫ ∞

1

e−αx

∫ ∞

x

e−εxt/(x+y)

(x+y)2+γ
dy dx.

We change variables (x, y) 
!(x, u), where u(x, y)=εxt/(x+y). This has Jacobian deter-
minant dx dy/dx du=εxt/u2, and we find that

I(t) =
1

α2ε1+γt1+γ

∫ ∞

1

e−αx

x1+γ
dx

∫ εt/2

0

e−uuγ du = O

(
1

α2ε1+γt1+γ

)
.

The same computation for the second integral in the right-hand side of (7.17) yields

1
αεγtγ

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−uuγ−1 du = O

(
1

αεγ tγ
log

1
α

)
.

(The logarithmic factor arises only for γ=1.)
The third exponential in the right-hand side of (7.17) is the worst. It yields a

contribution
t

α

∞∑
l=1

e−αl
∞∑

k=l

e−εltk/(k+l)

(k+l)2+γ
. (7.18)
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We compare this with the integral

t

α

∫ ∞

1

e−αx

∫ ∞

x

e−εxt/(x+y)y

(x+y)2+γ
dy dx,

and the same change of variables as before equates this with

1
αεγtγ−1

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−uuγ−1 du− 1
αε1+γtγ

∫ ∞

1

e−αx

xγ
dx

∫ εt/2

0

e−uuγ du

= O

(
1

αεγtγ−1
log

1
α

)
.

(Again the logarithmic factor arises only for γ=1.)
The proof of Proposition 7.1 follows by collecting all these bounds and keeping only

the worst one.

Remark 7.3. It is not easy to catch (say numerically) the behavior of (7.18), because
it comes as a superposition of exponentially decaying modes; any truncation in k would
lead to a radically different time-asymptotics.

From Proposition 7.1 we deduce L2 exponential bounds.

Corollary 7.4. (L2 exponential moments of the kernel) With the same notation
as in Proposition 7.1,

e−2εt

∫ t

0

K(α),γ(t, τ)2e2ετ dτ �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C(γ)

α4ε1+2γt2(γ−1)
, if γ > 1,

C

(
1

α3ε2
+

1
α2ε3t

)
, if γ = 1.

(7.19)

Proof. This follows easily from Proposition 7.1 and the obvious bound

K(α),γ(t, τ)2 �C(1+t)K(2α),2γ(t, τ).

7.3. Dual exponential moments

Proposition 7.5. With the same notation as in Proposition 7.1, for any γ�1 we
have

sup
τ�0

eετ

∫ ∞

τ

e−εtK(α),γ(t, τ) dt �C(γ)
(

1
α2ε

+
1

αεγ
log

1
α

)
. (7.20)

Remark 7.6. The corresponding computation for the baby model considered in §7.1.2
is

eετ 1+τ

α

∞∑
k=1

e−ε(k+1)τ/k

k1+γ
� 1+τ

α

∫ ∞

1

e−ετ/x

x1+γ
dx =

1+τ

τγ

1
αεγ

∫ ετ

0

e−uuγ−1 du.

So we expect the dependence upon ε in (7.20) to be sharp as γ!1.
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Figure 6. The function (7.18) for γ=1, truncated at l=1 and k�K, for K=5, 10, 100, 1000.
The decay is slower and slower, but still exponential (picture above); however, the maximum
value occurs on a much slower time scale and slowly increases with the truncation parameter
(picture below, which is a zoom on shorter times).

Proof. We first reduce to d=1, and split the integral as

eετ

∫ ∞

τ

e−εtK(α),γ(t, τ) dt = eετ

∫ ∞

2τ

e−εtK(α),γ(t, τ) dt︸ ︷︷ ︸
:=I1

+ eετ

∫ 2τ

τ

e−εtK(α),γ(t, τ) dt.︸ ︷︷ ︸
:=I2

The first term I1 is easy: for 2τ �t�∞ we have

K(α),γ(t, τ) � (1+τ)
∞∑

k=2

∑
l∈Z∗

e−α|l|−α|k−l|/2 � C(1+τ)
α2

,

and thus

eετ

∫ ∞

2τ

e−εtK(α),γ(t, τ) dt � C(1+τ)
α2

e−ετ � C

εα2
.
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We treat the second term I2 as in the proof of Proposition 7.1:

eετ

∫ 2τ

τ

K(α),γ(t, τ)e−εt dt � eετ (1+τ)
∞∑

l=1

e−αl
∞∑

k=l

∫ (k+l−1)τ/(k−1)

(k+l+1)τ/(k+1)

e−α|k(t−τ)−lτ |

1+(k+l)γ
e−εt dt

� (1+τ)
∞∑

l=1

e−αl
∞∑

k=l

e−εlτ/k

kγ

2
kα

.

We compare this with

2(1+τ)
α

∫ ∞

1

e−αx

∫ ∞

x

e−εxτ/y

y1+γ
dy dx =

2
αεγ

1+τ

τγ

∫ ∞

1

e−αx

xγ

∫ ετ

0

e−uuγ−1 du dx

� C

αεγ
log

1
α

,

where we used the change of variable u=εxτ/y. The desired conclusion follows. Note
that as before the term log(1/α) only occurs when γ=1, and that, for γ>1, one could
improve the estimate above into a time-decay of the form O(τ−(γ−1)).

7.4. Growth control

We will now state the main result of this section. For a sequence of functions Φ(k, t),
k∈Zd

∗=Zd\{0} and t∈R, we set

‖Φ(t)‖λ =
∑
k∈Zd∗

|Φ(k, t)|e2πλ|k|.

We shall use K(s)Φ(t) as a shorthand for (K(k, s)Φ(k, t))k∈Zd∗ , etc.

Theorem 7.7. (Growth control via integral inequalities) Assume that f0=f0(v)
and W =W (x) satisfy condition (L) from §2.2 with constants C0, λ0 and ; in particular
|f̃ 0(η)|�C0 e−2πλ0|η|. Let further

CW = max
{ ∑

k∈Zd∗

|Ŵ (k)|, sup
k∈Zd∗

|k| |Ŵ (k)|
}

.

Let A�0, μ�0 and λ∈(0, λ∗] with 0<λ∗<λ0. Let (Φ(k, t))k∈Zd∗,t�0 be a continuous
function of t�0, valued in CZ

d
∗ , such that∥∥∥∥Φ(t)−

∫ t

0

K0(t−τ)Φ(τ) dτ

∥∥∥∥
λt+μ

� A+
∫ t

0

(
K0(t, τ)+K1(t, τ)+

c0

(1+τ)m

)
‖Φ(τ)‖λτ+μ dτ for all t � 0,

(7.21)
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where c0�0, m>1, and K0(t, τ) and K1(t, τ) are non-negative kernels. Let

ϕ(t) = ‖Φ(t)‖λt+μ.

Then, we have the following :
(i) Assume that γ>1 and K1=cK(α),γ for some c>0, α∈(0, α(γ)), where K(α),γ is

defined by (7.10), and α(γ) appears in Proposition 7.1. Then there are positive constants
C and χ, depending only on γ, λ∗, λ0, , c0, CW and m, uniform as γ!1, such that if

sup
t�0

∫ t

0

K0(t, τ) dτ �χ (7.22)

and

sup
t�0

(∫ t

0

K0(t, τ)2 dτ

)1/2

+sup
τ�0

∫ ∞

τ

K0(t, τ) dt � 1, (7.23)

then for any ε∈(0, α),

ϕ(t) �CA
1+c2

0√
ε

eCc0

(
1+

c

αε

)
eCT eCc(1+T 2)eεt for all t � 0, (7.24)

where

T = C max
{(

c2

α5ε2+γ

)1/(γ−1)

,
( c

α2εγ+1/2

)1/(γ−1)

,

(
c2
0

ε

)1/(2m−1)}
. (7.25)

(ii) Assume that K1=
∑N

j=1 cjK
(αj),1 for some αj∈(0, α(1)), where α(1) appears in

Proposition 7.1; then there is a numeric constant Γ>0 such that whenever

1 � ε � Γ
N∑

j=1

cj

α3
j

,

one has, with the same notation as in (i),

ϕ(t) �CA
1+c2

0√
ε

eCc0eCT eCc(1+T 2)eεt for all t � 0, (7.26)

where

c =
N∑

j=1

cj and T = C max
{

1
ε2

N∑
j=1

cj

α3
j

,

(
c2
0

ε

)1/(2m−1)}
.

Remark 7.8. Apart from the term c0/(1+τ)m which will appear as a technical cor-
rection, there are three different kernels appearing in Theorem 7.7: the kernel K0, which
is associated with the linearized Landau damping; the kernel K1, describing non-linear
echoes (due to interaction between different Fourier modes); and the kernel K0, describ-
ing the instantaneous response (due to interaction between identical Fourier modes).
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We shall first prove Theorem 7.7 assuming

c0 = 0 (7.27)

and ∫ ∞

0

sup
k∈Zd

|K0(k, t)|e2πλ0|k|t dt � 1− , ∈ (0, 1), (7.28)

which is a reinforcement of condition (L). Under these assumptions the proof of Theo-
rem 7.7 is much simpler, and its conclusion can be substantially simplified too: χ depends
only on ; condition (7.23) on K0 can be dropped; and the factor eCT (1+c/αε3/2) in
(7.24) can be omitted. If Ŵ �0 (as for gravitational interaction) and f̃ 0�0 (as for
Maxwellian background), these additional assumptions do not constitute a loss of gen-
erality, since (7.28) becomes essentially equivalent to (L), and for c0 small enough the
term c0(1+τ)−m can be incorporated inside K0.

Proof of Theorem 7.7 under (7.27) and (7.28). We have

ϕ(t) �A+
∫ t

0

(|K0|(t−τ)+K0(t, τ)+K1(t, τ))ϕ(τ) dτ, (7.29)

where |K0(t)|=supk∈Zd |K0(k, t)|. We shall estimate ϕ by a maximum principle argu-
ment. Let ψ(t)=Beεt, where B will be chosen later. If ψ satisfies, for some T �0,⎧⎪⎨⎪⎩

ϕ(t) <ψ(t), for 0� t �T ,

ψ(t) �A+
∫ t

0

(|K0|(t, τ)+K0(t, τ)+K1(t, τ))ψ(τ) dτ , for t �T ,
(7.30)

then u(t):=ψ(t)−ϕ(t) is positive for t�T , and satisfies u(t)�
∫ t

0
K(t, τ)u(τ) dτ for t�T ,

with K=|K0|+K0+K1>0; this prevents u from vanishing at later times, so u�0 and
ϕ�ψ. Thus it is sufficient to establish (7.30).

(i) By Proposition 7.1, and since
∫ t

0
(|K0|+K0) dτ �1− 1

2 (for χ� 1
2 ),

A+
∫ t

0

(|K0|(t, τ)+K0(t, τ))ψ(τ) dτ +c

∫ t

0

K(α),γ(t, τ)ψ(τ) dτ

�A+
(

1−
2

+
cC(γ)

α3ε1+γtγ−1

)
Beεt.

(7.31)

For t�T :=(4cC(α3ε1+γ ))1/(γ−1), this is bounded above by A+
(
1− 1

4

)
Beεt, which in

turn is bounded by Beεt as soon as B�4A/ .
On the other hand, from the inequality

ϕ(t) �A+
(
1−

2

)
sup

0�τ�t
ϕ(τ)+c(1+t)

∫ t

0

ϕ(τ) dτ
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we deduce that
ϕ(t) � 2A

(1+t)e2c(t+t2/2)/ .

In particular, if
4A

ec′(T+T 2) �B

with c′=c′(c, ) large enough, then for 0�t�T we have ϕ(t)� 1
2ψ(t), and (7.30) holds.

(ii) K1=
∑N

j=1 cjK
(αj),1. We use the same reasoning, replacing the right-hand side

in (7.31) by

A+
(

1−
2

+C

( N∑
j=1

cj

α3
jε

+
N∑

j=1

cj

α3
jε

2t

))
Beεt.

To conclude the proof, we may first impose a lower bound on ε to ensure that

C

N∑
j=1

cj

α3
jε

�
8

, (7.32)

and then choose t large enough to guarantee that

C
N∑

j=1

cj

α3
jε

2t
�

8
; (7.33)

this yields (ii).

Proof of Theorem 7.7 in the general case. We only treat (i), since the reasoning for
(ii) is rather similar; and we only establish the conclusion as an a-priori estimate, skipping
the continuity/approximation argument needed to turn it into a rigorous estimate. Then
the proof is done in three steps.

Step 1. Crude pointwise bounds. From (7.21) we have

ϕ(t) =
∑
k∈Zd∗

|Φ(k, t)|e2π(λt+μ)|k|

�A+
∑
k∈Zd∗

∫ t

0

|K0(k, t−τ)|e2π(λt+μ)|k||Φ(t, τ)| dτ

+
∫ t

0

(
K0(t, τ)+K1(t, τ)+

c0

(1+τ)m

)
ϕ(τ) dτ

�A+
∫ t

0

(
K0(t, τ)+K1(t, τ)+

c0

(1+τ)m
+ sup

k∈Zd∗

|K0(k, t−τ)|e2πλ(t−τ)|k|
)

ϕ(τ) dτ.

(7.34)
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We note that for any k∈Zd
∗ and t�0,

|K0(k, t−τ)|e2πλ|k|(t−τ) � 4π2|Ŵ (k)|C0e
−2π(λ0−λ)|k|t|k|2t

� CC0

λ0−λ
sup
k∈Zd∗

|k| |Ŵ (k)|� CC0CW

λ0−λ
,

where (here and below) C stands for a numeric constant which may change from line to
line. Assuming that

∫ t

0
K0(t, τ) dτ � 1

2 , we deduce from (7.34) that

ϕ(t) �A+
1
2

sup
0�τ�t

ϕ(τ)+C

∫ t

0

(
C0CW

λ0−λ
+c(1+t)+

c0

(1+τ)m

)
ϕ(τ) dτ,

and, by Grönwall’s lemma,

ϕ(t) � 2AeC(C0CW t/(λ0−λ)+c(t+t2)+c0Cm), (7.35)

where Cm=
∫∞
0

(1+τ)−m dτ .

Step 2. L2 bound. This is the step where the smallness assumption (7.22) will be
most important. For all k∈Zd

∗ and t�0 we define

Ψk(t) = e−εtΦ(k, t)e2π(λt+μ)|k|, (7.36)

K0
k(t) = e−εtK0(k, t)e2π(λt+μ)|k|, (7.37)

Rk(t) = e−εt

(
Φ(k, t)−

∫ t

0

K0(k, t−τ)Φ(k, τ) dτ

)
e2π(λt+μ)|k| = (Ψk−Ψk∗K0

k)(t), (7.38)

and we extend all these functions by 0 for negative values of t. Taking Fourier transform
in the time-variable yields R̂k=(1−K̂0

k)Ψ̂k; since condition (L) implies that |1−K̂0
k|� ,

we deduce that ‖Ψ̂k‖L2 � −1‖R̂k‖L2 , i.e.,

‖Ψk‖L2(dt) �
‖Rk‖L2(dt)

. (7.39)

Plugging (7.39) into (7.38), we deduce that

‖Ψk−Rk‖L2(dt) �
‖K0

k‖L1(dt) ‖Rk‖L2(dt) for all k∈Zd
∗. (7.40)

Then

‖ϕ(t)e−εt‖L2(dt) =
∥∥∥∥∑

k∈Zd∗

|Ψk|
∥∥∥∥

L2(dt)

�
∥∥∥∥∑

k∈Zd∗

|Rk|
∥∥∥∥

L2(dt)

+
∑
k∈Zd∗

‖Rk−Ψk‖L2(dt)

�
∥∥∥∥∑

k∈Zd∗

|Rk|
∥∥∥∥

L2(dt)

(
1+

1 ∑
l∈Zd∗

‖K0
l ‖L1(dt)

)
.

(7.41)



124 c. mouhot and c. villani

(Note that we bounded ‖Rl‖ by
∥∥∑

k∈Zd∗
|Rk|
∥∥, which seems very crude; but the decay

of K0
k as a function of k will save us.) Next, we note that

‖K0
k‖L1(dt) � 4π2|Ŵ (k)|

∫ ∞

0

C0e
−2π(λ0−λ)|k|t|k|2t dt � 4π2 |Ŵ (k)| C0

(λ0−λ)2
,

so ∑
k∈Zd∗

‖K0
k‖L1(dt) � 4π2

( ∑
k∈Zd∗

|Ŵ (k)|
)

C0

(λ0−λ)2
.

Plugging this into (7.41) and using (7.21) again, we obtain

‖ϕ(t)e−εt‖L2(dt)

�
(

1+
CC0CW

(λ0−λ)2

)∥∥∥∥∑
k∈Zd∗

|Rk|
∥∥∥∥

L2(dt)

�
(

1+
CC0CW

(λ0−λ)2

)(∫ ∞

0

e−2εt

(
A+
∫ t

0

(
K1+K0+

c0

(1+τ)m

)
ϕ(τ) dτ

)2
dt

)1/2

.

(7.42)

We separate this (by Minkowski’s inequality) into various contributions which we
estimate separately. First, of course,

(∫ ∞

0

e−2εtA2 dt

)1/2

=
A√
2ε

. (7.43)

Next, for any T �1, by Step 1 and

∫ t

0

K1(t, τ) dτ � Cc(1+t)
α

,

we have

(∫ T

0

e−2εt

(∫ t

0

K1(t, τ)ϕ(τ) dτ

)2
dt

)1/2

�
(

sup
0�t�T

ϕ(t)
)(∫ T

0

e−2εt

(∫ t

0

K1(t, τ) dτ

)2
dt

)1/2

�CAeC(C0CW T/(λ0−λ)+c(T+T 2)) c

α

(∫ ∞

0

e−2εt(1+t)2 dt

)1/2

�CA
c

αε3/2
eC(C0CW T/(λ0−λ)+c(T+T 2)).

(7.44)
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Invoking Jensen’s inequality and Fubini’s theorem, we also have(∫ ∞

T

e−2εt

(∫ t

0

K1(t, τ)ϕ(τ) dτ

)2
dt

)1/2

=
(∫ ∞

T

(∫ t

0

K1(t, τ)e−ε(t−τ)e−ετϕ(τ) dτ

)2
dt

)1/2

�
(∫ ∞

T

(∫ t

0

K1(t, τ)e−ε(t−τ) dτ

)(∫ t

0

K1(t, τ)e−ε(t−τ)e−2ετϕ(τ)2 dτ

)
dt

)1/2

�
(

sup
t�T

∫ t

0

e−εtK1(t, τ)eετ dτ

)1/2

×
(∫ ∞

T

∫ t

0

K1(t, τ)e−ε(t−τ)e−2ετϕ(τ)2 dτ dt

)1/2

=
(

sup
t�T

∫ t

0

e−εtK1(t, τ)eετ dτ

)1/2

×
(∫ ∞

0

∫ ∞

max{τ,T}
K1(t, τ)e−ε(t−τ)e−2ετϕ(τ)2 dt dτ

)1/2

�
(

sup
t�T

∫ t

0

e−εtK1(t, τ)eετ dτ

)1/2

×
(

sup
τ�0

∫ ∞

τ

eετK1(t, τ)e−εt dt

)1/2(∫ ∞

0

e−2ετϕ(τ)2 dτ

)1/2

.

(7.45)

(Basically we copied the proof of Young’s inequality.) Similarly,(∫ ∞

0

e−2εt

(∫ t

0

K0(t, τ)ϕ(τ) dτ

)2
dt

)1/2

�
(

sup
t�0

∫ t

0

e−εtK0(t, τ)eετ dτ

)1/2

×
(

sup
τ�0

∫ ∞

τ

eετK0(t, τ)e−εt dt

)1/2(∫ ∞

0

e−2ετϕ(τ)2 dτ

)1/2

�
(

sup
t�0

∫ t

0

K0(t, τ) dτ

)1/2(
sup
τ�0

∫ ∞

τ

K0(t, τ) dt

)1/2(∫ ∞

0

e−2ετϕ(τ)2 dτ

)1/2

.

(7.46)

The last term is also split, this time according to τ �T or τ >T :(∫ ∞

0

e−2εt

(∫ T

0

c0ϕ(τ)
(1+τ)m

dτ

)2
dt

)1/2

� c0

(
sup

0�τ�T
ϕ(τ)
)(∫ ∞

0

e−2εt

(∫ T

0

dτ

(1+τ)m

)2
dt

)1/2

� c0
CA√

ε
eC(C0CW T/(λ0−λ)+c(T+T 2))Cm,

(7.47)
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and

(∫ ∞

0

e−2εt

(∫ t

T

c0ϕ(τ) dτ

(1+τ)m

)2
dt

)1/2

= c0

(∫ ∞

0

(∫ t

T

e−ε(t−τ) e
−ετϕ(τ)
(1+τ)m

dτ

)2
dt

)1/2

� c0

(∫ ∞

0

(∫ t

T

e−2ε(t−τ)

(1+τ)2m
dτ

)(∫ t

T

e−2ετϕ(τ)2 dτ

)
dt

)1/2

� c0

(∫ ∞

0

e−2εtϕ(t)2 dt

)1/2(∫ ∞

0

∫ t

T

e−2ε(t−τ)

(1+τ)2m
dτ dt

)1/2

= c0

(∫ ∞

0

e−2εtϕ(t)2 dt

)1/2(∫ ∞

T

1
(1+τ)2m

∫ ∞

τ

e−2ε(t−τ) dt dτ

)1/2

= c0

(∫ ∞

0

e−2εtϕ(t)2 dt

)1/2(∫ ∞

T

dτ

(1+τ)2m

)1/2(∫ ∞

0

e−2εs ds

)1/2

=
C

1/2
2m c0

Tm−1/2
√

ε

(∫ ∞

0

e−2εtϕ(t)2 dt

)1/2

.

(7.48)

Gathering estimates (7.43)–(7.48), we deduce from (7.42) that

‖ϕ(t)e−εt‖L2(dt) �
(

1+
CC0CW

(λ0−λ)2

)
CA√

ε

(
1+

c

αε
+c0Cm

)
×eC(C0CW T/(λ0−λ)+c(T+T 2))+a‖ϕ(t)e−εt‖L2(dt),

(7.49)

where

a=
(

1+
CC0CW

(λ0−λ)2

)[(
sup
t�T

∫ t

0

e−εtK1(t, τ)eετdτ

)1/2(
sup
τ�0

∫ ∞

τ

eετK1(t, τ)e−εt dt

)1/2

+
(

sup
t�0

∫ t

0

K0(t, τ) dτ

)1/2(
sup
τ�0

∫ ∞

τ

K0(t, τ) dt

)1/2

+
C

1/2
2m c0

Tm−1/2
√

ε

]
.

Using Propositions 7.1 (case γ>1) and 7.5, as well as assumptions (7.22) and (7.23),
we see that a� 1

2 for χ small enough and T satisfying (7.25). Then from (7.49) follows
that

‖ϕ(t)e−εt‖L2(dt) �
(

1+
CC0CW

(λ0−λ)2

)
CA√

ε

(
1+

c

αε
+c0Cm

)
eC(C0CW T/(λ0−λ)+c(T+T 2)).
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Step 3. Refined pointwise bounds. Let us use (7.21) a third time, now for t�T :

e−εtϕ(t) �Ae−εt+
∫ t

0

(
sup
k∈Zd∗

|K0(k, t−τ)|e2πλ(t−τ)|k|
)
ϕ(τ)e−ετ dτ

+
∫ t

0

(
K0(t, τ)+

c0

(1+τ)m

)
ϕ(τ)e−ετ dτ

+
∫ t

0

e−εtK1(t, τ)eετϕ(τ)e−ετ dτ

�Ae−εt+
[(∫ t

0

(
sup
k∈Zd∗

|K0(k, t−τ)|e2πλ(t−τ)|k|
)2

dτ

)1/2

+
(∫ t

0

K0(t, τ)2 dτ

)1/2

+
(∫ ∞

0

c2
0

(1+τ)2m
dτ

)1/2

+
(∫ t

0

e−2εtK1(t, τ)2e2ετ dτ

)1/2](∫ ∞

0

ϕ(τ)2e−2ετ dτ

)1/2

.

(7.50)

We note that, for any k∈Zd
∗,

(|K0(k, t)|e2πλ|k|t)2 � 16π4|Ŵ (k)|2 |f̃ 0(kt)|2 |k|4t2e4πλ|k|t

�CC2
0 |Ŵ (k)|2e−4π(λ0−λ)|k|t|k|4t2

� CC2
0

(λ0−λ)2
|Ŵ (k)|2e−2π(λ0−λ)|k|t|k|2

� CC2
0

(λ0−λ)2
C2

W e−2π(λ0−λ)|k|t

� CC2
0

(λ0−λ)2
C2

W e−2π(λ0−λ)t;

so ∫ t

0

(
sup
k∈Zd∗

|K0(k, t−τ)|e2πλ(t−τ)|k|
)2

dτ � CC2
0C2

W

(λ0−λ)3
.

Then the conclusion follows from (7.50), Corollary 7.4, conditions (7.25) and (7.23), and
Step 2.

Remark 7.9. Theorem 7.7 leads to enormous constants, and it is legitimate to ask
about their sharpness, say with respect to the dependence in ε. We expect the constant
to be roughly of the order of

sup
t

(e(ct)1/γ

e−εt)� exp(ε−1/(γ−1)).

Our bound is roughly like exp(ε−(4+2γ)/(γ−1)); this is worse, but displays the expected
behavior as an exponential of an inverse power of ε, with a power that diverges like
O((1−γ)−1) as γ!1.
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Remark 7.10. Even in the case of an analytic interaction, a similar argument sug-
gests constants that are at best like (log(1/ε))log(1/ε), and this grows faster than any
inverse power of 1/ε.

To obtain sharper results, in §11 we shall later “break the norm” and work directly
on the Fourier modes of, say, the spatial density. In this subsection we establish the
estimates which will be used later; the reader who does not particularly care about the
case γ=1 in Theorem 2.6 can skip them.

For any γ�1, α>0, k, l∈Zd
∗ and 0�τ �t, we define

K
(α),γ
k,l (t, τ) =

(1+τ)de−α|l|e−α(t−τ)|k−l|/te−α|k(t−τ)+lτ |

1+|k−l|γ . (7.51)

We start by exponential moment estimates.

Proposition 7.11. Let γ∈[1,∞). For any α∈(0, 1) and k, l∈Zd
∗, let K

(α),γ
k,l be

defined by (7.51). Then there is α=α(γ)>0 such that if α�α and ε∈(0, 1
4α
)

then for
any t>0,

sup
k∈Zd∗

∑
l∈Zd∗

e−εt

∫ t

0

K
(α),γ
k,l (t, τ)eετ dτ � C(d, γ)

α1+dεγ+1tγ
, (7.52)

sup
k∈Zd∗

∑
l∈Zd∗

e−εt

(∫ t

0

K
(α),γ
k,l (t, τ)2e2ετ dτ

)1/2

� C(d, γ)
αdεγ+1/2tγ−1/2

, (7.53)

sup
k∈Zd∗

∑
l∈Zd∗

sup
τ�0

eετ

∫ ∞

τ

K
(α),γ
k,l e−εt dt � C(d, γ)

α2+dε
. (7.54)

Proof. We first reduce to the case d=1. Monotonicity cannot be used now, but we
note that

K
(α),γ
k,l (t, τ) �

d∑
j=1

e−α|l1|e−α|l2| ... e−α|lj−1| K(α),γ
kj ,lj

(t, τ)e−α|lj+1| ... e−α|ld|,

where Kkj ,lj stands for a 1-dimensional kernel. Thus

sup
k∈Zd∗

∑
l∈Zd∗

∫ t

0

e−εtK
(α),γ
k,l (t, τ)eετ dτ

� sup
k∈Zd∗

( ∑
m∈Zd

e−α|m|
)d−1 d∑

j=1

∑
lj∈Z

∫ t

0

e−εtK
(α),γ
kj ,lj

(t, τ)eετ dτ

� C(d)
αd−1

sup
1�j�d

sup
kj∈Z

∑
lj∈Z

∫ t

0

e−εtK
(α,γ)
kj ,lj

(t, τ)eετ dτ.
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In other words, for (7.52) we may just consider the 1-dimensional case, provided we allow
for an extra multiplicative constant C(d)/αd−1. A similar reasoning holds for (7.53) and
(7.54). From now on we focus on the case d=1.

Without loss of generality we assume that k>0, and only treat the worst case l<0.
(The other case k, l>0 is simpler and yields an exponential decay in time of the form
e−c min{α,ε}t). For simplicity we also write Kk,l=K

(α),γ
k,l . An easy computation yields

e−εt

∫ t

0

Kk,l(t, τ)eετ dτ � Ce−α|l|

1+|k−l|γ
(

1
α|k−l|+

|k|t
α|k−l|2 +

1
α2|k−l|2

)
e−ε|l|t/|k−l|.

Then, for any k�1, we have (crudely writing α2=O(α))

−1∑
l=−∞

∫ t

0

e−εtKk,l(t, τ)eετ dτ �C

( ∞∑
l=1

e−αle−εlt/(k+l)

α2(k+l)1+γ
+

∞∑
l=1

e−αle−εlt/(k+l)

α(k+l)2+γ
kt

)
. (7.55)

For the first sum in the right-hand side of (7.55) we write
∞∑

l=1

e−αle−εlt/(k+l)

(k+l)1+γ
�

∞∑
l=1

e−αl

l1+γ

(
εlt

k+l

)1+γ

e−εlt/(k+l) 1
(εt)1+γ

� C(γ)
(εt)1+γ

. (7.56)

For the second sum in the right-hand side of (7.55) we separate according to 1�l�k

or l�k+1:
k∑

l=1

e−αle−εlt/(k+l)

(k+l)2+γ
kt�

k∑
l=1

e−αle−εt/(k+1)

(k+1)2+γ
kt

� C

α
e−εt/(k+1)

(
εt

k+1

)1+γ
k

k+1
t

(εt)1+γ

� C

αε1+γtγ

(7.57)

and
∞∑

l=k+1

e−αle−εlt/(k+l)

(k+l)2+γ
kt�C

∞∑
l=k+1

e−αle−εt/2

k2+γ
kt� C

α

e−εt/4

εk1+γ
� C

αε1+γtγ
. (7.58)

The combination of (7.55)–(7.58) completes the proof of (7.52).
Now we turn to (7.53). The estimates are rather similar, since

Kk,l(t, τ)2 �C(1+t)Kk,l(t, τ)

with γ 
!2γ and α 
!2α. So (7.55) should be replaced by∑
l∈Z

e−εt

(∫ t

0

Kk,l(t, τ)2e2ετ dτ

)1/2

�C

( ∞∑
l=1

e−αle−εlt/(k+l)(1+t)1/2

α(k+l)γ+1/2
+

∞∑
l=1

e−αle−εlt/(k+l)(kt)1/2(1+t)1/2

α1/2(k+l)1+γ

)
.

(7.59)
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For the first sum we use (7.56) with γ replaced by γ− 1
2 : for t�1,

(1+t)1/2
∞∑

l=1

e−αle−εlt/(k+l)

(k+l)1+γ−1/2
� C(γ)t1/2

(εt)γ+1/2
� C(γ)

εγ+1/2tγ
. (7.60)

For the second sum in the right-hand side of (7.59) we write

k∑
l=1

e−αle−εlt/(k+l)k1/2t

(k+l)1+γ
�C

∞∑
l=1

e−αle−εt/(k+1)

(
εt

k+1

)γ+1/2
k1/2

(1+k)1/2

t

(εt)γ+1/2

� C

αεγ+1/2tγ−1/2

and

∞∑
l=k+1

e−αle−εlt/(k+l)k1/2t

(k+l)1+γ
�C

∞∑
l=1

e−αl

lγ+1/2
e−εt/2t �Ce−εt/4 � C

(εt)γ−1/2ε
.

With this, (7.53) is readily obtained.
Finally we consider (7.54). As in Proposition 7.5, one easily shows that

sup
k∈Z∗

∑
l∈Z∗

sup
τ�0

eετ

∫ ∞

2τ

Kk,l(t, τ)e−εt dt � C

εα2

∑
l∈Z∗

e−α|l| � C

εα3
.

Then one has

eετ

∫ 2τ

τ

e−α|k(t−τ)+lτ |e−εt dt � C

α2k
+

C

αεk
+

C

αk
e−εlτ/k.

So the problem amounts to estimate

∑
l∈Z∗

sup
τ�0

(1+τ)
e−αle−εlτ/k

αk(k+l)γ
�
∑
l∈Z∗

e−αl

(
1
α

+
1

εl(k+l)γ
e−εlτ/k εlτ

k

)
�C

(
1
α2

+
1
ε

)
,

and the proof is complete.

We conclude this section with a mode-by-mode analogue of Theorem 7.7.

Theorem 7.12. Let f0=f0(v) and W =W (x) satisfy condition (L) from §2.2 with
constants C0, λ0 and ; in particular |f̃ 0(η)|�C0e

−2πλ0|η|. Further let

CW = max
{∑

k∈Zd∗

|Ŵ (k)|, sup
k∈Zd∗

|k| |Ŵ (k)|
}

.
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Let (Ak)k∈Zd∗ , μ�0 and λ∈(0, λ∗] with 0<λ∗<λ0. Let (Φ(k, t))k∈Zd,t�0 be a con-
tinuous function of t�0, valued in CZ

d

, such that for all t�0, Φ(0, t)=0 and for any
k∈Zd

∗,

e2π(λt+μ)|k|
∣∣∣∣Φ(k, t)−

∫ t

0

K0(k, t−τ)Φ(k, τ) dτ

∣∣∣∣
�Ak+

∫ t

0

K0(t, τ)e2π(λτ+μ)|k||Φ(k, τ)| dτ

+
∫ t

0

∑
l∈Zd∗

(
cK

(α),γ
k,l (t, τ)+

cl

(1+τ)m

)
e2π(λτ+μ)|k−l||Φ(k−l, τ)| dτ,

(7.61)

where c>0, cl�0 (for l∈Zd
∗), m>1, γ�1, K0(t, τ) is a non-negative kernel, K

(α),γ
k,l is

defined by (7.51) and α<α(γ) is defined in Proposition 7.11. Then there are positive
constants C and χ, depending only on γ, λ∗, λ0, ,

c̄ := max
{∑

l∈Zd∗

cl,

(∑
l∈Zd∗

c2
l

)1/2}
,

CW and m such that if

sup
t�0

∫ t

0

K0(t, τ) dτ �χ (7.62)

and

sup
t�0

(∫ t

0

K0(t, τ)2 dτ

)1/2

+sup
τ�0

∫ ∞

τ

K0(t, τ) dt � 1, (7.63)

then for any ε∈(0, 1
4α
)

and for any t�0,

sup
k∈Zd∗

|Φ(k, t)|e2π(λt+μ)|k| �CĀ
(1+c̄2)√

ε
eCc̄
(
1+

c

α2ε

)
eCT eCc(1+T 2)/αeεt, (7.64)

where Ā:=supk Ak and

T = C max
{(

c2

α3+2dεγ+2

)1/γ

,
( c

αdεγ+1/2

)1/(γ−1/2)

,

(
c̄2

ε

)1/(2m−1)}
. (7.65)

Proof. The proof is quite similar to the proof of Theorem 7.7, so we shall only point
out the differences. As in the proof of Theorem 7.7, we start by crude pointwise bounds
obtained by Grönwall’s inequality; but this time on the quantity

ϕ(t) = sup
k∈Zd∗

|Φ(k, t)|e2π(λt+μ)|k|.
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Since ∑
l∈Zd∗

Kk,l(t, τ) =O

(
1+τ

α

)
,

we find that
ϕ(t) � 2ĀeC(C0CW t/(λ0−λ)+c(t+t2)/α+c̄Cm). (7.66)

We next define Ψk, K0
k and Rk as in Step 2 of the proof of Theorem 7.7, and we

deduce (7.39) and (7.40). Let

ϕk(t) = |Φ(k, t)|e2π(λt+μ)|k|. (7.67)

Then

‖ϕk(t)e−εt‖L2(dt) � ‖Rk‖L2(dt)

(
1+

‖K0
k‖L1(dt)

)
� ‖Rk‖L2(dt)

(
1+

CCW C0

)
;

whence

‖ϕk(t)e−εt‖L2(dt) �
(

1+
CC0CW

(λ0−λ)2

)[∫ ∞

0

e−2εt

(
Ak+

∫ t

0

K0(t, τ)ϕk(τ) dτ

+
∑
l∈Zd∗

∫ t

0

(
cKk,l(t, τ)+

cl

(1+τ)m

)
ϕk−l(τ) dτ

)2
dt

]1/2

.

(7.68)

We separate this into various contributions as in the proof of Theorem 7.7. In
particular, using (7.66) and ∫ t

0

∑
l∈Zd∗

Kk,l dτ = O

(
1+t

α2

)
,

we find that[∫ T

0

e−2εt

(∫ t

0

∑
l∈Zd∗

Kk,l(t, τ)ϕk−l(τ) dτ

)2
dt

]1/2

�
(

sup
k∈Zd∗

sup
0�t�T

ϕk(t)
)(∫ T

0

e−2εt

(∫ t

0

∑
l∈Zd∗

Kk,l(t, τ) dτ

)2
dt

)1/2

�CĀ
c

α2ε3/2
eC(C0CW T/(λ0−λ)+c(T+T 2)/α).

(7.69)

Also, [∫ ∞

T

e−2εt

(∫ t

0

∑
l∈Zd∗

Kk,l(t, τ)ϕk−l(τ) dτ

)2
dt

]1/2

�
(

sup
t�T

∫ t

0

e−εt
∑
l∈Zd∗

Kk,l(t, τ)eετ dτ

)1/2

×
(∫ ∞

T

∫ t

0

∑
l∈Zd∗

Kk,l(t, τ)e−ε(t−τ)e−2ετϕk−l(τ)2 dτ dt

)1/2

,
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and the last term inside the parentheses is∑
l∈Zd∗

∫ ∞

0

(∫ ∞

max{τ,T}
Kk,l(t, τ)e−ε(t−τ) dt

)
e−2ετϕk−l(τ)2 dτ

�
(∑

l∈Zd∗

sup
τ�0

∫ ∞

τ

Kk,l(t, τ)e−ε(t−τ) dt

)(
sup
l∈Zd∗

∫ ∞

0

e−2ετϕl(τ)2 dτ

)
.

The computation for K0 is the same as in the proof of Theorem 7.7, and the terms
in (1+τ)−m are handled in essentially the same way: simple computations yield[∫ ∞

0

e−2εt

(∫ T

0

∑
l∈Zd∗

clϕk−l(τ)

(1+τ)m
dτ

)2
dt

]1/2

�
(

sup
0�τ�T

sup
l∈Zd∗

ϕl(τ)
)[∫ ∞

0

e−2εt

(∫ T

0

∑
l∈Zd∗

cl

(1+τ)m
dτ

)2
dt

]1/2

� c̄
CmĀ√

ε
eC(C0CW T/(λ0−λ)+c(T+T 2)/α)

(7.70)

and[∫ ∞

0

e−2εt

(∫ t

T

∑
l∈Zd∗

clϕk−l(τ) dτ

(1+τ)m

)2
dt

]1/2

�
[

sup
t�0

sup
l∈Zd∗

(∫ t

T

e−2ετϕl(τ)2 dτ

)(∑
l∈Zd∗

cl

)2 ∫ ∞

0

∫ t

T

e−2ε(t−τ)

(1+τ)2m
dτ dt

]1/2

� c̄

(
C2m

εT 2m−1

)1/2(
sup
l∈Zd∗

∫ ∞

0

e−2ετϕl(τ)2 dτ

)1/2

.

(7.71)

All in all, we end up with

sup
k∈Zd∗

‖ϕk(t)e−εt‖L2(dt)

�
(

1+
CC0CW

(λ0−λ)2

)
CA√

ε

(
1+

c

α2ε
+c̄Cm

)
eC(C0CW T/(λ0−λ)+c(T+T 2)/α)

+a sup
k∈Zd∗

‖ϕk(t)e−εt‖L2(dt),

(7.72)

where

a=
(

1+
CC0CW

(λ0−λ)2

)[
c2

(
sup
t�T

∑
l∈Zd∗

∫ t

0

e−εtKk,l(t, τ)eετ dτ

)1/2

×
(∑

l∈Zd∗

sup
τ�0

∫ ∞

τ

eετKk,l(t, τ)e−εt dt

)1/2

+
(

sup
t�0

∫ t

0

K0(t, τ) dτ

)1/2(
sup
τ�0

∫ ∞

τ

K0(t, τ) dt

)1/2

+
C

1/2
2m c̄0

Tm−1/2
√

ε

]
.
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Applying Proposition 7.11, we see that a� 1
2 , as soon as T satisfies (7.65), and then

we deduce from (7.72) a bound on supk∈Zd∗
‖ϕk(t)e−εt‖L2(dt).

Finally we conclude as in Step 3 of the proof of Theorem 7.7: from (7.61), we get

e−εtϕk(t) �Ake−εt+
[(∫ t

0

(
sup
k∈Zd∗

|K0(k, t−τ)|e2πλ(t−τ)|k|
)2

dτ

)1/2

+
(∫ t

0

K0(t, τ)2 dτ

)1/2

+c̄

(∫ ∞

0

dτ

(1+τ)2m

)1/2

+c
∑
l∈Zd∗

(∫ t

0

e−2εtKk,l(t, τ)2e2ετ dτ

)1/2]

×
(

sup
k∈Zd∗

∫ ∞

0

ϕk(τ)2e−2ετ dτ

)1/2

,

(7.73)

and the conclusion follows by a new application of Proposition 7.11.

8. Approximation schemes

Having defined a functional setting (§4) and identified several mathematical/physical
mechanisms (§§5–7), we are prepared to fight the Landau damping problem. For that
we need an approximation scheme solving the non-linear Vlasov equation. The problem
is not to prove the existence of solutions (this is much easier), but to devise the scheme
in such a way that it leads to relevant estimates for our study.

The first idea which may come to mind is a classical Picard scheme for quasilinear
equations:

∂tf
n+1+v ·∇xfn+1+F [fn]·∇vfn+1 = 0. (8.1)

This has two drawbacks: first, fn+1 evolves by the characteristics created by F [fn], and
this will deteriorate the estimates in analytic regularity. Secondly, there is no hope to get
a closed (or approximately closed) equation on the density associated with fn+1. More
promising, and more in the spirit of the linearized approach, would be a scheme like

∂tf
n+1+v ·∇xfn+1+F [fn+1]·∇vfn = 0. (8.2)

(Physically, fn+1 forces fn, and the question is whether the reaction will exhaust fn+1

in large time.) But when we write (8.2) we are implicitly treating a higher-order term
(∇vf) of the equation in a perturbative way; so this has no reason to converge.

To circumvent these difficulties, we shall use a Newton iteration: not only will this
provide more flexibility in the regularity indices, but at the same time it will yield an
extremely fast rate of convergence (something like O(ε2n

)) which will be most welcome
to absorb the large constants coming from Theorem 7.7 or 7.12.
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8.1. The natural Newton scheme

Let us adapt the abstract Newton scheme to an abstract evolution equation in the form
∂f

∂t
= Q(f),

around a stationary solution f0 (so Q(f0)=0). Write the Cauchy problem with initial
datum fi�f0 in the form

Φ(f) := (∂tf−Q(f), f(0, ·))−(0, fi).

Starting from f0, the Newton iteration consists in solving inductively

Φ(fn−1)+Φ′(fn−1)·(fn−fn−1) = 0 for n � 1.

More explicitly, writing hn=fn−fn−1, we should solve{
∂th

1 = Q′(f0)·h1,

h1(0, ·) = fi−f0,

and, for all n�1, {
∂th

n+1 = Q′(fn)·hn+1−[∂tf
n−Q(fn)],

hn+1(0, ·) = 0.

By induction, for n�1, this is the same as{
∂th

n+1 = Q′(fn)·hn+1+[Q(fn−1+hn)−Q(fn−1)−Q′(fn−1)·hn],
hn+1(0, ·) = 0.

This is easily applied to the non-linear Vlasov equation, for which the non-linearity
is quadratic. So we define the natural Newton scheme for the non-linear Vlasov equation
as follows:

f0 = f0(v) is given (homogeneous stationary state)

and
fn = f0+h1+...+hn,

where {
∂th

1+v ·∇xh1+F [h1]·∇vf0 = 0,

h1(0, ·) = fi−f0,
(8.3)

and, for all n�1,{
∂th

n+1+v ·∇xhn+1+F [fn]·∇vhn+1+F [hn+1]·∇vfn =−F [hn]·∇vhn,

hn+1(0, ·) = 0.
(8.4)

Here F [f ] is the force field created by the particle distribution f , namely

F [f ](t, x) =−
∫

Td

∫
Rd

∇W (x−y)f(t, y, w) dw dy. (8.5)

Note also that all the �n=
∫

Rd hn dv for n�1 have zero spatial average.
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8.2. Battle plan

The treatment of (8.3) was performed in §4.12. Now the problem is to handle all equations
appearing in (8.4). This is much more complicated, because for n�1 the background
density fn depends on t and x, instead of just v. As a consequence,

(a) equation (8.4) cannot be considered as a perturbation of free transport, because
of the presence of ∇vhn+1 in the left-hand side;

(b) the reaction term F [hn+1]·∇vfn no longer has the simple product structure
(function of x)×(function of v), so it becomes harder to get hands on the homogenization
phenomenon;

(c) because of spatial inhomogeneities, echoes will appear; they are all the more
dangerous that, ∇vfn is unbounded as t!∞, even in gliding regularity. (It grows like
O(t), which is reminiscent of the observation made by Backus [4].)

The estimates in §§5–7 have been designed precisely to overcome these problems;
however we still have a few conceptual difficulties to solve before applying these tools.

Recall the discussion in §4.11: the natural strategy is to propagate the bound

sup
τ�0

‖fτ‖Zλ,μ;1
τ

<∞ (8.6)

along the scheme; this estimate contains in particular two crucial pieces of information:
• a control of �τ =

∫
Rd fτ dv in Fλτ+μ norm,

• a control of 〈fτ 〉=
∫

Td fτ dx in Cλ;1 norm.
So the plan would be to try to inductively get estimates of each hn in a norm like

the one in (8.6), in such a way that hn is extremely small as n!∞, and allowing a slight
deterioration of the indices λ and μ as n!∞. Let us try to see how this would work:
assuming that

sup
τ�0

‖hk
τ‖Zλk,μk;1

τ
� δk for all 0 � k �n,

we should try to bound hn+1
τ . To “solve” (8.4), we apply the classical method of charac-

teristics: as in §5, we define (Xn
τ,t, V

n
τ,t) as the solution of⎧⎪⎨⎪⎩

d

dt
Xn

τ,t(x, v) =V n
τ,t(x, v),

d

dt
V n

τ,t(x, v) =F [fn](t, Xn
τ,t(x, v)),

Xn
τ,τ (x, v) =x, V n

τ,τ (x, v) = v.

Then (8.4) is equivalent to

d

dt
hn+1(t, Xn

0,t, V
n
0,t(x, v)) = Σn+1(t, Xn

0,τ (x, v), V n
0,τ (x, v)), (8.7)

where
Σn+1(t, x, v) =−F [hn+1]·∇vfn−F [hn]·∇vhn. (8.8)
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Integrating (8.7) in time and recalling that hn+1(0, ·)=0, we get

hn+1(t, Xn
0,t(x, v), V n

0,t(x, v)) =
∫ t

0

Σn+1(τ,Xn
0,τ (x, v), V n

0,τ (x, v)) dτ.

Composing with (Xn
t,0, V

n
t,0) and using (5.2) yields

hn+1(t, x, v) =
∫ t

0

Σn+1(τ,Xn
t,τ (x, v), V n

t,τ (x, v)) dτ.

We rewrite this using the deflection map

Ωn
t,τ (x, v) = (Xn

t,τ , V n
t,τ )(x+v(t−τ), v) =Sn

t,τ S0
τ,t;

then we finally obtain

hn+1(t, x, v) =
∫ t

0

(Σn+1
τ Ωn

t,τ )(x−v(t−τ), v) dτ

=−
∫ t

0

[(F [hn+1
τ ] Ωn

t,τ )·((∇vfn
τ ) Ωn

t,τ )](x−v(t−τ), v) dτ

−
∫ t

0

[(F [hn
τ ] Ωn

t,τ )·((∇vhn
τ ) Ωn

t,τ )](x−v(t−τ), v) dτ.

(8.9)

Since the unknown hn+1 appears on both sides of (8.9), we need to get a self-consistent
estimate. For this we have little choice but to integrate in v and get an integral equation
on �[hn+1]=

∫
Rd hn dv, namely

�[hn+1](t, x) =
∫ t

0

∫
Rd

[((�[hn+1
τ ]∗∇W ) Ωn

t,τ )·Gn
τ,t] S0

τ−t(x, v) dv dτ

+(terms from stage n),
(8.10)

where Gn
τ,t=∇vfn

τ Ωn
t,τ . By induction hypothesis, Gn

τ,t is smooth with regularity indices
roughly equal to λn and μn; so if we accept to lose just a bit more on the regularity we
may hope to apply the long-term regularity extortion and decay estimates from §6, and
then time-response estimates of §7, and get the desired damping.

However, we are facing a major problem: composition of �[hn+1
τ ]∗∇W by Ωn

t,τ im-
plies a loss of regularity in the right-hand side with respect to the left-hand side, which is
of course unacceptable if one wants a closed estimate. The short-term regularity extor-
tion from §6 remedies this, but the price to pay is that Gn should now be estimated at
time τ ′=τ−bt/(1+b) instead of τ , and with index of gliding analytic regularity roughly
equal to λn(1+b) rather than λn. Now the catch is that the error induced by composition
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by Ωn depends on the whole distribution fn, not just hn. Thus, if the parameter b should
control this error it should stay of order 1 as n!∞, instead of converging to 0.

So it seems we are sentenced to lose a fixed amount of regularity (or rather of radius
of convergence) in the transition from stage n to stage n+1; this is reminiscent of the
“Nash–Moser syndrom” [2]. The strategy introduced by Nash [70] to remedy such a
problem (in his case arising in the construction of C∞ isometric embeddings) consisted
of combining a Newton scheme with regularization; his method was later developed by
Moser [67] for the C∞ KAM theorem (see [68, pp. 19–21] for some interesting historical
comments). A clear and concise proof of the Nash–Moser implicit function theorem,
together with its application to the C∞ embedding problem, can be found in [83]. The
Nash–Moser method is arguably the most powerful perturbation technique known to
this day. However, despite significant effort, we were unable to set up any relevant
regularization procedure (in gliding regularity, of course) which could be used in Nash–
Moser style, because of three serious problems:

• The convergence of the Nash–Moser scheme is no longer as fast as that of the
“raw” Newton iteration; instead, it is determined by the regularity of the data, and the
resulting rates would be unlikely to be fast enough to win over the gigantic constants
coming from §7.

• Analytic regularization in the v variable is extremely costly, especially if we wish
to keep a good localization in velocity space, as the one appearing in Theorem 4.20 (iii),
that is exponential integrability in v; then the uncertainty principle basically forces us
to pay O(eC/ε2

), where ε is the strength of the regularization.
• Regularization comes with an increase of amplitude (there is as usual a trade-

off between size and regularity); if we regularize before composition by Ωn, this will
devastate the estimates, because the analytic regularity of f g depends not only on the
regularity of f and g, but also on the amplitude of g−Id.

Fortunately, it turned out that a “raw” Newton scheme could be used; but this
required us to give up the natural estimate (8.6), and replace it by the pair of estimates⎧⎪⎨⎪⎩

sup
τ�0

‖�τ‖Fλτ+μ <∞,

sup
0�τ�t

‖fτ Ωt,τ‖Zλ̄(1+b),μ̄;1
τ−bt/(1+b)

<∞.
(8.11)

Here b=b(t) takes the form constant/(1+t), and is kept fixed all along the scheme;
moreover λ and μ will be slightly larger than λ̄ and μ̄, so that none of the two estimates
in (8.11) implies the other one. Note carefully that there are now two times (t and τ)
explicitly involved, so this is much more complex than (8.6). Let us explain why this
strategy is nonetheless workable.
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λn

λ̄n(1+b)

λn+1

λ̄n+1(1+b)

λ∞=λ̄∞

...

t

Figure 7. Indices of gliding regularity appearing throughout our Newton scheme, in the norm

of �[hτ ] and in the norm of hτ Ωt,τ , respectively, plotted as functions of t.

First, the density �n=
∫

Rd fn dv determines the characteristics at stage n, and there-
fore the associated deflection Ωn. If �n

τ is bounded in Fλnτ+μ, then by Theorem 5.2 we
can estimate Ωn

t,τ in Zλ′
n,μ′

n

τ ′ , as soon as (essentially) λ′
nτ ′+μ′

n�λnτ +μn and λ′
n<λn,

and these bounds are uniform in t.

Of course, we cannot apply this theorem in the present context, because λ̄n(1+b)
is not bounded above by λn. However, for large times t we may afford λ̄n(1+b(t))<λn,
while λ̄n(1+b)(τ−bt/(1+b))�λnτ for all times; this will be sufficient to repeat the argu-
ments in §5, getting uniform estimates in a regularity which depends on t. (The constants
are uniform in t; but the index of regularity goes decreases with t.) We can also do this
while preserving the other good properties from Theorem 5.2, namely exponential decay
in τ , and vanishing near τ =t.

Figure 7 summarizes schematically the way we choose and estimate the gliding
regularity indices.

Besides being uniform in t, our bounds need to be uniform in n. For this we shall
have to stratify all our estimates, that is decompose �[fn]=�[h1]+...+�[hn], and consider
separately the influence of each term in the equations for characteristics. This can work
only if the scheme converges very fast.

Once we have estimates on Ωn
t,τ in a time-varying regularity, we can work with the

kinetic equation to derive estimates on hn
τ Ωn

t,τ ; and then on all hk
τ Ωn

t,τ , also in a norm of
time-varying regularity. We can also estimate their spatial average, in a norm Cλ̄(1+b);1;
due to the exponential convergence of the deflection map as τ!∞ these estimates will
turn out to be uniform in τ .

Next, we can use all this information, in conjunction with Theorem 6.5, to get an
integral inequality on the norm of �[hn+1

τ ] in Fλτ+μ, where λ and μ are only slightly
smaller than λn and μn. Then we can go through the response estimates of §7, this gives
us an arbitrarily small loss in the exponential decay rate, at the price of a huge constant
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which will eventually be wiped out by the fast convergence of the scheme. So we have
an estimate on �[hn+1], and we are in business to continue the iteration. (To ensure the
propagation of the linear damping condition, or equivalently of the smallness of K0 in
Theorem 7.7, throughout the scheme, we shall have to stratify the estimates once more.)

9. Local-in-time iteration

Before working out the core of the proof of Theorem 2.6 in §10, we shall need a short-time
estimate, which will act as an “initial regularity layer” for the Newton scheme. (This will
give us room later to allow the regularity index to depend on t.) So we run the whole
scheme once in this section, and another time in the next section.

Short-time estimates in the analytic class are not new for the non-linear Vlasov
equation: see in particular the work of Benachour [8] on the Vlasov–Poisson equation.
His arguments can probably be adapted for our purpose; also the Cauchy–Kovalevskaya
method could certainly be applied. We shall provide here an alternative method, based
on the analytic function spaces from §4, but not needing the apparatus from §§5–7.
Unlike the more sophisticated estimates which will be performed in §10, these ones are
“almost” Eulerian (the only characteristics are those of free transport). The main tool
is given by the following lemma.

Lemma 9.1. Let f be an analytic function, λ(t)=λ−Kt and μ(t)=μ−Kt; let T >0
be so small that λ(t), μ(t)>0 for 0�t�T . Then for any τ∈[0, T ] and any p�1,

d+

dt

∣∣∣∣
t=τ

‖f‖Zλ(t),μ(t);p
τ

�− K

1+τ
‖∇f‖Zλ(τ),μ(τ);p

τ
, (9.1)

where d+/dt stands for the upper right derivative.

Remark 9.2. Time-differentiating Lebesgue integrability exponents is common prac-
tice in certain areas of analysis; see e.g. [33]. Time-differentiation with respect to regu-
larity exponents is less common; however, as pointed out to us by Strain, Lemma 9.1 is
strongly reminiscent of a method recently used by Chemin [17] to derive local analytic
regularity bounds for the Navier–Stokes equation. We expect that similar ideas can be
applied to more general situations of Cauchy–Kovalevskaya type, especially for first-order
equations, and maybe this has already been done.
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Proof. For notational simplicity, let us assume d=1. The left-hand side of (9.1) is∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|2πμ̇(τ)|k|λ
n(τ)
n!

‖(∇v+2iπkτ)nf̂(k, v)‖Lp(dv)

+
∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|λ̇(τ)
λn−1(τ)
(n−1)!

‖(∇v+2iπkτ
)n

f̂(k, v)‖Lp(dv)

� −K
∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|2π|k|λ
n(τ)
n!

‖(∇v+2iπkτ)nf̂(k, v)‖Lp(dv)

−K
∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|λ
n(τ)
n!

‖(∇v+2iπkτ
)n+1

f̂(k, v)‖Lp(dv)

� −K
∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|λ
n(τ)
n!

‖(∇v+2iπkτ)n∇̂xf(k, v)‖Lp(dv)

+
Kτ

1+τ

∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|λ
n(τ)
n!

‖(∇v+2iπkτ
)n∇̂xf(k, v)

∥∥∥
Lp(dv)

− K

1+τ

∑
k∈Zd

n∈Nd
0

e2πμ(τ)|k|λ
n(τ)
n!

‖(∇v+2iπkτ)n∇̂vf(k, v)‖Lp(dv),

where in the last step we used that

‖(∇v+2iπkτ)h‖� ‖∇vh‖−τ‖2iπkh‖
1+τ

.

The conclusion follows.

Now let us see how to propagate estimates through the Newton scheme described in
§10. The first stage of the iteration (h1 in the notation of (8.3)) was considered in §4.12,
so we only need to care about higher orders. For any k�1, we solve

∂th
k+1+v ·∇xhk+1 = Σ̃k+1,

where
Σ̃k+1 =−(F [hk+1]·∇vfk+F [fk]·∇vhk+1+F [hk]·∇vhk)

(note the difference with (8.7)–(8.8)). Recall that fk=f0+h1+...+hk. We define

λk(t) =λk−2Kt and μk(t) =μk−Kt,
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where (λk)∞k=1 and (μk)∞k=1 are decreasing sequences of positive numbers.
We assume inductively that at stage n of the iteration, we have constructed (λk)n

k=1,
(μk)n

k=1 and (δk)n
k=1 such that

sup
0�t�T

‖hk(t, ·)‖Zλk(t),μk(t);1
t

� δk for all 1 � k �n

for some fixed T >0. The issue is to construct λn+1, μn+1 and δn+1 so that the induction
hypothesis is satisfied at stage n+1.

At t=0, hn+1=0. Then we estimate the time-derivative of ‖hn+1‖Zλn+1(t),μn+1(t);1
t

.
Let us first pretend that the regularity indices λn+1 and μn+1 do not depend on t; then

hn+1(t) =
∫ t

0

Σ̃n+1 S0
−(t−τ) dτ,

so, by Proposition 4.19,

‖hn+1‖Zλn+1,μn+1;1
t

�
∫ t

0

‖Σ̃n+1
τ S0

−(t−τ)‖Zλn+1,μn+1;1
t

dτ

�
∫ t

0

‖Σ̃n+1
τ ‖Zλn+1,μn+1;1

τ
dτ,

and thus
d+

dt
‖hn+1‖Zλn+1,μn+1;1

t

� ‖Σ̃n+1
t ‖Zλn+1,μn+1;1

t

.

Finally, according to Lemma 9.1, to this estimate we should add a negative multiple of
the norm of ∇hn+1 to take into account the time-dependence of λn+1 and μn+1.

All in all, after application of Proposition 4.24, we get

d+

dt
‖hn+1(t, ·)‖Zλn+1(t),μn+1(t);1

t

� ‖F [hn+1
t ]‖Fλn+1t+μn+1 ‖∇vfn

t ‖Zλn+1,μn+1;1
t

+‖F [fn
t ]‖Fλn+1t+μn+1 ‖∇vhn+1

t ‖Zλn+1,μn+1;1
t

+‖F [hn
t ]‖Fλn+1t+μn+1 ‖∇vhn

t ‖Zλn+1,μn+1;1
t

−K‖∇xhn+1
t ‖Zλn+1,μn+1;1

t

−K‖∇vhn+1
t ‖Zλn+1,μn+1;1

t

,

where K>0, t is sufficiently small, and all exponents λn+1 and μn+1 in the right-hand
side actually depend on t.

From Proposition 4.15 (iv) we easily get ‖F [h]‖Fλt+μ �C‖∇h‖Zλ,μ;1
t

. Moreover, by
Proposition 4.10,

‖∇fn‖Zλn+1,μn+1;1
t

�
n∑

k=1

‖∇hk‖Zλn+1,μn+1;1
t

�C

n∑
k=1

‖hk‖Zλk+1,μk+1;1
t

min{λk−λn+1, μk−μn+1} .
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We end up with the bound

d+

dt
‖hn+1(t, ·)‖Zλn+1(t),μn+1(t);1

t

�
(

C

n∑
k=1

δk

min{λk−λn+1, μk−μn+1}−K

)
‖∇hn+1‖Zλn+1(t),μn+1(t);1

t

+
δ2
n

min{λn−λn+1, μn−μn+1} .

We conclude that if

n∑
k=1

δk

min{λk−λn+1, μk−μn+1} � K

C
, (9.2)

then we may choose

δn+1 =
δ2
n

min{λn−λn+1, μn−μn+1} . (9.3)

This is our first encounter with the principle of “stratification” of errors, which will be
crucial in the next section: to control the error at stage n+1, we use not only the smallness
of the error from stage n, but also an information about all previous errors; namely the
fact that the convergence of the size of the error is much faster than the convergence of the
regularity loss. Let us see how this works. We choose λk−λk+1=μk−μk+1=Λ/k2, where
Λ>0 is arbitrarily small. Then for k�n, λk−λn+1�Λ/k2, and therefore δn+1�δ2

nn2/Λ.
The problem is to check that

∞∑
n=1

n2δn <∞. (9.4)

Indeed, then we can choose K large enough for (9.2) to be satisfied, and then T small
enough that, say, λ∗−2KT �λ� and μ∗−KT �μ�, where λ�<λ∗ and μ�<μ∗ have been
fixed in advance.

If δ1=δ, the general term in the series of (9.4) is

n2 δ2n

Λn
(22)2

n−1
(32)2

n−2
(42)2

n−2
... ((n−1)2)2n2.

To prove the convergence for δ small enough, we assume by induction that δn�zan

, where
a is fixed in the interval (1, 2) (say a=1.5); and we claim that this condition propagates
if z>0 is small enough. Indeed,

δn+1 � z2an

Λ
n2 � zan+1 z(2−a)an

n2

Λ
,
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and this is bounded above by zan+1
if z is so small that

z(2−a)an � Λ
n2

for all n∈N.

This concludes the iteration argument. Note that the convergence is still extremely
fast—like O(zan

) for any a<2. (Of course, when a approaches 2, the constants be-
come huge, and the restriction on the size of the perturbation becomes more and more
stringent.)

Remark 9.3. The method used in this section can certainly be applied to more gen-
eral situations of Cauchy–Kovalevskaya type. Actually, as pointed out to us by Bony
and Gérard, the use of a regularity index which decays linearly in time, combined with a
Newton iteration, was used by Nirenberg [73] to prove an abstract Cauchy–Kovalevskaya
theorem. Nirenberg uses a time-integral formulation, so there is nothing in [73] compa-
rable to Lemma 9.1, and the details of the proof of convergence differ from ours; but the
general strategy is similar. Nirenberg’s proof was later simplified by Nishida [74] with a
clever fixed-point argument; in the present section anyway, our final goal is to provide
short-term estimates for the successive corrections arising from the Newton scheme.

10. Global in time iteration

Now let us implement the scheme described in §8, with some technical modifications. If
f is a given kinetic distribution, we write

�[f ] =
∫

Rd

f dv and F [f ] =−∇W ∗�[f ].

We let
fn = f0+h1+...+hn, (10.1)

where the successive corrections hk are defined by the natural Newton scheme introduced
in §8. As in §5, we define Ωk

t,τ as the deflection from time t to time τ , generated by the
force field F [fk]=−∇W ∗�[fk]. (Note that Ω0=Id.)

10.1. The statement of the induction

We shall fix p̄∈[1,∞] and make the following assumptions:
• Regularity of the background : there are λ>0 and C0>0 such that

‖f0‖Cλ;p �C0 for all p∈ [1, p̄ ].
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• Linear damping condition: The stability condition (L) from §2.2 holds with pa-
rameters C0, λ (the same as above) and >0.

• Regularity of the interaction: There are γ>1 and CF >0 such that for any ν>0,

‖∇W ∗�‖Fν,γ �CF ‖�‖Ḟν . (10.2)

• Initial layer of regularity (coming from §9): having chosen λ�<λ and μ�<μ, we
assume that for all p∈[1, p̄ ],

sup
0�t�T

(‖hk
t ‖Zλ	,μ	;p +‖�[hk

t ]‖Fμ	 ) � ζk for all k � 1, (10.3)

where T is some positive time, and ζk converges to zero extremely fast: ζk=O(zak
I

I ),
zI �Cδ<1, 1<aI <2 (aI chosen in advance, arbitrarily close to 2).

• Smallness of the solution of the linearized equation (coming from §4.12): given
λ1<λ� and μ1<μ�, we assume that⎧⎪⎨⎪⎩

sup
τ�0

‖�[h1
τ ]‖Fλ1τ+μ1 � δ1,

sup
0�τ�t

‖h1
τ‖Zλ1(1+b),μ1;p

τ−bt/(1+b)
� δ1 for all p∈ [1, p̄ ],

(10.4)

where δ1�Cδ.
Then we prove the following induction for any n�1,⎧⎪⎨⎪⎩

sup
τ�0

‖�[hk
τ ]‖Fλkτ+μk � δk,

sup
0�τ�t

‖hk
τ Ωk−1

t,τ ‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk,
for all k∈{1, ..., n} and p∈ [1, p̄ ], (10.5)

where
• (δk)∞k=1 is a sequence satisfying 0<CF ζk�δk, and δk=O(zak

), z<zI , 1<a<aI (a
arbitrarily close to aI);

• (λk, μk) are decreasing to (λ∞, μ∞), where (λ∞, μ∞) are arbitrarily close to
(λ1, μ1); in particular we impose

λ�−λ∞ � min
{
1, 1

2λ∞
}

and μ�−μ∞ � min
{
1, 1

2μ∞
}
; (10.6)

• T is some small positive time in (10.3); we impose

λ#T � 1
2 (μ�−μ1); (10.7)

• b=b(t)=
B

1+t
, where B∈(0, T ) is a (small) constant.
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10.2. Preparatory remarks

As announced in (10.5), we shall propagate the following “primary” controls on the
density and distribution:

sup
τ�0

‖�[hk
τ ]‖Fλkτ+μk � δk for all k∈{1, ..., n} (En

� )

and

sup
0�τ�t

‖hk
τ Ωk−1

t,τ ‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk for all k∈{1, ..., n} and p∈ [1, p̄ ]. (En
h)

Estimate (En
� ) obviously implies, via (10.2), up to a multiplicative constant,

sup
τ�0

‖F [hk
τ ]‖Fλkτ+μk,γ � δk for all k∈{1, ..., n}. (Ẽn

� )

Before we can go from there to stage n+1, we need an additional set of estimates
on the deflection maps (Ωk)n

k=1, which will be used to
(1) update the control on Ωk

t,τ −Id;
(2) establish the needed control along the characteristics for the background

(∇vfn
τ ) Ωn

t,τ

(same index for the distribution and the deflection);
(3) update some technical controls allowing us to exchange (asymptotically) gradient

and composition by Ωk
t,τ ; this will be crucial to handle the contribution of the zero mode

of the background after composition by characteristics.
This set of deflection estimates falls into three categories. The first group expresses

the closeness of Ωk to Id:⎧⎪⎨⎪⎩
sup

0�τ�t
‖ΩkXt,τ −Id ‖Zλ∗

k
(1+b),(μ∗

k
,γ)

τ−bt/(1+b)

� 2Rk
2(τ, t),

sup
0�τ�t

‖ΩkVt,τ −Id ‖Zλ∗
k
(1+b),(μ∗

k
,γ)

τ−bt/(1+b)

�Rk
1(τ, t),

for all k∈{1, ..., n}, (En
Ω)

with λk>λ∗
k>λk+1, μk>μ∗

k>μk+1 and

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Rk

1(τ, t) =
( k∑

j=1

δje
−2π(λj−λ∗

j )τ

2π(λj−λ∗
j )

)
min{t−τ, 1}

Rk
2(τ, t) =

( k∑
j=1

δje
−2π(λj−λ∗

j )τ

(2π(λj−λ∗
j ))2

)
min
{

(t−τ)2

2
, 1
}

.

(10.8)
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The second group of estimates expresses the fact that Ωn−Ωk is very small when k

is large:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
sup

0�τ�t
‖ΩnXt,τ −ΩkXt,τ‖Zλ∗

n(1+b),(μ∗
n,γ)

τ−bt/(1+b)
� 2Rk,n

2 (τ, t),

sup
0�τ�t

‖ΩnVt,τ −ΩkVt,τ‖Zλ∗
n(1+b),(μ∗

n,γ)
τ−bt/(1+b)

�Rk,n
1 (τ, t)+Rk,n

2 (τ, t),

sup
0�τ�t

‖(Ωk
t,τ )−1 Ωn

t,τ −Id ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� 4(Rk,n
1 (τ, t)+Rk,n

2 (τ, t)),

for all k∈{0, ..., n−1},

(Ẽn
Ω)

with ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Rk,n

1 (τ, t) =
( n∑

j=k+1

δje
−2π(λj−λ∗

j )τ

2π(λj−λ∗
j )

)
min{t−τ, 1}

Rk,n
2 (τ, t) =

( n∑
j=k+1

δje
−2π(λj−λ∗

j )τ

(2π(λj−λ∗
j ))2

)
min
{

(t−τ)2

2
, 1
}

.

(10.9)

(Choosing k=0 brings us back to the previous estimates (En
Ω).)

The last group of estimates expresses the fact that the differential of the deflection
map is uniformly close to the identity (in a way which is more precise than what would
follow from the first group of estimates):⎧⎪⎨⎪⎩

sup
0�τ�t

‖∇ΩkXt,τ −(I, 0)‖Zλ∗
k
(1+b),μ∗

k
τ−bt/(1+b)

� 2Rk
2(τ, t),

sup
0�τ�t

‖∇ΩkVt,τ −(0, I)‖Zλ∗
k
(1+b),μ∗

k
τ−bt/(1+b)

�Rk
1(τ, t)+Rk

2(τ, t),

for all k∈{1, ..., n},

(En
∇Ω)

where ∇=(∇x,∇v), and I is the identity matrix.
An important property of the functions Rk,n

1 (τ, t) and Rk,n
2 (τ, t) is their fast decay

as τ!∞ and as k!∞, uniformly in n�k; this is due to the fast convergence of the
sequence (δk)∞k=1. Eventually, if r∈N is given, we shall have

Rk,n
1 (τ, t) �ωr,1

k,n(τ, t) and Rk,n
2 (τ, t) �ωr,2

k,n(τ, t) for all r � 1, (10.10)

with

ωr,1
k,n(τ, t) := Cr

ω

( n∑
j=k+1

δj

(2π(λj−λ∗
j ))1+r

)
min{t−τ, 1}

(1+τ)r

and

ωr,2
k,n(τ, t) := Cr

ω

( n∑
j=k+1

δj

(2π(λj−λ∗
j ))2+r

)
min
{

1
2 (t−τ)2, 1

}
(1+τ)r

for some absolute constant Cr
ω depending only on r (we also denote ωr,1

0,n=ωr,1
n and

ωr,2
0,n=ωr,2

n ).
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From the estimates on the characteristics and (En
h) will follow the following “sec-

ondary controls” on the distribution function:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
0�τ�t

‖(∇xhk
τ ) Ωk−1

t,τ ‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk,

sup
0�τ�t

‖∇x(hk
τ Ωk−1

t,τ )‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk,

‖((∇v+τ∇x)hk
τ ) Ωk−1

t,τ ‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk,

‖(∇v+τ∇x)(hk
τ Ωk−1

t,τ )‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk,

sup
0�τ�t

1
(1+τ)2

‖(∇∇hk
τ ) Ωk−1

t,τ ‖Zλk(1+b),μk;1
τ−bt/(1+b)

� δk,

sup
0�τ�t

(1+τ)2‖(∇hk
τ ) Ωk−1

t,τ −∇(hk
τ Ωk−1

t,τ )‖Zλk(1+b),μk;1
τ−bt/(1+b)

� δk.

for all k∈{1, ..., n} and p∈ [1, p̄ ].

(Ẽn
h)

The transition from stage n to stage n+1 can be summarized as follows:

(Ẽn
� )

(An)
=⇒ (En

Ω)+(Ẽn
Ω)+(En

∇Ω),

(En
� )+(En

Ω)+(Ẽn
Ω)+(En

∇Ω)+(En
h)+(Ẽn

h)
(Bn)
=⇒ (En+1

� )+(Ẽn+1
� )+(En+1

h )+(Ẽn+1
h ).

The first implication (An) is proven by an amplification of the technique used in §5;
ultimately, it relies on repeated application of Picard’s fixed-point theorem in analytic
norms. The second implication (Bn) is the harder part; it uses the machinery from §6
and §7, together with the idea of simultaneously propagating a shifted Z norm for the
kinetic distribution and an F norm for the density.

In both implications, the stratification of error estimates will prevent the blow up
of constants. So we shall decompose the force field Fn generated by fn as

Fn = F [fn] = E1+...+En,

where Ek=F [hk]=−∇W ∗�[hk].
The plan of the estimates is as follows. We shall inductively construct a sequence of

constant coefficients

λ� >λ1 >λ∗
1 >λ2 > ...> λn >λ∗

n >λn+1 > ...,

μ� >μ1 >μ∗
1 >μ2 > ...> μn >μ∗

n >μn+1 > ...

(where λn and μn will be fixed in the proof of (An), and λn+1 and μn+1 in the proof
of (Bn)) converging respectively to λ∞ and μ∞; and a sequence (δk)∞k=1 decreasing very
fast to zero. For simplicity we shall let

Rn(τ, t) =Rn
1 (τ, t)+Rn

2 (τ, t) and Rk,n(τ, t) =Rk,n
1 (τ, t)+Rk,n

2 (τ, t),
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and assume that 2π(λj−λ∗
j )�1; so

Rk,n(τ, t) � Cr
ω

( n∑
j=k+1

δj

(2π(λj−λ∗
j ))2+r

)
min{t−τ, 1}

(1+τ)r
and R0,n =Rn. (10.11)

It will be sufficient to work with some fixed r, large enough (as we shall see, r=4 will do).
To go from stage n to stage n+1, we shall do as follows:

Implication (An) (§10.3):
Step 1. Estimate Ωn−Id (the bound should be uniform in n).
Step 2. Estimate Ωn−Ωk (k�n−1; the error should be small when k!∞).
Step 3. Estimate ∇Ωn−I.
Step 4. Estimate (Ωk)−1 Ωn.

Implication (Bn) (§10.4):
Step 5. Estimate hk and its derivatives along the composition by Ωn.
Step 6. Estimate �[hn+1], using §6 and §7.
Step 7. Estimate F [hn+1] from �[hn+1].
Step 8. Estimate hn+1 Ωn.
Step 9. Estimate derivatives of hn+1 composed with Ωn.
Step 10. Show that for hn+1, ∇ and composition by Ωn asymptotically commute.

10.3. Estimates on the characteristics

In this subsection, we assume that (En
� ) is proven, and establish (En

Ω)+(Ẽn
Ω)+(En

∇Ω).
Let λ∗

n<λn and μ∗
n<μn to be fixed later on.

10.3.1. Step 1. Estimate of Ωn−Id

This is the first and archetypal estimate. We shall bound ΩnXt,τ −x in the hybrid norm
Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b) . The Sobolev correction γ will play no role here in the proofs, and for
simplicity we shall forget it in the computations, just recall it in the final results. (Use
Proposition 4.32 whenever needed.)

Since we expect the characteristics for the force field Fn to be close to the free
transport characteristics, it is natural to write

Xn
t,τ (x, v) =x−v(t−τ)+Zn

t,τ (x, v), (10.12)

where Zn
t,τ solves ⎧⎨⎩

∂2

∂τ2
Zn

t,τ (x, v) =Fn(τ, x−v(t−τ)+Zn
t,τ (x, v))

Zn
t,t(x, v) = 0, ∂τZn

t,τ |t=τ (x, v) = 0.

(10.13)
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(With respect to §5 we have dropped the parameter ε, to take advantage of the “stratified”
nature of Fn; anyway this parameter was cosmetic.) So if we fix t>0, (Zn

t,τ )0�τ�t is a
fixed point of the map

Ψ: (Wt,τ )0�τ�t 
−! (Zt,τ )0�τ�t

defined by ⎧⎨⎩
∂2

∂τ2
Zt,τ = Fn(τ, x−v(t−τ)+Wt,τ )

Zt,t = 0, ∂τZt,τ |τ=t = 0.

(10.14)

The goal is to estimate Zn
t,τ −x in the hybrid norm Zλ∗

n(1+b),μ∗
n

t−bt/(1+b) .
We first bound (Zn

0 )t,τ =Ψ(0). Explicitly,

(Zn
0 )t,τ (x, v) =

∫ t

τ

(s−τ) Fn(s, x−v(t−s)) ds.

By Propositions 4.15 (i) and 4.19,

‖(Zn
0 )t,τ‖Zλ∗

n(1+b),μ∗
n

t−bt/(1+b)
�
∫ t

τ

(s−τ)‖Fn(s, x−v(t−s))‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

ds

=
∫ t

τ

(s−τ)‖Fn(s, ·)‖Zλ∗
n(1+b),μ∗

n
s−bt/(1+b)

ds

=
∫ t

τ

(s−τ)‖Fn(s, ·)‖Fν(s,t) ds,

(10.15)

where

ν(s, t) =λ∗
n|s−b(t−s)|+μ∗

n. (10.16)

Case 1. If s�bt/(1+b), then

ν(s, t) �λ∗
ns+μ∗

n �λk s+μk−(λk−λ∗
n)s, k∈{1, ..., n}. (10.17)

Case 2. If s<bt/(1+b), then necessarily s�B�T . Taking into account (10.6), we
have

ν(s, t) =λ∗
n bt+μ∗

n−λ∗
n(1+b)s (10.18)

�λ∗
nB+μ∗

n−(λk−λ∗
n)s. (10.19)

(Of course, the assumption λ�−λ∞�min
{
1, 1

2λ∞
}

implies that λk−λ∗
n�λ∗

n.) In partic-
ular, by (10.7),

ν(s, t) �μ�−(λk−λ∗
n)s, k∈{1, ..., n}. (10.20)



on landau damping 151

We plug these bounds into (10.15), then use Êk(s, 0)=0 and the bounds (Ẽn
� ) and

(10.17) (for large times), and (10.3) and (10.20) (for short times). This yields

‖(Zn
0 )t,τ‖Zλ∗

n(1+b),μ∗
n

t−bt/(1+b)

�
n∑

k=1

(∫ t

τ∨bt/(1+b)

(s−τ)‖Ek(s, ·)‖Fλks+μk−(λk−λ∗
n)s ds

+
∫ τ∨bt/(1+b)

τ

(s−τ)‖Ek(s, ·)‖Fμ	−(λk−λ∗
n)s ds

)
�

n∑
k=1

(∫ t

τ∨bt/(1+b)

(s−τ)e−2π(λk−λ∗
n)s‖Ek(s, ·)‖Fλks+μk ds

+
∫ τ∨bt/(1+b)

τ

(s−τ)e−2π(λk−λ∗
n)s‖Ek(s, ·)‖Fμ	 ds

)
�

n∑
k=1

δk

∫ t

τ

(s−τ)e−2π(λk−λ∗
n)s ds

�
n∑

k=1

δke−2π(λk−λ∗
n)τ min

{
(t−τ)2

2
,

1
(2π(λk−λ∗

n))2

}
�Rn

2 (τ, t).

(10.21)

Let us define the norm

||||(Zt,τ )0�τ�t||||n := sup
0�τ�t

‖Zt,τ‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

Rn
2 (τ, t)

.

(Note the difference with §5: now the regularity exponents depend on time(s).) Inequality
(10.21) means that ||||Ψ(0)||||n�1. We shall check that Ψ is 1

2 -Lipschitz on the ball B(0, 2)
in the norm |||| · ||||n. This will be subtle: the uniform bounds on the size of the force field,
coming from the preceding steps, will allow us to get good decaying exponentials, which
in turn will imply uniform error bounds at the present stage.

So let W, W̃∈B(0, 2), and let Z=Ψ(W ) and Z̃=Ψ(W̃ ). As in §5, we write

Zt,τ −Z̃t,τ =
∫ 1

0

∫ t

τ

(s−τ)∇xFn(s, x−v(t−s)+θWt,s+(1−θ)W̃t,s)·(Wt,s−W̃t,s) ds dθ,

and deduce that

||||(Zt,τ −Z̃t,τ )0�τ�t||||n �A(t)||||(Wt,s−W̃t,s)0�s�t||||n,

where

A(t) = sup
0�τ�s�t

Rn
2 (s, t)

Rn
2 (τ, t)

×
∫ 1

0

∫ t

τ

(s−τ)‖∇xFn(s, x−v(t−s)+θWt,s+(1−θ)W̃t,s)‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

ds dθ.
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For τ �s we have Rn
2 (s, t)�Rn

2 (τ, t). Also, by Proposition 4.25 (applied with V =0,
b=−(t−s) and σ=0 in that statement) and Proposition 4.15,

A(t) � sup
0�τ�t

∫ t

τ

(s−τ)‖∇xFn(s, ·)‖Fν(s,t)+e(s,t) ds,

where ν is defined by (10.16) and the “error” e(s, t) arising from composition is given by

e(s, t) = sup
0�θ�1

‖θWt,s+(1−θ)W̃t,s‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

� 2Rn
2 (s, t).

Since

Rn
2 (s, t) �ω1,2

n (s, t) := C1
ω

( n∑
k=1

δk

(2π(λk−λ∗
k))3

)
min
{

1
2 (t−s)2, 1

}
1+s

,

we have, for all 0�s�t,

2Rn
2 (s, t) � λ∗

nb(t−s)
2

1s�bt/(1+b)+
μ�−μ∗

n

2
1s�bt/(1+b), (10.22)

as soon as

2C1
ω

( n∑
k=1

δk

(2π(λk−λ∗
n))3

)
� min

{
λ∗

nB

6
,
μ�−μ∗

n

2

}
for all n � 1. (C1)

We shall check later in §10.5 the feasibility of condition (C1)—as well as a number of
other forthcoming ones.

The extra error term in the exponent is sufficiently small to be absorbed by what
we throw away in (10.17) or in (10.18)–(10.20). So we obtain, as in the estimate of Zn

0 ,
for any k∈{1, ..., n},

(ν+e)(s, t) �
{

λks+μk−(λk−λ∗
n)s for s� bt/(1+b),

μ�−(λk−λ∗
n)s for s� bt/(1+b),

and we deduce (using (Ẽn
� ) and γ�1) that

A(t) � sup
0�τ�t

n∑
k=1

(∫ t

τ∨bt/(1+b)

(s−τ)‖∇xEk(s, ·)‖Fλks+μk−(λk−λ∗
n) s ds

+
∫ τ∨bt/(1+b)

τ

(s−τ)‖∇xEk(s, ·)‖Fμ	−(λk−λ∗
n)s ds

)
� sup

0�τ�t

n∑
k=1

δk

∫ t

τ

(s−τ)e−(λk−λ∗
n)s ds

� sup
0�τ�t

Rn
2 (τ, t) =Rn

2 (0, t)

�
n∑

k=1

δk

(2π(λk−λ∗
n))2

.
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If the latter quantity is bounded above by 1
2 , then Ψ is 1

2 -Lipschitz and we may apply the
fixed-point result from Theorem A.2. Therefore, under the condition (whose feasibility
will be checked later)

n∑
k=1

δk

(2π(λk−λ∗
n))2

� 1
2

for all n � 1, (C2)

we deduce that
‖Zn

t,τ‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

� 2Rn
2 (τ, t).

After that, the estimates on the deflection map are obtained exactly as in §5: writing
Ωn

t,τ =(ΩnXt,τ , ΩnVt,τ ), recalling the dependence on γ again, we end up with

{ ‖ΩnXt,τ −x‖Zλ∗
n(1+b),(μ∗

n,γ)
τ−bt/(1+b)

� 2Rn
2 (τ, t),

‖ΩnVt,τ −v‖Zλ∗
n(1+b),(μ∗

n,γ)
τ−bt/(1+b)

�Rn
1 (τ, t).

(10.23)

10.3.2. Step 2. Estimate of Ωn−Ωk

In this step our goal is to estimate Ωn−Ωk for 1�k�n−1. The point is that the error
should be small as k!∞, uniformly in n, so we cannot just write

‖Ωn−Ωk‖� ‖Ωn−Id ‖+‖Ωk−Id ‖.

Instead, we start again from the differential equation satisfied by Zk and Zn:

∂2

∂τ2
(Zn

t,τ −Zk
t,τ )(x, v) =Fn(τ, x−v(t−τ)+Zn

t,τ (x, v))−F k(τ, x−v(t−τ)+Zk
t,τ (x, v))

= Fn(τ, x−v(t−τ)+Zn
t,τ )−Fn(τ, x−v(t−τ)+Zk

t,τ )

+(Fn−F k)(τ, x−v(t−τ)+Zk
t,τ ).

This, together with the boundary conditions Zn
t,t−Zk

t,t=0 and ∂τ (Zn
t,τ −Zk

t,τ )|τ=t=0, im-
plies that

Zn
t,τ −Zk

t,τ =
∫ 1

0

∫ t

τ

(s−τ)∇xFn(s, x−v(t−s)+θZk
t,s+(1−θ)Zn

t,s)·(Zn
t,s−Zk

t,s) ds dθ

+
∫ t

τ

(s−τ)(Fn−F k)(s, x−v(t−s)+Zk
t,s(x, v)) ds.

We fix t and define the norm

||||(Zt,τ )0�τ�t||||k,n := sup
0�τ�t

‖Zt,τ‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

Rk,n
2 (τ, t)

,
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where Rk,n
2 is defined in (10.9). Using the bounds on Zn and Zk in |||| · ||||n (since

|||| · ||||n�|||| · ||||k by using the fact that Rk
2�Rn

2 ) and proceeding as before, we get that

||||(Zn
t,τ −Zk

t,τ )0�τ�t||||k,n

� 1
2 ||||(Zn

t,τ −Zk
t,τ )0�τ�t||||k,n

+
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(∫ t

τ

(s−τ)(Fn−F k)(s, x−v(t−s)+Zk
t,s) ds

)
0�τ�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k,n

.

(10.24)

Next we estimate

‖(Fn−F k)(s, x−v(t−s)+Zk
t,s)‖Zλ∗

n(1+b),μ∗
n

t−bt/(1+b)
= ‖(Fn−F k)(s,Xk

t,s)‖Zλ∗
n(1+b),μ∗

n
t−bt/(1+b)

= ‖(Fn−F k)(s,Ωk
t,s)‖Zλ∗

n(1+b),μ∗
n

s−bt/(1+b)

� ‖(Fn−F k)(s, ·)‖Fν(s,t)+e(s,t) ,

where the last inequality follows from Proposition 4.25, ν is again given by (10.16), and

e(s, t) = ‖ΩkXt,s−Id ‖Zλ∗
n(1+b),μ∗

n
s−bt/(1+b)

� 2Rk
2(s, t) � 2Rn

2 (s, t).

The same reasoning as in Step 1 yields, under assumptions (C1) and (C2), for
k+1�j�n,

(ν+e)(s, t) �
{

λjs+μj−(λj−λ∗
n)s for s� bt/(1+b),

μ�−(λj−λ∗
n)s for s� bt/(1+b),

and so

‖Fn
s −F k

s ‖Fν+e �
n∑

j=k+1

δje
−2π(λj−λ∗

n)s.

For any τ �0, by integrating in time we find that∥∥∥∥∫ t

τ

(s−τ)(Fn−F k)(s, x−v(t−s)+Zk
t,s) ds

∥∥∥∥
Zλ∗

n(1+b),μ∗
n

t−bt/(1+b)

�
∫ t

τ

(s−τ)
n∑

j=k+1

δje
−2π(λj−λ∗

n)s ds �Rk,n
2 (τ, t).

Therefore ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣(∫ t

τ

(s−τ)(Fn−F k)(s, x−v(t−s)+Zk
t,s) ds

)
0�τ�t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
k,n

� 1

and, by(10.24),
||||(Zn

t,τ −Zk
t,τ )0�τ�t||||k,n � 2.
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Recalling the Sobolev correction, we conclude that

‖ΩnXt,τ −ΩkXt,τ‖Zλ∗
n(1+b),(μ∗

n,γ)
τ−bt/(1+b)

� 2Rk,n
2 (τ, t). (10.25)

For the velocity component, say U , we write

∂

∂τ
(Un

t,τ −Uk
t,τ )(x, v) =Fn(τ, x−v(t−τ)+Zn

t,τ (x, v))−F k(τ, x−v(t−τ)+Zk
t,τ (x, v))

= Fn(τ, x−v(t−τ)+Zn
t,τ )−Fn(τ, x−v(t−τ)+Zk

t,τ )

+(Fn−F k)(τ, x−v(t−τ)+Zk
t,τ ),

where Zn and Zk were estimated above, and the boundary conditions are Un
t,t−Uk

t,t=0.
Thus

Un
t,τ −Uk

t,τ =
∫ 1

0

∫ t

τ

∇xFn(s, x−v(t−s)+θZk
t,s+(1−θ)Zn

t,s)·(Zn
t,s−Zk

t,s) ds dθ

+
∫ t

τ

(Fn−F k)(s, x−v(t−s)+Zk
t,s(x, v)) ds,

and from this one easily derives the similar estimates{ ‖ΩnXt,τ −ΩkXt,τ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� 2Rk,n
2 (t, τ),

‖ΩnVt,τ −ΩkVt,τ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�Rk,n
1 (t, τ)+Rk,n

2 (t, τ).

10.3.3. Step 3. Estimate of ∇Ωn

We now establish a control on the derivative of the deflection map. Of course, we could
deduce such a control from the bound on Ωn−Id and Proposition 4.32 (vi): for instance,
if λ∗∗

n <λ∗
n and μ∗∗

n <μ∗
n, then

‖∇Ωn
t,τ −I‖Zλ∗∗

n (1+b),(μ∗∗
n ,γ)

τ−bt/(1+b)
� CRn

2 (τ, t)
min{λ∗

n−λ∗∗
n , μ∗

n−μ∗∗
n } . (10.26)

But this bound involves very large constants, and is useless in our argument. Better
estimates can be obtained by using again equation (10.13). Writing

(Ωn
t,τ −Id)(x, v) = (Zn

t,τ (x+v(t−τ), v), Żn
t,τ (x+v(t−τ), v)),

where the dot stands for ∂/∂τ , we get by differentiation

∇xΩn
t,τ −(I, 0) = (∇xZn

t,τ (x+v(t−τ), v
)
,∇xŻn

t,τ (x+v(t−τ), v)),

∇vΩn
t,τ −(0, I) = ((∇v+(t−τ)∇x)Zn

t,τ (x+v(t−τ), v),

(∇v+(t−τ)∇x)Żn
t,τ (x+v(t−τ), v)).
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Let us estimate for instance ∇xΩ−(I, 0), or equivalently ∇xZn
t,τ . By differentiating

(10.13), we obtain

∂2

∂τ2
∇xZn

t,τ (x, v) =∇xFn(τ, x−v(t−τ)+Zn
t,τ (x, v))·(Id +∇xZn

t,τ ).

So ∇xZn
t,τ is a fixed point of Ψ:W 
!Q, where W and Q are functions of τ∈[0, t] satisfying⎧⎨⎩

∂2Q

∂τ2
=∇xFn(τ, x−v(t−τ)+Zn

t,τ )(I+W ),

Q(t) = 0, ∂τQ(t) = 0.

We treat this in the same way as in Steps 1 and 2, and find for Qx (the x component
of Q) the same estimates as we had previously on the x component of Ω. For the
velocity component, a direct estimate from the integral equation expressing the velocity
in terms of F yields a control by Rn

1 +Rn
2 . Finally for ∇vΩ this is similar, noting that

(∇v+(t−τ)∇x)(x−v(t−τ))=0, the differential equation being for instance:

∂2

∂τ2
(∇v+(t−τ)∇x)Zn

t,τ (x, v) =∇xFn(τ, x−v(t−τ)+Zn
t,τ (x, v))·((∇v+(t−τ)∇x)Zn

t,τ ).

In the end we obtain⎧⎪⎨⎪⎩
sup

0�τ�t
‖∇ΩnXt,τ −(I, 0)‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
� 2Rn

2 (τ, t),

sup
0�τ�t

‖∇ΩnVt,τ −(0, I)‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�Rn
1 (τ, t)+Rn

2 (τ, t).
(10.27)

10.3.4. Step 4. Estimate of (Ωk)−1 Ωn

We do this by applying Proposition 4.28 with F =Ωk and G=Ωn. (Note that we cannot
exchange the roles of Ωk and Ωn in this step, because we have better information on the
regularity of Ωk.) Let ε=ε(d) be the small constant appearing in Proposition 4.28. If

3Rk
2(τ, t)+Rk

1(τ, t) � ε for all k � 1, (C3)

then ‖∇Ωk
t,τ −I‖Zλ∗

k
(1+b),μ∗

k
τ−bt/(1+b)

�ε; if in addition

2(1+τ)(1+B)(3Rk,n
2 +Rk,n

1 )(τ, t) � max{λ∗
k−λ∗

n, μ∗
k−μ∗

n}
for all k∈{1, ..., n−1} and all t � τ ,

(C4)

then ⎧⎪⎪⎨⎪⎪⎩
λ∗

n(1+b)+2‖Ωn−Ωk‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�λ∗
k(1+b),

μ∗
n+2
(

1+
∣∣∣∣τ− bt

1+b

∣∣∣∣)‖Ωn−Ωk‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�μ∗
k.
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(Once again, short times should be treated separately. Further note that the need for
the factor 1+τ in (C4) ultimately comes from the fact that we are composing also in the
v variable, see the coefficient σ in the last norm of (4.30).) Then Proposition 4.28 (ii)
yields

‖(Ωk
t,τ )−1 Ωn

t,τ −Id ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� 2‖Ωk
t,τ −Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� 4(Rk,n
1 +Rk,n

2 )(τ, t).

10.3.5. Partial conclusion

At this point we have established (En
Ω)+(Ẽn

Ω)+(En
∇Ω).

10.4. Estimates on the density and distribution along characteristics

In this subsection we establish (En+1
� )+(Ẽn+1

� )+(En+1
h )+(Ẽn+1

h ).

10.4.1. Step 5. Estimate of hk Ωn and (∇hk) Ωn, k n.

Let k∈{1, ..., n}. Since

hk
τ Ωn

t,τ = (hk
τ Ωk−1

t,τ ) ((Ωk−1
t,τ )−1 Ωn

t,τ ),

the control on hk Ωn will follow from the control on hk Ωk−1 in (En
h), together with the

control on (Ωk−1)−1 Ωn in (Ẽn
Ω). If

(1+τ)‖(Ωk−1
t,τ )−1 Ωn

t,τ −Id ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� min{λk−λ∗
n, μk−μ∗

n}, (10.28)

then we can apply Proposition 4.25 and get, for any p∈[1, p̄ ], and t�τ �0,

‖hk
τ Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n;p
τ−bt/(1+b)

� ‖hk
τ Ωk−1

t,τ ‖Zλk(1+b),μk;p
τ−bt/(1+b)

� δk. (10.29)

In turn, (10.28) is satisfied if

4(1+τ)(Rk,n
1 (τ, t)+Rk,n

2 (τ, t)) � min{λk−λ∗
n, μk−μ∗

n}
for all k∈{1, ..., n} and all τ ∈ [0, t];

(C5)

we shall check later the feasibility of this condition.
Then, by the same argument, we also have

sup
0�τ�t

‖(∇xhk
τ ) Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n;p
τ−bt/(1+b)

+‖((∇v+τ∇x)hk
τ ) Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n;p
τ−bt/(1+b)

� δk

for all k∈{1, ..., n} and all p∈ [1, p̄ ].
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10.4.2. Step 6. Estimate on �[hn+1]

This step is the first where we shall use the Vlasov equation. Starting from (8.4), we
apply the method of characteristics to get, as in §8,

hn+1(t, Xn
0,t(x, v), V n

0,t(x, v)) =
∫ t

0

Σn+1(τ,Xn
0,τ (x, v), V n

0,τ (x, v)) dτ, (10.30)

where
Σn+1 =−(F [hn+1]·∇vfn+F [hn]·∇vhn).

We compose this with (Xn
t,0, V

n
t,0) and apply (5.2) to get

hn+1(t, x, v) =
∫ t

0

Σn+1(τ,Xn
t,τ (x, v), V n

t,τ (x, v)) dτ,

and so, by integration in the v variable,

�[hn+1](t, x) =
∫ t

0

∫
Rd

Σn+1(τ,Xn
t,τ (x, v), V n

t,τ (x, v)) dv dτ

=−
∫ t

0

∫
Rd

(Rn+1
τ,t ·Gn

τ,t)(x−v(t−τ), v) dv dτ

−
∫ t

0

∫
Rd

(Rn
τ,t ·Hn

τ,t)(x−v(t−τ), v) dv dτ,

(10.31)

where (with a slight inconsistency in the notation){
Rn+1

τ,t = F [hn+1] Ωn
t,τ , Rn

τ,t = F [hn] Ωn
t,τ ,

Gn
τ,t = (∇vfn) Ωn

t,τ , Hn
τ,t = (∇vhn) Ωn

t,τ .
(10.32)

Since the free transport semigroup and Ωn
t,τ are measure-preserving, for all 0�τ �t

we have ∫
Td

∫
Rd

(Rn+1
τ,t ·Gn

τ,t)(x−v(t−τ), v) dv dx =
∫

Td

∫
Rd

Rn+1
τ,t ·Gn

τ,t dv dx

=
∫

Td

∫
Rd

F [hn+1]·∇vfn dv dx

=
∫

Td

∫
Rd

∇v ·(F [hn+1]fn) dv dx

= 0,

and similarly ∫
Td

∫
Rd

(Rn
τ,t ·Hn

τ,t)(x−v(t−τ), v) dv dx = 0 for all 0� τ � t.
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This will allow us to apply the inequalities from §6.

Substep a. Let us first deal with the source term

σn,n(t, x) :=
∫ t

0

∫
Rd

(Rn
τ,t ·Hn

τ,t)(x−v(t−τ), v) dv dτ. (10.33)

By Proposition 6.2,

‖σn,n(t, ·)‖Fλ∗
nt+μ∗

n �
∫ t

0

‖Rn
τ,t‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
‖Hn

τ,t‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

dτ. (10.34)

On the one hand, we have from Step 5 that

‖Hn
τ,t‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)
� 2(1+τ)δn.

On the other hand, under condition (C1), we may apply Proposition 4.25 (with
σ=0) to get

‖Rn
τ,t‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
� ‖F [hn

τ ]‖Fνn ,

where

νn(t, τ) =μ∗
n+λ∗

n(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+‖ΩnXt,τ −Id ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�μ∗
n+λ∗

n(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+2Rn
2 (τ, t).

Proceeding as in Step 1 (treating small times separately), we deduce that

‖Rn
τ,t‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
� ‖F [hn

τ ]‖Fνn � e−2π(λn−λ∗
n)τ‖F [hn

τ ]‖F ν̄n

�CF e−2π(λn−λ∗
n)τ‖�[hn

τ ]‖F ν̄n �CF e−2π(λn−λ∗
n)τδn,

with

ν̄n(τ, t) :=

⎧⎪⎨⎪⎩
μ�, when 0� τ � bt

1+b
,

λnτ +μn, when τ � bt

1+b
.

(10.35)

(We have used the gradient structure of the force to convert (gliding) regularity into
decay.) Thus∫ t

0

‖Rn
τ,t‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
‖Hn

τ,t‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

dτ � 2CF δ2
n

∫ t

0

e−2π(λn−λ∗
n)τ (1+τ) dτ

� 2CF δ2
n

(π(λn−λ∗
n))2

.

(10.36)
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(Note that this is the power 2 which is responsible for the very fast convergence of the
Newton scheme.)

Substep b. Now let us handle the term

σn,n+1(t, x) :=
∫ t

0

∫
Rd

(Rn+1
τ,t ·Gn

τ,t)(x−v(t−τ), v) dv dτ. (10.37)

This is the focal point of all our analysis, because it is in this term that the self-consistent
nature of the Vlasov equation appears. In particular, we will make crucial use of the
time-cheating trick to overcome the loss of regularity implied by composition; and also
the other bilinear estimates (regularity extortion) from §6, as well as the time-response
study from §7. Particular care should be given to the zero spatial mode of Gn, which is
associated with instantaneous response (no echo). In the linearized equation we did not
see this problem because the contribution of the zero mode was vanishing!

We start by introducing

Gn
τ,t =∇vf0+

n∑
k=1

∇v(hk
τ Ωk−1

t,τ ), (10.38)

and we decompose σn,n+1 as

σn,n+1 = σn,n+1+E+E , (10.39)

where

σn,n+1(t, x) =
∫ t

0

∫
Rd

F [hn+1
τ ]·Gn

τ,t(x−v(t−τ), v) dv dτ (10.40)

and the error terms E and E are defined by

E(t, x) =
∫ t

0

∫
Rd

((F [hn+1
τ ] Ωn

t,τ −F [hn+1
τ ])·Gn)(τ, x−v(t−τ), v) dv dτ, (10.41)

E(t, x) =
∫ t

0

∫
Rd

(F [hn+1
τ ]·(Gn−Gn))(τ, x−v(t−τ), v) dv dτ. (10.42)

We shall first estimate E and E .

Control of E . This is based on the time-cheating trick from §6, and the regularity
of the force. By Proposition 6.2,

‖E(t, ·)‖Fλ∗
nt+μ∗

n �
∫ t

0

‖F [hn+1
τ ] Ωn

t,τ −F [hn+1
τ ]‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
‖Gn‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)
dτ. (10.43)
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From (10.1) and Step 5,

‖Gn‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

� ‖∇vf0 Ωn
t,τ‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)
+

n∑
k=1

‖∇vhk
τ Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

�C ′
0+
( n∑

k=1

δk

)
(1+τ),

(10.44)

where C ′
0 comes from the contribution of f0.

Next, by Propositions 4.24 and 4.25 (with V =0, τ =σ and b=0),

‖F [hn+1
τ ] Ωn

t,τ −F [hn+1
τ ]‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)

� ‖Ωn
t,τ −Id ‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)

∫ 1

0

‖∇F [hn+1
τ ] (Id +θ(Ωn

t,τ −Id))‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

dθ

� ‖∇F [hn+1
τ ]‖Fνn‖Ωn

t,τ −Id ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

,

(10.45)

where

νn = μ∗
n+λ∗

n(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+‖ΩnXt,τ −x‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

.

Small times are taken care of, as usual, by the initial regularity layer, so we only focus
on the case τ �bt/(1+b); then

νn �λ∗
nτ +μ∗

n−λ∗
nb(t−τ)+2Rn(τ, t)

�λ∗
nτ +μ∗

n−λ∗
n

B(t−τ)
1+t

+4C1
ω

( n∑
k=1

δk

(2π(λk−λ∗
k))3

)
min{t−τ, 1}

1+τ
.

To make sure that νn�λ∗
nτ +μ∗

n, we assume that

4C1
ω

n∑
k=1

δk

(2π(λk−λ∗
k))3

� λ∗
∞B

3
, (C6)

and we note that
min{t−τ, 1}

1+τ
� 3

t−τ

1+t
.

(This is easily seen by separating four cases: (a) t�2, (b) t�2 and t−τ �1, (c) t�2,
t−τ �1 and τ � 1

2 t, (d) t�2, t−τ �1 and τ � 1
2 t.)

Then, since γ�1, we have

‖∇F [hn+1
τ ]‖Fνn � ‖∇F [hn+1

τ ]‖Fλ∗
nτ+μ∗

n

� ‖F [hn+1
τ ]‖Fλ∗

nτ+μ∗
n,γ �CF ‖�[hn+1

τ ]‖Fλ∗
nτ+μ∗

n .
(10.46)
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(Note that applying Proposition 4.10 instead of the regularity coming from the interaction
would consume more regularity than we can afford to.)

Plugging this back into (10.45), we get

‖F [hn+1
τ ] Ωn

t,τ −F [hn+1
τ ]‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)

� 2Rn(τ, t)CF ‖�[hn+1
τ ]‖Fλ∗

nτ+μ∗
n

� 2C3
ωCF

( n∑
k=1

δk

(2π(λk−λ∗
k))5

)
1

(1+τ)3
‖�[hn+1

τ ]‖Fλ∗
nτ+μ∗

n .

Recalling (10.41) and (10.44), applying Proposition 4.24, we conclude that

‖E(t, ·)‖Fλ∗
nt+μ∗

n

� 2C3
ωCF

(
C ′

0+
n∑

k=1

δk

)( n∑
k=1

δk

(2π(λk−λ∗
k))5

)∫ t

0

‖�[hn+1
τ ]‖Fλ∗

nτ+μ∗
n

dτ

(1+τ)2
.

(10.47)

(We could be a bit more precise; anyway we cannot go further since we do not yet have
an estimate on �[hn+1]. Recall that the latter quantity has zero mean, so the F norm
above could be replaced by a Ḟ norm.)

Control of E. This will use the control on the derivatives of hk. We start again from
Proposition 6.2,

‖E(t, ·)‖Fλ∗
nt+μ∗

n �
∫ t

0

‖Gn−Gn‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

‖F [hn+1
τ ]‖Fβn dτ, (10.48)

where

βn = λ∗
n(1+b)

∣∣∣∣τ− bt

1+b

∣∣∣∣+μ∗
n.

We focus again on the case τ �bt/(1+b), so that (with crude estimates)

‖F [hn+1
τ ]‖Fβn � ‖F [hn+1

τ ]‖Fλ∗
nτ+μ∗

n �CF ‖�[hn+1
τ ]‖Fλ∗

nτ+μ∗
n ,

and the problem is to control Gn−Gn,

‖Gn−Gn‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

� ‖(∇vf0) Ωn
t,τ −∇vf0‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)

+
n∑

k=1

‖(∇vhk
τ ) Ωn

t,τ −(∇vhk
τ ) Ωk−1

t,τ ‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

+
n∑

k=1

‖(∇vhk
τ ) Ωk−1

t,τ −∇v(hk
τ Ωk−1

t,τ )‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

.

(10.49)



on landau damping 163

By induction hypothesis (Ẽn
h), and since the Zλ,μ

τ norms are increasing as a function
of λ and μ,

n∑
k=1

‖(∇vhk
τ ) Ωk−1

t,τ −∇v(hk
τ Ωk−1

t,τ )‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

�
( n∑

k=1

δk

)
1

(1+τ)2
.

It remains to treat the first and second terms in the right-hand side of (10.49). This is
done by inversion/composition as in Step 5; let us consider for instance the contribution
of hk, k�1,

‖∇vhk
τ Ωn

t,τ −∇vhk
τ Ωk−1

t,τ ‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

�
∫ 1

0

‖∇∇vhk
τ ((1−θ)Ωn

t,τ +θΩk−1
t,τ )‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)
‖Ωn

t,τ −Ωk−1
t,τ ‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
dθ

� 2‖∇∇vhk
τ Ωk−1

t,τ ‖Zλ∗
k
(1+b),μ∗

k
;1

τ−bt/(1+b)

‖Ωn
t,τ −Ωk−1

t,τ ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� 4δk(1+τ)2Rk−1,n(τ, t)

� 4C4
ωδk

( n∑
j=k

δj

(2π(λj−λ∗
j ))6

)
1

(1+τ)2
,

where in the second-last step we used (Ẽn
Ω), (Ẽn

� ), Propositions 4.24 and 4.28, condi-
tion (C5) and the same reasoning as in Step 5.

Summing up all contributions and inserting into (10.48) yields

‖E(t, ·)‖Fλ∗
nt+μ∗

n � 4CF

[
C4

ω

(
C ′

0+
n∑

k=1

δk

)( n∑
j=1

δj

(2π(λj−λ∗
n))6

)
+

n∑
k=1

δk

]

×
∫ t

0

‖�[hn+1
τ ]‖Fλ∗

nτ+μ∗
n

dτ

(1+τ)2
.

(10.50)

Main contribution. Now we consider σn,n+1, which we decompose as

σn,n+1
t = σn,n+1

t,0 +
n∑

k=1

σn,n+1
t,k ,

where

σn,n+1
t,0 (x) =

∫ t

0

∫
Rd

F [hn+1](τ, x−v(t−τ), v)·∇vf0(v) dv dτ,

σn,n+1
t,k (x) =

∫ t

0

∫
Rd

(F [hn+1
τ ]·∇v(hk

τ Ωk−1
t,τ ))(τ, x−v(t−τ), v) dv dτ.
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Note that their zero modes vanish. For any k�1, we apply Theorem 6.5 (with M=1) to
get

‖σn,n+1
t,k ‖Fλ∗

nt+μ∗
n �
∫ t

0

Kn,hk

1 (t, τ)‖F [hn+1
τ ]‖Fν′

n,γ dτ +
∫ t

0

Kn,hk

0 (t, τ)‖F [hn+1
τ ]‖Fν′

n,γ dτ,

where

ν′
n = λ∗

n(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+μ′
n

and

Kn,hk

1 (t, τ) =Kn,k
1 (t, τ) sup

0�s�t

‖∇v(hk
s Ωk−1

t,s )−〈∇v(hk
s Ωk−1

t,s )〉‖Zλk(1+b),μk
s−bt/(1+b)

1+s
,

Kn,k
1 (t, τ) = (1+τ)d sup

l,m∈Zd∗

e−π(μk−μ∗
n)|m| e

−2π(μ′
n−μ∗

n)|l−m|

1+|l−m|γ e−π(λk−λ∗
n)|l(t−τ)+mτ |,

Kn,hk

0 (t, τ) =Kn,k
0 (t, τ) sup

0�s�t
‖∇v〈hk

s Ωk−1
t,s 〉‖Cλk(1+b);1 ,

Kn,k
0 (t, τ) = de−π(λk−λ∗

n)(t−τ).

We assume that

μ′
n = μ∗

n+η

(
t−τ

1+t

)
, η > 0 small, (10.51)

and check that ν′
n�λ∗

nτ +μ∗
n. Leaving apart the small-time case, we assume τ �bt/(1+b),

so that

ν′
n = (λ∗

nτ +μ∗
n)−Bλ∗

n(t−τ)
1+t

+η

(
t−τ

1+t

)
,

which is indeed bounded above by λ∗
nτ +μ∗

n as soon as

η �Bλ∗
∞. (10.52)

Then, with the notation (7.10),

Kn,k
1 (t, τ) �K

(αn,k),γ
1 (t, τ), (10.53)

with
αn,k = π min{μk−μ∗

n, λk−λ∗
n, 2η}. (10.54)

From the controls on hk (assumption (Ẽn
h)) we have that

‖∇v(hk
τ Ωk−1

t,τ )−〈∇v(hk
τ Ωk−1

t,τ )〉‖Zλk(1+b),μk;1
τ−bt/(1+b)

� ‖∇v(hk
τ Ωk−1

t,τ )‖Zλk(1+b),μk;1
τ−bt/(1+b)

� δk(1+τ)
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and

‖〈∇v(hk
τ Ωk−1

t,τ )〉‖Cλk(1+b);1 = ‖〈(∇v+τ∇x)(hk
τ Ωk−1

t,τ )〉‖Cλk(1+b);1

� ‖(∇v+τ∇x)(hk
τ Ωk−1

t,τ )‖Zλk(1+b);1
τ−bt/(1+b)

� δk.

After controlling F [hn+1] by �[hn+1], we end up with

‖σn,n+1
t,k ‖Fλ∗

nt+μ∗
n �CF

∫ t

0

( n∑
k=1

δkK
(αn,k),γ
1 (t, τ)

)
‖�[hn+1

τ ]‖Fλ∗
nτ+μ∗

n dτ

+CF

∫ t

0

( n∑
k=1

δk e−π(λk−λ∗
n)(t−τ)

)
‖�[hn+1

τ ]‖Fλ∗
nτ+μ∗

n dτ,

(10.55)

with αn,k defined by (10.54).

Substep c. Gathering all previous controls, we obtain the following integral inequal-
ity for ϕ=�[hn+1]:∥∥∥∥ϕ(t, x)−

∫ t

0

∫
Rd

(∇W ∗ϕ)(τ, x−v(t−τ))·∇vf0(v) dv dτ

∥∥∥∥
Fλ∗

nt+μ∗
n

�An+
∫ t

0

(
Kn

1 (t, τ)+Kn
0 (t, τ)+

cn
0

(1+τ)2

)
‖ϕ(τ, ·)‖Fλ∗

nτ+μ∗
n dτ,

(10.56)

where, by (10.36), (10.47) and (10.50),

An = sup
t�0

‖σn,n(t, ·)‖Fλ∗
nt+μ∗

n � 2CF δ2
n

(π(λn−λ∗
n))2

, (10.57)

Kn
1 (t, τ) =

(
CF

n∑
k=1

δk

)
K

(αn),γ
1 (t, τ),

αn = αn,n = π min{(μn−μ∗
n), (λn−λ∗

n), 2η},

Kn
0 (t, τ) =CF

n∑
k=1

δke−π(λk−λ∗
n)(t−τ),

cn
0 = 3CF C4

ω

(
C ′

0+
n∑

k=1

δk

)( n∑
k=1

δk

(2π(λk−λ∗
k))6

)
+

n∑
k=1

δk.

(We are cheating a bit when writing (10.56), because in fact one should take into account
small times separately; but this does not cause any difficulty.)

We easily estimate Kn
0 :∫ t

0

Kn
0 (t, τ) dτ �CF

n∑
k=1

δk

π(λk−λ∗
n)

,

∫ ∞

τ

Kn
0 (t, τ) dt �CF

n∑
k=1

δk

π(λk−λ∗
n)

,

(∫ t

0

Kn
0 (t, τ)2 dτ

)1/2

�CF

n∑
k=1

δk√
2π(λk−λ∗

n)
.
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Let us assume that αn is smaller than α(γ) appearing in Theorem 7.7, and that

3CF C4
ω

(
C ′

0+
n∑

k=1

δk+1
)( n∑

k=1

δk

(2π(λk−λ∗
k))6

)
� 1

4
, (C7)

CF

n∑
k=1

δk√
2π(λk−λ∗

k)
� 1

2
, (C8)

CF

n∑
k=1

δk

π(λk−λ∗
k)

� max
{

1
4
, χ

}
, (C9)

(note that in these conditions we have strenghtened the inequalities by replacing λk−λ∗
n

by λk−λ∗
k where χ>0 is also defined by Theorem 7.7). Applying Theorem 7.7 with

λ0=λ and λ∗=λ1, we deduce that for any ε∈(0, αn) and t�0,

‖�n+1
t ‖Fλ∗

nt+μ∗
n �CAn

(1+cn
0 )2√
ε

eCcn
0

(
1+

cn

αnε

)
eCTε,neCcn(1+T 2

ε,n)eεt, (10.58)

where

cn = 2CF

n∑
k=1

δk

and

Tε,n = Cγ max
{(

c2
n

α5
nε2+γ

)1/(γ−1)

,

(
cn

α2
nεγ+1/2

)1/(γ−1)

,
(cn

0 )2/3

ε1/3

}
.

Pick up λ†
n<λ∗

n such that 2π(λ∗
n−λ†

n)�αn, and choose ε=2π(λ∗
n−λ†

n); recalling that
�̂n+1(t, 0)=0, and that our conditions imply an upper bound on cn and cn

0 , we deduce
the uniform control

‖�n+1
t ‖Fλ

†
nt+μ∗

n
� e−2π(λ∗

n−λ†
n)t‖�n+1

t ‖Fλ∗
nt+μ∗

n

�CAn

(
1+

1

αn(λ∗
n−λ†

n)3/2

)
eCT 2

n ,
(10.59)

where

Tn = C

(
1

α5
n(λ∗

n−λ†
n)2+γ

)1/(γ−1)

. (10.60)

10.4.3. Step 7. Estimate on F [hn+1]

As an immediate consequence of (10.2) and (10.59), we have

sup
t�0

‖F [�n+1
t ]‖Fλ

†
nt+μ∗

n,γ
�CAn

(
1+

1

αn(λ∗
n−λ†

n)3/2

)
eCT 2

n . (10.61)
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10.4.4. Step 8. Estimate of hn+1 Ωn

In this step we shall again use the Vlasov equation. We rewrite (10.30) as

hn+1(τ,Xn
0,τ (x, v), V n

0,τ (x, v)) =
∫ τ

0

Σn+1(s,Xn
0,s(x, v), V n

0,s(x, v)) ds;

but now we compose with (Xn
t,0, V

n
t,0), where t�τ is arbitrary. This gives

hn+1(τ,Xn
t,τ (x, v), V n

t,τ (x, v)) =
∫ τ

0

Σn+1(s,Xn
t,s(x, v), V n

t,s(x, v)) ds.

Then for any p∈[1, p̄ ] and λ�
n<λ†

n, using Propositions 4.19 and 4.24, and the notation
(10.32), we get

‖hn+1
τ Ωn

t,τ‖Z(1+b)λ�
n,μ∗

n;p
τ−bt/(1+b)

= ‖hn+1
τ (Xn

t,τ , V n
t,τ )‖

Z(1+b)λ�
n,μ∗

n;p
t−bt/(1+b)

�
∫ τ

0

‖Σn+1(s,Xn
t,s, V

n
t,s)‖Z(1+b)λ�

n,μ∗
n;p

t−bt/(1+b)

ds

=
∫ τ

0

‖Σn+1(s,Ωn
t,s)‖Z(1+b)λ�

n,μ∗
n;p

s−bt/(1+b)

ds

�
∫ τ

0

‖Rn+1
s,t ‖

Z(1+b)λ�
n,μ∗

n
s−bt/(1+b)

‖Gn
s,t‖Z(1+b)λ�

n,μ∗
n;p

s−bt/(1+b)

ds

+
∫ τ

0

‖Rn
s,t‖Z(1+b)λ�

n,μ∗
n

s−bt/(1+b)

‖Hn
s,t‖Z(1+b)λ�

n,μ∗
n;p

s−bt/(1+b)

ds.

Then (proceeding as in Step 6 to check that the exponents lie in the appropriate
range)

‖Rn+1
s,t ‖

Z(1+b)λ�
n,μ∗

n
s−bt/(1+b)

�CF e−2π(λ†
n−λ�

n)s‖�n+1
s ‖F ν̄n(s)

and
‖Rn

s,t‖Z(1+b)λ�,μ∗
n

s−bt/(1+b)

�CF e−2π(λ†
n−λ�

n)s‖�n
s ‖F ν̄n(s) �CF e−2π(λ†

n−λ�
n)sδn,

with

ν̄n(s, t) :=

⎧⎪⎪⎨⎪⎪⎩
μ�, when s� bt

1+b
,

λ†
ns+μ∗

n, when s� bt

1+b
.

On the other hand, from the induction assumption (En
h)–(Ẽn

h) (and again control of
composition via Proposition 4.25),

‖Hn
s,t‖Z(1+b)λ�

n,μ∗
n;p

s−bt/(1+b)

� 2(1+s)δn
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and

‖Gn
s,t‖Z(1+b)λ�

n,μ∗
n;p

s−bt/(1+b)

� 2(1+s)
n∑

k=1

δk.

We deduce that
y(t, τ) := ‖hn+1

τ Ωn
t,τ‖Z(1+b)λ�

n,μ∗
n;p

τ−bt/(1+b)

satisfies

y(t, τ) � 2CF

( n∑
k=1

δk

)∫ τ

0

e−2π(λ†
n−λ�

n)s‖�n+1
s ‖F ν̄n(s)(1+s) ds

+2CF δ2
n

∫ τ

0

e−2π(λ†
n−λ�

n)s(1+s) ds;

so, for all 0�τ �t,

‖hn+1
τ Ωn

t,τ‖Z(1+b)λ�
n,μ∗

n;p
τ−bt/(1+b)

�
4CF max

{∑n
k=1 δk, 1

}
(2π(λ†

n−λ�
n))2

(
δ2
n+sup

s�0
‖�n+1

s ‖F ν̄n(s)

)
. (10.62)

10.4.5. Step 9. Crude estimates on the derivatives of hn+1

Again we choose p∈[1, p̄ ]. From the previous step and Proposition 4.27 we deduce, for
any λ‡

n such that λ‡
n<λ�

n<λ‡
n, and any μ‡

n<μ∗
n, that

‖∇x(hn+1
τ Ωn

t,τ )‖
Zλ

‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

+‖(∇v+τ∇x)(hn+1
τ Ωn

t,τ )‖
Zλ

‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

� C(d)

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}
‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;p

τ−bt/(1+b)

(10.63)

and

‖∇(hn+1
τ Ωn

t,τ )‖
Zλ

‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

� C(d)(1+τ)

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}
‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;p

τ−bt/(1+b)

. (10.64)

Similarly,

‖∇∇(hn+1
τ Ωn

t,τ )‖
Zλ

‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

� C(d)(1+τ)2

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}2
‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;p

τ−bt/(1+b)

.

(10.65)

10.4.6. Step 10. Chain-rule and refined estimates on derivatives of hn+1

From Step 3 we have

‖∇Ωn
t,τ‖Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)
+‖(∇Ωn

t,τ )−1‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

�C(d) (10.66)
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and (via Proposition 4.27)

‖∇∇Ωn
t,τ‖Zλ

‡
n(1+b),μ

‡
n

τ−bt/(1+b)

� C(d)(1+τ)

min{λ∗
n−λ‡

n, μ∗
n−μ‡

n}
‖∇Ωn

t,τ‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

� C(d)(1+τ)

min{λ∗
n−λ‡

n, μ∗
n−μ‡

n}
.

(10.67)

Combining these bounds with Step 9, Proposition 4.24 and the identities{
(∇h) Ω = (∇Ω)−1∇(h Ω),
(∇2h) Ω = (∇Ω)−2∇2(h Ω)−(∇Ω)−1∇2Ω(∇Ω)−1(∇h Ω),

(10.68)

we get

‖(∇hn+1
τ ) Ωn

t,τ‖Zλ
‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

�C(d)‖∇(hn+1
τ Ωn

t,τ )‖
Zλ

‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

� C(d)(1+τ)

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}
‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;1

τ−bt/(1+b)

(10.69)

and

‖(∇2hn+1
τ ) Ωn

t,τ‖Zλ
‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

�C(d)
[
‖∇2(hn+1

τ Ωn
t,τ )‖

Zλ
‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

+‖∇2Ωn
t,τ‖Zλ

‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

‖(∇hn+1
τ ) Ωn

t,τ‖Zλ
‡
n(1+b),μ

‡
n;1

τ−bt/(1+b)

]
� C(d)(1+τ)2

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}2
‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;p

τ−bt/(1+b)

.

(10.70)

This gives us the bounds

‖(∇hn+1) Ωn‖= O(1+τ) and ‖(∇2hn+1) Ωn‖= O((1+τ)2),

which are optimal if one does not distinguish between the x and v variables. We shall
now refine these estimates. We first write

∇(hn+1
τ Ωn

t,τ )−(∇hn+1
τ ) Ωn

t,τ =∇(Ωn
t,τ −Id)·[(∇hn+1

τ ) Ωn
t,τ ],

and we deduce (via Propositions 4.24 and 4.27)

‖∇(hn+1
τ Ωn

t,τ )−(∇hn+1
τ ) Ωn

t,τ‖Zλ
‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

� ‖∇(Ωn
t,τ −Id)‖

Zλ
‡
n(1+b),μ

‡
n

τ−bt/(1+b)

‖(∇hn+1
τ ) Ωn

t,τ‖Zλ
‡
n(1+b),μ

‡
n;p

τ−bt/(1+b)

(10.71)

�C(d)
(

1+τ

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}

)2
‖Ωn

t,τ −Id ‖
Zλ�

n(1+b),μ∗
n

τ−bt/(1+b)

‖hn+1
τ Ωn

t,τ‖Zλ�
n(1+b),μ∗

n;p
τ−bt/(1+b)

� C(d)C4
ω

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}2

( n∑
k=1

δk

(2π(λk−λ∗
k))6

)
(1+τ)−2‖hn+1

τ Ωn
t,τ‖Zλ�

n(1+b),μ∗
n;p

τ−bt/(1+b)

.
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(Note that Ωn−Id brings the time-decay, while hn+1 brings the smallness.)
This shows that (∇hn+1) Ωn�∇(hn+1 Ωn) as τ!∞. In view of Step 9, this also

implies the refined gradient estimates

‖(∇xhn+1
τ ) Ωn

t,τ‖Zλ
‡
n,μ

‡
n;p

τ−bt/(1+b)

+‖((∇v+τ∇x)hn+1
τ ) Ωn

t,τ‖Zλ
‡
n,μ

‡
n;p

τ−bt/(1+b)

�C‖hn+1
τ Ωn

t,τ‖Zλ�
n(1+b),μ∗

n;p
τ−bt/(1+b)

,
(10.72)

with

C = C(d)
(

C4
ω

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}2

n∑
k=1

δk

(2π(λk−λ∗
k))6

+
1

min{λ�
n−λ‡

n, μ∗
n−μ‡

n}

)
.

10.4.7. Conclusion

Given λn+1<λ∗
n and μn+1<μ∗

n, we define

λn+1 = λ‡
n and μn+1 = μ‡

n,

and we impose that

λ∗
n−λ†

n = λ†
n−λ�

n = λ�
n−λ‡

n = 1
3 (λ∗

n−λn+1) and μ∗
n−μ‡

n = μ∗
n−μn+1.

Then from (10.59), (10.61)–(10.63) and (10.70)–(10.72) we see that (En+1
� ), (Ẽn+1

� ),
(En+1

h ) and (Ẽn+1
h ) have all been established in the present subsection, with

δn+1 =
C(d)CF (1+CF )(1+C4

ω)eC T 2
n

min{λ∗
n−λn+1, μ∗

n−μn+1}9
max
{

1,
n∑

k=1

δk,

}(
1+

n∑
k=1

δk

(2π(λk−λ∗
k))6

)
δ2
n.

(10.73)

10.5. Convergence of the scheme

For any n�1, we set

λn−λ∗
n = λ∗

n−λn+1 = μn−μ∗
n = μ∗

n−μn+1 =
Λ
n2

(10.74)

for some Λ>0. By choosing Λ small enough, we can make sure that the conditions

2π(λk−λ∗
k) < 1 and 2π(μk−μ∗

k) < 1
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are satisfied for all k, as well as the other smallness assumptions made throughout this
section. Moreover, we have λk−λ∗

k�Λ/k2, so conditions (C1)–(C9) will be satisfied if
n∑

k=1

k12δk � Λ6ω and
n∑

j=k+1

j6δj � Λ3ω

(
1
k2

− 1
n2

)
for some small explicit constant ω>0, depending on the other constants appearing in the
problem. Both conditions are satisfied if

∞∑
k=1

k12δk � Λ6ω. (10.75)

Then from (10.60) we have that Tn�Cγ(n2/Λ)(7+γ)/(γ−1), so the induction relation
on δn gives

δ1 �Cδ and δn+1 = C

(
n2

Λ

)9
eC(n2/Λ)(14+2γ)/(γ−1)

δ2
n. (10.76)

To establish this relation we also assumed that δn is bounded below by CF ζn, the
error coming from the short-time iteration; but this follows easily by construction, since
the constraints imposed on δn are much worse than those on ζn.

Having fixed Λ, we will check that for δ small enough, (10.76) implies both the
fast convergence of (δk)∞k=1, and the condition (10.75), which will justify a posteriori
the derivation of (10.76). (An easy induction is enough to turn this into a rigorous
reasoning.)

For this we fix a∈(1, aI), 0<z<zI <1, and we check by induction that

δn � Δzan

for all n � 1. (10.77)

If Δ is given, (10.77) holds for n=1 as soon as δ�(Δ/C)za. Then, to go from stage n to
stage n+1, we should check that

Cn18

Λ9
eCn(28+4γ)/(γ−1)/Λ(14+2γ)/(γ−1)

Δ2z2an � Δzan+1
;

this is true if
1
Δ

� C

Λ9
sup
n∈N

n19eCn(28+4γ)/(γ−1)/Λ(14+2γ)/(γ−1)
z(2−a)an

.

Since a<2, the supremum on the right-hand side is finite, and we just have to choose
Δ small enough. Then, reducing Δ further if necessary, we can ensure (10.75). This
concludes the proof.

Remark 10.1. This argument almost fully exploits the bi-exponential convergence
of the Netwon scheme: a convergence like, say, O(e−n1000

) would not be enough to treat
values of γ which are close to 1. In §11.2 we shall present a more cumbersome approach
which is less greedy in the convergence rate, but still needs convergence like O(e−nα

) for
α large enough.
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11. Coulomb–Newton interaction

In this section we modify the scheme of §10 to treat the case γ=1. We provide two
different strategies. The first one is quite simple and will only come close to treat this case,
since it will hold on (nearly) exponentially large times in the inverse of the perturbation
size. The second one, somewhat more involved, will hold up to infinite times.

11.1. Estimates on exponentially large times

In this subsection we adapt the estimates of §10 to the case γ=1, under the additional
restriction that 0�t�A1/δ(log δ)2 for some constant A>1.

In the iterative scheme, the only place where we used γ>1 (and not just γ�1) is in
Step 6, when it comes to the echo response via Theorem 7.7. Now, in the case γ=1, the
formula for Kn

1 should be

Kn
1 (t, τ) =

n∑
k=1

δkK
(αn,k),1
1 (t, τ),

with αn,k=π min{μk−μ∗
n, λk−λ∗

n, 2η}. By Theorem 7.7 (ii) this induces, in addition to
other well-behaved factors, an uncontrolled exponential growth O(eεnt), with

εn = Γ
n∑

k=1

δk

α3
n,k

;

in particular εn will remain bounded and O(δ) throughout the scheme.
Let us replace (10.74) by

λn−λ∗
n = λ∗

n−λn+1 = μn−μ∗
n = μ∗

n−μn+1 =
Λ

n(log(e+n))2
,

where Λ>0 is very small. (This is allowed since the series

∞∑
n=1

1
n(log(e+n))2

converges—the power 2 could of course be replaced by any r>1.) Then during the first
stages of the iteration we can absorb the O(eεnt) factor by the loss of regularity if, say,

εn � Λ
2n(log(e+n))2

.

Recalling that εn=O(δ), this is satisfied as soon as

n �N :=
K

δ(log(1/δ))2
, (11.1)
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where K>0 is a positive constant depending on the other parameters of the problem but
of course not on δ. So during these first stages we get the same long-time estimates as
in §10.

For n>N we cannot rely on the loss of regularity any longer; at this stage the error
is about

δN �CδaN

,

where 1<a<2. To get the bounds for larger values of n, we impose a restriction on the
time-interval, say 0�t�Tmax. Allowing for a degradation of the rate δan

into δan

with
a<a, we see that the new factor eεnTmax can be eaten up by the scheme if

eεnTmaxδ(a−a)an � 1 for all n �N .

This is satisfied if

Tmax = O

(
aN 1

δ
log

1
δ

)
.

Recalling (11.1), we see that the latter condition holds true if

Tmax = O

(
A1/δ(log δ)2 1

δ
log

1
δ

)
for some well-chosen constant A>1. Then we can complete the iteration, and end up
with a bound like

‖ft−fi‖Zλ′,μ′
t

�Cδ for all t∈ [0, Tmax],

where C is another constant independent of δ. The conclusion follows easily.

11.2. Mode-by-mode estimates

Now we shall change the estimates of §10 a bit more in depth to treat arbitrarily large
times for γ=1. The main idea is to work mode-by-mode in the estimate of the spatial
density, instead of looking directly for norm estimates.

Steps 1–5 remain the same, and the changes mainly occur in Step 6.

Substep 6 (a) is unchanged, but we only retain from that substep

e2π(λ∗
nt+μ∗

n)|l|∣∣σ̂n,n
t (l)

∣∣� 2CF δ2
n

(π(λn−λ∗
n))2

for all l∈Zd. (11.2)

Substep (b) is more deeply changed. Let μ̂n<μ∗
n.
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• First, for each l∈Zd, we have, by Propositions 4.34 and 4.35, and the last part of
Proposition 6.2,

e2π(λ∗
nt+μ̂n)|l||Ê(t, l)|

�
∫ t

0

∑
m∈Zd

‖Pm(F [hn+1
τ ] Ωn

t,τ −F [hn+1
τ ])‖Zλ∗

n(1+b),μ̂n
τ−bt/(1+b)

×‖Pl−mGn
τ,t‖Zλ∗

n(1+b),μ̂n;1
τ−bt/(1+b)

dτ

�
∫ t

0

∑
m,m′∈Zd

∥∥∥∥Pm−m′

∫ 1

0

∇F [hn+1
τ ] (Id +θ(Ωn

t,τ −Id)) dθ

∥∥∥∥
Zλ∗

n(1+b),μ̂n
τ−bt/(1+b)

×‖Pm′(Ωn
t,τ −Id)‖Zλ∗

n(1+b),μ̂n
τ−bt/(1+b)

‖Pl−mGn
τ,t‖Zλ∗

n(1+b),μ̂n;1
τ−bt/(1+b)

dτ

�
∫ 1

0

∫ t

0

‖Gn
τ,t‖Zλ∗

n(1+b),μ∗
n;1

τ−bt/(1+b)

∥∥∥∥Ωn
t,τ −Id

∥∥∥∥
Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)

∑
m,m′∈Zd

e−2π(μ∗
n−μ̂n)|l−m|

×e−2π(μ∗
n−μ̂n)|m′|‖Pm−m′(∇F [hn+1

τ ] (Id +θ(Ωn
t,τ −Id)))‖Zλ∗

n(1+b),μ̂n
τ−bt/(1+b)

dτ dθ

�
∫ t

0

|Gn‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

‖Ωn
t,τ −Id

∥∥∥∥
Zλ∗

n(1+b),μ∗
n

τ−bt/(1+b)

×
∑

m,m′,q∈Zd

e−2π(μ∗
n−μ̂n)|l−m|e−2π(μ∗

n−μ̂n)|m′|

×e−2π(μ∗
n−μ̂n)|m−m′−q|‖Pq(∇F [hn+1

τ ])‖F ν̂n dτ,

where

ν̂n = μ̂n+λ∗
n(1+b)

∣∣∣∣τ− bt

1+b

∣∣∣∣+‖ΩnXt,τ −x‖Zλ∗
n(1+b),μ∗

n
τ−bt/(1+b)

.

For α�1 we have∑
m,m′∈Zd

e−2πα|l−m|e−2πα|m′|e−2πα|m−m′−q| � C(d)
αd

e−πα|l−q|,

and we can argue as in Substep 6 (b) of §10 to get

e2π(λ∗
nt+μ∗

n)|l||Ê(t, l)|

� C

(μ∗
n−μ̂n)d

(
C ′

0+
n∑

k=1

δk

)( n∑
k=1

δk

(2π(λk−λ∗
k))5

)
×
∑
q∈Zd

e−π(μ∗
n−μ̂n)|l−q|

∫ t

0

e2π(λ∗
nτ+μ̂n)|q|∣∣�̂[hn+1

τ ](q)
∣∣ dτ

(1+τ)2
.

(11.3)
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• Next, we use again Proposition 4.34 and simple estimates to bound E ,

e2π(λ∗
nt+μ̂n)|l|∣∣Ê(t, l)

∣∣�∫ t

0

‖Gn−Gn‖Zλ∗
n(1+b),μ∗

n;1
τ−bt/(1+b)

×
∑

m∈Zd

e−2π(μ∗
n−μ̂n)|m|‖Pl−m(F [hn+1

τ ])‖F β̂n dτ,

where

β̂n = λ∗
n(1+b)

∣∣∣∣τ− bt

1+b

∣∣∣∣+μ̂n.

Reasoning as in Substep 6 (b) of §10, we arrive at

e2π(λ∗
nt+μ̂n)|l|∣∣Ê(t, l)

∣∣
�C

(
C ′

0+
n∑

k=1

δk

)( n∑
j=1

δj

(2π(λj−λ∗
n))6

+
n∑

k=1

δk

)

×
∑

m∈Zd

e−2π(μ∗
n−μ̂n)|m|

∫ t

0

e2π(λ∗
nτ+μ̂n)|l−m|∣∣�̂[hn+1

τ ](l−m)
∣∣ dτ

(1+τ)2
.

(11.4)

• Then we consider the “main contribution” σn,n+1, which we decompose as in §10:

σn,n+1
t = σn,n+1

t,0 +
n∑

k=1

σn,n+1
t,k ,

and we write, for k�1,

e2π(λ∗
nt+μ̂n)

∣∣̂σn,n+1
t,k (l)

∣∣� ∑
m∈Zd

∫ t

0

Kn,hk

l,m (t, τ)‖Pl−m(F [hn+1
τ ])‖Fν′

n,γ dτ

+
∫ t

0

Kn,hk

0 (t, τ)‖Pl(F [hn+1
τ ])‖Fν′

n,γ dτ,

where

ν′
n = λ∗

n(1+b)
∣∣∣∣τ− bt

1+b

∣∣∣∣+μ′
n,

Kn,hk

l,m (t, τ) =Kn,k
l,m(t, τ) sup

0�s�t

‖∇v(hk
s Ωk−1

t,s )−〈∇v(hk
s Ωk−1

t,s )〉‖Zλk(1+b),μk
s−bt/(1+b)

1+s
,

Kn,k
l,m(t, τ) = (1+τ)e−π(μk−μ̂n)|m| e

−2π(μ′
n−μ̂n)|l−m|

1+|l−m|γ e−π(λk−λ∗
n)|l(t−τ)+mτ |,

and the formula for Kn,hk

0 is unchanged with respect to §10.
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Assuming that μ′
n=μ̂n+η(t−τ)/(1+t) and reasoning as in Substep 6 (b) of §10, we

end up with the following estimate on the “main term”:

e2π(λ∗
nt+μ̂n)|l|∣∣̂σn,n+1

t,k (l)
∣∣

�C
∑

m∈Zd

∫ t

0

( n∑
k=1

δkK
(αn,k),γ
l,m (t, τ)

)
e2π(λ∗

nτ+μ̂n)|l−m|∣∣�̂[hn+1
τ ](l−m)

∣∣ dτ

+C
∑

m∈Zd

∫ t

0

( n∑
k=1

δke−π(λk−λ∗
n)(t−τ)

)
e2π(λ∗

nτ+μ̂n)|l|∣∣�̂[hn+1
τ ](l−m)

∣∣ dτ.

(11.5)

Then Substep 6 (c) becomes, with Φ(l, τ)=�̂[hn+1
τ ](l),

e2π(λ∗
nt+μ̂n)|l|

∣∣∣∣Φ(l, t)−
∫ t

0

K0(l, t−τ)Φ(l, τ) dτ

∣∣∣∣
� Cδ2

n

(λn−λ∗
n)2

+
∑

m∈Zd

∫ t

0

(
Kn

l,m(t, τ)+
cn
m

(1+τ)2

)
e2π(λ∗

nτ+μ̂n)|l−m||Φ(l−m, τ)| dτ

+
∫ t

0

Kn
0 (t, τ)e2π(λ∗

nτ+μ̂n)|l||Φ(l, τ)| dτ,

with

Kn
l,m(t, τ) =C

n∑
k=1

δkK
(α̂n),γ
l,m (t, τ),

α̂n = π min{μn−μ̂n, λn−λ∗
n, 2η},

Kn
0 (t, τ) =C

n∑
k=1

δke−π(λk−λ∗
n)(t−τ),

cn
m =

C

(μ∗
n−μ̂n)d

(
C ′

0+
n∑

k=1

δk

)(
1+

n∑
k=1

δk

(2π(λk−λ∗
k))6

)
e−π(μ∗

n−μ̂n)|m|.

Note that

∑
m∈Zd

cn
m+
( ∑

m∈Zd

(cn
m)2
)1/2

� C

(μ∗
n−μ̂n)2d

(
C ′

0+
n∑

k=1

δk

)(
1+

n∑
k=1

δk

(2π(λk−λ∗
k))6

)
.

Then, being Φ(0, t)=0, we can apply Theorem 7.12 and deduce (taking already into
account, for the sake of readability of the formula, that

∑n
k=1 δk and

∑n
k=1 δk/(λk−λ∗

k)
are uniformly bounded)

e2π(λ∗
nt+μ̂n)|l|∣∣�̂n+1

t (l)
∣∣�C

δ2
n

(λn−λ∗
n)2α̂nε3/2(μ∗

n−μ̂n)2d
exp
(

C(1+T̂ 2
ε,n)

(μ∗
n−μ̂n)2d

)
eεt,
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where

T̂ε,n = C max
{(

1
α3+2d

n εγ+2

)1/γ

,

(
1

αd
nεγ+1/2

)1/(γ−1/2)

,

(
1
ε

( ∑
m∈Zd

cn
m

)2)1/3}
.

If λ†
n<λ∗

n and μ†
n<μ̂n are chosen as before and ε=2π(λ∗

n−λ†), this implies a uniform
bound on

‖�n+1
t ‖Fλ

†
nt+μ

†
n

� C

(μ̂n−μ†
n)d

sup
l∈Zd

e2π(λ∗
nt+μ̂n)|l|∣∣�̂n+1

t (l)
∣∣

obtained with the formula above with

T̂ε,n = T̂n = C max
{

1

λ∗
n−λ†

n

,
1

λn−λ∗
n

,
1

μn−μ∗
n

,
1

μ∗
n−μ̂n

}a
,

where

a = max
{

5+γ+2d

γ
,
d+γ+ 1

2

γ− 1
2

,
4d+1

3

}
.

Then Steps 7–10 of the iteration can be repeated with the only modification that
μ∗

n is replaced by μ†
n.

The convergence (§10.5) works just the same, except that now we need more inter-
mediate regularity indices μn:

μn+1 = μ‡
n <μ†

n < μ̂n <μ∗
n;

the obvious choice being to let μ†
n−μ‡

n=μ̂n−μ†
n=μ∗

n−μ̂n.
Choosing λn−λn+1 and μn−μn+1 of the order of Λ/n2, we arrive in the end at the

induction

δn+1 �C

(
n2

Λ

)9+6d

eC(n2/Λ)ξ(d,γ)
δ2
n,

where

ξ(d, γ) := 2d+2 max
{

5+γ+2d

γ
,
d+γ+ 1

2

γ− 1
2

,
4d+1

3

}
. (11.6)

Then the convergence of the scheme (and a-posteriori justification of all the assump-
tions) is done exactly as in §10.

12. Convergence in large time

In this section we prove Theorem 2.6 as a simple consequence of the uniform bounds
established in §10 and §11.

So let f0, L and W satisfy the assumptions of Theorem 2.6. To simplify the notation
we assume that L=1.
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The second part of Assumption (2.14) precisely means that f0∈Cλ;1. We shall
actually assume a slightly more precise condition, namely that for some p̄∈[1,∞],∑

n∈Nd
0

λn

n!
‖∇n

v f0‖Lp(Rd) �C0 <∞ for all p∈ [1, p̄ ]. (12.1)

(It is sufficient to take p̄=1 to get Theorem 2.6; but if this bound is available for some
p̄>1 then it will be propagated by the iteration scheme, and will result in more precise
bounds.) Then we pick up λ∈(0, λ), μ∈(0, μ), β>0 and β′∈(0, β). By symmetry, we
only consider non-negative times.

If fi is an initial datum satisfying the smallness condition (2.15), then by Theo-
rem 4.20, we have a smallness estimate on ‖fi−f0‖Zλ′,μ′;p for all p∈[1, p̄ ], λ′<λ and
μ′<μ. Then, as in §4.12 we can estimate the solution h1 to the linearized equation{

∂th
1+v ·∇xh1+F [h1]·∇vf0 = 0,

h1(0, ·) = fi−f0,
(12.2)

and we recover uniform bounds in Z λ̂,μ̂;p spaces, for any λ̂∈(λ, λ) and μ̂∈(μ, μ). More
precisely,

sup
t�0

‖�[h1
t ]‖F λ̂t+μ̂ +sup

t�0
‖h1(t, ·)‖Zλ̂,μ̂;p

t

�Cδ, (12.3)

with C=C(d, λ′, λ̂, μ′, μ̂,W, f0) (this is of course assuming ε in Theorem 2.6 to be small
enough).

We now set λ1=λ′, and we run the iterative scheme of §§9–11 for all n�2. If ε is
small enough, up to slightly lowering λ1, we may choose all parameters in such a way
that

λk, λ∗
k!λ∞ >λ and μk, μ∗

k!μ∞ >μ as k!∞;

then we pick up B>0 such that

μ∞−λ∞(1+B)B �μ′
∞ >μ,

and we let b(t)=B/(1+t).
As a result of the scheme, we have, for all k�2,

sup
0�τ�t

‖hk
τ Ωk−1

t,τ ‖Zλ∞(1+b),μ∞;1
τ−bt/(1+b)

� δk, (12.4)

where
∑∞

k=2 δk�Cδ and Ωk is the deflection associated with the force field generated by
h1+...+hk. Choosing t=τ in (12.4) yields

sup
t�0

‖hk
t ‖Zλ∞(1+B),μ∞;1

t−Bt/(1+B+t)
� δk.
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By Proposition 4.17, this implies that

sup
t�0

‖hk
t ‖Zλ∞(1+B),μ∞−λ∞(1+B)B;1

t
� δk.

In particular, we have a uniform estimate on hk
t in Zλ∞,μ′

∞;1
t . Summing up over k yields

for f=f0+
∑∞

k=1 hk the estimate

sup
t�0

‖f(t, ·)−f0‖Zλ∞,μ′∞;1
t

�Cδ. (12.5)

Passing to the limit in the Newton scheme, one shows that f solves the non-linear
Vlasov equation with initial datum fi. (Once again we do not check the details; to be
rigorous one would need to establish moment estimates, locally in time, before passing
to the limit.) This implies in particular that f stays non-negative at all times.

Applying Theorem 4.20 again, we deduce from (12.5) that

sup
t�0

‖f(t, ·)−f0‖Yλ,μ
t

�Cδ;

or equivalently, with the notation used in Theorem 2.6,

sup
t�0

‖f(t, x−vt, v)−f0(v)‖λ,μ �Cδ. (12.6)

Moreover, �=
∫

Rd f dv satisfies similarly

sup
t�0

‖�(t, ·)‖Fλ∞t+μ∞ �Cδ.

It follows that |�̂(t, k)|�Cδe−2πλ∞|k|te−2πμ∞|k| for any k �=0. On the one hand, by
Sobolev embedding, we deduce that for any r∈N,

‖�(t, ·)−〈�〉‖Cr(Td) �Crδe
−2πλ′t;

on the other hand, multiplying �̂ by the Fourier transform of ∇W , we see that the force
F =F [f ] satisfies

|F̂ (t, k)|�Cδe−2πλ′|k|te−2πμ′|k| for all t � 0 and all k∈Zd, (12.7)

for some λ′>λ and μ′>μ.
Now, from (12.6) we have, for any (k, η)∈Zd×Rd and any t�0,

|f̃(t, k, η+kt)−f̃ 0(η)|�Cδe−2πμ′|k|e−2πλ′|η|; (12.8)
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so
|f̃(t, k, η)|� |f̃ 0(η+kt)|+Cδe−2πμ′|k|e−2πλ′|η+kt|. (12.9)

In particular, for any k �=0, and any η∈Rd,

f̃(t, k, η) =O(e−2πλ′t). (12.10)

Thus f is asymptotically close (in the weak topology) to its spatial average

g = 〈f〉=
∫

Td

f dx.

Taking k=0 in (12.8) shows that, for any η∈Rd,

|g̃(t, η)−f̃ 0(η)|�Cδe−2πλ′|η|. (12.11)

Also, from the non-linear Vlasov equation, for any η∈Rd we have

g̃(t, η) = f̃i(0, η)−
∫ t

0

∫
Td

∫
Rd

F (τ, x)·∇vf(τ, x, v)e−2iπη·v dv dx dτ

= f̃i(0, η)−2iπ
∑
l∈Zd

∫ t

0

F̂ (τ, l)·ηf̃(τ,−l, η) dτ.

Using the bounds (12.7) and (12.10), it is easily shown that the above time-integral
converges exponentially fast as t!∞, with rate O(e−λ′′t) for any λ′′<λ′, to its limit

g̃∞(η) = f̃i(0, η)−2iπ
∑
l∈Zd

∫ ∞

0

F̂ (τ, l)·ηf̃(τ,−l, η) dτ. (12.12)

By passing to the limit in (12.11) we see that

|g̃∞(η)−f̃ 0(η)|�Cδe−2πλ′|η|,

and this concludes the proof of Theorem 2.6.

13. Non-analytic perturbations

Although the vast majority of studies of Landau damping assume that the perturbation
is analytic, it is natural to ask whether this condition can be relaxed. As we noticed in
Remark 3.5, this is the case for the linear problem. As for non-linear Landau damping,
once the analogy with KAM theory has been identified, it is anybody’s guess that the
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answer might come from a Moser-type argument. However, this is not so simple, be-
cause the “loss of convergence” in our argument is much more severe than the “loss of
regularity” which Moser’s scheme allows one to overcome.

For instance, the second-order correction h2 satisfies

∂th
2+v ·∇xh2+F [f1]·∇vh2+F [h2]·∇vf1 =−F [h1]·∇vh1.

The action of F [f1] is to curve trajectories, which does not help in our estimates. Dis-
carding this effect and solving by Duhamel’s formula and Fourier transform, we obtain,
with S=−F [h1]·∇vh1 and �2=

∫
Rd h2 dv,

�̂2(t, k)�
∫ t

0

K0(t−τ, k)�̂2(τ, k) dτ

+2iπ

∫ t

0

∑
l∈Zd

(k−l)Ŵ (k−l)�̂2(τ, k−l)∇̃vh1(τ, l, k(t−τ)) dτ

+
∫ t

0

S̃(τ, k, k(t−τ)) dτ.

(13.1)

(The term with K0 includes the contribution of ∇vf0.)
Our regularity/decay estimates on h1 will never be better than those on the solution

of the free transport equation, i.e., hi(x−vt, v), where hi=fi−f0. Let us forget about
the effect of K0 in (13.1), replace the contribution of S by a decaying term A(kt). Let
us choose d=1 and assume that ĥi(l, ·)=0 if l �=±1. For k>0, let us use the long-time
approximation

h̃i(−1, k(t−τ)−τ) 1[0,t](τ) dτ � c

k+1
δkt/(k+1), c =

∫
R

h̃i(−1, s) ds = ĥi(−1, 0).

Note that c �=0 in general. Plugging all these simplifications into estimate (13.1) and
choosing Ŵ (k)=1/|k|1+γ suggests the a-priori simpler equation

ϕ(t, k) =A(kt)+
ckt

(k+1)γ+2
ϕ

(
kt

k+1
, k+1

)
. (13.2)

Replacing ϕ(t, k) by ϕ(t, k)/A(kt) reduces to A=1, and then we can solve this equation
by power series as in §7.1.3, obtaining

ϕ(t, k)�A(kt)e(ckt)1/(γ+2)
. (13.3)

With a polynomial deterioration of the rate, we could use a regularization argument, but
the fractional exponential is much worse.
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However, our bounds are still good enough to establish decay for Gevrey perturba-
tions. Let us agree that a function f=f(x, v) lies in the Gevrey class Gν , ν�1, if

|f̃(k, η)|= O(exp(−c|(k, η)|1/ν)) for some c> 0;

in particular G1 means analytic. (An alternative convention would be to require the nth
derivative to be O((n!)ν).) As we shall explain, we can still get non-linear Landau damp-
ing if the initial datum fi lies in Gν for ν close enough to 1. Although this is still quite
demanding, it already shows that non-linear Landau damping is not tied to analyticity
or quasi-analyticity, and holds for a large class of compactly supported perturbations.

Theorem 13.1. Let λ>0. Let f0=f0(v)�0 be an analytic homogeneous profile
such that ∑

n∈Nd
0

λn

n!
‖∇n

v f0‖L1(Rd) <∞,

and let W =W (x) satisfy |Ŵ (k)|=O(1/|k|2). Assume that condition (L) from §2.2 holds.
Let ν∈(1, 1+θ) with θ=1/ξ(d, γ), where ξ was defined in (11.6). Let β>0 and α<1/ν.
Then there is ε>0 such that if

δ := sup
k∈Zd

η∈Rd

|(f̃i−f̃ 0)(k, η)|eλ|η|1/ν

eλ|k|1/ν

+
∫

Td

∫
Rd

|(fi−f0)(x, v)|eβ|v| dv dx � ε,

then as t!+∞ the solution f=f(t, x, v) of the non-linear Vlasov equation on Td×Rd

with interaction potential W and initial datum fi satisfies

|f̃(t, k, η)−f̃∞(η)|= O(δe−ctα

) for all (k, η)∈Zd×Rd

and

‖F (t, ·)‖Cr(Td) = O(δe−ctα

) for all r∈N

for some c>0 and some homogeneous Gevrey profile f∞, where F stands for the self-
consistent force.

Remark 13.2. In view of (13.3), one may hope that the result remains true for θ=2.
Proving this would require much more precise estimates, including among other things
a qualitative improvement of the constants in Theorem 4.20 (recall Remark 4.23).

Remark 13.3. One could also relax the analyticity of f0, but there is little incentive
to do so.
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Sketch of proof. We first decompose hi=fi−f0, using truncation by a smooth par-
tition of unity in Fourier space,

hi =
∞∑

n=0

F−1(h̃iχn)≡
∞∑

n=0

hn
i ,

where F is the Fourier transform. Each bump function χn should be localized around
the domain (in Fourier space)

Dn = {(k, η)∈Zd×Rd : nK � |(k, η)|� (n+1)K},

for some exponent K>1; but at the same time F−1(χn) should be exponentially decreas-
ing in v. To achieve this, we let

χn = 1Dn ∗γ and γ(η) = e−π|η|2 .

Then F−1(χn)=F−1(1Dn) γ has Gaussian decay, independently of n; so there is a uni-
form bound on ∫

Td

∫
Rd

|hn
i (x, v)|eβ|v| dv dx

for some β>0.
On the other hand, if (k, η)∈Dn and (k′, η′) /∈Dn−1∪Dn∪Dn+1, then

|k−k′|+|η−η′|� cnK−1

for some c>0. From this one obtains, after simple computations,

|χn(k, η)|� 1(n−1)K�|(k,η)|�(n+2)K +Ce−cn2(K−1)
e−c(|k|2+|η|2).

So (with constants C and c changing from line to line)

|h̃n
i (k, η)|� Ce−λ|k|1/ν

e−λ|η|1/ν

1(n−1)K�|(k,η)|�(n+2)K +Ce−cn2(K−1)
e−c(|k|+|η|)

� C max
{
e−λ(n−1)K/ν/2, e−cn2(K−1)}

e−λ̄n(|k|+|η|),

where

λ̄n ∼ 1
2λ(n+2)−(1−1/ν)K .

If K�2 then 2(K−1)>K/ν; so

‖hn
i ‖Yλ̄n,λ̄n �Ce−λnK/ν/2.
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Then we may apply Theorem 4.20 to get a bound on hn
i in the space Z λ̂n,λ̂n;1 with

λ̂n= 1
2 λ̄n, at the price of a constant exp(C(n+2)(1−1/ν)K). Assuming Kν>(1−1/ν)K,

i.e., ν<2, we end up with

‖hn
i ‖Zλ̂n,λ̂n;1 = O

(
e−cnK/ν)

, λ̂n = 1
2 λ̄n. (13.4)

Then we run the iteration scheme of §8 with the following modifications: (1) instead
of hn(0, ·)=0, choose hn(0, ·)=hn

i , and (2) choose regularity indices λn∼λ̂n which tend
to zero as n tends to infinity. This generates an additional error term of size O

(
e−cnK/ν)

,
and imposes that λn−λn+1 be of order n−[(1−1/ν)K+1]. When we apply the bilinear
estimates from §6, we can take λ̄−λ to be of the same order; so α=αn and ε=εn can
be chosen proportional to n−[(1−1/ν)K+1]. Then the large constants coming from the
time-response will be, as in §11, of order nqecnr

, with q∈N and r=[(1−1/ν)K+1]ξ, and
the scheme will still converge like O(e−cns

) for any s<K/ν, provided that K/ν>r, i.e.,

ν−1+
ν

K
<

1
ξ
.

The rest of the argument is similar to what we did in §§10–12. In the end the decay
rate of any non-zero mode of the spatial density � is controlled by

∞∑
n=0

e−cns

e−λnt �
( ∞∑

n=0

e−cns

)
sup
n�0

e−cns

e−cn−(1−1/ν)t �Ce−cts/K

,

and the result follows since s/K is arbitrarily close to 1/ν.

Remark 13.4. An alternative approach to Gevrey regularity consists in rewriting the
whole proof with the help of Gevrey norms such as

‖f‖Cλ
ν

=
∞∑

n=0

λn‖f (n)‖∞
n!ν

and ‖f‖Fλ
ν

=
∑
k∈Z

e2πλ|k|1/ν |f̂(k)|,

which satisfy the algebra property for any ν�1. Then one can hybridize these norms,
rewrite the time-response in this setting, estimate fractional exponential moments of the
kernel, etc. The only part which does not seem to adapt to this strategy is §9 where the
analyticity is crucially used for the local result.

Remark 13.5. In a more general Cr context, we do not know whether decay holds
for the non-linear Vlasov–Poisson equation. Speculations about this issue can be found
in [55] where it is shown that (unlike in the linearized case) one needs more than one
derivative on the perturbation. As a first step in this direction, we mention that our
methods imply a bound like O(δ/(1+t)r−r̄) for times t=O(1/δ), where r̄ is a constant
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and r>r̄, as soon as the initial perturbation has norm δ in a functional space Wr involving
r derivatives in a certain sense. The reason why this is non-trivial is that the natural time
scale for non-linear effects in the Vlasov–Poisson equation is not O(1/δ), but O(1/

√
δ ),

as predicted by O’Neil [75] and very well checked in numerical simulations [61].(17) Let
us sketch the argument in a few lines. Assume that (for some positive constants c and C)

hi =
∞∑

n=0

hn
i , ‖hn

i ‖Zλn,λn;1 � Cn

2rn
and λn =

cn

2n
. (13.5)

Then we may run the Newton scheme again choosing αn∼cn/2n, cn=O(δ2−(r−r1)n) and
εn=c′δ. Over a time-interval of length O(1/δ), Theorem 7.7 (ii) only yields a multiplica-
tive constant O(ecδt/α9

n)=O(210n). In the end, after Sobolev injection again, we recover
a time-decay on the force F like

δ

∞∑
n=0

2nr22−nre−λnt �Cδ sup
n�0

(2−n(r−r3)e−λnt) � Cδ

(1+t)r−r4
,

as desired. Equation (13.5) means that hi is of size O(δ) in a functional space Wr whose
definition is close to the Littlewood–Paley characterization of a Sobolev space with r

derivatives. In fact, if the conjecture formulated in Remark 4.23 holds true, then it
can be shown that Wr contains all functions in the Sobolev space W r+r0,2 satisfying an
adequate moment condition, for some constant r0.

14. Expansions and counterexamples

A most important consequence of the proof of Theorem 2.6 is that the asymptotic be-
havior of the solution of the non-linear Vlasov equation can in principle be determined at
arbitrary precision as the size of the perturbation tends to 0. Indeed, if we define gk

∞(v) as
the large-time limit of hk (say in positive time), then ‖gk‖=O(δk), so f0+g1

∞+...+gn
∞

converges very fast to f∞. In other words, to investigate the properties of the time-
asymptotics of the system, we may freely exchange the limits t!∞ and δ!0, perform
expansions, etc. This at once puts on rigorous grounds many asymptotic expansions used
by various authors—who so far implicitly postulated the possibility of this exchange.

With this in mind, let us estimate the first corrections to the linearized theory, in
the regime of a very small perturbation and small interaction strength (which can be
achieved by a proper scaling of physical quantities). We shall work in dimension d=1
and in a periodic box of length L=1.

(17) Passing from O(1/
√

δ ) to O(1/δ) is arguably an infinite-dimensional counterpart of Laplace’s
averaging principle, which yields stability for certain Hamiltonian systems over time-intervals O(1/δ2)
rather than O(1/δ).
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14.1. Simple excitation

For a start, let us consider the case where the perturbation affects only the first spatial
frequency. We let

• f0(v)=e−π v2
be the homogeneous (Maxwellian) distribution;

• ε�i(x)=ε cos(2πx) be the initial space density perturbation;
• ε�i(x)θ(v) be the initial perturbation of the distribution function; we denote by

ϕ the Fourier transform of θ;
• αW be the interaction potential, with W (−x)=W (x). We do not specify its form,

but it should satisfy the assumptions in Theorem 2.6.
We work in the asymptotic regime ε!0 and α!0. The parameter ε measures

the size of the perturbation, while α measures the strength of the interaction; after
dimensional change, if W is an inverse power, α can be thought of as an inverse power of
the ratio (Debye length)/(perturbation wavelength). We will not write norms explicitly,
but all our computations can be made in the norms introduced in §4, with small losses
in the regularity indices—as we have done throughout the paper.

The first-order correction h1=O(ε) to f0 is provided by the solution of the linearized
equation (3.3), here taking the form

∂th
1+v ·∇xh1+F [h1]·∇vf0 = 0,

with initial datum h1(0, ·)=hi :=fi−f0. As in §3 we get a closed equation for the asso-
ciated density �[h1],

�̂[h1](t, k) = h̃i(k, kt)−4π2αŴ (k)
∫ t

0

�̂[h1](τ, k)e−π(k(t−τ))2(t−τ)k2 dτ.

It follows that �̂[h1](t, k)=0 for k �=±1, so the behavior of �̂[h1] is entirely determined by
u1(t)=�̂[h1](t, 1) and u−1(t)=�̂[h1](t,−1), which satisfy

u1(t) =
ε

2
ϕ(t)−4π2αŴ (1)

∫ t

0

u1(τ)e−π(t−τ)2(t−τ) dτ =
ε

2
[ϕ(t)+O(α)]. (14.1)

(This equation can be solved explicitly [11, equation (6)], but we only need the expan-
sion.) Similarly,

u−1(t) =
ε

2
ϕ(−t)−4π2αŴ (1)

∫ t

0

u−1(τ)e−π(t−τ)2(t−τ) dτ =
ε

2
[ϕ(−t)+O(α)]. (14.2)

The corresponding force, in Fourier transform, is given by

F̂ 1(t, 1) =−2iπαŴ (1)u1(t) and F̂ 1(t,−1) = 2iπαŴ (1)u−1(t).
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From this we also deduce the Fourier transform of h1 itself:

h̃1(t, k, η) = h̃i(k, η+kt)−4π2αŴ (k)
∫ t

0

�̂[h1](τ, k)e−π(η+k(t−τ))2(η+k(t−τ))·k dτ.

(14.3)
This is 0 if k �=±1, while

h̃1(t, 1, η) =
ε

2
ϕ(η+t)−4π2αŴ (1)

∫ t

0

u1(τ)e−π(η+(t−τ))2(η+(t−τ)) dτ

=
ε

2
[ϕ(η+t)+O(α)]

(14.4)

and

h̃1(t,−1, η) =
ε

2
ϕ(η−t)+4π2αŴ (1)

∫ t

0

u−1(τ)e−π(η−(t−τ))2(η−(t−τ)) dτ

=
ε

2
[ϕ(η−t)+O(α)].

(14.5)

To get the next order correction, we solve, as in §10,

∂th
2+v ·∇xh2+F [h1]·∇vh2+F [h2]·(∇vf0+∇vh1) =−F [h1]·∇vh1,

with zero initial datum. Since h2=O(ε2), we may neglect the terms F [h1]·∇vh2 and
F [h2]·∇vh1 which are both O(αε3). So it is sufficient to solve

∂th
′
2+v ·∇xh′

2+F [h′
2]·∇vf0 =−F [h1]·∇vh1 (14.6)

with vanishing initial datum. As t!∞, we know that the solution h′
2(t, x, v) is asymp-

totically close to its spatial average 〈h′
2〉=
∫

Td h′
2 dx. Taking the integral over Td in (14.6)

yields
∂t〈h′

2〉=−〈F [h1]·∇vh1〉.
Since h1 converges to 〈hi〉, the deviation of f to 〈fi〉 is given, at order ε2, by

g(v) =−
∫ ∞

0

〈F [h1]·∇vh1〉(t, v) dt =−
∫ ∞

0

∑
k∈Z

F̂ [h1](t,−k)·∇vĥ1(t, k, v) dt.

Applying the Fourier transform and using (14.1), (14.2), (14.4) and (14.5), we deduce

g̃(η) =−
∫ ∞

0

∑
k∈Z

F̂ [h1](t,−k)·∇̃vh1(t, k, η) dt

=−
∫ ∞

0

F̂ [h1](t,−1)(2iπη)h̃1(t, 1, η) dt−
∫ ∞

0

F̂ [h1](t, 1)(2iπη)h̃1(t,−1, η) dt

= π2ε2αŴ (1)η
(∫ ∞

0

ϕ(−t)ϕ(η+t) dt−
∫ ∞

0

ϕ(t)ϕ(η−t) dt+O(α)
)

=−π2ε2αŴ (1)η
(∫ ∞

−∞
ϕ(t)ϕ(η−t) sign(t) dt+O(α)

)
.
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Summarizing,⎧⎪⎪⎨⎪⎪⎩
lim
t!∞ f̃(t, k, η) = 0, if k �= 0,

lim
t!∞ f̃(t, 0, η) = f̃i(t, 0, η)−ε2α(π2Ŵ (1))η

(∫ ∞

−∞
ϕ(t)ϕ(η−t) sign(t) dt+O(α)

)
.

(14.7)
Since ϕ is an arbitrary analytic profile, this simple calculation already shows that

the asymptotic profile is not necessarily the spatial mean of the initial datum.
Assuming ε�α, higher-order expansions in α can be obtained by bootstrap on the

equations (14.1), (14.2), (14.4) and (14.5); for instance,

lim
t!∞ f̃(t, 0, η)

= f̃i(0, η)−ε2α(π2Ŵ (1))η
∫ ∞

−∞
ϕ(t)ϕ(η−t) sign(t) dt

−ε2α2(2π2Ŵ (1))2η
∫ ∞

0

∫ t

0

[
(ϕ(η+t)ϕ(−τ)−ϕ(η−t)ϕ(τ))e−π(t−τ)2(t−τ)

+ϕ(τ)ϕ(−t)e−π(η+(t−τ))2(η+t−τ)

+ϕ(−τ)ϕ(t)e−π(η−(t−τ))2(η−t−τ)
]
dτ dt+O(ε2α3).

What about the limit in negative time? Reversing time is equivalent to changing
f(t, x, v) into f(t, x,−v) and letting time go forward. So we define S(v):=−v and

T (ϕ)(η) := ε2απ2Ŵ (1)η
∫ ∞

−∞
ϕ(t)ϕ(η−t) sign(t) dt;

then T (ϕ S)=T (ϕ) S, which means that the solutions constructed above are always
homoclinic at order O(ε2α). The same is true for the more precise expansions at order
O(ε2α2), and in fact it can be checked that the whole distribution f2 is homoclinic;
in other words, f is homoclinic up to possible corrections of order O(ε4). To exhibit
heteroclinic deviations, we shall consider more general perturbations.

14.2. General perturbation

Let us now consider a “general” initial datum fi(x, v) close to f0(v), and expand the
solution f . We write εϕk(η)=(fi−f0)̃ (k, η) and �m=�[hm]. The interaction potential
is assumed to be of the form αW with α�1 and W (x)=W (−x). The first equations of
the Newton scheme are

�̂1(t, k) = εϕk(kt)−4π2αŴ (k)
∫ t

0

�̂1(τ, k)f̃ 0(k(t−τ))|k|2(t−τ) dτ, (14.8)
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h̃1(t, k, η) = εϕk(η+kt)−4π2αŴ (k)
∫ t

0

�̂1(τ, k)f̃ 0(η+k(t−τ))k ·(η+k(t−τ)) dτ, (14.9)

h̃2(t, k, η) =−4π2αŴ (k)
∫ t

0

�̂2(τ, k)f̃ 0(η+k(t−τ))k ·(η+k(t−τ)) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂1(τ, l)h̃1(τ, k−l, η+k(t−τ))l·(η+k(t−τ)) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂2(τ, l)h̃1(τ, k−l, η+k(t−τ))l·(η+k(t−τ)) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂1(τ, l)h̃2(τ, k−l, η+k(t−τ))l·(η+k(t−τ)) dτ,

(14.10)

�̂2(t, k) =−4π2αŴ (k)
∫ t

0

�̂2(τ, k)f̃ 0(k(t−τ))|k|2(t−τ) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂1(τ, l)h̃1(τ, k−l, k(t−τ))l·k(t−τ) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂2(τ, l)h̃1(τ, k−l, k(t−τ))l·k(t−τ) dτ

−4π2α

∫ t

0

∑
l∈Zd

Ŵ (l)�̂1(τ, l)h̃2(τ, k−l, k(t−τ))l·k(t−τ) dτ.

(14.11)

Here k runs over Zd.
From (14.8) and (14.9) we see that �1 and h1 depend linearly on ε, and that

�̂1(t, k) = ε[ϕk(kt)+O(α)] and h̃1(t, k, η) = ε[ϕk(η+kt)+O(α)]. (14.12)

Then from (14.10) and (14.11), �2 and h2 are O(ε2 α); so by plugging (14.12) into
these equations we obtain

�̂2(t, k) =−4π2ε2α

∫ t

0

∑
l∈Zd

Ŵ (l)ϕl(lτ)ϕk−l(kt−lτ)l·k(t−τ) dτ +O(ε2α2)+O(ε3α)

(14.13)

and

h̃2(t, k, η) =−4π2ε2α

∫ t

0

∑
l∈Zd

Ŵ (l)ϕl(lτ)ϕk−l(η+kt−lτ)l·(η+k(t−τ)) dτ

+O(ε2α2)+O(ε3α).

(14.14)
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We plug these bounds again into the right-hand side of (14.10) to find that

h̃2(t, 0, η) = IIε(t, η)+IIIε(t, η)+O(ε3 α3), (14.15)

where

IIε(t, η) =−4π2α

∫ t

0

∑
l∈Zd

(l·η)Ŵ (l)�̂1(τ, l)h̃1(τ,−l, η) dτ

is quadratic in ε, and IIIε(t, η) is a third-order correction:

IIIε(t, η) = 16π4ε3α2
∑

m,l∈Zd

Ŵ (l)Ŵ (m)

×
∫ t

0

∫ τ

0

ϕm(ms)
[
ϕl−m(lτ−ms)ϕ−l(η−lτ)(l·m)(τ−s)

+ϕl(lτ)ϕ−l−m(η−lτ−ms)m·(η−l(τ−s))
]
(l·η) ds dτ.

(14.16)

If f̃ 0 is even, changing ϕk into ϕk(−·) and η into −η amounts to change k into
−k at the level of (14.8) and (14.9); but then IIε is invariant under this operation. We
conclude that f is always homoclinic at second order in ε, and we consider the influence
of the third-order term (14.16). Let

C[ϕ](η) := lim
t!∞ IIIε(t, η).

After some relabeling, we find that

C[ϕ](η) = 16π4ε3α2
∑

k,l∈Zd

Ŵ (k) Ŵ (l)

×
∫ ∞

0

∫ t

0

ϕl(lτ)
[
ϕk−l(kt−lτ)ϕ−k(η−kt)(k ·l)(t−τ)

+ϕk(kt)ϕ−k−l(η−kt−lτ)l·(η−k(t−τ))
]
(k ·η) dτ dt.

(14.17)

Now assume that ϕ−k=σϕk with σ=±1 (σ=1 means that the perturbation is even in x,
σ=−1 that it is odd.) Using the symmetry (k, l)$(−k,−l) one can check that

C[ϕ S] S = σC[ϕ],

where S(z)=−z. In particular, if the perturbation is odd in x, then the third-order
correction imposes a heteroclinic behavior for the solution, as soon as C[ϕ] �=0.

To construct an example where C[ϕ] �=0, we set d=1, f0=Gaussian,

fi−f0 = sin(2πx)θ1(v)+sin(4πx)θ2(v),
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ϕ1=−ϕ−1= 1
2 θ̃1 and ϕ2=−ϕ−2= 1

2 θ̃2. The six pairs (k, l) contributing to (14.17) are
(−1, 1), (1,−1), (1, 2), (2, 1), (−1,−2) and (−2,−1), By playing with the respective sizes
of Ŵ (1) and Ŵ (2) (which amounts in fact to changing the size of the box), it is sufficient
to consider the terms with coefficient Ŵ (1)2, i.e., the pairs (−1, 1) and (1,−1). Then
the corresponding bit of C[ϕ](η) is

−16π4ε3α2Ŵ (1)2η
∫ ∞

0

∫ t

0

[
ϕ1(τ)ϕ1(η+t)ϕ2(−t+τ)(t−τ)

+ϕ1(τ)ϕ1(t)ϕ2(η+t−τ)(η+t−τ)

+ϕ1(−τ)ϕ1(η−t)ϕ2(t+τ)(t−τ)

+ϕ1(−τ)ϕ1(t)ϕ2(η−t+τ)(t−τ−η)
]
dτ dt.

If we let ϕ1 and ϕ2 vary in such a way that they become positive and almost concentrated
on R+, the only remaining term is the one in ϕ1(τ)ϕ2(η+t−τ)ϕ1(t), and its contribution
is negative for η>0. So, at least for certain values of W (1) and W (2) there is a choice
of analytic functions ϕ1 and ϕ2, such that C[ϕ] �=0. This demonstrates the existence of
heteroclinic trajectories.

To summarize: At first order in ε, the convergence is to the spatial average; at
second order there is a homoclinic correction; at third order, if at least three modes with
zero sum are excited, there is a possibility for heteroclinic behavior.

Remark 14.1. As pointed out to us by Bouchet, the existence of heteroclinic tra-
jectories implies that the asymptotic behavior cannot be predicted on the basis of the
invariants of the equation and the interaction; indeed, the latter do not distinguish be-
tween the forward and backward solutions.

15. Beyond Landau damping

We conclude this paper with some general comments about the physical implications of
Landau damping.

Remark 14.1 show in particular that there is no “universal” large-time behavior of
the solution of the non-linear Vlasov equation in terms of just, say, conservation laws and
the initial datum; the dynamics also have to enter explicitly. One can also interpret this
as a lack of ergodicity: the non-linearity is not sufficient to make the system explore the
space of all “possible” distributions and to choose the most favorable one, whatever this
means. Failure of ergodicity for a system of finitely many particles was already known
to occur, in relation to the KAM theorem; this is mentioned e.g. in [62, p. 257] for the
vortex system. There it is hoped that such behavior disappears as the dimension tends
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to infinity; but now we see that it also exists even in the infinite-dimensional setting of
the Vlasov equation.

At first, this seems to be bad news for the statistical theory of the Vlasov equation,
pioneered by Lynden-Bell [58] and explored by various authors [16], [65], [80], [89], [94],
since even the sophisticated variants of this theory try to predict the likely final states
in terms of just the characteristics of the initial data. In this sense, our results provide
support for an objection raised by Isichenko [42, p. 2372] against the statistical theory.

However, looking more closely at our proofs and results, proponents of the statistical
theory will have a lot to rejoice about.

To start with, our results are the first to rigorously establish that the non-linear
Vlasov equation does enjoy some asymptotic “stabilization” property in large time, with-
out the help of any extra diffusion or ensemble averaging.

Next, the whole analysis is perturbative: each stable spatially homogeneous distri-
bution will have its small “basin of damping”, and it may be that some distributions are
“much more stable” than others, say in the sense of having a larger basin.

Even more importantly, in §7 we have crucially used the smoothness to overcome the
potentially destabilizing non-linear effects. So any theory based on non-smooth functions
might not be constrained by Landau damping. This certainly applies to a statistical
theory, for which smooth functions should be a zero-probability set.

Finally, to overcome the non-linearity, we had to cope with huge constants (even
qualitatively larger than those appearing in classical KAM theory). If one believes in the
explanatory virtues of proofs, these large constants might be the indication that Landau
damping is a thin effect, which might be neglected when it comes to predict the “final”
state in a “turbulent” situation.

Further work needs to be done to understand whether these considerations apply
equally to the electrostatic and gravitational cases, or whether the electrostatic case is
favored in these respects; and what happens in “low” regularity.

Although the underlying mathematical and physical mechanisms differ, non-linear
Landau damping (as defined by Theorem 2.6) may arguably be to the theory of the
Vlasov equation what the KAM theorem is to the theory of Hamiltonian systems. Like
the KAM theorem, it might be conceptually important in theory and practice, and still
be severely limited.(18)

Beyond the range of application of KAM theory lies the softer, more robust weak
KAM theory developed by Fathi [26] in relation to Aubry–Mather theory. By a nice co-

(18) It is a well-known scientific paradox that the KAM theorem was at the same time tremendously
influential in the science of the twentieth century, and so restrictive that its assumptions are essentially
never satisfied in practice.
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incidence, a Vlasov version of the weak KAM theory has just been developed by Gangbo
and Tudorascu [29], although with no relation to Landau damping. Making the connec-
tion is just one of the many developments which may be explored in the future.

Appendix

In this appendix we gather some elementary tools, our conventions, and some reminders
about calculus. We write N0={0, 1, 2, ... }.

A.1. Calculus in dimension d

For n∈Nd
0 we define

n! = n1! ... nd!

and for n, m∈Nd
0 we set (

n

m

)
=
(

n1

m1

)
...

(
nd

md

)
.

For z∈Cd and n∈Zd we let

‖z‖= |z1|+...+|zd|, zn = zn1
1 ... znd

n ∈C and |z|n = |zn|.

In particular, for z∈Cd we have

e‖z‖ = e|z1|+...+|zd| =
∑

n∈Nd
0

‖z‖n

n!
.

We may write e|z| instead of e‖z‖.

A.2. Multi-dimensional differential calculus

The Leibniz formula for functions f, g: R!R is

(fg)(n) =
n∑

m=0

(
n

m

)
f (m)g(n−m),

where of course f (n)=dnf/dxn. The expression of derivatives of composed functions is
given by the Faà di Bruno formula:

(f G)(n) =
∑

∑
j jmj=n

n!
m1! ...mn!

(f (m1+...+mn) G)
n∏

j=1

(
G(j)

j!

)mj

.
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These formulae remain valid in several dimensions, provided that one defines, for a
multi-index n=(n1, ..., nd),

f (n) =
∂n1

∂xn1
1

...
∂nd

∂xnd

d

f.

They also remain true if (∂1, ..., ∂d) is replaced by a d-tuple of commuting derivation
operators.

As a consequence, we shall establish the following Leibniz-type formula for operators
which are combinations of gradients and multiplications.

Lemma A.1. Let f and g be functions of v∈Rd and a, b∈Cd. Then for any n∈Nd,

(∇v+(a+b))n(fg) =
∑

0�m�n

(
n

m

)
(∇v+a)mf(∇v+b)n−mg.

Proof. The right-hand side is equal to

∑
0�q�m�n

0�r�n−m

(
n

m

)(
m

q

)(
n−m

r

)
∇q

vf∇r
vgam−qbn−m−r.

After changing indices p=q+r and s=m−q, this becomes

∑
0�r�p�n

0�s�n−p

(
n

p

)(
p

r

)(
n−p

s

)
∇r

vg∇p−r
v fasbn−p−s =

∑
p

(
n

p

)
∇p

v(fg)(a+b)n−p

= (∇v+(a+b))n(fg).

A.3. Fourier transform

For a function f : Rd!R, we define

f̃(η) =
∫

Rd

e−2iπη·vf(v) dv. (A.1)

Then we have the usual formulae

f(v) =
∫

Rd

f̃(η)e2iπη·v dη and ∇̃f(η) = 2iπηf̃(η).

Let Td
L=Rd/LZd. For a function f : Td

L!R, we define

f̂ (L)(k) =
∫

Td
L

e−2iπk·x/Lf(x) dx. (A.2)
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Then we have

f(x) =
1
Ld

∑
k∈Zd

f̂ (L)(k)e2iπk·x/L and ∇̂f
(L)

(k) = 2iπ
k

L
f̂ (L)(k).

For a function f : Td
L×Rd!R, we define

f̃ (L)(k, η) =
∫

Td
L

∫
Rd

e−2iπk·x/Le−2iπη·vf(x, v) dv dx, (A.3)

so that the reconstruction formula reads

f(x, v) =
1
Ld

∑
k∈Zd

∫
Rd

f̃ (L)(k, η)e2iπk·x/Le2iπη·v dv.

When L=1 we do not specify it: so we just write

f̂ = f̂ (1) and f̃ = f̃ (1).

(There is no risk of confusion since, in that case, (A.3) and (A.1) coincide.)

A.4. Fixed-point theorem

The following theorem is one of the many variants of the Picard fixed-point theorem. We
write B(0, R) for the closed ball of center 0 and radius R.

Theorem A.2. (Fixed-point theorem) Let E be a Banach space, F : E!E and
R=2‖F (0)‖. If F : B(0, R)!E is 1

2 -Lipschitz, then it has a unique fixed point in B(0, R).

Proof. Uniqueness is obvious. To prove existence, run the classical Picard iterative
scheme initialized at 0: x0=0, x1=F (0), x2=F (F (0)), etc. It is clear that (xn)∞n=1 is a
Cauchy sequence and ‖xn‖�‖F (0)‖(1+...+1/2n)�2‖F (0)‖, so xn converges in B(0, R)
to a fixed point of F .

A.5. Plemelj formula

The Plemelj formula states that, in D′(R),

1
x−i0

= p.v.

(
1
x

)
+iπ δ0, (A.4)

or, equivalently,
1

x+i0
= p.v.

(
1
x

)
−iπ δ0. (A.5)

Let us give a complete proof of this formula which plays a crucial role in plasma physics.
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Proof of (A.4). First we recall that

p.v.

(
1
x

)
= lim

ε!0

1|x|�ε

x
.

A more explicit expression can be given for this limit. Let χ be an even function on R

with χ(0)=1, χ∈Lip∩L1(R); in particular∫
R

1|x|�ε

x
χ(x) dx = 0

and (1−χ(x))/x is bounded. Then for any ϕ∈Lip(R)∩L1(R),∫
|x|�ε

ϕ(x)
x

dx =
∫
|x|�ε

ϕ(x)
x

χ(x) dx+
∫
|x|�ε

ϕ(x)
1−χ(x)

x
dx

=
∫
|x|�ε

ϕ(x)−ϕ(0)
x

χ(x) dx+
∫
|x|�ε

ϕ(x)
1−χ(x)

x
dx

!
∫

R

ϕ(x)−ϕ(0)
x

χ(x) dx+
∫

R

ϕ(x)
1−χ(x)

x
dx as ε! 0.

(A.6)

Then (A.4) can be rewritten in the following more explicit way: for any ϕ∈Lip(R)∩L1(R)
and any χ satisfying the above assumptions,

lim
λ!0+

∫
R

ϕ(x)
x−iλ

dx =
∫

R

ϕ(x)−ϕ(0)
x

χ(x) dx+
∫

R

ϕ(x)
1−χ(x)

x
dx+iπϕ(0). (A.7)

Now, to prove (A.7), let us pick such a function χ and write, for λ>0,∫
R

ϕ(x)
x−iλ

dx =
∫

R

ϕ(x)−ϕ(0)
x−iλ

χ(x) dx+
∫

R

ϕ(x)
1−χ(x)
x−iλ

dx+ϕ(0)
∫

R

χ(x)
x−iλ

dx.

As λ!0, the first two integrals on the right-hand side converge to the right-hand side of
(A.6), and there is an extra term proportional to ϕ(0); so it only remains to check that∫

R

χ(x)
x−iλ

dx! iπ as λ! 0+. (A.8)

If (A.8) holds for some particular χ satisfying the requested conditions, then (A.4)
follows and it implies that (A.8) holds for any such χ. So let us pick one particular χ, say
χ(x)=e−x2

, which can be extended throughout the complex plane into a holomorphic
function. Then, since the complex integral is invariant under contour deformation,∫

R

e−x2

x−iλ
dx =

∫
Cε

e−z2

z−iλ
dz,

where Cε is the complex contour made of the straight line (−∞,−ε), followed by the half-
circle Dε={−εeiθ :0�θ�π}, followed by the straight line (ε,∞). The contributions of
both straight lines cancel each other by symmetry, and only the integral on the half-circle
Dε remains. As λ!0 this integral approaches

∫
Dε

e−z2
dz/z, which as ε!0 becomes close

to
∫

Dε
dz/z=iπ, as was claimed.
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