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1. Introduction

In this paper we consider the energy-critical non-linear wave equation
∂2

t u−∆u=±|u|4/(N−2)u, (x, t)∈RN×R,
u
∣∣
t=0

=u0 ∈ Ḣ1(RN ),
∂tu

∣∣
t=0

=u1 ∈L2(RN ).

Here the − sign corresponds to the defocusing problem, while the + sign corresponds to
the focusing problem. The theory of the local Cauchy problem (CP) for this equation
was developed in many papers, see for instance [11], [17], [25], [33], [36], [37], [39], etc. In
particular, one can show that if ‖(u0, u1)‖Ḣ1×L2 6δ, with δ small, there exists a unique
solution with (u, ∂tu)∈C(R; Ḣ1(RN )×L2(RN )) with the norm

‖u‖
L

2(N+1)/(N−2)
xt

<∞

(i.e., the solution scatters in Ḣ1(RN )×L2(RN )). See §2 of this paper for a review and
an update of the results.

In the defocusing case, Struwe [42] in the radial case, when N=3, Grillakis [13] in the
general case when N=3, and then Grillakis [14], Shatah–Struwe [35], [36], [37], Bahouri–
Shatah [5], and Kapitanski [17], in higher dimensions, proved that this also holds for any
(u0, u1) with ‖(u0, u1)‖Ḣ1×L2<∞ and that (for 36N65) for more regular (u0, u1) the
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solution preserves the smoothness for all time. This topic has been the subject of intense
investigation. See the recent work of Tao [44] for a recent installment in it and further
references.

In the focusing case, these results do not hold. In fact, the classical identity

d2

dt2

∫
RN

|u(x, t)|2 dx=2
∫

RN

((∂tu)2−|∇u|2+|u(t)|2N/(N−2)) dx (1.1)

(see the work of H. Levine [24] and also §3 and §5) was used by Levine [24] to show that
if (u0, u1)∈H1×L2 is such that

E((u0, u1))=
∫

RN

(
1
2
|∇u0|2+

1
2
|u1|2−

(N−2)
2N

|u0|2N/(N−2)

)
dx< 0,

the solution must break down in finite time. Moreover,

W (x) =W (x, t) =
(

1+
|x|2

N(N−2)

)−(N−2)/2

is in Ḣ1(RN ) and solves the elliptic equation

∆W+|W |4/(N−2)W =0,

so that scattering cannot always occur even for global (in time) solutions.
In this paper we initiate the detailed study of the focusing case (see also [23] for an

interesting recent work in this direction). We show the following result.

Theorem 1.1. Let (u0, u1)∈Ḣ1×L2, 36N65. Assume that

E((u0, u1))<E((W, 0)).

Let u be the corresponding solution of the Cauchy problem, with maximal interval of
existence I=(−T−(u0, u1), T+(u0, u1)) (see Definition 2.13).

(i) If
∫

RN |∇u0|2 dx<
∫

RN |∇W |2 dx, then

I =(−∞,∞) and ‖u‖
L

2(N+1)/(N−2)
xt

<∞.

(ii) If
∫

RN |∇u0|2 dx>
∫

RN |∇W |2 dx, then

T+(u0, u1)<∞ and T−(u0, u1)<∞.
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Our proof follows the new point of view into these problems that we introduced
in [19], where we obtained the corresponding result for the energy-critical non-linear
Schrödinger equation for radial data. In §3 we prove some elementary variational es-
timates which yield the necessary coercivity for our arguments and which follows from
arguments in [19]. In §4, using the work of Bahouri–Gérard [4] and the concentration
compactness argument from [19], we produce a “critical element” for which scattering
fails and which enjoys a compactness property because of its criticality (Propositions 4.1
and 4.2). At this point, we show a crucial orthogonality property of “critical elements”
related to a second conservation law in the energy space (Propositions 4.10 and 4.11)
which exploits the finite speed of propagation for the wave equation and its Lorentz in-
variance. This is the extra ingredient that allows us to go beyond the radial case as in
[19]. In §5 and §6 we prove a rigidity theorem (Theorem 5.1), which allows us to conclude
the argument. The first case of the rigidity theorem deals with infinite time of existence.
This uses localized conservations laws of the type (1.1) and related ones, very much in
the spirit of the corresponding localized virial identity used in [19]. The second case of
the rigidity theorem deals with finite time of existence. This case is dealt with in [19]
through the use of the L2 conservation law, which is absent for the wave equation. We
proceed in two stages. First we show that the solution must have self-similar behavior
(Proposition 5.7). Then, in §6, following Merle–Zaag [30] and earlier work on non-linear
heat equations by Giga–Kohn [10], we introduce self-similar variables and the new result-
ing equation, which has a monotonic energy. We then show that there exists a non-trivial
asymptotic solution w∗, which solves a (degenerate) elliptic non-linear equation. Finally,
using the estimates that we proved on w∗ and the unique continuation principle, we show
that w∗ must be zero, a contradiction which gives our rigidity theorem. In §7 we prove
our main theorem as a consequence of the rigidity theorem.

Finally, we would like to point out that we expect that our arguments will extend
to N>6, using arguments similar to those in the work of Tao–Visan [45] for the lo-
cal solvability in time of the equation and the corresponding extension of the work of
Bahouri–Gérard [4] (the rest of the argument is independent of the dimension).

Acknowledgement. We are grateful for the referee’s careful reading of the manuscript
and his/her very useful suggestions.
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2. A review of linear estimates and the Cauchy problem

In this section we will review the theory of the Cauchy problem
∂2

t u−∆u= |u|4/(N−2)u, (x, t)∈RN×R,
u
∣∣
t=0

=u0 ∈ Ḣ1(RN ),
∂tu

∣∣
t=0

=u1 ∈L2(RN ),

(CP)

i.e. the Ḣ1 critical, focusing Cauchy problem for the non-linear wave equation, and some
of the associated linear theory. We start out with some preliminary notation and linear
estimates. Consider thus the associated linear problem

∂2
tw−∆w=h, (x, t)∈RN×R,
w

∣∣
t=0

=w0 ∈ Ḣ1(RN ),
∂tw

∣∣
t=0

=w1 ∈L2(RN ).

(LCP)

The solution operator to (LCP) is given by

w(x, t) = cos(t
√
−∆ )w0+(−∆)−1/2 sin(t

√
−∆ )w1+

∫ t

0

sin((t−s)
√
−∆ )√

−∆
h(s) ds

=S(t)((w0, w1))+
∫ t

0

sin((t−s)
√
−∆ )√

−∆
h(s) ds.

Lemma 2.1. (Strichartz estimates [25], [12]) There is a constant C, independent of
T , such that

sup
0<t<T

(‖w(t)‖Ḣ1 +‖∂tw(t)‖L2)

+‖w‖
L

2(N+1)/(N−1)
t Ẇ

1/2,2(N+1)/(N−1)
x

+‖∂tw‖L
2(N+1)/(N−1)
t W

−1/2,2(N+1)/(N−1)
x

+‖w‖
L

2(N+1)/(N−2)
t L

2(N+1)/(N−2)
x

+‖w‖
L

(N+2)/(N−2)
t L

2(N+2)/(N−2)
x

6C(‖w0‖Ḣ1(RN )+‖w1‖L2(RN )+‖h‖L
2(N+1)/(N+3)
t Ẇ

1/2,2(N+1)/(N+3)
x

).

Lemma 2.2. (Trace theorem) Let w0, w1, h and w be as in Lemma 2.1. Then, for
|d|6 1

4 ,

sup
t

∥∥∥∥∇xw

(
x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)∥∥∥∥
L2(dx1dx′)

+sup
t

∥∥∥∥∂tw

(
x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)∥∥∥∥
L2(dx1dx′)

6C(‖w0‖Ḣ1(RN )+‖w1‖L2(RN )+‖h‖L1
t L2

x
).

Proof. Let v(x, t)=U(t)f be given by v̂(ξ, t)=eit|ξ|f̂(ξ), with f∈L2. We will show
that

sup
t

∥∥∥∥v( x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)∥∥∥∥
L2(dx1dx′)

6C‖f‖L2 ,
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which easily implies the desired estimate. But

v(x, t) =
∫

RN

eix·ξeit|ξ|f̂(ξ) dξ=
∫

RN

eix1ξ1eit|ξ|eix′·ξ′ f̂(ξ) dξ1 dξ′

=
∫

RN

eix1ξ1eit
√

ξ2
1+|ξ′|2eix′·ξ′ f̂(ξ1, ξ′) dξ1 dξ′,

so that

v

(
x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)
=

∫
RN

ei(x1−dt)ξ1/
√

1−d2
ei(t−dx1)

√
ξ2
1+|ξ′|2/

√
1−d2

eix′·ξ′ f̂(ξ) dξ1 dξ′

=
∫

RN

eix1(ξ1−d|ξ|)/
√

1−d2
eix′·ξ′e−idtξ1/

√
1−d2

eit|ξ|/
√

1−d2
f̂(ξ) dξ1 dξ′

=
∫

RN

eix1(ξ1−d|ξ|)/
√

1−d2
eix′·ξ′ ĝt(ξ) dξ1 dξ′,

where ĝt(ξ)=e−idtξ1/
√

1−d2
eit|ξ|/

√
1−d2

f̂(ξ). We now define

η1 =
ξ1−d|ξ|√

1−d2
and η′ = ξ′,

and compute

∣∣∣∣dηdξ
∣∣∣∣ =det



1−dξ1/|ξ|√
1−d2

−dξ2/|ξ|√
1−d2 ... ... −dξN /|ξ|√

1−d2

0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...

0 0 0 ... 1


=

(
1−dξ1/|ξ|√

1−d2

)
≈ 1

for |d|6 1
4 . The result now follows from Plancherel’s theorem.

Remark 2.3. A density argument in fact shows that

t 7−!w

(
x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)
∈C(R; Ḣ1(RN )),

and similarly for ∂tw.

Remark 2.4. Let F (u)=|u|4/(N−2)u. Then clearly, for 36N66,

|F (u)|6 |u|(N+2)/(N−2),

|(∇F )(u)|6C|u|4/(N−2),

|(∇F )(u)−(∇F )(v)|6C|u−v|(|u|(6−N)/(N−2)+|v|(6−N)/(N−2)),

|∇x(F (u(x)))−∇x(F (v(x)))|6C|u(x)|4/(N−2)|∇u(x)−∇v(x)|

+C|∇v(x)|(|u|(6−N)/(N−2)+|v|(6−N)/(N−2))|u−v|.
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We will also need a version of the chain rule for fractional derivatives (see [8], [21],
[40] and [46]).

Lemma 2.5. Assume that F (0)=F ′(0)=0 and that for all a and b,

|F ′(a+b)|6C(|F ′(a)|+|F ′(b)|) and |F ′′(a+b)|6C(|F ′′(a)|+|F ′′(b)|).

Then, for 0<α<1,

‖DαF (u)‖Lp
x
6C‖F ′(u)‖L

p1
x
‖Dαu‖L

p2
x
,

where 1/p=1/p1+1/p2, 1<pj<∞, and

‖Dα(F (u)−F (v))‖Lp
x

6C(‖F ′(u)‖L
p1
x

+‖F ′(v)‖L
p1
x

)‖Dα(u−v)‖L
p2
x

+C(‖F ′′(u)‖L
r1
x

+‖F ′′(v)‖L
r1
x

)(‖Dαu‖L
r2
x

+‖Dαv‖L
r2
x

)‖u−v‖L
r3
x
,

where 1/p=1/r1+1/r2+1/r3, 1<rj<∞, and 1<p<∞.

Remark 2.6. In our application of Lemma 2.5, we will have

F (u) = |u|4/(N−2)u, 3 6N 6 5,

and

F ′(u) =CN |u|4/(N−2),

F ′′(u) = C̃N sign(u)|u|4/(N−2)−1 = C̃N sign(u)|u|(6−N)/(N−2).

We will choose

p=
2(N+1)
N+3

and p2 =
2(N+1)
N−1

, so that
1
p1

=
1
p
− 1
p2

=
2

N+1
,

and

r3 =
2(N+1)
N−2

and r2 =
2(N+1)
N−1

, so that
1
r1

=
1
p
− 1
r2
− 1
r3

=
6−N

2(N+1)
.

Notice that

p1
4

N−2
=

2(N+1)
N−2

and
6−N
N−2

r1 =
2(N+1)
N−2

.

Let us now define the S(I) and the W (I) norms for an interval I by

‖v‖S(I) = ‖v‖
L

2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

,

‖v‖W (I) = ‖v‖
L

2(N+1)/(N−1)
I L

2(N+1)/(N−1)
x

.
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Theorem 2.7. (See [33], [11], [36]) Let (u0, u1)∈Ḣ1×L2, I30 be an interval and
‖(u0, u1)‖Ḣ1×L2 6A. Then, for 36N65, there exists δ=δ(A) such that if

‖S(t)((u0, u1))‖S(I)<δ,

then there exists a unique solution u to (CP) in RN×I, with (u, ∂tu)∈C(I; Ḣ1×L2),
‖D1/2

x u‖W (I)+‖∂tD
−1/2
x u‖W (I)<∞ and ‖u‖S(I)62δ. Moreover , if

(u0,k, u1,k)! (u0, u1), as k!∞,

in Ḣ1×L2 (so that , for k large, ‖S(t)((u0, u1))‖S(I)<δ), then the corresponding solutions
(uk, ∂t(uk))!(u, ∂tu), as k!∞, in C(I; Ḣ1×L2).

Sketch of the proof. (CP) is equivalent to the integral equation

u(t) =S(t)((u0, u1))+
∫ t

0

sin((t−s)
√
−∆ )√

−∆
F (u)(s) ds,

where F (u)=|u|4/(N−2)u. We let

Ba,b = {v on RN×I : ‖v‖S(I) 6 a and ‖D1/2
x v‖W (I) 6 b}

and

Φ(u0,u1)(v) =S(t)((u0, u1))+
∫ t

0

sin((t−s)
√
−∆ )√

−∆
F (v)(s) ds.

We will next choose δ, a and b so that Φ(u0,u1):Ba,b!Ba,b and is a contraction there.
Note that, by Lemma 2.1,

‖D1/2
x Φ(u0,u1)(v)‖W (I) 6CA+C‖F (v)‖

L
2(N+1)/(N+3)
x Ẇ

1/2,2(N+1)/(N+3)
x

.

But, by Lemma 2.5, ‖D1/2
x F (v)‖

L
2(N+1)/(N+3)
x

is bounded by

C‖F ′(v)‖
L

(N+1)/2
x

‖D1/2
x v‖

L
2(N+1)/(N−1)
x

6C‖v‖4/(N−2)

L
2(N+1)/(N−2)
x

‖D1/2
x v‖

L
2(N+1)/(N−1)
x

,

so that

‖D1/2
x F (v)‖

L
2(N+1)/(N+3)
I L

2(N+1)/(N+3)
x

6C‖v‖4/(N−2)

L
2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

‖D1/2
x v‖

L
2(N+1)/(N−1)
I L

2(N+1)/(N−1)
x

6C‖v‖4/(N−2)
S(I) ‖D1/2

x v‖W (I).
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Hence, for v∈Ba,b,

‖D1/2
x Φ(u0,u1)(v)‖W (I) 6CA+Ca4/(N−2)b.

Similarly, using Lemma 2.1 for the second term in Φ(u0,u1), and the argument above,
together with our assumption on (u0, u1) for the first term, we obtain

‖Φ(u0,u1)‖S(I) 6 δ+Ca4/(N−2)b.

Next, choose b=2AC and a so that Ca4/(N−2)6 1
2 . Then,

‖D1/2
x Φ(u0,u1)(v)‖W (I) 6 b.

If δ= 1
2a and Ca4/(N−2)−1b6 1

2 (which is possible if N<6) we obtain ‖Φ(u0,u1)(v)‖S(I)6a,
so that Φ(u0,u1):Ba,b!Ba,b. Next, for the contraction, we again use Lemmas 2.1 and 2.5,
to see that

‖D1/2
x (Φ(u0,u1)(v)−Φ(u0,u1)(v

′))‖W (I)+‖Φ(u0,u1)(v)−Φ(u0,u1)(v
′)‖S(I)

6C‖D1/2
x (F (v)−F (v′))‖

L
2(N+1)/(N+3)
I L

2(N+1)/(N+3)
x

6C[(‖v‖4/(N−2)

L
2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

+‖v′‖4/(N−2)

L
2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

)

×‖D1/2
x (v−v′)‖

L
2(N+1)/(N−1)
I L

2(N+1)/(N−1)
x

+(‖v‖(6−N)/(N−2)

L
2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

+‖v′‖(6−N)/(N−2)

L
2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

)

×(‖D1/2
x v‖

L
2(N+1)/(N−1)
I L

2(N+1)/(N−1)
x

+‖D1/2
x v′‖

L
2(N+1)/(N−1)
I L

2(N+1)/(N−1)
x

)

×‖v−v′‖
L

2(N+1)/(N−2)
I L

2(N+1)/(N−2)
x

]

6 2Ca4/(N−2)‖D1/2
x (v−v′)‖W (I)+2Ca(6−N)/(N−2)2b‖v−v′‖S(I),

and the contraction property follows for N<6. We then find u∈Ba,b solving

Φ(u0,u1)(u) =u.

To show that (u, ∂tu)∈C(I; Ḣ1×L2) we use Lemma 2.1, together with the fact that
D

1/2
x F (u)∈L2(N+1)/(N+3)

I L
2(N+1)/(N+3)
x . This also shows that ∂tD

−1/2
x u∈W (I). The

continuity statement at the end is an easy consequence of the fixed point argument, so
that the proof is complete.

Remark 2.8. u∈L(N+2)/(N−2)
I L

2(N+2)/(N−2)
x , because of Lemma 2.1 and the fact

that D1/2
x F (u)∈L2(N+1)/(N+3)

I L
2(N+1)/(N+3)
x . Note that because of this and the integral

equation, the conclusion of Lemma 2.2 holds for u, provided the integrations on the
left-hand side are restricted to (x1, x

′, t)∈RN×I so that(
x1−dt√
1−d2

, x′,
t−dx1√
1−d2

)
∈RN×I.
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Remark 2.9. (Higher regularity of solutions; see for example [11]) If

(u0, u1)∈ (Ḣ1∩Ḣ1+µ,Hµ),

06µ61, and (u0, u1) satisfies the conditions in Theorem 2.7, then

(u, ∂tu)∈C(I; (Ḣ1∩Ḣ1+µ)×Hµ)

and

‖D1/2+µ
x u‖W (I)+‖D1/2

x u‖W (I)+‖∂tD
µ−1/2
x u‖W (I)+‖∂tD

−1/2
x u‖W (I)<∞,

‖u‖S(I)62δ. (In this result we also need to use the assumption 36N65.)

Remark 2.10. There exists δ̃ such that if ‖(u0, u1)‖Ḣ1×L2 6δ̃, then the conclusion of
Theorem 2.7 applies to any interval I. In fact, by Lemma 2.1,

‖S(t)((u0, u1))‖S((−∞,∞)) 6Cδ̃,

and the claim follows.

Remark 2.11. Given (u0, u1)∈Ḣ1×L2, there exists I30 such that the hypothesis of
Theorem 2.7 is satisfied on I. This is clear because, by Lemma 2.1,

‖S(t)((u0, u1))‖S(I)<∞.

Remark 2.12. (Finite speed of propagation; see for instance [37]) Let R denote the
fundamental solution of the Cauchy problem, i.e. u=R solves

(∂2
t −∆x)u=0, (x, t)∈RN×R,

u
∣∣
t=0

=0,
∂tu

∣∣
t=0

= δ(x),

(2.1)

where δ(x) is the Dirac mass at 0. Then, we can write the solution of (LCP) in the form

w(t) = ∂tR(t)∗w0+R(t)∗w1−
∫ t

0

R(t−s)∗h(s) ds,

where ∗ denotes convolution in the spatial variable. As is well known,

suppR( · , t)⊂B(0, t) and supp ∂tR( · , t)⊂B(0, t).

Thus, if

suppu0∩B(x0, a) = ∅, suppu1∩B(x0, a) = ∅, supph∩
( ⋃

06t6a

B(x0, a−t)×{t}
)

= ∅,

then we have
w≡ 0 on

⋃
06t6a

B(x0, a−t)×{t}.
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These remarks have immediate consequences for the solutions of (CP) given in The-
orem 2.7. In fact, suppose that (u0, u1) and (u′0, u

′
1) are data satisfying the conditions

of Theorem 2.7 and such that (u0, u1)=(u′0, u
′
1) in B(x0, a). Then, the corresponding

solutions u and u′ agree on( ⋃
06t6a

B(x0, (a−t))×{t}
)
∩(RN×I).

To see this, for n∈N, define

u(n+1)(x, t) =S(t)((u0, u1))+
∫ t

0

sin((t−s)
√
−∆ )√

−∆
F (u(n)) ds

(for n=0, we set u(0)(x, t)=S(t)((u0, u1))). We define correspondingly (u′)(n+1)(x, t).
The proof of Theorem 2.7 gives us u=limn!∞ u(n) and u′=limn!∞(u′)(n). The previous
remarks allow us to show inductively that u(n+1)=(u′)(n+1) on( ⋃

06t6a

B(x0, (a−t))×{t}
)
∩(RN×I),

which establishes the claim. Typical applications of this remark are the following:
(a) If supp(u0)⊂B(0, b), supp(u1)⊂B(0, b) and (u0, u1) satisfies the hypothesis of

Theorem 2.7, then

u(x, t)≡ 0 on {(x, t) : |x|>b+t, t> 0 and t∈ I}.

(b) We can approximate solutions u in R×I ′, I ′bI, by means of regular, compactly
supported solutions, combining (a), Remark 2.9 and the last statement in Theorem 2.7.

Similar statements hold for t<0, for instance if (u0, u1)=(u′0, u
′
1) in B(x0, a), then

u and u′ agree on ( ⋃
−a6t60

B(x0, (a+t))×{t}
)
∩(RN×I).

Definition 2.13. Let t0∈I. We say that u is a solution of (CP) in I if

(u, ∂tu)∈C(I; Ḣ1×L2), D1/2
x u∈W (I), u∈S(I), (u, ∂tu)

∣∣
t=t0

=(u0, u1)

and the integral equation

u(t) =S(t)((u0, u1))+
∫ t

t0

sin((t−s)
√
−∆ )√

−∆
F (u(s)) ds

holds, with F (u)=|u|4/(N−2)u, for x∈RN and t∈I.
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Note that if u(1) and u(2) are solutions of (CP) on I, and

(u(1)(t0), ∂tu
(1)(t0))= (u(2)(t0), ∂tu

(2)(t0)),

then u(1)≡u(2) on RN×I. (See the argument in [19, Definition 2.10]). This allows one
to define a maximal interval

I((u0, u1))= (t0−T−(u0, u1), t0+T+(u0, u1)),

with T±(u0, u1)>0 where the solution is defined. If

T1>t0−T−(u0, u1) and T2<t0+T+(u0, u1),

with t0∈(T1, T2), then u solves (CP) in RN×[T1, T2], so that

(u, ∂tu)∈C([T1, T2]; Ḣ1×L2)), D
1/2
x u∈W ([T1, T2]), u∈S([T1, T2]),

u∈L(N+2)/(N−2)([T1, T2];L
2(N+2)/(N−2)
x ) and ∂tD

−1/2
x u∈W ([T1, T2]).

Remark 2.14. If u is such that (u, ∂tu)∈C(I; Ḣ1×L2), ‖u‖S(I)6B and there exist
uj with (uj , ∂t(uj))∈C(I; Ḣ1×L2), (uj , ∂t(uj))!(u, ∂tu) in C(I; Ḣ1×L2), with uj a
solution of (CP) in I together with ‖uj‖S(I)6B, then ‖D1/2

x u‖W (I)<∞ and u is a solution
of (CP) in I. This follows by showing that ‖D1/2

x uj‖W (I)6B′, where B′ is independent
of j. To show this, first find A so that supt∈I ‖(uj , ∂t(uj))‖Ḣ1×L2 6A, for all j. Next,
partition I=

⋃M
k=1 Ik, where Ik is such that ‖uj‖S(Ik)6δ, where δ=δ(A) is to be chosen.

Note that M=M(B, δ). We then use the integral equation for uj , and the estimate

‖D1/2
x F (uj)‖L

2(N+1)/(N+3)
Ik

L
2(N+1)/(N+3)
x

6Cδ4/(N−2)‖D1/2
x uj‖W (Ik)

(see the proof of Theorem 2.7), so that

‖D1/2
x uj‖W (Ik) 6CA+Cδ4/(N−2)‖D1/2

x uj‖W (Ik).

Thus, for δ small, we obtain ‖D1/2
x uj‖W (Ik)62CA and adding in k, we obtain the desired

bound.

Lemma 2.15. (Standard finite blow-up criterion) If T+(u0, u1)<∞, then

‖u‖S([t0,t0+T+(u0,u1)]) =∞.

A corresponding result holds for T−(u0, u1).

The proof is similar to the one in [19, Lemma 2.11].
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Remark 2.16. (Energy and moment identities) Let (u0, u1)∈Ḣ1×L2 and let I30 be
the maximal interval of existence. Then, for t∈I, with

1
2∗

=
1
2
− 1
N

(
2∗ =

2N
N−2

)
,

we have

E((u(t), ∂tu(t)))=
∫

RN

(
1
2
|∂tu(x, t)|2+

1
2
|∇xu(x, t)|2−

1
2∗
|u(x, t)|2

∗
)
dx=E((u0, u1)),

and ∫
RN

∇xu(x, t)∂tu(x, t) dx=
∫

RN

∇u0u1 dx. (2.2)

Proof. Let

e(u)(x, t) =
1
2
(∂tu)2(x, t)+

1
2
|∇xu(x, t)|2−

1
2∗
|u(x, t)|2

∗
.

Then, for sufficiently smooth solutions u of (CP), we have

∂te(u)(x, t) =
N∑

j=1

∂xj
(∂xj

u(x, t)∂tu(x, t)), (2.3)

as is readily seen. Now, fix any I ′bI, so that ‖u‖S(I′)<∞. By dividing I ′=
⋃M

k=1 Ik,
with ‖u‖S(Ik)6δ(A), where

A= sup
t∈I′

‖(u(t), ∂tu(t))‖Ḣ1×L2 ,

we can use Theorem 2.7 to approximate u by compactly supported solutions in RN×Ik
(see Remarks 2.9 and 2.12). We then apply (2.3) and integrate by parts, and then pass
to the limit, for t∈Ik. The proof of the second equality is similar.

Lemma 2.17. Let (u0, u1)∈Ḣ1×L2, ‖(u0, u1)‖Ḣ1×L2 6A, with maximal interval of
existence I=(−T−(u0, u1), T+(u0, u1)). There exists ε0>0 so that , if for some M>0 and
0<ε<ε0, we have

∫
|x|>M

(|∇xu0|2+|u1|2) dx6ε, then for t∈I+=[0,∞)∩I, we have∫
|x|>3M/2+t

(
|u0|2

|x|2
+|∇xu(x, t)|2+|∂tu(x, t)|2

)
dx6Cε.

Proof. Choose ΨM≡1 for |x|> 3
2M , ΨM≡0 for |x|6M and |∇xΨM |6C/M . Define

u0,M =ΨMu0 and u1,M =ΨMu1. Because of our assumption and the Hardy inequality∫
RN

|f |2

|x|2
dx6C

∫
RN

|∇f |2 dx,
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we have ‖(u0,M , u1,M )‖Ḣ1×L2 6Cε. Now choose ε0 so small that Cε06δ̃, where δ̃ is as
in Remark 2.10. Then, there exists uM solving (CP) in I=(−∞,∞), with

(uM (0), ∂tuM (0))= (u0,M , u1,M )

and such that

sup
t∈(−∞,∞)

‖(uM (t), ∂tuM (t))‖Ḣ1×L2 6 2Cε.

But, by Remark 2.12, uM (x, t)=u(x, t) for |x|> 3
2M+t, t∈I+. The lemma follows.

Definition 2.18. Let (v0, v1)∈Ḣ1×L2 and v(x, t)=S(t)((v0, v1)), and let {tn}∞n=1

be a sequence, with limn!∞ tn= t̄∈[−∞,∞]. We say that u(x, t) is a non-linear profile
associated with ((v0, v1), {tn}∞n=1) if there exists an interval I, with t̄∈I̊ (if t̄=±∞, then
I=[a,∞) or I=(−∞, a]) such that u is a solution of (CP) in I and

lim
n!∞

‖(u(tn)−v(tn), ∂tu(tn)−∂tv(tn))‖Ḣ1×L2 =0.

Remark 2.19. There always exists a non-linear profile associated with

((v0, v1), {tn}∞n=1).

The proof is similar to the one in [19, Remark 2.13], once we use the proof of Theorem 2.7
and the linear estimates

sup
t∈I

‖(w(t), ∂tw(t))‖Ḣ1×L2 +‖D1/2
x w‖W (I)+‖w‖S(I) 6C‖h‖

L
2(N+1)/(N+3)
I Ẇ

1/2,2(N+1)/(N+3)
x

,

where

w(x, t) =
∫ ∞

t

sin((t−s)
√
−∆ )√

−∆
h(s) ds, I =(a,∞) and a> 0,

which follow from [12, Proposition 3.1 (2) and (3)]. Also, as in [19, Remark 2.13], we have
uniqueness of the non-linear profile and a maximal interval of existence of the non-linear
profile associated with ((v0, v1), {tn}∞n=1).

Theorem 2.20. (Long time perturbation theory; see also [18], [19] and [45]) Let
I⊂R be a time interval. Let t0∈I, (u0, u1)∈Ḣ1×L2 and some constants M,A,A′>0 be
given. Let ũ be defined on RN×I (36N65) and satisfy supt∈I ‖(ũ(t), ∂tũ(t))‖Ḣ1×L2 6A,

‖ũ(t)‖S(I)6M and ‖D1/2
x ũ(t)‖W (I′)<∞ for each I ′bI. Assume that

(∂2
t −∆x)(ũ)−F (ũ) = e, (x, t)∈RN×I,
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(in the sense of the appropriate integral equation) and that

‖(u0−ũ(t0), u1−∂tũ(t0))‖Ḣ1×L2 6A′,

‖D1/2
x e‖

L
2(N+1)/(N+3)
I L

2(N+1)/(N+3)
x

+‖S(t−t0)((u0−ũ(t0), u1−∂tũ(t0)))‖S(I) 6 ε.

Then there exists ε0=ε0(M,A,A′) such that , for 0<ε<ε0, there is a solution u of (CP)
in I such that

(u(t0), ∂tu(t0))= (u0, u1),

with ‖u‖S(I)6C(M,A,A′) and , for all t∈I,

‖(u(t), ∂tu(t))−(ũ(t), ∂tũ(t))‖Ḣ1×L2 6C(A,A′,M)(A′+εβ), β > 0.

We take this opportunity to point out that the proof of the analogous result in
[19, Theorem 2.14], was incorrectly sketched in [19]. We are indebted to M. Visan and
X. Zhang and to J. Holmer and S. Roudenko, for pointing this out to us. A correct proof
is given in [18].

Remark 2.21. Theorem 2.20 yields the following continuity fact, which will be used
later. Let (ũ0, ũ1)∈Ḣ1×L2, ‖(ũ0, ũ1)‖Ḣ1×L2 6A, and let ũ be the solution of (CP), with
maximal interval of existence

(−T−(ũ0, ũ1), T+(ũ0, ũ1)).

Let (u(n)
0 , u

(n)
1 )!(ũ0, ũ1) in Ḣ1×L2 and let u(n) be the corresponding solution of (CP),

with maximal interval of existence

(−T−(u(n)
0 , u

(n)
1 ), T+(u(n)

0 , u
(n)
1 )).

Then

T−(ũ0, ũ1) 6 lim
n!∞

T−(u(n)
0 , u

(n)
1 ) and T+(ũ0, ũ1) 6 lim

n!∞
T+(u(n)

0 , u
(n)
1 )

and for each t∈(−T−(ũ0, ũ1), T+(ũ0, ũ1)) we have

(u(n)(t), ∂tu
(n)(t))! (ũ(t), ∂tũ(t)) in Ḣ1×L2.

Indeed, let Ib(−T−(ũ0, ũ1), T+(ũ0, ũ1)), so that

sup
t∈I

‖(ũ(t), ∂tũ(t))‖Ḣ1×L2 6 Ã and ‖ũ‖S(I) 6M <∞.
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We will show that, for n large, u(n) exists on I, that

sup
t∈I

‖(u(n)(t), ∂tu
(n)(t))−(ũ(t), ∂tũ(t))‖Ḣ1×L2 6C(M, Ã)‖(u(n)

0 , u
(n)
1 )−(ũ0, ũ1)‖Ḣ1×L2 ,

and, additionally, that ‖u(n)‖S(I)6M̃(Ã,M). To show this, apply Theorem 2.20, with
u=u(n), (u0, u1)=(u(n)

0 , u
(n)
1 ) and e≡0. If ε0=ε0(M, Ã, 2Ã) and n is so large that

‖S(t)((ũ0−u(n)
0 , ũ1−u(n)

1 ))‖S(I) 6 ε and ‖(ũ0−ũ(n)
0 , ũ1−ũ(n)

1 )‖Ḣ1×L2 6 2Ã,

then the desired conclusions follow from Theorem 2.20. Note also that if we choose
u

(n)
0 and u

(n)
1 in C∞

0 (RN ), the approximating solutions u(n) will be regular in view of
Remark 2.9, and for t∈I will have compact support in x, in view of Remark 2.12, and
will satisfy ‖u(n)‖S(I)6M̃ .

Remark 2.22. If u is a solution of (CP) in RN×I ′ for each I ′bI, I=[a,∞) (or
I=(−∞, a]), such that ‖u‖S(I)<∞, then there exists (u+

0 , u
+
1 )∈Ḣ1×L2 such that

lim
t"∞

‖(u(t), ∂tu(t))−(S(t)((u+
0 , u

+
1 )), ∂tS(t)((u+

0 , u
+
1 )))‖Ḣ1×L2 =0.

See [19, Remark 2.15] and [4] for a similar proof. In our case we use the fact that

‖D1/2
x F (u)‖

L
2(N+1)/(N+3)
I L

2(N+1)/(N+3)
x

<∞,

and the inequality used in the proof of Remark 2.19.

Remark 2.23. We recall that, since we are working in the focusing case, from the
work of Levine [24], [41] we have that if (u0, u1)∈H1×L2 is such that E((u0, u1))<0,
then the maximal interval of existence is finite. We will return to the issue of break-down
in finite time (blow-up), in the next section and at the end of the paper.

3. Variational estimates

Let

W (x) =W (x, t) =
(

1+
|x|2

N(N−2)

)−(N−2)/2

be a stationary solution of (CP). That is, W solves the non-linear elliptic equation

∆W+|W |4/(N−2)W =0. (3.1)

Moreover, W>0 and it is radially symmetric and decreasing. Note that W∈Ḣ1, but W
need not belong to L2, depending on the dimension. By invariances of equation (3.1), for
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θ0∈[−π, π], λ0>0 and x0∈RN , Wθ0,x0,λ0(x)=e
iθ0λ

(N−2)/2
0 W (λ0(x−x0)) is still a solution

of (3.1). By the work of Aubin [3] and Talenti [43], we have the following characterization
of W :

‖u‖L2∗ 6CN‖∇u‖L2 for all u∈ Ḣ1; (3.2)

moreover,
if ‖u‖L2∗ =CN‖∇u‖L2 and u 6=0, then

there exists (θ0, λ0, x0) such that u=Wθ0,x0,λ0 ,
(3.3)

where CN is the best constant of the Sobolev inequality (3.2) in dimension N .
Remark that ∫

RN

|∇W |2 dx=
1
CN

N

and E(W ) =
1
N

1
CN

N

,

where

E(u) =
∫

RN

(
1
2
|∇u|2− 1

2∗
|u|2

∗
)
dx.

Indeed, the equation (3.1) gives
∫

RN |∇W |2 dx=
∫

RN |W |2∗dx. Also, (3.3) yields

C2
N

∫
RN

|∇W |2 dx=
(∫

RN

|W |2
∗
dx

)(N−2)/N

,

so that C2
N

∫
RN |∇W |2 dx=

(∫
RN |∇W |2 dx

)(N−2)/N . Hence,∫
RN

|∇W |2 dx=
1
CN

N

and E(W ) =
(

1
2
− 1

2∗

) ∫
RN

|∇W |2 dx=
1

NCN
N

.

Lemma 3.1. Let u∈Ḣ1(RN ) be such that , for δ0>0,

‖∇u‖2L2 < ‖∇W‖2L2 and E(u) 6 (1−δ0)E(W ).

Then there exists δ̄=δ̄(δ0)>0 such that

‖∇u‖2L2 6 (1−δ̄)‖∇W‖2L2 and E(u) > 0.

Proof. It is contained in [19, Lemma 3.4].

Corollary 3.2. If u is as in Lemma 3.1, then there exists Cδ̄>0 so that∫
RN

(|∇u|2−|u|2
∗
) dx>Cδ̄

∫
RN

|∇u|2 dx.
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Proof. Note that (3.2) implies that∫
RN

(|∇u|2−|u|2
∗
) dx>

∫
RN

|∇u|2 dx−C2∗

N

(∫
RN

|∇u|2 dx
)2∗/2

>

(∫
RN

|∇u|2 dx
)(

1−C2∗

N

(∫
RN

|∇u|2 dx
)2/(N−2))

>

(∫
RN

|∇u|2 dx
)(

1−C2∗

N (1−δ̄)1/(N−2)

(∫
RN

|∇W |2 dx
)2/(N−2))

,

by Lemma 3.1. But (∫
RN

|∇W |2 dx
)2/(N−2)

=
1

C
2N/(N−2)
N

=
1
C2∗

N

,

so that the corollary follows with Cδ̄=1−(1−δ̄)1/(N−2).

Corollary 3.3. Let u∈Ḣ1, ‖∇u‖L2<‖∇W‖L2 . Then E(u)>0.

Proof. If

E(u)< E(W ) =
1
N

1
CN

N

,

the claim follows from Lemma 3.1. If E(u)>E(W ), the statement is obvious.

Remark 3.4. Let u∈Ḣ1(RN ) be such that E(u)6(1−δ0)E(W ). Assume that

‖∇u‖2L2 > ‖∇W‖2L2 .

Then there exists δ̄=δ̄(δ0, N) such that

‖∇u‖2L2 > (1+δ̄)‖∇W‖2L2 .

The proof of this is similar to the one of Lemma 3.1. See [19, Remark 3.14].

Theorem 3.5. (Energy trapping) Let u be a solution of (CP), with

(u, ∂tu)
∣∣
t=0

=(u0, u1)∈ Ḣ1×L2

and maximal interval of existence I. Assume that , for δ0>0,

E((u0, u1))6 (1−δ0)E((W, 0)) and ‖∇u0‖2L2 < ‖∇W‖2L2 .

Then, there exists δ̄=δ̄(δ0) such that , for t∈I, we have

‖∇xu(t)‖2L2 6 (1−δ̄)‖∇W‖2L2 , (3.4)∫
RN

(|∇xu(t)|2−|u(t)|2
∗
) dx>Cδ̄

∫
RN

|∇xu(t)|2 dx, (3.5)

E(u(t))> 0 (and hence E((u(t), ∂tu(t)))> 0). (3.6)
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Proof. By Remark 2.16, E((u(t), ∂tu(t)))=E((u0, u1)), t∈I. Also,

E(u(t))6E((u(t), ∂tu(t))).

Thus, the theorem follows from Lemma 3.1, Corollaries 3.2 and 3.3 and a continuity
argument.

Corollary 3.6. Let u be as in Theorem 3.5. Then, for all t∈I, we have

E((u(t), ∂tu(t)))'‖(u(t), ∂tu(t))‖2Ḣ1×L2 '‖(u0, u1)‖2Ḣ1×L2 ,

with comparability constants which depend only on δ0.

Proof. For t∈I, we have E((u(t), ∂tu(t)))6‖(u(t), ∂tu(t))‖2Ḣ1×L2 . Also,

E((u(t), ∂tu(t)))=
1
2

∫
RN

(∂tu(t))2 dx+E(u(t))

=
1
2

∫
RN

(∂tu(t))2 dx+
1
2

∫
RN

(|∇xu(t)|2−|u(t)|2
∗
) dx

+
(

1
2
− 1

2∗

) ∫
RN

|u(t)|2
∗
dx

>
1
2

∫
RN

(∂tu(t))2 dx+Cδ̄

∫
RN

|∇xu(t)|2 dx.

Finally, E((u(t), ∂tu(t)))=E((u0, u1))'‖(u0, u1)‖2Ḣ1×L2 .

Theorem 3.7. (Finite-time blow-up; see also Remark 2.23) Let (u0, u1)∈Ḣ1×L2,
u0∈L2, and let u be the solution of (CP) with maximal interval of existence I. Assume
that E((u0, u1))<E((W, 0)) and

∫
RN |∇u0|2 dx>

∫
RN |∇W |2 dx. Then I must be a finite

interval.

Proof. Fix δ0 positive so that E((u0, u1))6(1−δ0)E((W, 0)). Define

y(t) =
∫

RN

|u(x, t)|2 dx.

We then have

y′(t) = 2
∫

RN

u∂tu dx and y′′(t) = 2
∫

RN

((∂tu)2−|∇xu|2+|u|2
∗
) dx.

(To check these identities, we proceed as in Remark 2.16, starting with data in C∞
0 and

using a limiting argument.) Let δ̃0=δ0E((W, 0)), so that E((W, 0))>E((u(t), ∂tu(t)))+δ̃0
and hence

1
2∗

∫
RN

|u(t)|2
∗
dx>

1
2

∫
RN

((∂tu(t))2+|∇xu(t)|2) dx−E((W, 0))+δ̃0,
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so that ∫
RN

|u(t)|2
∗
dx>

N

N−2

∫
RN

((∂tu(t))2+|∇xu(t)|2) dx−2∗E((W, 0))+2∗δ̃0.

But then (with ˜̃
δ0=2·2∗δ̃0), we have

y′′(t) > 2
∫

RN

(∂tu(t))2 dx+
2N
N−2

∫
RN

(∂tu(t))2 dx−2·2∗E((W, 0))

+
2N
N−2

∫
RN

|∇xu(t)|2 dx−2
∫

RN

|∇xu(t)|2 dx+˜̃
δ0

=
4(N−1)
N−2

∫
RN

(∂tu(t))2 dx+
4

N−2

∫
RN

|∇xu|2 dx−
4

N−2

∫
RN

|∇W |2 dx+˜̃
δ0

>
4(N−1)
N−2

∫
RN

(∂tu(t))2 dx+˜̃
δ0

(by Remark 3.4 and a continuity argument). Assume now that [0,∞)⊂I. Then, by our
lower bound on y′′(t), there exists t0>0 such that y′(t0)>0, and hence y′(t)>0 for t>t0.
Hence, for t>t0,

y′′(t)y(t) >
4(N−1)
N−2

(∫
RN

(∂tu)2(t) dx
)(∫

RN

u(t)2 dx
)

>
N−1
N−2

y′(t)2,

so that, for t>t0,

y′′(t)
y′(t)

>
N−1
N−2

y′(t)
y(t)

or (log y′(t))′ >
N−1
N−2

(log y(t))′.

Hence for t>t0,

log y′ >
N−1
N−2

log y−C0 or y′(t) > C̃0y
(N−1)/(N−2),

which leads to finite-time blow-up of y, because (N−1)/(N−2)>1. This is a contradic-
tion which gives the result.

An extension of Theorem 3.7 will be given in §7.

4. Existence and compactness of a critical element;
further properties of critical elements

Let us consider the statement:

(SC) For all (u0, u1)∈Ḣ1×L2, with
∫

RN |∇u0|2 dx<
∫

RN |∇W |2 dx and E((u0, u1))<
E((W, 0)), if u is the corresponding solution of (CP) with maximal interval of existence
I (see Definition 2.13) then I=(−∞,∞) and ‖u‖S((−∞,∞))<∞.
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In addition, for a fixed (u0, u1)∈Ḣ1×L2, with
∫

RN |∇u0|2 dx<
∫

RN |∇W |2 dx and
E((u0, u1))<E((W, 0)), we say that (SC)((u0, u1)) holds if, for the corresponding solution
u of (CP), with maximal interval of existence I, we have I=(−∞,∞) and

‖u‖S((−∞,∞))<∞.

Note that, because of Remark 2.10, if ‖(u0, u1)‖Ḣ1×L2 6δ̃, then (SC)((u0, u1)) holds.
Thus, in light of Corollary 3.6, there exists η0>0 such that if (u0, u1) is as in (SC), and
E((u0, u1))6η0, then (SC)((u0, u1)) holds. Moreover, for any (u0, u1) as in (SC), (3.6)
shows that

E((u0, u1))> 0.

Thus, there exists a number EC , η06EC 6E((W, 0)), such that, if (u0, u1) is as in (SC)
and E((u0, u1))<EC , then (SC)((u0, u1)) holds and EC is optimal with this property.
For the rest of this section we will assume that EC<E((W, 0)). Using concentration
compactness ideas, following the argument in [19, §4], we prove that there exists a crit-
ical element (u0,C , u1,C) at the critical level of energy EC , so that (SC)((u0,C , u1,C))
does not hold, and from the minimality, this element has a compactness property up
to the symmetries of the equation (which will give rigidity in the problem). We then
use the finite speed of propagation and Lorentz transformations to establish support and
orthogonality properties of critical elements, which are essential to treat the non-radial
case.

Proposition 4.1. There exists (u0,C , u1,C)∈Ḣ1×L2, with

E((u0,C , u1,C))=EC <E((W, 0)) and
∫

RN

|∇u0,C |2 dx<
∫

RN

|∇W |2 dx

such that if uC is the solution of (CP) with data (u0,C , u1,C) and with maximal interval
of existence I, 0∈I̊, then ‖uC‖S(I)=∞.

Proposition 4.2. Assume that uC is as in Proposition 4.1 and that (say)

‖uC‖S(I+) =∞,

where I+=[0,∞)∩I. Then there exist x(t)∈RN and λ(t)∈R+, for t∈I+, such that

K = { v(x, t) : t∈ I+}

has the property that �K is compact in Ḣ1×L2, where

 v(x, t) =
(

1
λ(t)(N−2)/2

uC

(
x−x(t)
λ(t)

, t

)
,

1
λ(t)N/2

∂tuC

(
x−x(t)
λ(t)

, t

))
.

A similar conclusion is reached if ‖uC‖S(I−)=∞, where I−=(−∞, 0)∩I.
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The proofs of Propositions 4.1 and 4.2 are identical to the corresponding ones in
[19], using Lemma 4.3 below and the results of §2, especially Theorem 2.20. We will
therefore omit them.

Lemma 4.3. (Concentration compactness) Let {(v0,n, v1,n)}∞n=1∈Ḣ1×L2, with

‖(v0,n, v1,n)‖Ḣ1×L2 6A.

Assume that
‖S(t)((v0,n, v1,n))‖S((−∞,∞)) > δ > 0,

where δ=δ(A) is as in Theorem 2.7. Then there exists a sequence {(V0,j , V1,j)}∞j=1 in
Ḣ1×L2, a subsequence of {(v0,n, v1,n)}∞n=1 (which we still call {(v0,n, v1,n)}∞n=1) and a
triple (λj,n;xj,n; tj,n)∈R+×RN×R, with

λj,n

λj′,n
+
λj′,n

λj,n
+
|tj,n−tj′,n|

λj,n
+
|xj,n−xj′,n|

λj,n
!∞

as n!∞, for j 6=j′ (we say that (λj,n;xj,n; tj,n) is orthogonal if this property is satisfied)
such that

‖(V0,1, V1,1)‖Ḣ1×L2 >α0(A)> 0. (4.1)

If V l
j (x, t)=S(t)((V0,j , V1,j)), then, given ε0>0, there exists J=J(ε0) and

{(w0,n, w1,n)}∞n=1 ∈ Ḣ1×L2,

such that

v0,n =
J∑

j=1

1

λ
(N−2)/2
j,n

V l
j

(
x−xj,n

λj,n
,− tj,n

λj,n

)
+w0,n,

v1,n =
J∑

j=1

1

λ
N/2
j,n

∂tV
l
j

(
x−xj,n

λj,n
,− tj,n

λj,n

)
+w1,n,

(4.2)

with ‖S(t)((w0,n, w1,n))‖S((−∞,∞))6ε0 for n large,∫
RN

|∇xv0,n|2 dx=
J∑

j=1

∫
RN

|∇xV0,j |2 dx+
∫

RN

|∇xw0,n|2 dx+o(1), (4.3)

∫
RN

(
1
2
|∇xv0,n|2+

1
2
|v1,n|2

)
dx=

J∑
j=1

∫
RN

(
1
2
|∇xV0,j |2+

1
2
|V1,j |2

)
dx

+
∫

RN

(
1
2
|∇xw0,n|2+

1
2
|w1,n|2

)
dx+o(1)

(4.4)

as n!∞, and

E((v0,nv1,n))=
J∑

j=1

E

((
V l

j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

)))
+E((w0,n, w1,n))+o(1) (4.5)

as n!∞.
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Remark 4.4. Lemma 4.3 is due to Bahouri–Gérard [4] (see also [6], [9] and [26]
for the elliptic case and [28] for the Schrödinger case). In [4] the result is proved for
N=3, but the proof extends to all N>3. Also, the norm ‖ · ‖S(−∞,∞) is replaced by
‖ · ‖

L
(N+2)/(N−2)
t L

2(N+2)/(N−2)
x

in [4], but as is mentioned in [4, p. 136], it works equally well
for ‖ · ‖S(−∞,∞). See the remark on [4, p. 159] to eliminate their condition (1.6). Note
that (4.3) is not explicitly stated in [4], but the proof in [4] gives it. The equality (4.3)
is important for us to establish that

∫
RN |∇u0,C |2 dx<

∫
RN |∇W |2 dx in Proposition 4.1.

(See also the work of Keraani [22], where the corresponding result is proved for the non-
linear Schrödinger equation and where the analogue of (4.1) is shown.) See also [19,
Remark 4.8].

Corollary 4.5. There exists a decreasing function g: (0, EC ]![0,∞) such that for
every (u0, u1) as in (SC), with E((u0, u1))=EC−η, we have

‖u‖S((−∞,∞)) 6 g(η).

For a proof of Corollary 4.5, see [4, Corollary 2] and [22, Corollary 1.14].
We next turn our attention to further properties of critical elements.

Lemma 4.6. Let u be a solution of (CP), with maximal interval of existence I.
Assume that , for t∈I+=I∩[0,∞), there exist x(t)∈RN and λ(t)∈R+ so that

K = { v(x, t) : t∈ I+}

has the property that �K is compact in Ḣ1×L2, where

 v(x, t) =
(

1
λ(t)(N−2)/2

u

(
x−x(t)
λ(t)

, t

)
,

1
λ(t)N/2

∂tu

(
x−x(t)
λ(t)

, t

))
.

Then we can choose λ̃(t) and x̃(t), continuous in I+, so that the corresponding K̃ has
compact closure in Ḣ1×L2.

Proof. The proof given in [19, Remark 5.4] applies verbatim.

From now on, we always use λ̃(t) and x̃(t) provided by Lemma 4.6.

Lemma 4.7. Let u be as in Lemma 4.6 and assume that I+ is a finite interval.
After scaling , we can assume then that I+=[0, 1). Then,

0<
C0(K)
1−t

6λ(t).

Proof. Consider 0<tj!1. (Because of Lemma 4.6, this suffices.) Let

(v0,j , v1,j) =
(

1
λ(tj)(N−2)/2

u

(
x−x(tj)
λ(tj)

, tj

)
,

1
λ(tj)N/2

∂tu

(
x−x(tj)
λ(tj)

, tj

))
.



energy-critical focusing wave equation 169

Since (v0,j , v1,j)∈K and �K is compact in Ḣ1×L2, there exists C0=C0(K)>0 independent
of j, so that T+(v0,j , v1,j)>C0. (Here we are using the notation in Definition 2.13.) This
is an easy consequence of Theorem 2.7. Let vj(t) be the corresponding solution of (CP).
Note that

λ(tj)(N−2)/2v0,j(λ(tj)y+x(tj))=u(y, tj),

λ(tj)N/2v1,j(λ(tj)y+x(tj))= ∂tu(y, tj).

Hence, by uniqueness in (CP) (see the argument in Definition 2.13), for t such that
tj +t6T+(u0, u1)=1, we have

λ(tj)(N−2)/2vj(λ(tj)y+x(tj), λ(tj)t) =u(y, tj +t).

Thus, we have tj +t61, for all 0<λ(tj)t6C0. But then, choose t=C0/λ(tj) so that
λ(tj)>C0/(1−tj), as desired.

Lemma 4.8. Let u be as in Lemma 4.7. Then, there exists x̄∈RN such that

suppu⊂B(x̄, (1−t)) and supp ∂tu⊂B(x̄, (1−t)).

Proof. Recall from Lemma 4.7 that λ(t)>C0(K)/(1−t). We claim that, for any
R0>0,

lim
t"1

∫
|x+x(t)/λ(t)|>R0

(|∇xu(x, t)|2+|∂tu(x, t)|2) dx=0.

Indeed, if

 v(x, t) =
1

λ(t)N/2

(
∇u

(
x−x(t)
λ(t)

, t

)
, ∂tu

(
x−x(t)
λ(t)

, t

))
,

then ∫
|x+x(t)/λ(t)|>R0

(|∇xu(x, t)|2+|∂tu(x, t)|2) dx=
∫
|y|>λ(t)R0

| v(y, t)|2 dy,

and our claim follows from the compactness of �K and the fact that λ(t)"∞. Using this
estimate, we apply Lemma 2.17 backward in time, to conclude that, for each s∈[0, 1)
and R0>0, we have

lim
t"1

∫
|x+x(t)/λt|>3R0/2+(t−s)

(|∇xu(x, s)|2+|∂tu(x, s)|2) dx=0.

The next step is to show that |x(t)/λ(t)|6M for 06t<1. If not, we can find (in light of
Lemma 4.6) tn"1 so that |x(tn)/λ(tn)|!∞. Then, for all R>0,

{x : |x|6R}⊂
{
x :

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ >
3
2
R0+tn

}
,
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for n large enough, so that, passing to the limit in n, for s=0,∫
|x|6R

(|∇u0|2+|u1|2) dx=0,

a contradiction. Finally, pick a sequence tn"1 so that x(tn)/λ(tn)!−x̄. Observe that,
for every η0>0, for n large enough and for all s∈[0, 1),

{x : |x−x̄|> 1+η0−s}⊂
{
x :

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ >
3
2
R0+(tn−s)

}
for some R0(η0)>0. From this we conclude that∫

|x−x̄|>1+η0−s

(|∇xu(x, s)|2+|∂su(x, s)|2) dx=0,

which gives the claim.

Remark 4.9. After a translation, we may assume that x̄=0. Also, since u( · , t)∈L2∗

for each t, the conditions suppu⊂B(0, 1−t) and supp∇xu⊂B(0, 1−t) are equivalent.

We turn now to the next important property of uC (at least in the non-radial situ-
ation): the second invariant of the equation for uC is zero. We consider the cases where
I+ is a finite interval and an infinite interval.

Proposition 4.10. Assume that uC is as in Proposition 4.2 and I+ is a finite
interval. Then, ∫

RN

∇u0,Cu1,C dx=0.

Proof. By scaling, we can assume that I+=[0, 1). By Lemma 4.8, we have suppuC⊂
B(0, 1−t) and supp ∂tuC⊂B(0, 1−t). Note also that for any solution u of (CP) in I, the
maximal interval of existence, and for any t∈I, we have from (2.2) that∫

RN

∇xu(t)∂tu(t) dx=
∫

RN

∇u0u1 dx.

Assume now (without loss of generality) that

γ=
∫

RN

∂x1(u0,C)u1,C dx> 0.

We will reach a contradiction, by considering (for convenience) u(x, t)=uC(x, 1+t), with
−16t<0. Clearly, for −16t<0,

E((u(t), ∂tu(t)))=EC ,

∫
RN

|∇u(t)|2 dx6 (1−δ̄)‖∇W‖2L2 , γ=
∫

RN

∂x1u(t)∂tu(t) dx,
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by Theorem 3.5 and our assumption above. We will consider the action of Lorentz
transformations on u. (Now, suppu( · , t)⊂B(0,−t) and supp ∂tu( · , t)⊂B(0,−t), for
−16t<0.) Thus, for 0<d< 1

4 , consider

zd(x1, x̄, t) =u

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

)
, (4.6)

where x=(x1, x̄)∈RN , t∈R and s=(t−dx1)/
√

1−d2 is such that −16s<0.
Note that, for this range of s and y=(y1, ȳ) such that (y, s)∈suppu, we have |y|6|s|.

Thus, if y1=(x1−dt)/
√

1−d2 and ȳ=x̄, we obtain x2
1+|x̄|26t2 in the support of zd and

∂tzd. Fix now − 1
2 6t<0 and x2

1+|x̄|26t2. Then,

t−dx1√
1−d2

>
(1+d)t√

1−d2
>−1

2
1+d2

√
1−d2

>−1,

while
t−dx1√
1−d2

6
(1−d)t√

1−d2
< 0.

Thus, for such (x, t), zd is defined and we have zd(x, t)=0, ∇xzd(x, t)=0 and ∂tzd(x, t)=0
for x2

1+|x̄|2=t2. We extend zd( · , t) to be zero for |x|>|t|, − 1
2 6t<0. An elementary

calculation shows that if u is a regular solution (by a regular solution we will mean one
as in Remark 2.9, with µ=1) of

∂2
t u−∆u= |u|4/(N−2)u in RN×[−1, 0),

then the resulting zd is a solution of (CP) for this equation in − 1
2 6t<0, x∈RN .

We will now show that the zd we defined in (4.6) is a solution of (CP) in RN×
[
− 1

2 , 0
)
.

To this end, fix ε0>0 and consider − 1
2 6t6−ε0, x∈RN . Note that in this range we

have, on supp zd, that −16s6−3ε0/
√

15. Note also that since the S([−1,−3ε0/
√

15 ])
norm of u is finite, and u∈L(N+2)/(N−2)

[−1,−3ε0/
√

15 ]
L

2(N+2)/(N−2)
x (see Definition 2.13), in light of

Remark 2.8, we have (zd, ∂t(zd))∈C
([
− 1

2 ,−ε0
]
; Ḣ1×L2

)
. Also, if we let

J =
∣∣∣∣det

∂(y, s)
∂(x, t)

∣∣∣∣,
then J≡1 and hence, if Dε0 =RN×

[
− 1

2 ,−ε0
]

and D̃ε0 =Φ(Dε0), where Φ(x, t)=(y, s),
then∫

Dε0

|zd(x, t)|2(N+1)/(N−1) dx dt=
∫

D̃ε0

|u(y, s)|2(N+1)/(N−1) dy ds

6
∫
−16s6−3ε0/

√
15

|u(y, s)|2(N+1)/(N−1) dy ds6Cε0 .
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Moreover, pick u0,j∈C∞
0 (B(0, 3ε0/

√
15 )) and u1,j∈C∞

0 (B(0, 3ε0/
√

15 )) with

(u0,j , u1,j)!
(
u

(
− 3√

15
ε0

)
, ∂su

(
− 3√

15
ε0

))
in Ḣ1×L2.

Let uj be the solution of (CP), defined for s<−3ε0/
√

15. Note that, because of Re-
mark 2.21, we know that, for j large, uj is a solution of (CP) for −16s<−3ε0/

√
15,

‖(uj , ∂suj)‖C((−1,−3ε0/
√

15 ),Ḣ1×L2) 6C

and
‖uj‖S((−1,−3ε0/

√
15 ))+‖uj‖L

(N+2)/(N−2)
[−1,−3ε0/

√
15]

L
2(N+1)/(N−2)
x

6 C̃ε0 .

Also, by Remark 2.9, uj is regular for s∈[−1,−3ε0/
√

15 ] and, by Remark 2.12, we have
suppuj( · , s)⊂B(0, |s|) for −16s6−3ε0/

√
15. If we now consider zj,d given by (4.6)

with u replaced by uj , the zj,d are solutions of (CP) in − 1
2 6t6−ε0. Moreover, from

the proof of Remark 2.21 and the proof that (zd, ∂t(zd))∈C
([
− 1

2 ,−ε0
]
; Ḣ1×L2

)
, we

can conclude that (zj,d, ∂t(zj,d))!(zd, ∂tzd) in C
([
− 1

2 ,−ε0
]
; Ḣ1×L2

)
and similarly that

‖zj,d‖S([−1/2,−ε0])6Cε0 . Now, from Remark 2.14, it follows that zd is a solution of (CP)
for t∈

[
− 1

2 ,−ε0
]
. Since ε0>0 is arbitrary, we conclude that T+

(
zd

(
− 1

2

)
, ∂tzd

(
− 1

2

))
>0.

But, since supp zd, ∂tzd⊂{x:|x|6|t|} for any t∈
[
− 1

2 , 0
)
, either T+

(
zd

(
− 1

2

)
, ∂tzd

(
− 1

2

))
=0,

or zd≡0. Because u 6≡0, it is easy to see that zd 6≡0.
We have, by Remark 2.16, that∫ −1/4

−1/2

E((zd(t), ∂tzd(t))) dt=
1
4
E

((
zd

(
−1

2

)
, ∂tzd

(
−1

2

)))
. (4.7)

We are now going to calculate the derivative in d of the left-hand side. Note that

∂x1zd =− d√
1−d2

∂su+
1√

1−d2
∂y1u,

∂x̄zd = ∂ȳu,

∂tzd =
1√

1−d2
∂su−

d√
1−d2

∂y1u.

Thus, the left-hand side of (4.7) equals I1+I2, where

I1 =
∫ −1/4

−1/2

∫
RN

(
1
2

(
1+d2

1−d2
((∂su)2+(∂y1u)

2)+|∇ȳu|2
)
− 1

2∗
|u|2

∗
)
dx1 dx̄ dt,

I2 =− 2d
1−d2

∫ −1/4

−1/2

∫
RN

∂y1u ∂su dx1 dx̄ dt.
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Also notice that, for regular f , of compact support,

∂

∂d

∫
f

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

)
dx1 dx̄

=
1

1−d2

∫
−t

(1−d2)1/2

(
∂f

∂y1

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

)
−d∂f

∂s

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

))
dx1 dx̄

+
1

1−d2

∫
−x1

(1−d2)1/2

(
∂f

∂s

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

)
−d ∂f

∂y1

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

))
dx1 dx̄

=
1

1−d2

∫
−t ∂f
∂x1

dx1 dx̄−
1

1−d2

∫
x1
∂f

∂t
dx1 dx̄

=− 1
1−d2

∂

∂t

∫
x1f dx1 dx̄,

where the integrations are over RN . Hence,

∂

∂d
I1(d) =

∫ −1/4

−1/2

∫
RN

1
2

4d
(1−d2)2

((∂su)2+(∂y1u)
2) dx1 dx̄ dt

− 1
1−d2

∫
RN

x1

2

(
1+d2

1−d2
((∂su)2+(∂y1u)

2)+|∇ȳu|2−
1
2∗
|u|2

∗
)
dx1 dx̄

∣∣∣∣−1/4

t=−1/2

and

∂

∂d
I2(d) =− 2

(1−d2)2

∫ −1/4

−1/2

∫
RN

∂y1u∂su dx1 dx̄ dt

+
2d

1−d2

∫
RN

− x1

1−d2
∂y1u∂su dx1 dx̄

∣∣∣∣−1/4

t=−1/2

.

(This computation can be justified for zd by approximating zd, using the fundamental
theorem of calculus in d, since all the terms make sense for zd.)

But then

∂

∂d
(I1(d)+I2(d))

∣∣∣∣
d=0

= −
∫

RN

x1e(u) dx1 dx̄

∣∣∣∣t=−1/4

t=−1/2

−2
∫ −1/4

−1/2

∫
RN

∂y1u∂su dx1 dx̄ dt

= 1
4γ−

1
2γ=− 1

4γ

in light of (2.2) and (2.3).
Also, by (4.7), I1(0)+I2(0)= 1

4EC , so that, for d small, we have

E
((
zd

(
− 1

2

)
, ∂tzd

(
− 1

2

)))
<EC ,

since γ>0.
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Finally, since EC<E((W, 0)) and ‖∇u(−1)‖2L2<‖∇W‖2L2 , because of Theorem 3.5,
we have that, for −16s60, ‖∇xu( · , s)‖2L2 6(1−δ̄)‖∇W‖2L2 , δ̄>0. We now consider

∫ −1/4

−1/2

∫
RN

|∇xzd(x, t)|2 dx dt.

A change of variables, together with the calculation of ∂x1zd and ∂x̄zd, show that

lim
d#0

∫ −1/4

−1/2

∫
RN

|∇xzd(x, t)|2 dx dt=
∫ −1/4

−1/2

∫
RN

|∇yu(y, s)|2 dy ds6
1
4
(1−δ̄)‖∇W‖2L2 .

But then, for d small,∫ −1/4

−1/2

∫
RN

|∇xzdu(x, t)|2 dx dt6
1
4

(
1− δ̄

2

)
‖∇W‖2L2 .

Thus, there exists t0=t0(d)∈
(
− 1

2 ,−
1
4

)
such that, for d small,∫

RN

|∇xzd(x, t0)|2 dx< ‖∇W‖2L2 and E
((
zd

(
− 1

2

)
, ∂tzd

(
− 1

2

)))
<E((W, 0)).

By Theorem 3.5, we have, for all d small,
∥∥∇xzd

(
x,− 1

2

)∥∥2

L2<‖∇W‖2L2 . Since the interval
of existence of zd is finite, this contradicts the definition of EC taking d>0 small, and
thus γ=0.

Proposition 4.11. Let uC be as in Proposition 4.2 and I+=[0,∞). Assume in
addition that for t>0, λ(t)>A0>0. Then,∫

RN

∇u0,Cu1,C dx=0.

Proof. Because of Proposition 4.10, we can assume that T−(u0, u1)=∞. To abbre-
viate the notation, let us write u(x, t)=uC(x, t). Again, without loss of generality, if the
conclusion does not hold, we can assume that γ=

∫
RN ∂y1u0u1 dy>0 and hence, by (2.2),

for all s∈R we have ∫
RN

∂y1u(s)∂su(s) dy= γ > 0.

We will see that this assumption leads to a contradiction. We first start out by showing
that, given ε>0, there exists R0(ε)>0 such that, for all s>0, we have∫

|y+y(s)/λ(s)|>R0(ε)

(
|∂su|2+|∇yu|2+

|u|2

|y|2
+|u|2

∗
)
dy6 ε. (4.8)
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In fact, by compactness of �K, given ε>0, there exists R̃0=R̃0(ε)>0 such that, for all
s∈[0,∞), ∫

|y+y(s)/λ(s)|>R̃0/λ(s)

(
|∂su|2+|∇yu|2+

|u|2

|y|2
+|u|2

∗
)
dy6 ε.

Since λ(s)>A0, R0(ε)=R̃0(ε)/A0 does the job.
Next, we show that, as a consequence of (4.8), we have good bounds for |y(s)/λ(s)|:

for M > 0 we have
∣∣∣∣ y(s)λ(s)

∣∣∣∣ 6 s+M for all s∈ [0,∞). (4.9)

To verify (4.9), recall that, since E((u0, u1))=EC>0, (u0, u1) is not identically 0, thus
we have, because of Corollary 3.6,

inf
s>0

∫
RN

(|∇yu(y, s)|2+|∂su(y, s)|2) dy>C‖(u0, u1)‖2Ḣ1×L2 =B0> 0.

Then, use (4.8) to choose M0>0 so that∫
|y+y(s)/λ(s)|>M0

(|∇u|2+|∂su|2) dy6
B0

2
, s∈ [0,∞),

to conclude that ∫
|y+y(s)/λ(s)|6M0

(|∇u|2+|∂su|2) dy>
B0

2
, s∈ [0,∞).

Now recall, from Lemma 2.17, that there exists ε0>0 such that, if for some M1>0 we
have ∫

|y|>M1

(
|∇yu0|2+|u1|2+

|u0|2

|y|2

)
dy6 ε, (4.10)

then ∫
|y|>3M1/2+s

(|∇yu(y, s)|2+|∂su(y, s)|2) dy6Cε,

whenever 0<ε<ε0 and s>0. Since we can assume, without loss of generality, that y(0)=0
and λ(0)=1, in light of (4.8) we can always achieve (4.10). We will show that we can
choose ε so small that |y(s)/λ(s)|6s+3 max{M0,M1}. Suppose, on the contrary, that
|y(s)/λ(s)|>s+3 max{M0,M1}. If |y+y(s)/λ(s)|6M0, then

|y|> s+3 max{M0,M1}−M0 > s+2 max{M0,M1}> s+2M1.

But then,

B0

2
6

∫
|y+y(t)/λ(s)|6M0

(|∇yu|2+|∂su|2) dy6
∫
|y|>s+2M1

(|∇yu|2+|∂su|2) dy6Cε,
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by (4.10). If Cε< 1
2B0, we reach a contradiction, which establishes (4.9). Because of the

lack of compact support, the argument in the proof of Proposition 4.10 does not apply
verbatim. The idea in what follows is to use a rescaling, to concentrate the solution near
the origin.

Having (4.8) and (4.9) at our disposal, we now define, for R>0 and d>0,

zd,R(x1, x̄, t) =uR

(
x1−dt√
1−d2

, x̄,
t−dx1√
1−d2

)
, (4.11)

where
uR(y1, ȳ, s) =R(N−2)/2u(Ry1, Rȳ, Rs).

Note that uR is a solution of (CP) in RN×R, that E((uR(0), ∂suR(0)))=EC and that
there exists δ̄>0 such that∫

RN

|∇yuR(y, s)|2 dy6 (1−δ̄)
∫

RN

|∇W |2 dy.

We also have sups∈R ‖(uR, ∂suR)‖Ḣ1×L2 6A and ‖uR‖S((0,∞))=∞. Moreover, we will use
the fact that, when (x, t) are in a compact set, the identity

∂te(zd,R)(x, t) =
N∑

j=1

∂xj
(∂xj

zd,R ∂tzd,R)

holds, which can be shown by approximating uR by compactly supported regular solu-
tions and making the observation that the corresponding zd,R are then solutions of (CP)
on finite-time intervals.

We now prove the following fact:

There exists d0> 0 such that, for 0<d<d0∫ 2

1

∫
36|x|68

(|∇xzd,R|2+|∂tzd,R|2+|zd,R|2
∗
) dx dt6 η1(R, d),

where η1(R, d)
R!∞−−−−! 0 uniformly in d<d0.

(4.12)

To establish (4.12), we use the change of variables Φ(x, t)=(y, s), where

y1 =
x1−dt√
1−d2

, ȳ= x̄ and s=
t−dx1√
1−d2

.

Then, for d small, we have, after changing variables, that the left-hand side of (4.12) is
bounded by ∫ 2+1/8

1−1/8

∫
3−1/86|y|68+1/8

(|∇yuR|2+|∂suR|2+|uR|2
∗
) dy ds,
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which, after rescaling, becomes

1
R

∫ (2+1/8)R

(1−1/8)R

∫
(3−1/8)R6|y|6(8+1/8)R

(|∇yu|2+|∂su|2+|u|2
∗
) dy ds.

But, by (4.9), we have |y(s)/λ(s)|6
(
2+ 1

8

)
R+M for 06s6

(
2+ 1

8

)
R, so that, for R large,{

y :|y|>
(
3− 1

8

)
R

}
⊂

{
y :|y+y(s)/λ(s)|> 1

2R
}
, and our claim then follows from (4.8).

We now pick θ1=θ1(α)∈C∞
0 ({α:|α|<5}), such that θ1≡1 on |α|<4 and 06θ161,

and define θ(x)=θ1(x1)θ1(|x̄|). Note that θ(x)≡1 on |x|64 and supp θ⊂{x:|x|6
√

50 }.
Our next task is to study

J(d) =
∫ 2

1

∫
RN

θ2e(zd,R)(x1, x̄, t) dx1 dx̄ dt.

Using the calculations in the proof of Proposition 4.10, we see that

∂

∂d
J(d) =

∫ 2

1

∫
RN

θ2
∂

∂d
e(zd,R) dx1 dx̄ dt

=
∫ 2

1

∫
RN

θ2
1
2

4d
(1−d2)2

((∂suR)2+(∂y1uR)2) dx1 dx̄ dt

− 2
(1−d2)2

∫ 2

1

∫
RN

θ2∂y1uR ·∂suR dx1 dx̄ dt

− 2
1−d2

∫ 2

1

∫
RN

tθ21(|x̄|)
∂θ1
∂x1

(x1)θ1(x1)

×
(

1−d2

1+d2

1
2
((∂y1uR)2+(∂suR)2)+

1
2
|∇ȳuR|2−

1
2∗
|uR|2

∗
)
dx1 dx̄ dt

+
2d

1−d2

2
1−d2

∫ 2

1

tθ21(|x̄|)
∂θ1
∂x1

(x1)θ1(x1)∂y1uR ·∂suR dx1 dx̄ dt

− 1
1−d2

∫ 2

1

∫
RN

x1θ
2
1(x1)θ21(|x̄|) ∂te(zd,R) dx1 dx̄ dt

=A+B+C+D+E.

Note that A=dη2(d,R), where |η2(d,R)|6C uniformly in d andR. Because of (4.12),
we have C=η3(d,R), where η3(d,R) R!∞−−−−!0, uniformly in d<d0, and D=dη4(d,R),
where η4(d,R) R!∞−−−−!0, uniformly in d<d0. In light of the calculation preceding (4.12),
we have

E=
1

1−d2

∫ 2

1

∫
RN

θ2(x)∂x1zd,R ·∂tzd,R dx1 dx̄ dt+η5(d,R),

where η5(d,R) R!∞−−−−!0, uniformly in d<d0 (we have integrated by parts and used (4.12)).
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We will now calculate B. For this, we change variables, Φ(x, t)=(y, s) as before.
Then, θ2(x)=θ21(x1)θ21(|x̄|), x1=(y1+ds)/

√
1−s2 and

θ2(Φ−1(y, s))= θ21

(
y1+ds√
1−d2

)
θ21(|ȳ|).

Note that

θ21

(
y1+ds√
1−d2

)
= θ21

(
y1

√
1−d2+

d√
1−d2

(s+dy1)
)
.

Thus, since in our domain of integration we have
√

1−d26dy1+s62
√

1−d2, for 06d6d0,
d0 small, we have

θ21

(
y1

√
1−d2+

d√
1−d2

(s+dy1)
)
−θ21

(
y1

√
1−d2

)
=O(d)(θ21)

′(y1√1−d2+ηO(d)
)
,

where |η|61.

Note that supp(θ21)
′(α)⊂{α:46|α|65}, so that, for d0 small, this can only be non-

zero for 3+ 1
4 6|y1|65+ 1

4 . Using a similar argument for θ21
(
y1
√

1−d2
)
−θ21(y1), and the

argument used in the proof of (4.12), we see that B equals

− 2
(1−d2)2

∫∫
√

1−d26dy1+s62
√

1−d2
θ2(y)∂y1uR∂suR dy ds+dη6(d,R),

where |η6(d,R)| R!∞−−−−!0, uniformly for d<d0.

Consider now the integral

∫∫
√

1−d26s62
√

1−d2
θ2(y)∂y1uR∂suR dy ds=

∫∫
√

1−d26s62
√

1−d2
∂y1uR∂suR dy ds

+
∫∫

√
1−d26s62

√
1−d2

(θ2(y)−1)∂y1uR∂suR dy ds.

The first term equals γ
√

1−d2, because of (2.2) and scaling, while, in light of the
support property of θ2(y)−1 and the proof of (4.12), the second term equals η7(d,R),
with |η7(d,R)| R!∞−−−−!0, uniformly for d<d0.
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Finally,∫∫
√

1−d26dy1+s62
√

1−d2
θ2(y)∂y1uR∂suR dy ds

−
∫∫

√
1−d26s62

√
1−d2

θ2(y)∂y1uR∂suR dy ds

=
∫

y1>0

∫ 2
√

1−d2

2
√

1−d2−dy1

θ2(y)∂y1uR∂suR ds dy

+
∫

y1<0

∫ 2
√

1−d2−dy1

2
√

1−d2
θ2(y)∂y1uR∂suR ds dy

+
∫

y1>0

∫ √
1−d2

√
1−d2−dy1

θ2(y)∂y1uR∂suR ds dy

+
∫

y1<0

∫ √
1−d2−dy1

√
1−d2

θ2(y)∂y1uR∂suR ds dy

= Ã+B̃+C̃+D̃.

We will estimate Ã, the others being similar. In our region of integration, we have
|y1|65. We make, in the s integral, the change of variable h=

(
2
√

1−d2−s
)
/d. We then

have, in our region of integration, 06h6y1. Thus,

|Ã|6 2d
∫

y1>0

∫ y1

0

θ2(y)
∣∣∂y1uR

(
y, 2

√
1−d2−dh

)∣∣ ∣∣∂suR

(
y, 2

√
1−d2−dh

)∣∣ dh dy
6 2d

∫ 5

0

∫
RN

θ2(y)
∣∣∂y1uR

(
y, 2

√
1−d2−dh

)∣∣ ∣∣∂suR

(
y, 2

√
1−d2−dh

)∣∣ dy dh
6Cd.

We thus have

B=− 2
(1−d2)2

(
γ
√

1−d2+η7(d,R)+dη8(d,R)
)
,

where |η8(d,R)|6C, uniformly in d and R.
Finally, using the formulas after (4.7) and the same argument, together with the

previous estimate for E, we obtain

E=
1

1−d2
(γ+η7(d,R)+dη8(d,R)).

Next, we recall that for fixed R, uR∈L(N+2)/(N−2)
I L

2(N+2)/(N−2)
x , for any compact

time interval. From this and Lemma 2.2 we see that θ(x)zd,R(x, t) is in C([1, 2]; Ḣ1×L2).
Fix now t0∈[1, 2] and recall, from the beginning of the proof, that

∂te(zd,R)(x, t) =
N∑

j=1

∂xj
(∂xj

zd,R∂tzd,R).
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Hence,∫
RN

θ2(x)e(zd,R)(x, t0) dx

=
∫ 2

1

∫
RN

θ2(x)e(zd,R)(x, t) dx dt

+
∫ 2

1

∫
RN

θ2(x)
∫ t0

t

N∑
j=1

∂xj
(∂xj

(zd,R)∂tzd,R) dα dx dt

=
∫ 2

1

∫
RN

θ2(x)e(zd,R)(x, t) dx dt

−
N∑

j=1

∫ 2

1

∫
RN

∫ t0

t

∂xj
(θ2(x))∂xj (zd,R)(x, α)∂tzd,R(x, α) dα dx dt.

Because of (4.12), the second term equals η9(R, d, t0), with η9(R, d, t0)
R!∞−−−−!0, uniformly

in t0∈[1, 2] and 06d6d0. Thus, if

E(t0, d, R) =
∫

RN

θ2(x)e(zd,R)(x, t0) dx,

we have (using our previous estimates)

E(t0, d, R) =J(0)−γd+d2η(d,R)+µ(d,R, t0), (4.13)

where |η(d,R)|6C, uniformly in R large and 0<d<d0, and |µ(d,R, t0)|
R!∞−−−−!0, uni-

formly in 0<d<d0 and 1<t0<2. Also, using (4.12) once more,

J(0)=EC +η̃(R),

where |η̃(R)| R!∞−−−−!0.
We now need to consider∫ 2

1

∫
RN

θ2(x)|∇xzd,R(x, t)|2 dx dt=
∫ 2

1

∫
RN

θ2(x)
(

1
1−d2

|∂y1uR|2+|∇ȳuR|2

− 2d
1−d2

∂y1uR.∂suR+
d2

1−d2
|∂suR|2

)
dx dt.

The arguments used before to calculate B easily yield that the right-hand side equals

∫
RN

∫ 2
√

1−d2

√
1−d2

θ2(y)|∇yuR|2 ds dy+O(d),
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where O(d) is uniform in R, i.e.,∫ 2

1

∫
RN

θ2(x)|∇xzd,R(x, t)|2 dx dt=
∫ 2

√
1−d2

√
1−d2

∫
RN

θ2(y)|∇yuR|2 dy ds+O(d). (4.14)

Define now hd,R(x, t)=θ(x)zd,R(x, t). Then,

|∇xhd,R(x, t)|2 = θ2|∇xzd,R|2+|∇θ|2|zd,R|2+2θ∇θ ·∇zd,Rzd,R,

and note that the last two terms are supported in 36|x|68. Also,

|hd,R|2
∗
= θ2(x)|zd,R|2

∗
+(|θ|2

∗
−|θ|2)|zd,R|2

∗
,

and the last term is supported in 36|x|68.
We are now able to conclude the proof. Choose d0 such that for 0<d<d0, uniformly

in R, we have ∫ 2

1

∫
RN

θ2|∇xzd,R|2 dx dt6
(

1− δ̄
2

) ∫
RN

|∇W |2 dx,

which we can do because of (4.14). Let 1+¯̄δ=
(
1− 1

4 δ̄
)
/
(
1− 1

2 δ̄
)
. Let S1=S1(d,R) be the

set of all t∈[1, 2] such that∫
RN

θ2(x)|∇xzd,R|2(x, t) dx6 (1+¯̄δ)
(

1− δ̄
2

) ∫
RN

|∇W |2 dx=
(

1− δ̄
4

) ∫
RN

|∇W |2 dx.

Then |S1|> ¯̄δ/(1+¯̄δ), for all 0<d6d0 and R>0. Next, choose d1 small and R>R0(d1)
such that, for all t0∈[1, 2], E(t0, d, R)6EC− 1

2γd1. In addition, we can choose d16d0.
This is possible in view of (4.13). Now, for ε>0 to be chosen, find R1(ε) so large that
for R>R1(ε) we have η1(R, d1)6ε, where η1 is as in (4.12).

Consider next the set S2=S2(R, d1, ε,M) of all t∈[1, 2] such that∫
36|x|68

(|∇xzd,R|2+|∂tzd,R|2+|zd,R|2
∗
) dx6Mε.

Because of (4.12), |S2|>1−1/M , and if we choose M=Mδ̄ so large that (1−1/Mδ̄)+
¯̄δ/(1+¯̄δ)>1, we can find t0=t0(R, ε)∈S1∩S2. We then have∫

RN

|∇xhd,R(t0)|2 dx6
∫

RN

θ2|∇zd,R(t0)|2 dx+CMε

6

(
1− δ̄

4

) ∫
RN

|∇W |2 dx+CMε6

(
1− δ̄

8

) ∫
RN

|∇W |2 dx,
(4.15)

if we choose CMε6 1
8 δ̄

∫
RN |∇W |2 dx and R>R1(ε). Also,∫

RN

e(hd,R)(t0) dx6
∫

RN

θ2e(zd,R)(t0) dx+CεM 6EC−
γd1

2
+CεM, (4.16)
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for R>R0(d1) and R>R1(ε). If we now choose CεM6 1
4γd1, we have∫

RN

e(hd,R)(t0) dx6EC−
γd1

4
, (4.17)

for all R>max{R0(d1), R1(ε)} and ε=ε(γ, d1, δ̄)>0. Let us now consider wR(x, t) to be
the solution of (CP) with data (hd1,R(t0), ∂thd1,R(t0)) at t=t0. In light of the definition
of EC , wR(x, t) exists for all time and satisfies, in view of Corollary 4.5,∫∫

RN

|wR(x, t)|2(N+1)/(N−2) dx dt6Cd1,γ , (4.18)

uniformly for all R>max{R0(d1), R1(ε)}.
Next, observe that, by finite speed of propagation (Remark 2.12), wR(x, t)=zd,R(x, t)

on
⋃
−26t61B(0, 2+t)×{t}. To justify the application of Remark 2.12, we approximate

(u0, u1) and hence (u0,R, u1,R) by (u(j)
0,R, u

(j)
1,R) which are in C∞

0 ×C∞
0 . The resulting u(j)

R

exists on any finite-time interval, for j large by Remark 2.21, and the corresponding
z
(j)
d,R are now solutions of (CP) on each finite-time interval. We then have, for j large,

w
(j)
R =z(j)

d,R on the required set, and a passage to the limit (since x and t are in fixed
bounded sets, we can apply Lemma 2.2), gives the required identity. But then,∫∫

⋃
−26t61 B(0,2+t)×{t}

|zd1,R|2(N+1)/(N−2) dx dt6Cd1,γ .

We now use our change of variables (y, s)=Φ(x, t), and observe that (for d1 small enough)

Φ
( ⋃
−26t61

B(0, 2+t)×{t}
)
⊃

{
(y, s) : 0 6 s6 1

4 and |y|6 1
4

}
.

But then, we obtain ∫ 1/4

0

∫
|y|61/4

|uR|2(N+1)/(N−2) dy ds6Cd1,γ

for all R>max{R0(d1), R1(ε)}. If we now rescale the above interval, we find that for all
R>max{R0(d1), R1(ε)},∫ R/4

0

∫
|y|6R/4

|u|2(N+1)/(N−2) dy ds6Cd1,γ .

But, since we have
∫

s>0

∫
RN |u|2(N+1)/(N−2) dy ds=∞, we reach a contradiction, which

establishes the proposition.
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5. Rigidity theorem. Part 1: Infinite-time interval
and self-similarity for finite-time intervals

In this and the following section we will prove the following result.

Theorem 5.1. Let (u0, u1)∈Ḣ1×L2 be such that

E((u0, u1))<E((W, 0)),
∫

RN

|∇u0|2 dx<
∫

RN

|∇W |2 dx and
∫

RN

∇u0u1 dx=0.

Let u be the solution of (CP) with (u(0), ∂tu(0))=(u0, u1), with maximal interval of
existence (−T−(u0, u1), T+(u0, u1)). Assume that there exist λ(t)>0 and x(t)∈RN , for
t∈[0, T+(u0, u1)), with the property that if K is the set{

 v(x, t) =
(

1
λ(t)(N−2)/2

u

(
x−x(t)
λ(t)

, t

)
,

1
λ(t)N/2

∂tu

(
x−x(t)
λ(t)

, t

))
: t∈ [0, T+(u0, u1))

}
,

then �K is compact in Ḣ1×L2.
Then, T+(u0, u1)<∞ is impossible.
Moreover, if T+(u0, u1)=∞ and we assume that λ(t)>A0>0, for t∈[0,∞), we must

have u≡0.

Remark 5.2. This theorem shows the rigidity of (CP) for optimal small data (con-
sider the solution u(x, t)=W (x) of (CP)). The momentum condition is the ingredient
which allows us to treat the non-radial situation and is always true for a radial solution.
Lemma 4.6 implies that we can choose x(t) and λ(t) continuous in [0, T+(u0, u1)). Its
proof also shows that we can preserve the property λ(t)>A0>0.

We next turn to the proof of Theorem 5.1 in the case when

T+(u0, u1) =∞, λ(t) >A0.

Assume that (u0, u1) 6≡(0, 0). Because of Corollary 3.6, we have E((u0, u1))=E>0 and
supt>0 ‖(∇u, ∂tu)‖L2 6CE as well as, from Theorem 3.5,∫

RN

(|∇xu(t)|2−|u(t)|2
∗
) dx>Cδ̄

∫
RN

|∇xu(t)|2 dx (5.1)

and

α

∫
RN

(∂tu)2 dx+(1−α)
∫

RN

(|∇xu(t)|2−|u(t)|2
∗
) dx>CαE (5.2)

for 0<α<1.
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We will also be applying (4.8), which gives the following:

Given ε> 0, there exists R0(ε)> 0 such that, for all t> 0,∫
|x+x(t)/λ(t)|>R0(ε)

(
|∂tu|2+|∇xu|2+

|u|2

|x|2
+|u|2

∗
)
dx6 εE.

(5.3)

(Here we use the assumptions λ(t)>A0>0 and E>0.)
We will next summarize some algebraic properties that will be needed in the sequel.

Let us fix φ∈C∞
0 (RN ), φ≡1 for |x|61, φ≡0 for |x|>2, and also define, for R>0,

φR(x) =φ
( x
R

)
and ψR(x) =xφ

( x
R

)
.

We will set

r(R) =
∫
|x|>R

(
|u|2

|x|2
+|u|2

∗
+|∇u|2+|∂tu|2

)
dx.

Lemma 5.3. The following identities hold for all t>0:

(i) ∂t

∫
RN

(
1
2
(∂tu)2+

1
2
|∇xu|2−

1
2∗
|u|2

∗
)
dx=0;

(ii) ∂t

∫
RN

∇u∂tu dx=0;

(iii) ∂t

∫
RN

ψR(x)·∇u ∂tu dx=−N
2

∫
RN

(∂tu)2 dx+
N−2

2

∫
RN

(|∇xu|2−|u|2
∗
) dx

+O(r(R));

(iv) ∂t

∫
RN

φRu∂tu dx=
∫

RN

(∂tu)2 dx−
∫

RN

|∇u|2 dx+
∫

RN

|u|2
∗
dx+O(r(R));

(v) ∂t

∫
RN

ψR

(
1
2
(∂tu)2+

1
2
|∇xu|2−

1
2∗
|u|2

∗
)
dx=−

∫
RN

∇u∂tu dx+O(r(R)).

Note that (i) is Remark 2.16, (ii) is (2.2), (v) follows from (2.3), (iv) follows from
the arguments in the proof of Theorem 3.7 and (iii) follows by an integration by parts
(and a limiting argument).

We now will prove the lemmas crucial for our purpose. Recall that we may assume
x(0)=0.

Lemma 5.4. There exist ε1>0 and C>0 such that , if ε∈(0, ε1), there exists R0(ε)
so that if R>2R0(ε), then there exists t0=t0(R, ε), 06t06CR, with the property that
for all 0<t<t0 we have |x(t)/λ(t)|<R−R0(ε) and |x(t0)/λ(t0)|=R−R0(ε).

Proof. Since x(0)=0, λ(t)>A0>0, if the conclusion failed we would have, for all
0<t<CR (where C is large) |x(t)/λ(t)|<R−R0(ε). Let

zR(t) =
∫

RN

ψR(x)·∇xu∂tu dx+
(
N

2
−α

) ∫
RN

φRu∂tu dx, 0<α< 1.
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Then, by Lemma 5.3 and (5.2), we have

z′R(t) =−N
2

∫
RN

(∂tu)2 dx+
N−2

2

∫
RN

(|∇u|2−|u|2
∗
) dx+O(r(R))

+
(
N

2
−α

)(∫
RN

(∂tu)2 dx−
∫

RN

|∇u|2 dx+
∫

RN

|u|2
∗
dx

)
+O(r(R))

=−α
∫

RN

(∂tu)2 dx−(1−α)
∫

RN

(|∇u|2 dx−|u|2
∗
) dx+O(r(R))

6−CαE+O(r(R)).

But, for |x|>R, we have |x+x(t)/λ(t)|>R0(ε), by our assumption, so that, by (5.3),
|r(R)|6C̃εE. Now, choose ε so small that z′R(t)6− 1

2CαE. Note that |zR(t)|6C̃1RE, so
that, integrating in t between 0 and CR, we get

CR
Cα

2
E6 2C̃1RE.

This is a contradiction for C large.

Note that, in the radial case, we have x(t)=0 (see [19]) and a contradiction follows
from Lemma 5.4. This proof is the counterpart of the local virial identity proof used in
[19] for the non-linear Schrödinger equation.

Lemma 5.5. There exist ε2>0, R1(ε)>0 and C0>0 such that if R>R1(ε) and
t0=t0(R, ε) is as in Lemma 5.4, then for 0<ε<ε2,

t0(R, ε) >
C0R

ε
.

Proof. Let for t∈[0, t0],

yR(t) =
∫

RN

ψR(x)e(u)(x, t) dx.

Since
∫

RN ∇u0u1 dx=0, by Lemma 5.3, (ii) and (v), we have |y′R(t)|=O(r(R)). Since∣∣∣∣x+
x(t)
λ(t)

∣∣∣∣ >R−(R−R0(ε))=R0(ε),

for 0<t<t0 and |x|>R, we have, integrating in t,

|yR(t0)−yR(0)|6 C̃εEt0.

On the one hand, by (5.3), we have

|yR(0)|6 C̃R0(ε)E+O(Rr(R0(ε)))6 C̃E(R0(ε)+εR).
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On the other hand,

|yR(t0)|>
∣∣∣∣∫
|x+x(t0)/λ(t0)|6R0(ε)

ψRe(u)(t0) dx
∣∣∣∣−∣∣∣∣∫

|x+x(t0)/λ(t0)|>R0(ε)

ψRe(u)(t0) dx
∣∣∣∣.

In the first integral, |x|6|x+x(t0)/λ(t0)|+|x(t0)/λ(t0)|6R, so that ψR(x)=x. Note also
that the second integral is bounded by MRεE. Hence,

|yR(t0)|>
∣∣∣∣∫
|x+x(t0)/λ(t0)|6R0(ε)

xe(u)(t0) dx
∣∣∣∣−MRεE.

But
∫
|x+x(t0)/λ(t0)|6R0(ε)

xe(u)(t0) dx equals

−x(t0)
λ(t0)

∫
|x+x(t0)/λ(t0)|6R0(ε)

e(u)(t0) dx+
∫
|x+x(t0)/λ(t0)|6R0(ε)

(
x+

x(t0)
λ(t0)

)
e(u)(t0) dx,

that is,

−x(t0)
λ(t0)

∫
e(u)(t0) dx+

x(t0)
λ(t0)

∫
|x+x(t0)/λ(t0)|>R0(ε)

e(u)(t0) dx

+
∫
|x+x(t0)/λ(t0)|6R0(ε)

(
x+

x(t0)
λ(t0)

)
e(u)(t0) dx.

The first term is, in absolute value, (R−R0(ε))E, while the last two are bounded in
absolute value by C̃(R−R0(ε))εE+C̃R0(ε)E. We then find

|yR(t0)|> (R−R0(ε))E(1−C̃ε)−MRεE−C̃R0(ε)E.

The quantity on the right exceeds 1
4RE, if for 0<ε<ε2 we have (1−C̃ε−Mε)> 1

2 and
for R>R1(ε) we have 1

4R>(1+C̃)R0(ε).
Thus,

1
4RE−C̃E(R0(ε)+εR) 6 C̃εEt0,

which yields the result for 0<ε<ε′2 and R>R′1(ε).

Proof of Theorem 5.1, in the case when T+(u0, u1)=∞. By Lemma 5.4, we have
t0(R, ε)6CR for 0<ε<ε1 and R>2R0(ε), while, by Lemma 5.5, for 0<ε<ε2, R>R1(ε)
and t0(R, ε)>C0R/ε. Hence, for R>max{2R0(ε), R1(ε)}, with ε<min{ε1, ε2}, we have
C0R/ε6CR, which is a contradiction for ε small.

We now turn to the start of the analysis of the case T+(u0, u1)<∞. By scaling, we
can assume, without loss of generality, that

T+(u0, u1) = 1.
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Recall, from Lemma 4.7, that

λ(t) >
C0(K)
1−t

(5.4)

and, from Lemma 4.8, that (after translation in x)

suppu( · , t)⊂B(0, 1−t) and supp ∂tu( · , t)⊂B(0, 1−t). (5.5)

Lemma 5.6. Let u be as above. Then, there is C1(K)>0 such that

C1(K)
1−t

>λ(t).

Proof. Assume this is not true. In light of Lemma 4.6, there exist tn"1, such that
λ(tn)(1−tn)"∞. Consider now

z(t) =
∫

RN

x∇u∂tu dx+
(
N

2
−α

) ∫
RN

u∂tu dx, 0<α< 1,

which is defined for 06t<1 (recall (5.5)). In view of Lemma 5.3, (iii) and (iv), we have

z′(t) =−α
∫

RN

(∂tu)2 dx−(1−α)
∫

RN

(|∇xu|2−|u|2
∗
) dx.

Because of Corollary 3.6 (u 6≡0, since T+(u0, u1)=1), we have E((u0, u1))=E>0,

sup
0<t<1

‖(∇u, ∂tu)‖L2 6CE

and
α

∫
RN

(∂tu)2 dx+(1−α)
∫

RN

(|∇xu|2−|u|2
∗
) dx>CαE.

Then, we have
z′(t) 6−CαE, 0<t< 1.

Moreover, condition (5.5) and Hardy’s inequality give that z(t) t!1−−−!0. Also, the assump-
tion

∫
RN ∇u0u1 dx=0 and Lemma 5.3 (ii) give that

∫
RN ∇u∂tu dx=0, 06t<1.

Note that, integrating in t, z(t)>CαE(1−t). We have

z(tn)
1−tn

=
1

1−tn

∫
RN

(
x+

x(tn)
λ(tn)

)
∇u ∂tu dx+

(
N

2
−α

)
1

1−tn

∫
RN

u ∂tu dx>CαE.

We will show that
z(tn)
1−tn

! 0, (5.6)
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yielding a contradiction. In fact, given ε>0,

1
1−tn

∫
|x+x(tn)/λ(tn)|6ε(1−tn)

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ |∇u(tn)| |∂tu(tn)| dx6CεE.

Next, note that ∣∣∣∣x(tn)
λ(tn)

∣∣∣∣ 6 2(1−tn). (5.7)

In fact, if (5.7) is not true, then B(−x(tn)/λ(tn), 1−tn)∩B(0, 1−tn)=∅, so that∫
B(−x(tn)/λ(tn),1−tn)

|∇u(x, tn)|2 dx=0,

while∫
|x+x(tn)/λ(tn)|>1−tn

|∇u(x, tn)|2 dx=
∫
|λ(tn)x+x(tn)|>λ(tn)(1−tn)

|∇u(x, tn)|2 dx

=
1

λ(tn)N

∫
|y|>λ(tn)(1−tn)

∣∣∣∣∇u(y−x(tn)
λ(tn)

, tn

)∣∣∣∣2dx! 0

as n!∞, by compactness of �K, since λ(tn)(1−tn)!∞. But then,

E((u(x, tn), ∂tu(x, tn)))! 0

(arguing for ∂tu in a similar way) which is a contradiction to E>0, and thus establishing
(5.7). But then,

1
1−tn

∫
|x+x(tn)/λ(tn)|>ε(1−tn)

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ |∇u(x, tn)| |∂tu(x, tn)| dx

6 3
∫
|x+x(tn)/λ(tn)|>ε(1−tn)

|∇u(x, tn)| |∂tu(x, tn)| dx

6
3

λ(tn)N

∫
|y|>ε(1−tn)λ(tn)

∣∣∣∣∇u(y−x(tn)
λ(tn)

, tn

)∣∣∣∣ ∣∣∣∣∂tu

(
y−x(tn)
λ(tn)

, tn

)∣∣∣∣ dy! 0,

as n!∞, by compactness of �K, and the assumption that λ(tn)(1−tn)"∞. This shows
(5.6) for the first term in z(tn)/(1−tn). The second one gives the same result, using the
same argument, the fact that

1
1−tn

∫
RN

|u(tn)| |∂tu(tn)| dx6
1

1−tn

∫
RN

∣∣∣∣x+
x(tn)
λ(tn)

∣∣∣∣ |u(x, tn)|
|x+x(tn)/λ(tn)|

|∂tu(x, tn)| dx,

and Hardy’s inequality.
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Proposition 5.7. Let (u0, u1) be as in Theorem 5.1, with T+(u0, u1)=1. Then

supp∇u, ∂tu⊂B(0, 1−t)

and
#K = {(1−t)N/2(∇u((1−t)x, t), ∂tu((1−t)x, t)) : 0<t< 1}

has compact closure in L2(RN )N×L2(RN ).

Proof. We first claim that

(1−t)N/2(∇u((1−t)(x−x(t)), t), ∂tu((1−t)(x−x(t)), t))

has compact closure in L2(RN )N×L2(RN ). This is because C0(K)6(1−t)λ(t)6C1(K),
and if �K is compact, then

K1 = {λN/2
 v(λx) :  v ∈#K and c0 6λ6 c1}

also has the property that �K1 is compact. Next, let

ṽ(x, t) = (1−t)N/2(∇u((1−t)x, t), ∂tu((1−t)x, t)),

so that ṽ(x, t)= v(x+x(t), t), where

 v(x, t) = (1−t)N/2(∇u((1−t)(x−x(t)), t), ∂tu((1−t)(x−x(t)), t)).

Note that, by (5.5), supp  v( · , t)⊂{x:|x−x(t)|61}. The fact that E>0, the compactness
of  v(x, t) and preservation of energy now imply that |x(t)|6C. But if

K2 = { v(x+x0) :  v ∈K1 and |x0|6C},

then �K2 is also compact and hence the proposition follows.

6. Rigidity theorem. Part 2: Self-similar variables
and conclusion of the proof of the rigidity theorem

In this section our point of departure is Proposition 5.7.
For this case, in [19], we proved an extra decay estimate which allowed us to use the

L2 invariance and get a contradiction.
Following Merle and Zaag ([30], see also [1]) we will introduce self-similar variables

to show that a solution as in Proposition 5.7 cannot exist. Merle and Zaag considered the
case of power non-linearities |u|p−1u which have p61+4/(N−1), while here we consider
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the energy-critical case p=1+4/(N−2). Nevertheless, many of the calculations in [30]
also apply to our case, and one can use an extra Lyapunov function. We remark that
a similar structure exists in the case of non-linear heat equations, as has been used by
Giga and Kohn [10] and others ([29]).

Again here, we obtain some extra decay estimates which allow us to reduce to an
elliptic problem with no solution.

We now set,
y=

x

1−t
and s=− log(1−t), 0 6 t< 1,

and define

w(y, s, 0) = (1−t)(N−2)/2u(x, t) = e−s(N−2)/2u(e−sy, 1−e−s). (6.1)

Note that w(y, s, 0) is defined for 06s<∞, and that suppw( · , s, 0)⊂{y :|y|61}. We also
consider, for δ>0 small,

y=
x

1+δ−t
, s=− log(1+δ−t),

and
w(y, s, δ) = (1+δ−t)(N−2)/2u(x, t) = e−s(N−2)/2u(e−sy, 1+δ−e−s). (6.2)

Note that w(y, s, δ) is defined for 06s<log 1/δ, and that

suppw( · , δ)⊂
{
y : |y|6 e−s−δ

e−s
=

1−t
1+δ−t

6 1−δ
}
.

The w solve, in their domain of definition, the equation (see [30])

∂2
sw=

1
%

div(%∇w−%(y ·∇w)y)−N(N−2)
4

w+|w|4/(N−2)w−2y∇∂sw−(N−1)∂sw,

(6.3)
where %=(1−|y|2)−1/2.

Lemma 6.1. For δ>0 fixed and for s∈[0, log 1/δ), the following hold :
(i)

suppw( · , s, δ)⊂{y : |y|6 (e−s−δ)/e−s 6 1−δ},

supp ∂sw( · , s, δ)⊂{y : |y|6 (e−s−δ)/e−s 6 1−δ};

(ii) w( · , s, δ)∈H1
0 (B1) and∫

RN

|w|2
∗
dy6C,

∫
RN

|∇yw|2 dy <
∫

RN

|∇W |2 dy,∫
RN

(
|w|2+

|w|2

(1−|y|2)2

)
dy6C and

∫
RN

|∂sw|2 dy6C;
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(iii) ∫
RN

(|∇w|2+|∂sw|2+|w|2+|w|2
∗
) log

1
1−|y|2

dy6C log
1
δ
;

(iv) ∫
RN

(|∇w|2+|∂sw|2+|w|2+|w|2
∗
)(1−|y|2)−1/2 dy6

C

δ1/2
.

Proof. The first part of (i) was pointed out after (6.2). For the second part, we have,
using the notation in (6.2),

∂sw(y, s, δ) =− 1
2 (N−2)e−s(N−2)/2u(e−sy, 1+δ−e−s)

+e−se−s(N−2)/2∂tu(e−sy, 1+δ−e−s)

−e−se−s(N−2)/2y ·∇u(e−sy, 1+δ−e−s),

(6.4)

and (i) follows from (5.5).
Part (ii) follows from the support property of w, which gives w( · , s, δ)∈H1,2

0 (B1),
a change of variables in y and (3.4), Sobolev embedding and Corollary 3.6, the Hardy
inequality ([7], for example) and (6.4).

For (iii) and (iv), note that on suppw and supp ∂sw, we have

1−|y|2 > 1−(1−δes)2 =2δes−δ2e2s > δ,

for δ small, 06s<log 1/δ.

For w(y, s, δ), δ>0, as above, we now define (see [30])

Ẽ(w(s))=
∫

B1

(
(∂sw)2+|∇w|2−(y ·∇w)2

2
+
N(N−2)

8
w2− (N−2)

2N
|w|2

∗
)

dy

(1−|y|2)1/2
.

(6.5)

Proposition 6.2. Let w=w(y, s, δ), δ>0, be as above. Then, for

0<s1<s2< log
1
δ
,

the following identities hold :
(i)

Ẽ(w(s2))−Ẽ(w(s1))=
∫ s2

s1

∫
B1

(∂sw)2

(1−|y|2)3/2
dy ds;

(ii)
1
2

∫
B1

(
∂sww−

1+N
2

w2

)
dy

(1−|y|2)1/2

∣∣∣∣s2

s1

=−
∫ s2

s1

Ẽ(w(s)) ds+
1
N

∫ s2

s1

∫
B1

|w|2∗

(1−|y|2)1/2
dy ds

+
∫ s2

s1

∫
B1

(
(∂sw)2+∂swy ·∇w+

∂sww|y|2

1−|y|2

)
dy ds

(1−|y|2)1/2
;

(iii) lims!log(1/δ) Ẽ(w(s))6E=E((u0, u1)).
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Proof. For (i), see the proof of Lemma 2.1 in [30]. For (ii), see the proof of (11) in
[30]. We turn to the proof of (iii). We analyze term by term, using the notation in (6.2):∫

B1

w2

(1−|y|2)1/2
dy=

∫
|y|<(1−t)/(1+δ−t)

(1+δ−t)N−2|u((1+δ−t)y, t)|2 dy

(1−|y|2)1/2

6C

∫
|x|<1−t

(1+δ−t)−2|u(x, t)|2 dx

δ1/2

6
C

δ1/2(1+δ−t)2

(∫
|x|<(1−t)

|u(x, t)|2
∗
dx

)2/2∗

(1−t)2/N t!1−−−! 0

and ∫
B1

|w|2∗

(1−|y|2)1/2
dy=

∫
|y|<(1−t)/(1+δ−t)

(1+δ−t)N |u((1+δ−t)y, t)|2
∗ dy

(1−|y|2)1/2

=
∫
|x|<(1−t)

|u(x, t)|2
∗ dx

(1−|y|2)1/2
.

Recall that |y|2=|x|2/(1+δ−t)2, and assume that 1−εδ6t61. Then, we have

1
ε+1

6 (1−|y|2)1/2 6 1,

since |x|61−t. Thus, ∫
B1

|w|2∗

(1−|y|2)1/2
dy>

∫
|x|<1−t

|u(x, t)|2
∗
dx,

and a similar computation gives that∫
B1

|∇w|2

(1−|y|2)1/2
dy6

1
(1+ε)1/2

∫
|x|61−t

|∇u|2 dx.

Also, ∫
B1

(y ·∇w)2
dy

(1−|y|2)1/2
=

∫
|x|6(1−t)

|x·∇xu(x, t)|2

(1+δ−t)2
dx

(1−|y|2)1/2

6
1

1+ε

∫
|x|6(1−t)

|∇xu(x, t)|2 dx
|1−t|2

(1+δ−t)2
t!1−−−! 0.

With these computations and (6.4), we see that

lim
t!1

1
2

∫
|∂sw|2

dy

(1−|y|2)1/2
=

1
2

∫
|∂tu|2 dx,

which combined with the previous calculations yields (iii).
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Corollary 6.3. For s∈[0, log(1/δ)), we have

− C

δ1/2
6 Ẽ(w(s))6E.

Proof. The first statement follows from Proposition 6.2, (i) and (iii), while the second
one follows from Lemma 6.1 (iv) and (6.5).

Using space-time estimates, we now obtain our first improvement of the space decay
of w.

Lemma 6.4. For δ>0, we have∫ 1

0

∫
RN

|∂sw|2

1−|y|2
dy ds6C log

1
δ
.

Proof. We start out with the readily verified identity

d

ds

∫
RN

(
1
2
(∂sw)2+

1
2
(|∇w|2−(y ·∇w)2)+

(N−2)N
8

w2−N−2
2N

|w|2
∗
)

(− log(1−|y|2)) dy

+
∫

RN

(log(1−|y|2)+2)y ·∇w ∂sw dy−
∫

RN

log(1−|y|2)(∂sw)2 dy−2
∫

RN

(∂sw)2 dy

=−2
∫

RN

(∂sw)2

1−|y|2
dy.

We now integrate between 0 and 1, and change signs. In the estimate of the left-hand
side, we can drop the term

∫
RN log(1−|y|2)(∂sw)2 dy, since it is negative. The d/ds term,

and the
∫ 1

0

∫
RN (∂sw)2 dy ds term are controlled by Lemma 6.1 (using that − log(1−|y|2)6

C log(1/δ)). It remains to bound∣∣∣∣∫ 1

0

∫
RN

(log(1−|y|2)+2)y ·∇w ∂sw dy ds

∣∣∣∣
6

(∫ 1

0

∫
RN

|∂sw|2

1−|y|2
dy ds

)1/2(∫ 1

0

∫
RN

(1−|y|2)|log(1−|y|2)+2|2 |∇w|2 dy ds
)1/2

.

The second factor is bounded because of Lemma 6.1 (ii). The proof is concluded by using
the inequality ab6εa2+b2/ε.

Lemma 6.5. For δ>0, we have
(i) ∫ 1

0

∫
B1

|w|2∗

(1−|y|2)1/2
dy ds6C

(
log

1
δ

)1/2

,

(ii) Ẽ(w(1))>−C|log(1/δ)|1/2.
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Proof. We will use Proposition 6.2 (ii) to handle (i). We have

1
N

∫ 1

0

∫
B1

|w|2∗

(1−|y|2)1/2
dy ds=

1
2

∫
B1

(
∂sww−

1+N
2

w2

)
dy

(1−|y|2)1/2

∣∣∣∣1
0

+
∫ 1

0

Ẽ(w(s)) ds

−
∫ 1

0

∫
B1

(
(∂sw)2+∂swy ·∇w+∂sw

w|y|2

1−|y|2

)
dy ds

(1−|y|2)1/2
.

By Proposition 6.2, (i) and (iii), the second term on the right-hand side is bounded by E.
The first term on the right-hand side is bounded using Lemma 6.1 (ii) and Cauchy–
Schwarz’ inequality. For the third term, because of the sign, we only need to consider
the last two summands, which are bounded in absolute value by∣∣∣∣∫ 1

0

∫
B1

|∂sw|
(1−|y|2)1/2

(
|w|

1−|y|2
+|∇w|

)
dy ds

∣∣∣∣
6 2

(∫ 1

0

∫
B1

|∂sw|2

1−|y|2
dy ds

)1/2(∫ 1

0

∫
B1

w2

(1−|y|2)2
+|∇w|2 dy ds

)1/2

6C

(
log

1
δ

)1/2

,

because of Lemma 6.1 (ii) and Lemma 6.4. This establishes (i).
To prove (ii), we first consider

∫ 1

0
Ẽ(w(s)) ds, which is bounded from below by

−C(log(1/δ))1/2, by (i). The monotonicity of Ẽ (Proposition 6.2 (i)) concludes the proof
of (ii).

We now obtain our second improvement of decay on w.

Lemma 6.6. For δ>0, we have∫ (log(1/δ))3/4

1

∫
B1

(∂sw)2

(1−|y|2)3/2
dy ds6C

(
log

1
δ

)1/2

.

Proof. Because of Proposition 6.2 (i), we have∫ (log(1/δ))3/4

1

∫
B1

(∂sw)2

(1−|y|2)3/2
dy ds= Ẽ

(
w

((
log

1
δ

)3/4))
−Ẽ(w(1))6E+C

(
log

1
δ

)1/2

,

where we have used Corollary 6.3 and Lemma 6.5 (ii).

Corollary 6.7. For each δ>0, there exists s̄δ∈(1, (log(1/δ))3/4) such that∫ s̄δ+(log(1/δ))1/8

s̄δ

∫
B1

(∂sw)2

(1−|y|2)3/2
dy ds6

2C
(log(1/δ))1/8

.
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Proof. Split the interval (
1,

(
log

1
δ

)3/4)
into disjoint intervals of length (log(1/δ))1/8. The number of such intervals is of the
order of (log(1/δ))5/8. For at least one of such intervals, (s̄δ, s̄δ+(log(1/δ))1/8), with
s̄δ∈(1, (log(1/δ))3/4), we must have

∫ s̄δ+(log(1/δ))1/8

s̄δ

∫
B1

(∂sw)2

(1−|y|2)3/2
dy ds6

2C(log(1/δ))1/2

(log(1/δ))5/8
=

2C
(log(1/δ))1/8

,

where C is the constant in Lemma 6.6, which proves the corollary.

Remark 6.8. Let s̄δ=− log(1+δ− t̄δ). Note that∣∣∣∣ 1− t̄δ
1+δ− t̄δ

−1
∣∣∣∣ =

δ

1+δ− t̄δ
=

δ

e−s̄δ
6 δ1/4 δ!0−−−! 0.

Let us now reduce the time evolution problem to a stationary problem in the w
variable (i.e. self-similar solutions). Pick δj#0, so that

((1− t̄δj )
N/2∇u((1− t̄δj )y, t̄δj ), (1− t̄δj )

N/2∂tu((1− t̄δj )y, t̄δj ))! (∇u∗0, u∗1)

in L2. This is possible by Proposition 5.7. Note that, because of Remark 6.8 and the
compact closure of #K in Proposition 5.7, we also have that

((1+δj− t̄δj
)N/2∇u((1+δj− t̄δj )y, t̄δj ), (1+δj− t̄δj )

N/2∂tu((1+δj− t̄δj )y, t̄δj ))

! (∇u∗0, u∗1)

in L2. Let now u∗j and u∗ be solutions of (CP) with data

((1+δj− t̄δj )
(N−2)/2u((1+δj− t̄δj )y, t̄δj ), (1+δj− t̄δj )

N/2∂tu((1+δj− t̄δj )y, t̄δj ))

and (u∗0, u
∗
1), respectively, in a time interval [0, T ∗], independent of j, which we take to

have T ∗<1. By uniqueness in the (CP), we have

u∗j (y, τ) = (1+δj− t̄δj )
(N−2)/2u((1+δj− t̄δj )y, t̄δj +(1+δj− t̄δj )τ). (6.6)

Note that suppu∗j ( · , τ)⊂{y :|(1+δj− t̄δj )y|61− t̄δj−(1+δj− t̄δj )τ} and hence

|y|6
1− t̄δj

1+δj− t̄δj

−τ < 1−τ
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on the support of u∗j ( · , τ). Similarly,

supp ∂τu
∗
j ( · , τ)⊂

{
y : |y|6

1− t̄δj

1+δj− t̄δj

−τ < 1−τ
}
.

Let us compare the solutions in the self-similar variables. Recall from (6.2) that if
s=− log(1+δj−t), then

w(y, s, δj) = (1+δj−t)(N−2)/2u((1+δj−t)y, t).

Define now τ by t= t̄δj +(1+δj− t̄δj )τ , so that 1+δj−t=(1+δj− t̄δj )(1−τ). Define also
s=− log((1+δj− t̄δj )(1−τ)). We then have

w(y, s, δj) = ((1+δj− t̄δj )(1−τ))(N−2)/2u((1+δj− t̄δj )(1−τ)y, t̄δj +(1+δj− t̄δj )τ). (6.7)

If we now set

s′ =− log(1−τ), y′ =
y

1−τ
and w∗j (y′, s′) = (1−τ)(N−2)/2u∗j (y, τ),

then w∗j is a solution of (6.3), for 0<τ<T ∗. But, because of (6.6) and (6.7),

w∗j (y′, s′) = (1−τ)(N−2)/2(1+δj− t̄δj )
(N−2)/2u((1+δj− t̄δj )y, t̄δj +(1+δj− t̄δj )τ)

=w(y′, s, δj),

where

s=− log(1+δj−t) =− log((1+δj− t̄δj )(1−τ))=− log(1+δj− t̄δj )−log(1−τ) = s̄δj +s′,

i.e.,
w∗j (y′, s′) =w(y′, s̄δj +s′, δj). (6.8)

Consider also
w∗(y′, s′) = (1−τ)(N−2)/2u∗(y, τ).

We clearly have suppu∗( · , τ)⊂{y :|y|6(1−τ)} and w∗ solves (6.3) for 0<τ<T ∗. Also, re-
call that (u∗j ( · , τ), ∂τu

∗
j ( · , τ))!(u∗( · , τ), ∂τu

∗( · , τ)) in Ḣ1×L2, uniformly for τ∈[0, T ∗],
by continuity in (CP). But then if 06τ6 1

2T
∗=T̃ and 06s′6− log(1−T̃ ), we have that

(w∗j ( · , s′), ∂s′w
∗
j ( · , s′)) j!∞−−−−! (w∗( · , s′), ∂s′w

∗( · , s′))

in Ḣ1
0×L2, uniformly for 06s′6− log(1−T̃ ). But, by (6.8), we have

(w(y′, s̄δj +s′, δj), ∂s′w(y′, s̄δj +s′, δj))
j!∞−−−−! (w∗( · , s′), ∂s′w

∗( · , s′)), (6.9)

in Ḣ1
0×L2, uniformly in 06s′6− log(1−T̃ ), and w∗ is a solution of (6.3) and

supp(w∗( · , s′), ∂s′w
∗( · , s′))⊂{y : |y|6 1}.
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Lemma 6.9. Let w∗ be as above. Then,

w∗(y′, s′) =w∗(y′) and w∗ 6≡ 0.

Proof. Let S=− log(1−T̃ ) and choose j large. Then∫ S

0

∫
B1

(∂s′w
∗(y′, s′))2

(1−|y′|2)3/2
dy′ ds′ 6 lim

j!∞

∫ S

0

∫
B1

(∂s′w(y′, s̄δj
+s′, δj))2

(1−|y′|2)3/2
dy′ ds′

by (6.9). The right-hand side is bounded by

lim
j!∞

∫ S+s̄δj

s̄δj

∫
B1

(∂s′w(y′, s′, δj))2

(1−|y′|2)3/2
dy′ ds′ 6 2C lim

j!∞

1
(log(1/δj))1/8

=0,

by Corollary 6.7. This shows that w∗(y′, s′)=w∗(y′).
To show that w∗ 6≡0, assume, on the contrary, that w∗≡0. Then, by (6.8) and (6.9),

we would have ∇y′w(y′, s̄δj , δj)!0 in L2(RN ), so that

(1+δj− t̄δj )
N/2∇yu((1+δj− t̄δj )y, t̄δj )! 0

in L2(RN ). Because of Corollary 3.6, we have, for 0<t<1,∫
B1

(|∇u(x, t)|2+|∂tu(x, t)|2) dx>CE> 0.

But, ∫
B1

|∇u(x, t̄δj
)|2 dx=

∫
RN

|(1+δj− t̄δj )
N/2∇yu((1+δj− t̄δj )y, t̄δj )|2 dy! 0,

so, for j large, we obtain ∫
B1

|∂tu(x, t̄δj )|2 dx>
CE

2
. (6.10)

But, by (6.9) and the fact that ∂s′w
∗( · , s′)=0, we see that ∂sw(y′, s̄δj , δj)!0 in L2(RN ).

We now use formula (6.4), which gives

∂sw(y′, s̄δj , δj) =− 1
2 (N−2)(1+δj− t̄δj )

(N−2)/2u((1+δj− t̄δj )y
′, t̄δj )

+(1+δj− t̄δj
)N/2∂tu((1+δj− t̄δj )y

′, t̄δj )

−(1+δj− t̄δj )
N/2y′∇u((1+δj− t̄δj )y

′, t̄δj ).

From our assumption, we see that, since |y′|61, the L2 norm of the last term goes to 0.
The same can be said for the L2 norm of the first term, by Sobolev embedding. But this
contradicts (6.10), so that w∗ 6≡0.
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Proposition 6.10. Let w∗ be as above. Then, w∗∈H1
0 (B1),∫

B1

|w∗(y)|2

(1−|y|2)2
dy <∞

and w∗ solves the (degenerate) elliptic equation

div(%∇w∗−%(y ·∇w∗)y)
%

−N(N−2)
4

w∗+|w∗|4/(N−2)w∗ =0, (6.11)

where %(y)=(1−|y|2)−1/2. Moreover , w∗ 6≡0 and∫
RN

|w∗(y)|2∗

(1−|y|2)1/2
dy+

∫
RN

|∇w∗(y)|2−(y ·∇w∗(y))2

(1−|y|2)1/2
dy <∞. (6.12)

Remark 6.11. We will see that (6.12) are the critical estimates which allow us to
conclude the proof.

Proof. It only remains to prove (6.12). Because of (6.9) and Lemma 6.9, to bound
the first term in (6.12) it suffices to show that∫ s̄δj

+S

s̄δj

∫
B1

|w(y′, s′, δj)|2
∗

(1−|y′|2)1/2
dy′ ds′ 6C,

where C is independent of j. In order to show this, we use Proposition 6.2 (ii), so that

1
N

∫ s̄δj
+S

s̄δj

∫
B1

|w(y′, s′, δj)|2
∗

(1−|y′|2)1/2
dy′ ds′

=
∫ s̄δj

+S

s̄δj

Ẽ(w(s′)) ds′+
1
2

∫
B1

(
∂sww−

1+N
2

w2

)
dy′

(1−|y′|2)1/2

∣∣∣∣s̄δj
+S

s̄δj

−
∫ s̄δj

+S

s̄δj

∫
B1

(
(∂sw)2+∂swy

′ ·∇w+
w∂sw|y′|2

1−|y′|2

)
dy′ ds′

(1−|y′|2)1/2
.

The first term of the right-hand side is bounded by Corollary 6.3, the second one by
Lemma 6.1 (ii). To bound the last one we only need to estimate the last two summands.
We bound the last summand, using Cauchy–Schwarz’ inequality, by(∫ s̄δj

+S

s̄δj

∫
B1

w2

(1−|y′|2)2
dy′ ds′

)1/2(∫ s̄δj
+S

s̄δj

∫
B1

|∂sw|2

1−|y′|2
dy′ ds′

)1/2

6C

(
log

1
δj

)−1/16

,

by Lemma 6.1 (ii) and Corollary 6.7.
The second-last summand, by Cauchy–Schwarz’ inequality, is bounded by(∫ s̄δj

+S

s̄δj

∫
B1

|∇w|2 dy′ ds′
)1/2(∫ s̄δj

+S

s̄δj

∫
B1

|∂sw|2

1−|y′|2
dy′ ds′

)1/2

,
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which can be estimated similarly. This proves the first estimate. To prove the gradient
estimate, use Corollary 6.3 and the previous proof to conclude that∫ s̄δj

+S

s̄δj

∫
B1

(|∇w(y′, s′, δj)|2−(y′ ·∇w(y′, s′, δj))2)
dy′ ds′

(1−|y′|2)1/2
6C.

Using (6.9) and Lemma 6.9, this leads to∫
B1

(|∇w∗|2−(y′ ·∇w∗)2) dy′

(1−|y′|2)1/2
6C,

which concludes the proof.

The contradiction which finishes the proof of Theorem 5.1 is then provided by the
following elliptic result.

Proposition 6.12. Let w∈H1
0 (B1) be such that

(i) ∫
RN

|w(y)|2

(1−|y|2)2
dy <∞

(a consequence of w∈H1
0 (B1));

(ii) ∫
RN

|w(y)|2∗

(1−|y|2)1/2
dy+

∫
RN

|∇w(y)|2−(y ·∇w(y))2

(1−|y|2)1/2
dy <∞;

(iii) w satisfies the (degenerate) elliptic equation (6.11).
Then, w≡0.

Proof. We write again equation (6.11), with %=(1−|y|2)−1/2:

div(%∇w−%(y ·∇w)y)
%

−N(N−2)
4

w+|w|4/(N−2)w=0. (6.13)

Consider first the linear part

Lw=
div(%∇w−%(y ·∇w)y)

%
=

div(%(I−y⊗y)∇w)
%

.

For |y|<1−δ, δ>0, L is a second-order elliptic operator with smooth coefficients. Thus,
the well-known argument of Trudinger [47] shows that w∈L∞(B1−δ) and therefore
w∈C2(B1−δ), where B1−δ={y :|y|<1−δ}, for each δ>0. From this and the classical
unique continuation theorem of Aronszajn, Krzywicki and Szarski (see [2] and [15, §17.2])
we see that if w≡0 on 1−δ<|y|<1, then we have w≡0.
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In order to establish this for 1−δ<|y|<1, it is convenient to write our equation in
polar coordinates (r, θ), 0<r<∞, θ∈SN−1. In these coordinates, (6.13) becomes (with
y=rθ)

(1−r2)1/2 ∂

∂r
(1−r2)1/2 ∂w

∂r
+

1
r2

∆θw+
(N−1)
r

(1−r2)∂w
∂r

=
N(N−2)

4
w−|w|4/(N−2)w,

(6.14)
where ∆θ denotes the spherical Laplacian on SN−1.

For 1−δ<r<1, we perform the change of variables v(s, θ)=w(r(s), θ), with

r(s) = 1− (1−s)2

4
.

For suitable δ̃, we have 1−δ̃6s61, when 1−δ6r61. Also,

r′(s) =
1−s

2
and

r′(s)
(1−r(s))1/2

=1.

Since
(1+r(s))1/2 ∂

∂s
v(s, θ) = (1−r2(s))1/2 ∂w

∂r
(r(s), θ),

v satisfies the equation

∂

∂s
(1+r(s))1/2 ∂v

∂s
+

1
(1+r(s))1/2

1
r(s)2

∆θv+
N−1
r(s)

(1−r(s)2)1/2 ∂v

∂s

=
N(N−2)

4(1+r(s))1/2
v− |v|4/(N−2)v

(1+r(s))1/2
.

(6.15)

The advantage of (6.15) is that it is elliptic, not degenerate elliptic, near s=1 (or r=
1). Moreover, since 1+r(s) is bounded above and below away from 0 and smooth, the
coefficients in (6.15) are smooth. We now turn to some estimates for v, for 1−δ̃6s61
and θ∈SN−1.

We first claim that ∫ 1

1−δ̃

∫
SN−1

|v(s, θ)|2
∗
dθ ds<∞. (6.16)

In fact, the integral in (6.16) equals∫ 1

1−δ

∫
SN−1

|w(r, θ)|2
∗ dθ dr

(1−r)1/2
,

which is finite by virtue of (ii).
Next, we notice that, for 1−δ6|y|61,

|∇θw(y)| '
∣∣∣∣∇w−(

y

|y|
·∇w

)
y

|y|

∣∣∣∣
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and

|∇w|2−(y ·∇w)2 =
(

1
|y|2

−1
)

(y ·∇w)2+
∣∣∣∣∇w− y

|y|
.∇w y

|y|

∣∣∣∣2
=(1−|y|2)

(
y

|y|
·∇w

)2

+
∣∣∣∣∇w− y

|y|
·∇w y

|y|

∣∣∣∣2.
Thus, since w∈H1

0 (B1), (ii) holds, we see that∫ 1

1−δ

∫
SN−1

|∇θw(r, θ)|2 dθ dr

(1−r)1/2
<∞,

and hence ∫ 1

1−δ̃

∫
SN−1

|∇θv(s, θ)|2 dθ ds<∞. (6.17)

Next, we show that ∫ 1

1−δ̃

∫
SN−1

∣∣∣∣∂v∂s (s, θ)
∣∣∣∣2 dθ ds1−s

<∞. (6.18)

This estimate, combined with v∈H1,2
0 (B1), is the one that forces v to vanish, since it

means that the Cauchy data for the solution v of (6.15) vanishes. This is a consequence
of the fact that w∈H1

0 (B1) and the degeneracy of (6.13). On the other hand, (6.16) and
(6.17) show that we are dealing with a “standard solution” to (6.15). To obtain (6.18),
change variables. The integral equals∫ 1

1−δ̃

∫
SN−1

∣∣∣∣∂w∂r (r(s), θ)
∣∣∣∣2 |r′(s)|21−s

ds dθ=
∫ 1

1−δ̃

∫
SN−1

∣∣∣∣∂w∂r (r(s), θ)
∣∣∣∣2 |r′(s)|2

dθ ds

=
∫ 1

1−δ

∫
SN−1

∣∣∣∣∂w∂r (r, θ)
∣∣∣∣2 dθ dr2

6C

∫ 1

1−δ

∫
SN−1

∣∣∣∣∂w∂r (r, θ)
∣∣∣∣2 dθ dr.

Finally, a similar argument, using (i), shows that∫ 1

1−δ̃

∫
SN−1

|v(s, θ)|2

(1−s)3
dθ ds<∞. (6.19)

Once we have the estimates (6.16)–(6.19), we define

ṽ(s, θ) =
{
v(s, θ) for 1−δ̃ < s< 1,
0 for 1<s< 2.

(6.20)
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Since v(s, θ)∈H1
0 (ds dθ), for 1−δ̃<s<1, in light of (6.17), (6.18) and (6.19), ṽ∈H1(ds dθ),

1−δ̃<s<2, θ∈SN−1. We claim that ṽ solves (6.15) for 1−δ̃<s<2: To show this, let
η(s, θ) be a test function. Let µε(s) be a smooth approximation of the characteristic
function of s<1. We have to show that∫∫

SN−1
(1+r(s))1/2 ∂ṽ

∂s

∂η

∂s
dθ ds= lim

ε#0

∫∫
SN−1

(1+r(s))1/2 ∂v

∂s

∂

∂s
(ηµε) dθ ds.

But, this reduces to showing that

lim
ε#0

∣∣∣∣∫∫
SN−1

η(1+r(s))1/2 ∂v

∂s

∂

∂s
µε dθ ds

∣∣∣∣ 6
C

ε

∫ 1−ε

1−2ε

∫
|η|(1+r(s))1/2

∣∣∣∣∂v∂s
∣∣∣∣ dθ ds

6C

∫ 1−ε

1−2ε

∫ ∣∣∣∣∂v∂s
∣∣∣∣dθ ds1−s

ε!0−−−! 0,

because of (6.18). We can now apply Trudinger’s argument in the critical case [47] to ṽ,
to show that ṽ∈C2({s:1−δ̃<s<2}×SN−1). Once we have this, ṽ≡0 on {s:1−δ̃<s<2},
because of the fact that ṽ≡0 for 1<s<2 and the unique continuation theorem of [1].
(See also [15, §17.2].) From this, we conclude that w≡0, as desired.

Remark 6.13. One can skip the use of Trudinger’s argument in [47] and use directly
the more delicate unique continuation theorem of [16], or rather its variable coefficient
version, due to C. Sogge [38] and T. Wolff [48].

Remark 6.14. For this part of the argument, no size or energy conditions are needed.
In addition, in the radial case, Lemma 6.1 and 1-dimensional Sobolev inequalities give
that Ẽ(w(0)) is bounded in absolute value, which allows us to reduce directly to the
elliptic problem.

The results in this section yield the contradiction which completes the proof of
Theorem 5.1.

7. Main theorem

In this section we establish our main result (see [32] and [34] for the subcritical case,
where energy controls yield the result).

Theorem 7.1. Let (u0, u1)∈Ḣ1×L2, 36N65. Assume that E((u0, u1))<E((W, 0)).
Let u be the corresponding solution of the Cauchy problem, with maximal interval of ex-
istence I=(−T−(u0, u1), T+(u0, u1)). (See Definition 2.13.)

(i) If
∫

RN |∇u0|2 dx<
∫

RN |∇W |2 dx, then I=(−∞,∞) and ‖u‖
L

2(N+1)/(N−2)
xt

<∞.
(ii) If

∫
RN |∇u0|2 dx>

∫
RN |∇W |2 dx, then T+(u0, u1)<∞ and T−(u0, u1)<∞.
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Remark 7.2. The equality
∫

RN |∇u0|2 dx=
∫

RN |∇W |2 dx is incompatible with the
energy condition from (3.2). (Indeed, in this case E((u0, u1))>E((W, 0)).)

Proof. To establish (i), we argue by contradiction. If (i) is not true, then EC , defined
in §4, must satisfy η06EC<E((W, 0)). Let uC be as in Proposition 4.2 and assume that
I+ is finite. Then, by Proposition 4.10,

∫
RN ∇u0,Cu1,C dx=0. But then we reach a

contradiction from Theorem 5.1. If I+ is infinite and λ(t)>A0>0, then Proposition 4.11
shows that

∫
RN ∇u0,Cu1,C dx=0, and Theorem 5.1 gives uC≡0, a contradiction because

E((uC , ∂tuC))=EC >η0.
To conclude the proof, we need to reduce to the case λ(t)>A0>0, for t>0, using

the argument in the proof of [19, Theorem 5.1] (see also [27] for a similar proof). Recall
that E((uC , ∂tuC))=EC >η0>0. Because of Lemma 4.6, we may assume that there exist
tn"∞ so that λ(tn)!0. After possibly redefining {tn}∞n=1, we may assume that

λ(tn) 6 inf
t∈[0,tn]

λ(t).

From Proposition 4.2, we get

(w0,n(x), w1,n(x))=
(

1
λ(tn)(N−2)/2

uC

(
x−x(tn)
λ(tn)

, tn

)
,

1
λ(tn)N/2

∂tuC

(
x−x(tn)
λ(tn)

, tn

))
! (w0, w1)

in Ḣ1×L2. Note that E((w0, w1))=EC . Moreover,
∫

RN |∇w0|2 dx<
∫

RN |∇W |2 dx, by
the corresponding properties of uC and Theorem 3.5. Let w0(x, τ), τ∈(−T−(w0, w1), 0],
be the corresponding solution of (CP). If T−(w0, w1)<∞, then Propositions 4.2 and
4.10 yield

∫
RN ∇w0w1 dx=0, and Theorem 5.1 and Proposition 4.2 give a contradiction.

Hence T−(w0, w1)=∞. Let wn(x, τ) be the solution of (CP), with data (w0,n(x), w1,n(x)),
τ∈(−T−(w0,n, w1,n), 0]. Because of Remark 2.21, limn!∞ T−(w0,n, w1,n)=∞, and for any
τ∈(−∞, 0] we have

(wn(x, τ), ∂τwn(x, τ))! (w0(x, τ), ∂τw0(x, τ))

in Ḣ1×L2. Note that, by uniqueness in (CP), for 06tn+τ/λ(tn),

wn(x, τ) =
1

λ(tn)(N−2)/2
uC

(
x−x(tn)
λ(tn)

, tn+
τ

λ(tn)

)
. (7.1)

Let τn=−λ(tn)tn, and note that

lim
n!∞

(−τn) = lim
n!∞

tnλ(tn) >T−(w0, w1) =∞,
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so that for all τ∈(−∞, 0], for n large, we have

0 6 tn+
τ

λ(tn)
6 tn.

In fact, if −τn!−τ0<∞, then

wn(x, τn) =
1

λ(tn)(N−2)/2
uC

(
x−x(tn)
λ(tn)

, 0
)
,

∂τwn(x, τn) =
1

λ(tn)N/2
∂tuC

(
x−x(tn)
λ(tn)

, 0
)
,

would converge to (w0(x, τ0), ∂τw0(x, τ0)) in Ḣ1×L2, with λ(tn)!0, which is a contra-
diction from the fact that (u0,C , u1,C) 6≡(0, 0) and (w0, w1) 6≡(0, 0).

Next, note that we must have ‖w0‖S((−∞,0))=∞. Otherwise, by Theorem 2.20, for
n large, T−(w0,n, w1,n)=∞ and ‖wn‖S((−∞,0))6M , uniformly in n, which, in view of
(7.1), contradicts ‖uC‖S((0,∞))=∞.

Fix now τ∈(−∞, 0]. For n sufficiently large, tn+τ/λ(tn)>0 and λ(tn+τ/λ(tn)) is
defined. Let(

1
λ(tn+τ/λ(tn))(N−2)/2

uC

(
x−x(tn+τ/λ(tn))
λ(tn+τ/λ(tn))

, tn+
τ

λ(tn)

)
,

1
λ(tn+τ/λ(tn))N/2

∂tuC

(
x−x(tn+τ/λ(tn))
λ(tn+τ/λ(tn))

, tn+
τ

λ(tn)

))
=

(
1

λ̃n(τ)(N−2)/2
wn

(
x−x̃n(τ)

λ̃n(τ)
, τ

)
,

1

λ̃n(τ)N/2
∂τwn

(
x−x̃n(τ)

λ̃n(τ)
, τ

))
∈K,

with

λ̃n(τ) =
λ(tn+τ/λ(tn))

λ(tn)
> 1 and x̃n(τ) =x

(
tn+

τ

λ(tn)

)
−x(tn)·λ̃n(τ). (7.2)

Now, since
1

λ
N/2
n

 v
(x−xn

λn

)
n!∞−−−−!  ṽ

in L2, with either λn!0, λn!∞, or |xn|!∞ implies that  ṽ≡0, we see that (since
EC>0) we may assume, after passing to a subsequence, that λ̃n(τ)!λ̃(τ), 16λ̃(τ)<∞,
and x̃n(τ)!x̃(τ)∈RN . But then(

1

λ̃n(τ)(N−2)/2
w0

(
x−x̃n(τ)

λ̃n(τ)
, τ

)
,

1

λ̃n(τ)N/2
∂τw0

(
x−x̃n(τ)

λ̃n(τ)
, τ

))
∈�K.

But then, by Proposition 4.11 and Theorem 5.1, we have (w0, w1)=(0, 0), contradicting
EC =E((w0, w1)). This proves (i).
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For (ii), note that if u0∈L2, this is the result in Theorem 3.7. The proof of the
general case is a modification of that of Theorem 3.7. Similar arguments in the context
of radial solutions of the non-linear Schrödinger equation have been used before, see for
instance the work of Ogawa and Tsutsumi [31]. Let A=‖(u0, u1)‖Ḣ1×L2>0. Recall that
(from Lemma 2.17 and its proof) there exists ε0>0 such that, for 0<ε<ε0, there exists
M0=M0(ε) so that∫

|x|>M0+t

(
|∇xu(x, t)|2+|∂tu(x, t)|2+|u(x, t)|2

∗
+
|u(x, t)|2

|x|2

)
dx6 ε,

for t∈[0, T+(u0, u1)). Assume that T+(u0, u1)=∞, to reach a contradiction.
Let f(τ) be a solution of the differential inequality (with f>0)

f ′(τ) >Bf(τ)(N−1)(N−2), f(0)= 1. (7.3)

Then, the time of blow-up for f is τ∗, with τ∗6KNB
−1.

Consider now, for R large, φ∈C∞
0 (B2), with φ≡1 on |x|<1 and 06φ61,

yR(t) =
∫

RN

u2(x, t)φ
( x
R

)
dx.

Then,

y′R(t) = 2
∫

RN

u∂tuφ
( x
R

)
dx,

and, using the notation in Lemma 5.3, we have that

y′′R(t) = 2
∫

RN

((∂tu)2−|∇xu|2+|u|2
∗
) dx+O(r(R)).

Arguing as in the proof of Theorem 3.7, we find that

y′′R(t) > 2
(

1+
N

N−2

) ∫
RN

(∂tu)2φ
( x
R

)
dx+˜̃

δ0+O(r(R)).

Choose now ε1 small and M0=M0(ε1) as above, so that, for R>2M0, O(r(R))6ε1,
ε16 1

2
˜̃
δ0. We then have, for 0<t< 1

2R,

y′′R(t) > 1
2
˜̃
δ0 and y′′R(t) > 2

(
1+

N

N−2

) ∫
RN

(∂tu)2φ
( x
R

)
dx. (7.4)

Note also that

yR(0)6CM2
0A

2+ε1R2 and |y′R(0)|6CM0A
2+ε1R. (7.5)
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Let

T =
4CM0A

2+2ε1R+2R
√
ε1

˜̃
δ0

.

Then, if T< 1
2R,

y′R(T ) > 1
2T

˜̃
δ0+y′R(0)> 2CM0A

2+ε1R+R
√
ε1−CM0A

2−ε1R=CM0A
2+R

√
ε1.

Thus, there exists 0<t1<T such that y′R(t1)=CM0A
2+R

√
ε1 and, for 0<t<t1, we have

y′R(t)<CM0A
2+R

√
ε1. Note that, in light of (7.6), y′R(t)>y′R(t1)>0, t>t1 (t< 1

2R), and
also

yR(t1) 6 yR(0)+
∫ t1

0

y′R dt6 yR(0)+t1(CM0A
2+R

√
ε1 ) = yR(0)+t1y′R(t1).

We next estimate T . We first choose ε1 so small that
2ε1
˜̃
δ0

+
2
√
ε1

˜̃
δ0

6
1

32KN
,

where KN is the constant defined at the beginning of the proof, and R is so large that

4CM0A
2

˜̃
δ0

6
R

16KN
.

We then have T6R/8KN . We can also ensure that T6 1
8R. Thus,

yR(t1) 6CM2
0A

2+ε1R2+
R

8KN
y′R(t1).

If we now use the argument in the proof of Theorem 3.7, for the function

ỹR(τ) = yR(t1+τ), 0 6 τ 6 1
4R,

in light of (7.6), we see that, for 0<τ< 1
4R, we have that

log(ỹ′R(τ))′ >
N−1
N−2

log(ỹR(τ))′,

so that, by integration,

ỹ′R(τ)
ỹ′R(0)

>

(
ỹR(τ)
ỹR(0)

)(N−1)/(N−2)

for 06 τ 6 1
4R.

Thus, if f(τ)=ỹR(τ)/ỹR(0) and B=ỹ′R(0)/ỹR(0)=y′R(t1)/yR(t1), we have that f is a
solution of (7.3) for 06τ6 1

4R. Hence, we must have

R

4
6
yR(t1)
y′R(t1)

KN 6
KN (CM2

0A
2+ε1R2)

y′R(t1)
+
R

8
,

or
1
8

6
KN (CM2

0A
2+ε1R2)

CM0A2R+R2
√
ε1

=
KN (CM2

0A
2/R2+ε1)

CM0A2/R+
√
ε1

6
KNM0

R
+KN

√
ε1.

By taking KN
√
ε1<

1
32 , and KNM0/R<

1
32 , we reach a contradiction, which gives the

proof of (ii).
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To conclude, let us give some corollaries of our main results similarly to the non-
linear Schrödinger case (for full proofs see [20], [21] and the arguments below).

Corollary 7.3. Let (u0, u1)∈Ḣ1×L2, 36N65. Assume that

E((u0, u1))<E((W, 0)) and
∫

RN

|∇u0|2 dx<
∫

RN

|∇W |2 dx.

Then, the solution u of the Cauchy problem (CP) with data (u0, u1) at t=0 has time
interval of existence I=(−∞,∞), and there exists (u0,±, u1,±) in Ḣ1×L2 such that if
we denote by v±(t) the solutions of (LCP) corresponding to these initial data, we have

lim
t!±∞

‖(u(t), ∂tu(t))−(v±(t), ∂tv±(t))‖Ḣ1×L2 =0.

Moreover , if we define δ0 so that E((u0, u1))6(1−δ0)E((W, 0)), there exists a function
M(δ0) so that ‖u‖S((−∞,∞))6M(δ0).

Let us give now a different version of the main result.

Corollary 7.4. Let (u0, u1)∈Ḣ1×L2 and assume that∫
RN

(|∇u(t)|2+|∂tu(t)|2) dx6
∫

RN

|∇W |2 dx−δ0

for all t∈(−T−(u0, u1), T+(u0, u1)), for δ0>0. Then, the solution u of (CP) with data
u0 at t=0 has time interval of existence I=(−∞,∞), ‖u‖S((−∞,∞))<∞.

Corollary 7.5. Let 36N65, (u0, u1)∈Ḣ1×L2 (no size restrictions) be such that
T+(u0, u1)<∞ and , for all t∈[0, T+(u0, u1)),

∫
RN (|∇u(t)|2+|∂tu(t)|2) dx6C0. Then, we

have for x1(t) and x2(t), and for all R>0,

lim
t!T+(u0,u1)

∫
|x−x1(t)|6R

(|∇u(t)|2+|∂tu(t)|2) dx>
2
N

∫
RN

|∇W |2 dx

lim
t!T+(u0,u1)

∫
|x−x2(t)|6R

(|∇u(t)|2+|∂tu(t)|2) dx>
∫

RN

|∇W |2 dx.

Proof. Let tn be an arbitrary sequence such that tn!T+=T+(u0, u1). Since∫
RN

(|∇u(tn)|2+|∂tu(tn)|2) dx6C0

and ‖S(t)((u(tn), ∂tu(tn)))‖S([tn,T+])>δ0 (where δ0=δ(C0) is defined in Theorem 2.7),
Lemma 4.3 gives, up to a subsequence, a decomposition of (u(tn), ∂tu(tn)) such that
(4.2)–(4.5) hold with

‖S(t)((w0,n, w1,n))‖S((−∞,∞)) 6 1
4δ(2C0).
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Applying Theorem 2.20 and a pigeonhole argument (as in [20]), after taking a further
subsequence in n and possibly reordering in j, we see that we can find J0 such that for
j=1, .., J0 we have ∥∥∥∥ 1

λ
(N−2)/2
j,n

Uj

(
x−xj,n

λj,n
,
t−tj,n
λj,n

)∥∥∥∥
S([0,T+

n ])

!∞,

and for j=J0+1, .., J we have, for some C̃0,∥∥∥∥ 1

λ
(N−2)/2
j,n

Uj

(
x−xj,n

λj,n
,
t−tj,n
λj,n

)∥∥∥∥
S([0,T+

n ])

6 C̃0,

where Uj is the non-linear profile associated with((
V l

j

(
− tj,n
λj,n

)
, ∂tV

l
j

(
− tj,n
λj,n

))
,

{
− tj,n
λj,n

})
,

and if T+,j =T+(Uj , ∂tUj) (possibly T+,j =∞), we have

T+
n = min

16j6J0
{T+−tn, T+,jλj,n+tj,n}

and for a sequence τ ′k!T+,1 as k!∞, for all j=1, .., J0 and for all n we have

‖U1‖S([−t1,n/λ1,n,(t1,n+τ ′kλ1,n−t1,n)/λ1,n]) > ‖Uj‖S([−tj,n/λj,n,(t1,n+τ ′kλ1,n−tj,n)/λj,n])

(note that, applying Theorem 2.20, up to a subsequence, one can choose U1 with such a
property).

By scaling, we have −t1,n/λ1,n6C and τ ′kλ1,n+t1,n>−C. From Theorem 2.20, one
can see that

lim
n!∞

(tn+τ ′kλ1,n+t1,n)<T+ for all k,

lim
n!∞

(tn+τ ′kλ1,n+t1,n)!T+ as k!∞,

1
C

6
T+−tn
λ1,n

and − t1,n

λ1,n
+
T+−tn
λ1,n

>−C.

(7.6)

Using Corollary 7.4 for U1, there is a sequence τk!T+,1 such that

lim
k!∞

∫
RN

(|∇U1(τk)|2+|∂tU1(τk)|2) dx>
∫

RN

|∇W |2 dx.

Using (7.6), (4.2), the fact that for all k there is k′ such that τk6τ ′k′ and orthogonality
arguments (as in [20], for example), we obtain, for all R>0,

lim
k!∞

lim
n!∞

∫
|x−x1,n|6Rλ1,nlog(1/λ1,n)

(|∇u(tk,n, x)|2+|∂tu(tk,n, x)|2) dx>
∫

RN

|∇W |2 dx,
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where tk,n=tn+t1,n+τkλ1,n, which gives the limsup result.
For the liminf result, note that

E((U1, U1t))>E((W, 0))=
1
N

∫
RN

|∇W |2 dx,

because of Theorem 1.1, which gives∫
RN

(|∇U1(t)|2+|∂tU1(t)|2) dx>
∫

RN

2
N
|∇W |2 dx, t∈ (−T−(U1, U1t), T+(U1, U1t)).

(Note that if E((U1, U1t))<E((W, 0)) we obtain, from Theorem 1.1, the stronger in-
equality

∫
RN (|∇U1(t)|2+|∂tU1(t)|2) dx>

∫
RN |∇W |2 dx.) The finite speed of propagation

(Lemma 2.17) now gives, uniformly in n, that

lim
R!∞

∫
|x|6|t1,n|/λ1,n+R

(∣∣∣∣∇U1

(
− t1,n

λ1,n

)∣∣∣∣2+
∣∣∣∣∂tU1

(
− t1,n

λ1,n

)∣∣∣∣2) dx>
2
N

∫
RN

|∇W |2 dx.

From (4.2)–(4.4) and using the fact that for all R0, R>0,

R0

λ1,n
>
|t1,n|
λ1,n

+R,

for n large, we obtain that, for all R0>0,

lim
n!∞

∫
|x−x1,n|6R0

(|∇u(tn)|2+|∂tu(tn)|2) dx>
2
N

∫
RN

|∇W |2 dx,

which gives the liminf result.

Remark 7.6. The proof of the limsup result applies verbatim to the non-linear
Schrödinger equation, thus completing the sketch of the proof of the limsup part of
the result in [19, Corollary 5.18]. For the proof of the liminf result, we relied here on
the finite speed of propagation. The corresponding result for the non-linear Schrödinger
equation, claimed also in [19, Corollary 5.18] is not fully proved there and its validity
remains an open question. We are grateful to R. Killip, M. Visan and X. Zhang for
pointing this out.
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