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0. Introduction

We prove in this paper a series of rigidity results for amalgamated free product (hereafter
abbreviated AFP) II; factors M =M *p Ms, which can be viewed as von Neumann alge-
bra versions of the “subgroup theorems” and “isomorphism theorems” for AFP groups
in Bass—Serre theory. Our main “subalgebra theorem” shows that, under rather general
conditions, any von Neumann subalgebra QCM with the relative property (T) in the
sense of [P5] (also called a rigid inclusion), can be conjugated by an inner automorphism
of M into either M; or Ms. We derive several “isomorphism theorems” in the case
the amalgamation is over the scalars, B=C, over a common Cartan subalgebra, B=A,
or over a regular hyperfinite subfactor, B=R. The typical such statement shows that
if : M~N" is an isomorphism from an AFP factor M =M;xgMs*p...xg M,, onto the
amplification by some t>0 of an AFP factor N=N;*¢c Noxc...xc Ny, 1<m,n<oo, with
each M; and each N; containing a “large” subalgebra with the relative property (T), then
m=n and §(BCM;) is unitarily conjugate to (C'CN;)*, for all i, after some permutation
of indices.

When applied to the case B=R, these results allow us to obtain the first explicit
calculations of outer automorphism groups of II; factors, and answer in the affirma-
tive a problem posed by A. Connes in 1973, on whether there exist II; factors M with
no outer automorphism, i.e. with Out(M)défAut(M)/Int(M):{1}. More precisely, we
show that if a group I is the free product of two infinite property (T) groups [K] with no
non-trivial characters, for example I'=SL(ng, Z)*SL(n1,Z), ng,n1 >3, then there exist
actions of I' on the hyperfinite II; factor R such that the corresponding crossed product
factors M =R xT have both trivial fundamental group, F(M)={1}, and trivial outer au-
tomorphism group, Out(M)={1}. In fact, the general result shows that for any separable
compact abelian group K there exist factors M with F(M)={1} and Out(M)=K.

In turn, when applied to the case of amalgamated free products over a common
Cartan subalgebra, our “isomorphism theorem” provides a Bass—Serre type result for

orbit equivalence (OE) of actions of free product groups
I'=Tyx..x, and A=Aix*x...xA,,

on the probability space. Thus, we show that if each I'; and each A; has an infinite
normal subgroup with the relative property (T) of Kazhdan-Margulis (for instance, if T';
and A; are Kazhdan groups for all ¢ and j), and if (0,T') and (6, A) are free, probability
measure preserving (m.p.) actions with o|p, and 0|4, ergodic for all i and j, then c~og
0 implies that m=n and o|r, ~orf|a,, for all i, after a permutation of the indices i.
Note that the opposite implication holds true for arbitrary groups I'; and A;, as shown
by D. Gaboriau in [G2]. In fact, we derive the componentwise OE of actions under
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the weaker assumption that the group measure space factors associated with (o,T") and
(8, A) are stably isomorphic, i.e. when o and 6 are von Neumann equivalent (VNE).
We use this vNE Bass—Serre rigidity and [Ful], [Fu2], [Gel], [Ge2], [MoS], [P6] and [P§]
to give examples of group measure space factors M from free ergodic m.p. actions o
of free product groups ['=T1x'y*... such that F(M)={1} and Out(M)=H!(c,T), with
explicit calculation of the abelian group H*(o,T').

Finally, when applied to the case B=C, our results become von Neumann algebra
analogues of Kurosh’s classical theorems for free products of groups, similar to Ozawa’s
recent results of this type in [O], but covering a different class of factors than [O] and
allowing amplifications. For instance, we show that if N;, 2<i<n, and M;, 2<j<m,
are property (T) II; factors in the sense of Connes—Jones (e.g. if N; and M, are group

factors associated with Kazhdan groups, [CJ]) then
My« Msx...xM,, 2 (N1*Nak..xNy,)"

implies that m=n and that 6(M;) is inner conjugate to N} for all 4, after some permu-
tation of indices. In fact, in its most general form our result only requires M; and N; to
be weakly rigid (w-rigid), i.e. to have diffuse-regular subalgebras with the relative prop-
erty (T). Taking M=N and M;=P%, with {s;},=S being a multiplicative subgroup
of R% and P being a w-rigid II; factor with trivial fundamental group (for instance,
the group factor L(G) associated with G=Z2xSL(2,Z), cf. [P5]) and using a result of
Dykema—Radulescu [DyR], we get §(M)=.S for M =x*sc5P°. This provides a completely
new class of factors with arbitrary given SCR as fundamental group from the ones in
[P8]. Indeed, the examples constructed in [P8] are group measure space factors, while
the free group factors x4cgP® have no Cartan subalgebras, by results of Voiculescu [V2]
(see [Sh] and Remark 6.6 in this paper).

The key technical result behind all these applications is the above mentioned “sub-
algebra theorem”, of Bass—Serre type. We state it in details below, together with other
main results in the paper, and also explain some of the ideas behind the proofs. An
inclusion of finite von Neumann algebras BC P will be called homogeneous if there ex-
ists {y; }, C P with Eg(y;y;)=0d;j, for all i and j, and ), y; B dense in P. This technical
assumption is satisfied by all inclusions coming from (cocycle) crossed products and (gen-
eralized) group measure constructions, or Cartan inclusions. It is also satisfied when P
is an arbitrary finite von Neumann algebra and B=C. Following [P5], a von Neumann
subalgebra @) C P has the relative property (T) (or QCP is a rigid inclusion) if any “de-
formation” of idp by completely positive subunital subtracial maps, ¢, —idp, is uniform
on the unit ball of @ (see also [PeP]).
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THEOREM 0.1. Let (M;,7;), i=1,2, be finite factors with a common von Neumann
subalgebra BC M;, such that 71|p=7a|p and such that BCM; are homogeneous, i=1, 2.
Let QCM=M;*g M, be a diffuse von Neumann subalgebra with the relative property (T)
such that no corner qQq of @ can be embedded into B. Then there exists a unique
partition of 1 with projections q; and ¢4 in the commutant of @ in M such that
u; (Qq)ur CM;, i=1,2, for some unitary elements uy and ug in M. Moreover, if the
normalizer of Q in M generates a factor N, then there exists a unique i€{1,2} such
that uQu* C M; for some weld(M), which also satisfies uNu*C M.

The proof of this result takes §§2-5 of the paper. It uses “deformation/rigidity” and
“Intertwining” techniques from [P5], [P7] and [P8]. Thus, we embed M =M g M, into
the larger algebra M =M x 5(B®L(F2)), whose aboundance of deformations is used to
show that “rigid parts” of M have to concentrate on certain subspaces with “bounded
word-length”. This initial information is then used as a starting point in a word-reduction
argument to obtain a Hilbert bimodule intertwining @ into one of the M;’s. The homo-
geneity condition is needed in order to measure the “size” of letters in the M;’s. To
get a unitary element conjugating @ into M; from this, we prove in §1 a series of re-
sults on the relative commutants and normalizers of subalgebras in AFP factors, using
[P8, I, Theorem 2.1 and Corollary 2.3].

If we take B=C in Theorem 0.1 and use the fact that finite von Neumann algebras
with the Haagerup property ([H], [Ch]) have no diffuse subalgebras with the relative
property (T), then we get an analogue of Kurosh’s isomorphism theorem for free products

of groups.

THEOREM 0.2. Let (Mo, 7Tr,) and (No,7Tn,) be finite von Neumann algebras with
Haagerup’s compact approzimation property. Let M;, 1<i<m, and N;, 1<j<n, be
w-rigid 11y factors, where m,n>1 are some cardinals (finite or infinite). If 6 is an
isomorphism of M=x"M; onto N*, where N=«7_qN; and t>0, then m=n and, after

some permutation of indices, O(M;) and N} are unitarily conjugate in N*, for all i>1.

Ozawa’s pioneering result of this type in [O] concerns free products of group factors
M;=L(T;) and N;=L(A;) with each T'; and A; being a product of two or more infinite
conjugacy class (ICC) groups, either word hyperbolic (at least one of them) or amenable,
typical examples being the groups F,,, X S, not covered by Theorem 0.2 above. In turn,
our typical M; and N; are factors from property (T) (more generally w-rigid) groups.

Letting M;=N; for all i and m<oo in Theorem 0.2, it follows that if F(M;)={1} for
some 1<i<m (for example if M;=L(Z?xF},), with 2<k<oo, cf. [P5]), then F(M)={1}.
Moreover, taking m=o0 in Theorem 0.2 and using the “compression formula” for free

products of infinitely many IT; factors (x;M;)!~x*; M} in [DyR], we can include specific
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numbers into the fundamental group. Thus we get the following result.

COROLLARY 0.3. (1) Let meN and let My,..., M, be w-rigid 11y factors. Let
(Mo, Tar,) be a finite von Neuman algebra with Haagerup’s compact approximation prop-

erty. If one of the factors M;, 1<i<m, has trivial fundamental group then so does
M = Mox My *...x«M,,.

(2) If SCRY is an arbitrary infinite (possibly uncountable) subgroup and P is a
w-rigid 11y factor with trivial fundamental group (e.g. P=L(Z?xSL(2,7))), then the 11,

factor xscsP* has fundamental group equal to S.

Since a group measure space factor M =L (X, u) X, (I'; xT'y) associated with a free
ergodic m.p. action (¢,T'1*I's) on a probability space (X, u) can alternatively be viewed
as an AFP factor M =M Ms, where A=L>*°(X, 1) and Mi:Ax(,‘Fi I';, Theorem 0.1
allows us to obtain Bass—Serre type vNE and OE rigidity results for actions of free
products of groups, as follows.

THEOREM 0.4. (VNE Bass—Serre rigidity) Let T'g and Ag be groups with the Haagerup
property and let I';, 1<i<n<oo, and Aj, 1<j<m<oo, be ICC groups having normal
non-virtually abelian subgroups with the relative property (T). Assume that either T

is infinite or n>=2. Let o (resp. 6) be a free ergodic m.p. action of T=TgxT'1x*...

(resp. A=AoxA1x...) on the probability space (X, u) (resp. (Y,v)) such that o,=0|p,
(resp. 0;=0|a,) is ergodic for all i>1. Denote by M =L (X, 1) x,T, N=L>®(Y,v)xgA,
M;=L>*(X, )%, I'sCM and N;j=L>*(Y,v)xg, AjCN the corresponding group measure
space factors. If c: M~N? is an isomorphism, for some t>0, then m=n and there is a

permutation T of indices i>1 and unitary elements u; €N such that, for all i>1,
Ad(u)(@(M;)) =Nty and  Ad(u;) (@(L®(X, 1)) = (L2 (Y, 1))".

In particular, R,~R} and ’Rai:Rgm) for all i>1.

In particular, taking the isomorphism a between the group measure space factors
in Theorem 0.4 to come from an orbit equivalence of the actions, one gets the following

result.

CoOROLLARY 0.5. (OE Bass—Serre rigidity) Let I';, 1<i<n<oo, Aj, 1<j<m<oo,
o and 0 be as in Theorem 0.4. If Rg’szgyA, then n=m and there exists a permuta-

tion m of the set of indices i>1 such that RgiypizRéﬂi%Aw(i) for all i>1.

Like in [P8, II], the terminology “vNE rigidity” is used here in a broad sense, in
the same spirit the terminology “OFE rigidity” is being used in orbit equivalence ergodic
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theory ([Ful], [MoS], [S], [Z]). It can designate results which from an isomorphism of
group measure space factors derives orbit equivalence of the actions involved (“vNE/OE
rigidity”, like [P5, Theorem 6.2]), or even conjugacy of the actions (“vNE strong rigidity”,
e.g. [P8, II, Theorem 7.1]). Theorem 0.4 brings out a new type of vNE rigidity, which
we have labeled “Bass—Serre” because of its analogy to group theory results. It is a
“vNE/OE”-type result but stronger, as it derives not only the orbit equivalence of the
“main actions” (o,T") and (6,A), but also the componentwise orbit equivalence of their
restrictions (o;,T;) and (60;, A;).

The “vNE Bass—Serre rigidity” can be used in combination with OE rigidity results in
orbit equivalence ergodic theory to get more insight on the group measure space factors
involved. Thus, taking To=A¢={1} and 2<n,m<oo in Theorem 0.4, by Gaboriau’s
results in [G1] it follows that the ¢2-Betti numbers of I'; and A; must satisfy

(M)
](62)(1—‘7;): kt )

for all 1<i<n=m, and

25(2) ) (Zﬁ(z) )>7

forcing t=1. Also, if we take '=T'g*I'1*... and ¢ as in Theorem 0.4, and add the con-
ditions Out(R,,)={1} and (01,I'1) not OE to (o;,I;), for all i1, then Out(R,)={1}
and Out(M)=H!(o,T'). Examples of actions (o1,';) with the associated orbit equiva-
lence relation R, r, having trivial outer automorphism group are constructed in [Ge2],
[Fu2] and [MoS], and we construct some more, using the Monod—Shalom rigidity the-
orem [MoS]. The group H!(o,T)) can in turn be calculated by using [P6], thus getting

explicit computations of Out(M) for the group measure space factors M. The fact that

one can choose the action (o,T")
cific T';-actions, for all ¢, is a consequence of [T6], but we include a proof for the reader’s
convenience (see §7.3 and §A.1).

Theorem 0.1 is in fact used to obtain another (genuine) “vNE/OE rigidity” result
in this paper, for free ergodic m.p. actions (o,I') with I" being a free product of infinite
groups, '=T'gxI';, and o satisfying the relative property (T) of [P5, Definition 5.10],
i.e. such that L®(X,u)CL>®(X,u)x,I" is a rigid inclusion. This way we recover the
uniqueness of the HT Cartan subalgebra (as defined in [P5, §6.1]) in the group-factors
L(Z?xF,) and their amplifications, one of the main results in [P5].

Similarly, we obtain rigidity results for crossed product factors M=Rx,([¢*I)
corresponding to actions (o, TgxI'1) on the hyperfinite II; factor R, by regarding M as
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an AFP factor M=(RxTg)+xr(RxT1). In fact, in this case we can control even better
the groups of symmetries F(M) and Out(M), with complete calculations. To state this
result, let f7x denote the class of actions (o, T'g*I'1) of free product groups I'o*I'; on the
hyperfinite factor R, satisfying the properties: (a) I'g is free and indecomposable; (b) I’y
is w-rigid (which is true, e.g., if 'y is an infinite Kazhdan group); (¢) RC R,y is a rigid
inclusion; (d) o|r, is a non-commutative Bernoulli I'y-action, i.e. R can be represented in
the form R:®96F1 (M xn(C),tr)y, n>2, with o|r, acting on it by left Bernoulli shifts;
(e) olr, is freely independent with respect to the normalizer Ny of o(T'p) in Out(R).

To show that such actions exist, we first prove that for any two countable sets of
automorphisms S; and Sy of R, there exist #€Aut(R) such that S; and 65,01 are
“freely independent” (see §8.2 and §A.2). Combining this with results from [Bu], [Ch],
[Fe], [NPSal, [P5] and [Va], we deduce that for many arithmetic groups I'y (in particular
for T'y=SL(n, Z), for all n>2) and any w-rigid group I'y, there exist actions (o, Tg*I'1)
on R in the class fTr. Using Theorem 0.1, properties (a)—(e) above and [P7], we get the

following results.

THEOREM 0.6. For any T'y=SL(ng, Z), ng=2, and any w-rigid group Ty there exist
actions o of ToxI'y on R in the class fTr. If (0,To*T1) is an fTr action and we let
M=Rx,(To*I'1), then F(M)={1} and Out(M)=Char(T¢) x Char(T';).

THEOREM 0.7. Given any compact abelian group K, there exist separable 11y fac-
tors M with §(M)={1} and Out(M)=K. For instance, if (o,To*I'1) is an fTr action
and M=Rx,(ToxI'1) is the associated crossed product factor, with T'y=SL(n,Z) and
Iy =SL(m,Z)x K for some n,m>3, then F(M)={1} and Out(M)=K. Moreover, de-
noting by M>®=M®B({*N) the associated 1, factor, we have Out(M*>)=K.

The study of outer automorphisms of type-II von Neumann factors was at the core
of Connes decomposition theory for factors of type III and his classification of amenable
factors, in the early 70s [C1], [C3]. Two subsequent seminal papers [C2], [C4] gave
the first indications that the outer symmetry groups Out(M) and F(M) can reflect
rigidity properties of non-amenable factors. In particular, it was shown in [C4] that
F(M) and Out(M) are countable for group factors associated with ICC groups with the
property (T). The recent rigidity results in [P5], [P8] and [P9] provide explicit calculations
of (M) for large families of group measure space factors M, and reduce the calculation
of Out(M) to the computation of the commutants of the corresponding group actions.
However, such commutants are difficult to compute, being left as an open problem even
in the case of Bernoulli actions (see [P8, II]). The calculation of Out(M) that we obtain
in this paper for crossed product factors arising from actions of free products of w-rigid
groups on the probability space and on the hyperfinite factor thus give the first such
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explicit computations.

This work initiated while the authors were visiting the Laboratoire d’Algébres
d’Opérateurs at the Institut de Mathémathiques of the University Paris 7 during the
Fall of 2004. It is a pleasure for us to thank the CNRS and the members of the Lab
for their support and kind hospitality. We are very grateful to Damien Gaboriau for
illuminating discussions and comments on our work and Bass—Serre theory. We thank
Dima Shlyakhtenko for kindly pointing out to us Remark 6.6.

1. Conjugating subalgebras in AFP factors

1.1. AFP algebras

Let (My,7) and (Ms, ) be finite von Neumann algebras with a common von Neu-
mann subalgebra BCM;, i=1,2, such that 71|p=m2|5. We denote by (M;xp M, T1%72)
the finite von Neumann algebra free product with amalgamation (AFP) of (My,; B)
and (Ma, 19; B), as defined in [V1] and [P2, pp. 384-385]. Thus, M;*pMs has a dense

x-subalgebra

Bop P  sp(M;,©B)(M;,©B)...(M;,©B) (1.1)
n>1 ij€{1,2}
i1#igFigE. . Ein

with the trace 7=71 %72 defined on reduced words by 7(x)=7(x)=72(z) for x€B, and
7(x)=0 for x=ux;, 2, ... ¥;,, with x;, € M;, ©B, i, €{1,2}, i1F#ia#i37#...%i,. Thus, the
vector subspaces B and sp(M;, ©B)(M;,&B) ... (M;, ©B)CM in the above sum are all
mutually orthogonal with respect to the scalar product given by the trace 7. Also, their

closure in L?(M, 7) gives mutually orthogonal Hilbert B-bimodules,
L*((M;, ©B)(M;,©B) ... (M,

n

6B))~H) ®pH}, @p...0pH; |

summing up to L2(M, 7), where H?=L?(M;)o L*(B).

1.2. Controlling intertwiners and relative commutants

In this subsection we prove a very useful “dichotomy-type” result for subalgebras @ of
AFP factors M =M;jxg M. It shows that if @ sits in one of the factors, say M;, then
it can either be conjugated into the “core” B of the AFP algebra M, or else all its
normalizers lie in Mj, and even all “intertwining” Hilbert Q-M; bimodules HC L*(M)
with dim(H s, ) <oo must be entirely contained in L?(M;)! Also, in this second case, any
bimodule intertwining () into the other factor, Ms, vanishes.
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The first results of this type was obtained in [P1], in the case of “plain” free product
factors, M =My *M,. The next theorem provides a sharp generalization of these results.
The proof uses the basic “intertwining criteria” [P8, I, Theorem 2.1 and Corollary 2.3],

following arguments similar to [P8, I, Theorem 3.1].

THEOREM 1.1. Let (M, 71) and (Ma, m2) be finite von Neumann algebras and B be a
common von Neumann subalgebra such that T1|p=72|p. Let M=Mixp M, 0£qeP (M)
and let QCqMiq be a von Neumann subalgebra. Assume that no corner of @ can be

embedded into B inside My, i.e. Q'Ng(M;, B)q contains no non-zero finite projections.
If 0£E€L?(qgM) satisfies

Qcc LQ(Z@M,C)
=1

for some k€{1,2} and some &1, ...,&, €L*(M), then k=1 and E€L?(My). In particular,
Q'NgMqC M, the normalizer Nynq(Q) of Q in gMq is contained in qMiq, and if
xeM satisfies Qr CaxMs then x=0.

Proof. Let p denote the orthogonal projection of L?(M) onto the Hilbert subspace
7Q£Mk - 1l2 CL2(M)

Note that peQ’'Ng(M, eps, )q and 0#£Tr(p) <oo, where Tr=Tr (e, ) denotes the canon-
ical trace on (M, epy, ). To prove that k=1 and £ € M, it is sufficient to show that p<eyy, ,
or equivalently that (1—eps, )p(1—ens, )=0. Indeed, because then QEM;, C L?(My), so in
particular £€L?(M},) and ué€L?(My) for all ueld(Q). But since no corner of @ can
be embedded into B inside My, by [P8, I, Corollary 2.3], it follows that for any >0
there exists u€l(Q) such that ||Ep(u)|2<e. Thus, if k=2, then &, ué € L?(Ms) so that
ul=FEp, (u€)=FEp(u)€, and by the Cauchy—Schwarz inequality we have

1€l = [[u€lls = 1Es(w)Elr < |Ep(w)]2]€lls <ell€]l2-

Since £>0 was arbitrary, this shows that £=0. Thus, the only possibility is that k=1,
ie. £eL?(My).

By taking spectral projections, to show that (1—eps, )p(1—ep,)=0 it is in fact
sufficient to show that if fe@Q N(M,eps ) is a projection such that 0#£Tr(f)<oco and
f<1l—epg, then f=0. To this end, we will show that || f]|2 v is arbitrarily small.

Thus, let no=1,11, ..., Yy, ... CM be an orthonormal basis of M over My, i.e.

En, (ninj) = 0ijp; € P(My,)
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and ||| <oco, for all ¢ and j. If we let f,=> """, menrm; then, as f has finite trace and
f<l—en,=> i) mem,n;, there exists n€N such that || f,, f— f|l2,m <el|f||2,rv. Thus,
if uel(Q), then

Tr(faufau®) ZTe(ffafufou’) =Te(ffrn(1=flufou”)| = Te((A=f) foufpu®)]. - (1.2)

Using that f, f is e-close to f in the norm || - ||2, 1 and that f commutes with ue@,

we deduce that

Te(ffafufou)=Te(fufufafu*) > (1=2e =) fII3 - (1.3)

Similarly, we have
Te(ffn (L= Flufau”) |+ Te((1= ) fo fufau)] < 2e(1+e) | FII3 m- (1.4)
Combining (1.2)—(1.4), we get
Tr(foufou®) > (1—4e—3¢%)[| f|I3,5  for all ueU(Q). (1.5)
On the other hand,

Tr(fnufnu*>=Tr( ) meMkn:umeMm;u*) =5 B )3 (16)

i,j=1 1,5=1

Thus, in order to prove that || f||2,1 is small, it is sufficient to prove that for all
70, -, M EM O M}, and for all >0, there exists uel(Q) such that

HE]\/[k(T]iuTI;)HQ <e for all 0<i,j<n.

Furthermore, by Theorem 1.1 and Kaplansky’s density theorem, it is enough to prove
this in the case where the 7;’s are reduced words of the form n;=46;z; such that one of
the following holds true: (a) d; is a reduced word that ends with a letter in M>©& B and
x; is either equal to 1 or contained in M6 B; (b) k=2, §;=1 and z;€M;6B. Since
ziur} € My, if we set y=z;uz}— Ep(zur})€M; OB, then in both cases (a) and (b) the

reduced word d;yd7 is perpendicular to My. Indeed, in case (a), d;yd7 lies in
. M oB)(MoB)(MwoB) ...,

where {k, k'}={1,2}, and thus it has length at least 3, so ;07 L My, by (1.1). In case (b),
0;y07 € M1© B, so it is perpendicular to My=M)}. Using ;yd; L My, we then get

B, (niwng) = En (niyn;) + B, (0: B (viux})65) = Enr, (6 Ep (viua})d7),
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implying that
1B (miung )2 = (| Es (66 Ep (wiua§)07) |2 < [0 165 ]| | Es (ziuz) 2.

But by the hypothesis and [P8, I, Corollary 2.3], for any >0 we can find u€l/(Q) such
that

3

lo < 7 O
N9l 1165l

|1 Ep (ziuz])|

Note that, under the conditions of Theorem 1.1, not only the normalizer Nynrq(Q) of

Q@ in gMq is contained in M7, but also the normalizer of the von Neumann algebra gener-
ated by Nyuq(Q), and so on. In fact, even the unitary elements u€gMq, with the prop-
erty that uQu*NgM;iq is not embeddable into B, are contained in M;. More generally,
if QCqMiq is a von Neumann subalgebra such that Q' Ng{M;, B)q contains no non-zero
finite projections, and if we denote by Ny=N(Q, M1; B) the von Neumann subalgebra
of gMq generated by unitary elements u€gMgq such that (uQu*NM;) Ng(M;, B)q con-
tains no non-zero finite projections, then Ny CM;. If we then repeat this operation,
taking No=N (N1, My; B) to be the von Neumann algebra generated by all unitary ele-
ments u€qgMgq such that uNyu*Ng{M;, B)q contains no non-zero finite projections, then
Ny CM;. We can of course continue this procedure inductively until it “stops”, i.e. un-
til we reach an N; such that N(N;, My; B)=N;. More, formally, consider the following

definition.

Definition 1.2. Given ¢eP(B) and QCqMgq, we consider by (transfinite) induction
the strictly increasing family of von Neumann algebras Q=NoCN;C...CN;C...CNj,
indexed by the first ¢ ordinals, such that:

(a) for each j<i, Nj41=N(N;, Mq;B) and N;#Nj41;

(b) N(N;, My; B)=Nj;

(¢) if j<i has no “predecessor”, then Nj:Un<j N,,.

We then let N(Q, M;; B)=N; and call it the weak quasi-normalizer (wg-normalizer) of
Q in gMgq relative to (M7; B). Note that in fact both the definitions of N(Q, M;; B) and
N(Q, My; B) make sense for any finite von Neumann algebra (M, 7) and von Neumann
subalgebras B, M1 C M and QCqMgq, with qeP(M).

This definition is analogous to the definition of wg-normalizer of a subgroup HCG
used in [P5], [P6], [P8]. It is easy to see that N(Q, My; B) is the smallest von Neumann
subalgebra P of ¢Mq such that (uPu*NgMiq)'Ng{M,ep)q contains non-zero finite pro-
jections for all uegMq\ P. Theorem 1.1 thus implies the following result.
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COROLLARY 1.3. Let (My, 1), (Ma,12), g€ BCM;, i=1,2, and M=Mjxg M be
as in Theorem 1.1. Let QCqMiq be a von Neumann subalgebra such that no corner
of Q can be embedded into B inside My, i.e. Q' Ng(My, B)q contains no non-zero finite
projections. Then N(Q,Ml;B)CMl.

We will make repeated use of the following application of Theorem 1.1, which shows
that if one of the algebras M, involved in an amalgamated free product M =M;xg Mo
contains a regular subalgebra (), then () must necessarily be contained in B, modulo

inner conjugacy.

COROLLARY 1.4. Let (My,11), (M2, 72) and BCM;, i=1,2, be as in Theorem 1.1,
and let M=M;xgMs,. Let QCqMiq be a von Neumann subalgebra, for some qeP(B)
with qBq#qMaq. Assume that Q is reqular in ¢Mq. Then one can embed a corner of Q

into B inside My, i.e. Q'Ng(Mi,ep)q contains non-zero finite-trace projections.

Proof. Tf Q'Ng{My, ep)q contains no non-zero finite-trace projection then, by Theo-
rem 1.1, the normalizer N/ (Q) of Q in ¢Mgq is contained in M;. Since Ny (Q)’'=qMgq,
this implies that ¢Mq=qM,q, thus ¢M>q=qBq, a contradiction. O

1.3. Locating subalgebras by means of normalizers

In this and the next subsections we prove that if a subalgebra of M =Mj*g M> is nor-
malized by “many” unitary elements in M7, then it must necessarily be contained in Mj.
This technical result will in fact not be needed until §7, where it plays a key role in the
proof of the Bass—Serre type Theorem 7.7. The proof uses the intertwining criteria in
[P8] and a careful asymptotic analysis of elements written in the AFP expansion (1.1).
We first prove the result assuming that the subalgebra we want to “locate” is unitarily
conjugate to a subalgebra of B. This assumption will be shown to be redundant in §1.4,

in the case when B=A is Cartan in M.

PROPOSITION 1.5. Let Ay and As be discrete groups and o: A—Aut(B,7) be an
action of A=A1xAy on the finite von Neumann algebra (B, 7). Let

M:BXJUA:Ml*BMQ,

where Mi:Bxa‘Ai A;, i=1,2. Let qeP(B), BoCqBq be a von Neumann subalgebra,
ueU(gMq) and set N={veld(qM1q):v(ugBoqu*)v*=uqBoqu*}. Assume that no corner
of N can be embedded into B inside M. Then uqBoqu* C M.

Proof. Assume that there exists bg€qByg, ||bo]| <1, such that

do = ubou™ — Ejpg, (ubgu™)
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satisfies c=||dp||2>0. To get a contradiction, we first show that all of the unit ball of
ugqBqu* can be embedded into a set of the form }_  p(B)1ug with F'CA finite and (B):
denoting the unit ball of B. We need the following lemma.

LEMMA 1.6. Let (B,T) be a finite von Neumann algebra, o: A—Aut(B,T) be an
action, M =B x,G be the corresponding crossed product finite von Neumann algebra and
{ug}yCM be the canonical unitary elements. For any finite set in the unit ball of M,
SoC(M)1 and any >0, there exists FCA finite such that x(B)1y*Ce>_ e p(B)iug for
all z,yeSy.

Proof. By Kaplansky’s density theorem, there exists a finite set Fy CA and elements
{bgeB:x€Sy and g€ Fo}, such that zo=3_ ., byu, satisfies ||zo[|<1 and |z—zoll2< 3e
for all x€Sy. If we put F:FoFo_l, then we clearly have xOBySCdeF Buy for all
z,y€So. On the other hand, if b€ B satisfies [|b]|<1 and we let zobyg=>_  byu, then
by=FEp((zobyg)uy) and thus [|b,|| <||(zobys )uy || <1. This implies that ||zby* —zobysll2<e

and thus zby* €.>  p(B)1ug. O

By Lemma 1.6, it follows that there exists F'CA finite such that

uq(B)1qu* Ccjo Z(B)lug7
geF
where e=1c?. Let N=N"CqMq.
For any veN CqM;iq we then have
v(ubou™)v* €. /9 Z(B)lug
geF
as well. Since
v(ubou®)v* = vdov* +v(Epy, (ubgu™))v™,
with vdov* L M7 and v(Epy, (ubou™))v* €My, by Pythagoras’ theorem it follows that we
have vdov* €./2) g, (B)1ug, where Fo=F\A;. Now let d1 €} (B)1ug be such that
|do—d:|l2<3e. We have thus shown that

gE€Fy

there exists Fo CA\A; finite and d1 €
and [|dy |2 > c—£¢* >0, such that vdiv* €. Y

where € = %02.

(B)rug with [|di] < |Fy|

ger, (Bliug for all veEN, (1.7)

Now note that by the condition satisfied by the algebra N”’=N, from [P8, I, Corol-
lary 2.3] it follows that

for all K C Ay finite and & > 0, there exists v € N such that if £ denotes the

projection of v onto the Hilbert space @jc .\ x L?(B)uy, then [[v—¢&|[2 < 6. (1.8)

At this point, we need the following lemma.
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LEMMA 1.7. Let (B, 1), (0,A), M and {uy}, be as in Lemma 1.6, and A=A1%As.
Let FyCA\A; be a finite set. Then, there exists K=K (Fy)CA; finite such that any
£€L?*(BxAy) supported by A\ K satisfies f(z Bug)M1 Yy Bu,.

gEFy geFy

Proof. Note that each irreducible alternating word g€ F, has at least one letter
from As. Let Ky denote the set of elements in Ay that can appear as first letter in a word g
in Fy (including the trivial letter e) and set K=K K, '. Then, (A;\K)KoNKo=2. Now
note that if €€ L?(BxA;) is supported by A\ K then any element 7 in f(ZgGF Buy) is
supported on elements g€G that begin with a letter in (A1\K)KoCA;\Ky. Moreover,
this is still the case for elements of the form nz, for x€ M;. In turn, any g in the support

of an element in ) Bug begins with a letter in Ky. Thus, the two vector spaces

gE€Fy
§(ZQGFO Bug)M1 and deFo Bug are supported on disjoint subsets of A;*As and are

thus perpendicular. O

We now continue the proof of Proposition 1.5. Let K=K (F}y) be given by Lemma 1.7,
for the finite set Fy CA\A; from (1.7). Let 6=¢/|Fy| and choose £ € L?(B x A1) supported
on A\ K, as given by (1.8). Then

[€d1v” —vdyo™[|a <[|€—vl2]|dr ]| <] Fo| <,

which, together with (1.7), implies that £djv*€a. Y
have &djv* L)

ger, Bug. But, by Lemma 1.7, we

9eFo Buyg. Thus, [[{d1v*||2<2¢. On the other hand,

[€div*|la = I|€dxll2 > [|dill2—[[€ —vll2lldi ]| = c— §* —& > 2e,

a contradiction which ends the proof of Proposition 1.5. O

1.4. A Cartan conjugacy result

We now prove that if the “core” B of an AFP algebra M =M xg M5 is maximal abelian
and regular (and thus Cartan) in M, then any other Cartan subalgebra AyC M which
is normalized by “many” unitary elements in M; is unitarily conjugate to B=A. Note
that it strenghtens both Corollary 1.4 and Proposition 1.5, in the case where the core
B=A is abelian and Cartan in M.

THEOREM 1.8. Let Ay and As be infinite discrete groups and o: A—Aut(A, 1) be a
free ergodic action of A=A1xAs on a diffuse abelian von Neumann algebra (A, 7). Let
M=Ax,A=M;*xs My, where M;=Axg,, N;, i=1,2. Let ¢qeP(A) and AyCqMq be a
Cartan subalgebra such that no corner of (Ngarq(Ao)NgMiq)” can be embedded into A
inside My. Then AoCqMiq and there exists u€U(qMq) such that uAgu*=Aq.

a'|Ai



AMALGAMATED FREE PRODUCTS OF WEAKLY RIGID FACTORS 99

LEMMA 1.9. Let Ay and Ay be discrete groups and let o: A=A1xAy— Aut(B, 1) be
a trace-preserving action on a finite von Neumann algebra (B,7). Let M=Bx,A=
My*p My, where My=Bx ACM. Let qeP(B) and assume that AyCqMq is a
diffuse abelian von Neumann subalgebra such that no corner of Ag can be embedded into
qMiq inside M. Then for any £>0 there exist FCA\A; finite and xl,xzezgeF Bu,
such that any weNynq(Ao) satisfies

U\Al

luziu*zo —xouziu®|la <& and ~/7(q)—e < |Juxiuza)2 </7(¢)+e.

Proof. By the assumption on Ay, it follows from [P8, I, Corollary 2.3] that there
exists a1 €U(Ap) such that ||Eny, (a1)|[2<ie. Thus, we can find Fy CA\A; finite and
T1€) e, Bug such that a1 —z1|2<te. Repeating the above argument, we can now

find as €U (Ap), a finite set F with F; CFCA\A; and xQEdeF Buy such that

3

az—T2lj2 < —.
a2l < g

Using these inequalities, we get for u€N;arq(Ao) (in fact for all ue M with |lul|<1),

|luziu*xs —uaiuas||e < ||uziu™ (22 —asg)||2+ ||u(zr —a1)u*as||2

< lallles —azll +Hiz —anlly < IS £ £

] 7172
Similarly, it follows that ||zouziu*—asuaiu*||2<3e for all u€(M);. Finally, if ue
Ngnrg(Ao) then waju*as=asuau* (because Ay is abelian) and |juaiu*as|la=+/7(q).
Thus, by combining this with the above inequalities, we get the desired estimates. O

LEMMA 1.10. With the same notation and assumptions as in Lemma 1.9 above,
let FCA\Ay be a finite set and let .Tl,xgezgeF Bug. Then, for all >0, there exists
K=K(F,e)CAy finite and 6=03(F,&)>0 such that if ue€ (M), satisfies ||Ep(uu})|l2<d

for all ge K, then it must also satisfy uxiu*re Lo rouziu™.

Proof. Since FFCA\A; is finite, by the free decomposition A=A;xAy, one readily
deduces that there exists K=K 'CA; finite such that (A;\K)F(A;\K)F has empty
intersection with F(A1\ K)F(A1\K). Next, let ue(M1): and set u'=3

and u”=u—u'. Then u” is supported on A\ K and we have the decomposition

EB(uu;)ug

uriu* oy =u"x1 (v vy +u' v ut o +ury () 2o — vz (u) s,

Let 21 o=u"z1(v")*z2. Then, x1 o is supported on (A;\K)F(A1\K)F and we have

the following estimate:

luzyu®zr =21 22 < @llull+ [l DIz | lz2ll 10l < C+E DNzl 2]l w2
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Similarly, if we set @21 =x2u" 1 (u")*, then x5 1 is supported on F(A;\K)F(A\K)
and z2uzy® — 2,1 s @+ KDl ] 22 ] 4.

Next, we show that K and §=¢(12|K|(||lz1]| [|#2]|+1))~3/? satisfy the conclusion. To
this end, let u€ (My); be such that [|Ep(uuj)|2<4 for all g€ K. Then

1/2
£

||u’|2=( ||EB<uu*>||2) < ,

2 D) < K el

geEK

hence

© and ||zouziu® —xa ]2 < ©
UTIU — 212 S T
= A(fl ] w2l +1)

luziu*zo—x1 2l]2 < X

[z || [l2]]+1)

Also, we have

19
lz12ll2 < |lz1 2 —uziu™zs||2+[|uriu*zs |2 < 1 Hllzo | lz2l] < ||| |2 +1.

([l [[z2]|+1)

But, by the way we have chosen K, z1 2 and x5 ; have disjoint supports. Hence z1 2L 22 1.
Thus

[(uzru* zo, zouziu®)| < [(uziu*we — 21 2, Touziu®) |+ (21 2, Touz1u™ — 22 1)|

< Huxlu*xg—x1,2||2||x2ux1u*||2—|—||a:172 \2||1‘2U331U*—$2,1 |2
el flzall | ez [|o2][+1)
Azl Nlw2l[+1) 4]l [[o2]]+1)

<e. O

N

ProrosiTioN 1.11. With the same notation and assumptions as in Lemmas 1.9
and 1.10, let q€P(B) and let AgCqgMq be a diffuse abelian von Neumann subalgebra.
Assume that no corner of (Nynrg(Ao)NgMiq)”" CgMgq can be embedded into B inside M.
Then a corner of Ay can be embedded into qMiq inside qMgq.

Proof. Assume that no corner of Ay embeds into M;. Apply first Lemma 1.9 for
e=17(q)}/? to deduce that there exists FCA\A; finite and z1,72€M supported on F
such that if u€Ngarq(Ao) then

5

y < JJuwyuzalla < 37(g) /2.

luziu* zo—zouziu®||2 < 17'((1)1/2 and %T(Q)l/z

It then follows that |(uziu*zs, vouziu*)|>17(g) for all ueN 1q(A).

By Lemma 1.10, there exist K CA; finite and §>0 such that if ue(M;); satisfies
| Ep(uu))|l2<d for all ge K, then uwiu*ry L, (g)/4xouziu®. But this implies that we
cannot find u€ N'=Ngnrq(Ao)NgMiq such that || Ep(uu)|2<d for all ge K. By [P8, T,
Corollary 2.3], this contradicts the fact that no corner of N’ embeds into B inside M;. O
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The next result provides a useful “transitivity” property for the subordination rela-

tion considered in Corollary 1.4.

LEMMA 1.12. Let M be a finite von Neumann algebra, By and My be von Neumann
subalgebras of M and @Q be a von Neumann subalgebra of M. Assume that there exist
projections qo € By and ¢ € M1, a unital isomorphism of qoBoqo into ¢y M1q1 and a par-
tial isometry ve M such that v*ve€(qoBogo) NgoM qo, vv* €1(qoBogo)' N1 Mq1 and vb=
Y(b)v for all beqoBoqo. Denote by ¢’ the support projection of Epr, (vv*)€v(qoBogo) N
a1 Myq1 and let B1=v(qoBoqo)q’. If a corner of B1=1(qoBoqo)q’ can be embedded into
Q inside My, then a corner of By can be embedded into Q inside M.

Proof. Indeed, if p1 €P(B1), v1 €Mip; is a non-zero partial isometry and

Y1:p1Bipr — Q

is a (not necessarily unital) isomorphism such that v1b=17(b)v; for all b€p; Byp;, then
v10£0 and vivb=11 (Y (b))vyv for all begoBogo. O

Proof of Theorem 1.8. By Proposition 1.11 and [P8, I, Theorem 2.1], there exist
projections go€ AgCqMq and q; €qMiq, a unital isomorphism of Agqy into ¢ M1q; and
a partial isometry v€M such that v*v=gqo,vv* € (Aoqgo)' Ng1Mg1 and va=v(a)v for
all a€Apqo. Let ¢’ be the support projection of Ejps (vv*) and note that if we set
A1=1v(A0q0) Cq1 M1q1, then ¢’ € AiNq1 Myq;. By replacing, if necessary, ¢ by ¢'¢(-)q¢’
and shrinking qo€ Ag accordingly, we may assume that ¢;=¢’.

Now, if a corner of A; can be embedded into A inside M7, then, by Lemma 1.12, a
corner of Ay can embedded into A inside M, so, by [P5, §A.1], the two Cartan subalgebras
Ay, AgCqMgq are unitarily conjugate. If in turn no corner of A; can be embedded into
A inside M;j then, by Theorem 1.1, we have vv*€A]Ng1 Mg Cg1M1q1, implying that
vAgU*Cq1 Myq1. By spatiality, vAgv* is Cartan in ¢ M¢q;, which, by Corollary 1.4,
implies that a corner of vAgv* can be embedded into A inside M;. By [P5, §A.1],
this implies that Ay and Aq are unitarily conjugate in gMg. On the other hand, by
Proposition 1.5, we have AgCqM;q. But then Theorem 1.1 applies to show that Ay and
Aq are conjugate in qMiq as well. O

2. Deformation of AFP factors

Throughout this section, (M;,71) and (Ms, 72) will be finite von Neumann algebras with
BCM; being a common von Neumann subalgebra such that 71|g=72|5, as in §1. We
describe, in this section, several useful ways to deform the identity map on the AFP
algebra M =M *p My by subunital subtracial completely positive (c.p.) maps which
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arise naturally from the amalgamated free product structure of M. By a deformation of

idys we mean here a sequence ¢,, of subunital subtracial c.p. maps on M such that

lim ||¢,(z)—z|2=0 forall z€ M.
n—oo

2.1. Amalgamated free product of c.p. maps

We first recall the definition of amalgamated product of c.p. maps from [Bo|, and establish
some basic properties.

LEMMA 2.1. Let ¢;: M;—M; be subunital subtracial c.p. maps with ¢1(b)=c2(b),
for all be B, and To¢; =1, i=1,2, with 0<A<L]1. Then, ¢1xgdo: My*xg Mo— Myxg My
is a well-defined subunital subtracial c.p. map. Moreover, the map (¢1,d2)—d1xpda is

continuous with respect to the topologies given by pointwise || - ||2-convergence.

Proof. Since To¢;=A7, i=1,2, we have that 7o(¢; *gg(ﬁg):)\r, and hence, by [Bo],
it extends uniquely to a c.p. map ¢1*g @2 on M7+ My, which is then subtracial.

To show that this correspondence is continuous, suppose that e>0 and z1,...,x, €
MixgM,. As Ml*%lgMz is dense in Myxp Ma, let o4, ...,iL’/nEMl*angMQ be such that

|2 —2flla < e for all j<n.

Hence there exist m,l€N and 1€ F; C M; finite such that each x; is the sum of at most m
products of lenght at most [ from FyUF;. Let N=max,cp,up, ||z||. Then, if ¢;: M; — M;
are subunital subtracial c.p. maps with ||¢}(x) —¢;(z)||2<e/(3mIN?) for all z€ F}, i=1, 2,
then repeated use of the triangle inequality together with the fact that subunital c.p.

maps are contractions in the uniform norm shows that
P15 d5(xj)—Pp1xpda(x))|2<e forall j<n. 0

Remark 2.2. In general, the free product of two subunital subtracial c.p. maps need
not be subtracial. In fact, given any c.p. map ¢; which is unital and subtracial, but
not tracial, the c.p. map ¢=¢;*id is not subtracial. Even more so, the Radon—Nikodym
derivative dre¢/dr of any such free product c.p. map ¢ is unbounded. To see this, let
x€ My be such that 7(2)=0, but To¢; (x)#£0, let v€ M5 be a partial isometry with 7(v)=0

and set p=vv*. Then, we have

Tod((vav*)* (vav”)) = |Tody (2) 27 (p) +[[v(¢1 () — o (2))0" |3
= o1 (@) Pr(p)+7(p)* 61 (2) 7o (2)]3-
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Thus, if we choose v such that 7(p)—0, then
Tod((vzv*)* (vav*))

T((vzv*)* (vov*)) o

We note that in [Bo] it was assumed that a free product of subtracial c.p. maps is
subtracial in order to show that the Haagerup property is preserved by free products.
But although the above argument shows that this fact does not hold true unless the c.p.
maps are actually tracial, the result on the Haagerup property is still valid, since, by
[Jol, Proposition 2.2], one can take the c.p. maps given by the Haagerup property to be

unital and tracial.

2.2. Deformation by automorphisms

Let a; € Aut(M;, ), i=1,2, be such that aq(b)=as(b) for all b€ B. Then, since auto-
morphisms are unital c.p. maps, we have that a=a;*pas is a unital tracial c.p. map.
Moreover, « restricted to the dense subalgebra M; *ajglg My is an automorphism, and so,
by continuity, we have that « is an automorphism.

Hence, if af€Aut(M;), teR, is a one-parameter group of automorphisms of M;
which is pointwise || - ||o-continuous and satisfies of|g=idpg, for i=1,2, then o' gives a
deformation of the identity of M by automorphisms. In particular, we have the following

result.

LEMMA 2.3. Let v;eU(B'NM;), j=1,2. Then, there is a pointwise || - ||2-continuous

one-parameter group of automorphisms {at},er CAut(M) such that
a1 =Ad(v1)*pAd(ve).

Proof. Let hj=h}€B'NM; be such that exp(mih;)=v;. Here and in the proof of
Lemma 2.4 below, but not anywhere else in the paper, i stands for /—1. Define

of = Ad(exp(ntih;)), teR, j=1,2,

and the above observation applies. O

For the next lemma, we let M=Mxp(BZL(F2)). Note that, if we let L(Fy)=
L(Z+Z)=L(Z)*L(Z) and M;=M;*p(BSL(Z)), j=1,2, then M=M,*M,. Also, if
u1 €EL(Zx1)CL(F3y) and us € L(1xZ)C L(F3) are the canonical generating unitary ele-
ments, then u; GB’ﬂMj, j=1,2. We will use the algebra M as framework for the main
deformation of M, Lemma 2.4 below. The action of M on the (1.1)-decomposition of the
AFP algebra M :]\7[1 *p ]\~42 can be viewed as the analogue of the action of an amalga-
mated free product group Aj*xpgAg on the Bass—Serre tree with vertices A;/HUAs/H.
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In turn, the “graded deformation” below is inspired by the graded deformations of

crossed product algebras involving Bernoulli actions in [P7] and [P8].

LEMMA 2.4. There exists a pointwise || - ||2-continuous one-parameter group of au-
tomorphisms {0:}ter and a period-2 automorphism (3 of M such that

(a) Op=id and 61=Ad(u1)*pAd(usz);

(b) B0:8=0_; for all teR;

(c) McM?”.

Proof. Let A; be the von Neumann subalgebra generated by u;, and let hj€A; be
self-adjoint elements with spectrum in [—7, 7] such that u;=exp(wih;). Set

uf =exp(mith;), j=1,2, teR.

Then, 0;=Ad(u})*pAd(ub)€Aut(M), for all t€R, defines a pointwise || - [|2-continuous
one-parameter group of automorphisms which satisfies (a).

Let 3 be the unique automorphism of M satisfying Blar=ida and B(u;)=uj, j=1,2.
Then f is clearly a period-2 automorphism and it satisfies (¢) by definition. Also, for
€M =DM *gMs, we have

30:3(x) = B0, (x) = B(Ad(exp(mithi))*Ad(exp(miths)))(x)
= (Ad(exp(—mithy))*Ad(exp(—miths)))(x) =0_;(x)
for all z€ M. Similarly, for u; and us we have
B0 (u;) = B0 (uj) = B(uj) = u; =04 (uy).
Since w1, ug and M generate M as a von Neumann algebra, it follows that

60:,6=60_, for all t. O

2.3. Deformation by free products of multiples of the identity
Recall that if HY=L?(M;)©L*(B) then we may decompose L?(Mj+pMs) in the usual

way as

L*(MyxpM)=L*B)o@ P M, esH),@p..0H.

n>1 ije{1,2}
i1 Fig#izF . Fin

For each LN we let £y, be the projection onto the subspace
@ @ H) ®@pH) ®p..QpH) .

n>L ije{1,2}
i1 FioAig ... Fin

Let {cp }n>1C[0, 1) be such that ¢, 1. Then, by Lemma 2.1, we have the following
result (see also [Pe]).
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LEMMA 2.5. The c.p. maps ¢n=_cnid)*pg(c,id) give a deformation of the identity

of M. Moreover, ¢, commutes with EL as operators on L*(M) and
pnoEr(x)|la <cEl|z|y for all n,LEN and ze€ M.

Proof. This is trivial by the definitions. O

2.4. Deformation by subalgebras

For each i€{1,2}, let Nij C M; be an increasing sequence of von Neumann subalgebras
such that BCN}! and
U N/ =M.
j>1
Let Ef M; — M; be the conditional expectation onto Nf Then Ej:E{ *p E% gives a se-
quence of conditional expectations of M onto Nf *pB Ng , which, by Lemma 2.1, converges
to the identity pointwise, i.e.
JN{sp N =M.
jz1
A particular case of such a deformation, which works whenever B'NM; is diffuse, is
given by Nij :ngZ-pg @B(l—p{), with pg €P(B'NM;) satisfying pf A, i1=1,2. Indeed,
this clearly implies that

U @l Mipl @ B(1—p)) x5 (0h Maph® B(1—p})) = M.
i>1

3. Deformation/rigidity arguments

In this section we investigate the effect that the deformations considered in §2 have
on the relatively rigid subalgebras of M;xpMs. To this end, first recall from [P5, §4]
that if QCM is a von Neumann subalgebra of the finite von Neumann algebra (M, 1),
then QCM is called a rigid inclusion (or Q is a relatively rigid subalgebra of M) if any
deformation of idps by subunital subtracial c.p. maps {¢,},>1 tends uniformly to idg
on the unit ball of @, i.e. lim,, o sup{||dn(y)—yl|l2:y€Q and ||y||<1}=0. This property
does not in fact depend on the choice of the trace 7 on M and can be given several
other equivalent characterizations (see [P5] and [PeP]). The following result provides
yet another characterization of relative rigidity, by showing that it is enough to consider
deformations by unital tracial c.p. maps.
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THEOREM 3.1. Let N be a finite von Neumann algebra with countable decomposable
center, and @ be a von Neumann subalgebra. Then, the following are equivalent:

(i) the inclusion QCN s rigid;

(ii) there exists a mormal faithful tracial state T on N such that for all €>0 there
exist F=F(e)CN finite and 6=09(g)>0 such that if ¢: N—N is a normal c.p. map with
Top=7, p(1)=1 and ||¢(x)—2z||2<d for all x€F, then

lop(b)—blla<e forall be@ with ||b]| <1;

(iii) condition (ii) is satisfied for any normal faithful tracial state T on N.

Proof. (i)=-(iii) and (iii)=-(ii) are both trivial and so it is enough to show (ii)=-(i).
That is, assuming that (ii) holds, we must show that the following condition holds:
for all € > 0, there exist F' = F’'(¢) C N finite and 6’ =¢’(¢) >0 such that if

¢: N — N is a normal c¢.p. map with 7e¢ <7, ¢(1) <1 and ||¢(z) —x||2 <& (3.1)

for all x € F’, then ||¢(b)—b||2 <e for all be @Q with ||b|| < 1.

By [PeP, Lemma 3], we may also assume that ¢ is symmetric in the above condition,
ie. T(¢(x)y)=T(xp(y)) for all z,yeN. Let F=F(4¢), and §=6(3¢) be given from (ii).
Let F'=FU{1} and ¢'=min,cr{36,5/(8||z|*+1), 12}, suppose that ¢: N — N is a nor-
mal symmetric c¢.p. map with 70¢<7, ¢(1)<1 and ||¢(x)—x|2<d’ for all x€F’. Let
a=¢(1)=dro¢/dr and define ¢ by ¢'(x)=¢(x)+(1—a)'/?x(1—a)'/?. Then, ¢’ is a nor-
mal c.p. map with ¢’(1)=1. Moreover, as ¢ is symmetric, so is ¢’ and hence 7o¢'=7.

Also, it follows that for each x€F we have
16/ () =2 < [|$(2) —alla+ ]| (1—a)/22(1—a) /2y
1/2
o) =2+ (1-a)z(1—a) |3l
[¢(x) —zll2+[[1—all2||z|
J.

NN N

Hence, by (i), we have ||¢/(b)—b||2< 3¢ for all be@ with [[b]|<1. Thus

[¢(b)—=bll2 < ||
<l

¢' () =blla+[(1—a)2z(1-a) %
¢'(b)=bll2+(1-al2<e
for all b€ @ with [|b]|<1. O

COROLLARY 3.2. Let (My,71) and (M, 12) be finite von Neumann algebras and let
QCM; be a von Neumann subalgebra such that the inclusion Q CM;*Ms is rigid. Then,
the inclusion QC My is rigid.
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Proof. Let e>0 be given. Since Q C My %M, is rigid, we can find F'=F(¢)CM finite
and d=4(g)>0 satisfying condition (ii) of Theorem 3.1. By Lemma 2.1, there exists
F’C M finite and ¢’ >0 such that if ¢: My — M; is a normal unital tracial c.p. map such
that ||¢(z)—x||2 <8’ for all z€F’, then ||¢p*iday, (z)—x|2<d for all z€ F. Hence, by our
choice of F' and 0, we have that [|¢(b) —b||2=||¢*idas, (b) —b||2<e for all be @ with ||b]| <1.
Thus, by Theorem 3.1, it follows that Q C M; is a rigid inclusion. O

We will now use the deformation in Lemma 2.4 to exploit the relative rigidity of
subalgebras Q C M1 xp M2C1\~41 *B ]\~42. This “deformation/rigidity” argument is inspired
by [P7, Lemmas 4.3-4.8] and [P8, I, §4].

PROPOSITION 3.3. Let (My,m1) and (Ma, ) be finite von Neumann algebras with
a common von Neumann subalgebra BCM;, i=1,2, such that 11|p=72|p. Let M=
Myxp My, M;=M;*p(BRL(Z)), i=1,2, and M=DM;xgMy=Msp(BRL(F,)), as in
Lemma 2.4. Let 6=Ad(uy)*Ad(uz)€Aut(M), where ui,us€L(F3) are the canonical
generators of L(F3), as in Lemma 2.4. Let QCM be a von Neumann subalgebra such
that QCZ\~4 is a 1igid inclusion and assume that no corner of @ can be embedded into B
inside M, i.e. Q'N{(M,B) contains no non-zero finite projections. Then, there erists a

non-zero partial isometry veM such that vy=0(y)v for all yeQ.

Proof. Since QCM is rigid, there exist FC M finite and §>0 such that if ¢:]\~4—>]\~4 is
a subunital subtracial c.p. map with ||¢(z) — (|2 <6 for all z€ F, then ||¢(u)—ull2< 3 for
all uel(Q). Using the continuity of ¢+ 6;, we can find n>>1 such that ||0; jon (z) —2| <5
for all z€ F, which implies [|0; /on (u)—u”g% for all ueld(Q).

Now, let a be the unique element of minimal || - ||3-norm in
K =c6"{01)n (u)u" :ucU(Q)}.

From || 2n (w)u*—1[]2<% for all ueld(Q), we get that |[a—1[]2<%, so a#0. Since
01 9n (u) Ku*=K and [|0; /o (u)au*[|2=||al|2 for all uel(Q), we deduce, using the unique-
ness of a, that au=0; jo» (u)a for all uel(Q) . Using standard arguments, we can replace
a by the partial isometry in its polar decomposition, thus getting a non-zero partial
isometry v€ M such that vu=60; on (u)v for all ueld(Q).

In what follows we show by induction that for any k>0 there exists a non-zero

partial isometry vy, €M such that
V=01 jon—k (u)vy,  for all ueU(Q), (3.2)

which for k=n gives the conclusion. Since we have already constructed vy, we only need
to construct vg41, given vg. Note first that if vy satisfies (3.2) then vivy, €@ NM and
VRV, 691/271,—1@ (Q)NM.
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By applying the automorphism (3 to the equality (3.2) and using the properties of 3,
we get

Blor)u=B(vk)B(u) = B(01 20—k (u))B(vk)

—0_1 gk (B(w) B(vr) = O_y jgn—x (w) B(vy)  for all w U(Q). (33)
By replacing u by u* and taking conjugates in (3.3), we obtain
uB(vy) = B(vg)0_1/20-x(u) for all ueU(Q),
which combined with (3.1) gives
URB(VE)0_1 jon—r (u) = vruB(vf) = 01 jon— (u)vrB(vy)  for all ueU(Q). (3.4)
By applying 6 on—+ to (3.4), we further get, for u€lf(Q), the identity
01 j2n—k (U B(VE) )u = 01 jon—r-1(u)0; jon—r (V& B(v))- (3.5)

Since no corner of @ can be embedded into B inside M, we can apply Theorem 1.1 to
conclude that Q’'NM C M. Thus, since vakEQ’ﬂM and MCZ\ZB7 we get B(vivg) =vivg,
implying that v,G(vy) is a partial isometry with the same left support as vy. Thus,
by (3.5), w="01 jon— (v B(v)) is a non-zero partial isometry satisfying wu=~0; jon—s-1(u)w
for all uel(Q), and the inductive step follows. O

PROPOSITION 3.4. As in §2.3, denote by EL the orthogonal projection of L*(M)
onto the Hilbert space spanned by reduced words of length > L. If QCM;*pMs is a rigid
inclusion, then for any £>0, there exists LEN such that | EL(z)|2<¢ for all z€Q with
]| <1,

Proof. Let ¢,: M— M be as in Lemma 2.5, for some ¢, /1, then, by Lemma 2.1,
we have lim,, o ||n () —2||2=0 for all z€M. Thus, since QC M is rigid, there exists
€N such that ||¢;(z)—z|]2< ie for all z€Q with [|z[|<1. Let LEN be such that ¢f < Je.
Then

1EL()ll2 < | EL(z—di(@))ll2+ ]| dre Br (@) 2 < |le—u(@)l|2+cf ]2 < e

for all z€@ with ||z|<1. O
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4. Existence of intertwining bimodules

In the previous section we saw that a relatively rigid subalgebra @ of a finite AFP von
Neumann algebra M =M;*pg Ms can be “located” by certain c.p. deformations of idy,;.
In this section we will use this information to prove that L?(M) must contain non-trivial
Hilbert bimodules intertwining @ into either M; or M. The rather long and technical
proof will proceed by contradiction, assuming that ) cannot be intertwined in neither
M nor Ms, inside M. We first show that this implies that @) cannot be intertwined in
neither M; nor M, inside M:(Ml xp My)*p (BRL(F3)) either. By Proposition 3.4 and
[P8, I, Corollary 2.3], this shows that  must contain “at infinity” elements with uni-
formly bounded free length and at least two “very large letters” in M;, My or L(F5).
This will be shown to contradict Proposition 3.3.

To “measure” the letters in M;, we will need these algebras to have nice orthonormal
bases over B, in the following sense.

Definition 4.1. Let (M, T) be a separable finite von Neumann algebra and BC M be a
von Neumann subalgebra. A sequence of elements {7, },,>0 C M satisfying the conditions
no=1, Eg(nfn;)=0d;; for all i and j, and Y-, 1, B dense in L*(M, 1), is called a bounded
homogeneous orthonormal basis (BHOB) of M over B. An inclusion BC M having a
BHORB is said to be homogeneous.

LEMMA 4.2. Let (M, ) be a separable finite von Neumann algebra and BC M be a
von Neumann subalgebra. Assume that one of the following conditions holds true:

(a) B=C1,;

(b) B=ACM is Cartan (i.e. B is mazimal abelian and regular in M) and M is of
type 1l;

(¢) B=NCM is an irreducible inclusion of 11y factors and B is reqular in M.

Then BCM is homogeneous, moreover in both cases (b) and (c), M has « BHOB

made of unitary elements in Ny(B).

Proof. Case (a) is clear by the Gram—Schmidt algorithm. Case (c) is trivial once we
notice that such N CM is a crossed product inclusion NCM =N X, , G for some cocycle
action o of a discrete countable group G on N, with 2-cocycle v. Indeed, in this case the
canonical unitary elements {u4},CM implementing the action ¢ provide a BHOB of M
over N.

To prove case (b), we first show that given any n>1 and any vp=1, v1,...,0,_1 €
Nar(A), with E4(viv;)=0 for 0<i, j<n, i#j, and v, eGNy(A), with (v],)*v], #1, there
exists a non-zero v€GN1(A) such that v*v], =0, v/,v*=0 and E4(v*v;)=0 for all 1<j<
n—1. Indeed, first note that, by [D], there exists u€ Ny (A) such that v/, =u(1—p), where
p=1—(v},)*vl, €P(A). Since ApCpMp is Cartan with pMp of type II;, it follows that
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there exists weN,arp(Ap) such that w¢2?:_01 pu*v; Ap (or else, it would follow that pMp
would be finite-dimensional over Ap, and thus of type I, implying that M has a type-I
direct summand, a contradiction). Then w;=pu*v;peGN (Ap), 0<i<n—1, satisfy

n—1

O#w—ZwiEA(wz‘w) €GN (A)

i=0

by [D]. But then v:u(wfzgzol w; Ea(w}w)) clearly satisfies all required conditions.
Now, to finish the proof of (b), let {uy}n>0CNu(A) be a sequence of unitary ele-

ments normalizing A, dense in N7 (A4) in the || - ||2-norm, with uo=1 and with each u,, ap-

pearing with infinite multiplicity. It is sufficient to construct a sequence {vy, }n>0 CNas(A)

such that for all m>0 we have

m
Ea(vjvj)=06;; for all 0<i,7<m and umEZviA. (4.1)
=0

Assume that we have constructed vo=1, vy, ..., v,_1 satisfying (4.1) for m=n—1, for some
n>1. Let v =up— 3" v Ea(viu,) €GN (A). Let v, eGNar(A) be maximal with the
properties v}, (v))*v!!=v! and U;LLZ?;Ol v;A. By applying the first part of the proof to
V05 V1, +eey Un—1, U, and using the maximality, it follows that v/, is a unitary element. But

then v, =v), clearly satisfies (4.1). O

THEOREM 4.3. Let (M, 11) and (Ma,72) be finite von Neumann algebras and BC
M;, i=1,2, be a common von Neumann subalgebra such that m1|p=72|p. Suppose that
the inclusions BC My and BC My are homogeneous. Let Q) be a von Neumann subalgebra
of M=MyxpMsy such that the inclusion QCM is rigid. Then, for either i=1 or i=2,
there exists a non-zero projection f in Q'N{(M, e, ) of finite trace Tr=Tr(aen,)-

Proof. By taking spectral projections, it is sufficient to show that there exists
j€{1,2} and a€Q'N(M,eyp;,), with 0<a<1 and 0#Tr(a)<oco. Assume, by contradic-
tion, that there are no such elements in Q'N{M, eps), i=1,2. If we identify @ with
the diagonal subalgebra {x®x:x€Q} in M &M, then this is equivalent to saying that @
cannot be intertwined into My @ M, inside M @M. By [P8, I, Corollary 2.3], this implies
the following.

Fact 1. For all e>0 and for all y, ..., y, €M, there exists weU(Q) such that

| Ewm, (yjwyi)l|2 <e  forie{1,2} and j,ke{1,...n}.



AMALGAMATED FREE PRODUCTS OF WEAKLY RIGID FACTORS 111

For the next part of the proof, we need to introduce some notation. Thus, for
ie{1,2},let {€/};50C M; be a BHOB of M; over B. Also take {€]}j>0="{u,}ger, C L(F2)
such that £€=u,=1. Then using the notation M=Mxp(B®L(F3)) as in Proposition 3.3
a simple exercise shows that

B={1}u{e! ...&" neN, i, €{1,2,3}, jx >1 and iy £is iz #... £in}

in

is a BHOB of M over B.
For each ngeN, let

Sno = {1}U{E} .. &l in<no, i, €{1,2}, 1 < <no and iy #ip £ g # ... £ in},
Sne = {1IU{E] . lm in <no, ip €{1,2,3}, 1<y <o and 4y £ i # s £ ... £ in )

Also, for i€{1,2}, let SI (resp. SL7) be the subset of Sy, consisting of 1 and the
vectors in gno such that i, #¢ (resp. i1 #%). Note that, if C,C’egﬁ;i and xe€ M; is such

that Eg(z)=0, then ||¢'z¢*||2=|z|2. Also if ¢€S,, and be B then ||Cblla=]b]|2.
We now strengthen Fact 1 so that the elements yy, ..., y, may be taken in M.

Fact 2. For all e>0 and all yq, ..., yne]\~4, there exists weld(Q) such that
| En, (yjwye)ll2 <e  forie{l,2} and j, k€ {1,..n}.

As our basis for M is made up of bounded vectors, by first approximating the y;’s on
the right of w and then approximating the y;’s on the left of w, we may assume that all
of the y;’s are basis elements, and then use the triangle inequality to deduce the general
case. Also, as E)y, is B-bimodular, it is enough to suppose that the y;’s all lie in .
Thus, we only need to show that for all >0 and for all ng€N, there exists weld(Q)
such that ||Epy, (¢*w(’)||o<e for all ¢, ¢ €S, .

To prove this, we first use Fact 1 to deduce that there exists weld(Q) such that
| Ear, (CGwep)||2<e for all Co, ()€ Sy, Then, if ¢,¢'€S,,, we may find Cl,({egﬁélﬂgﬁf
and (g, () €S, such that (=(p¢y and ¢'=¢¢). If (1 =¢] =1, then from the above we have
that || Ea, (Cw)||l2=||En, (Gw))||2<e. Otherwise, we have

10, (C w2 < 1B (w2 < G Ep(GGwén)Sillz < [1Ew, (GGwép)ll2 <e.

This proves Fact 2.

We continue by showing that there are elements of U(Q) (“at infinity”) which are
almost orthogonal to the subspaces having at most one “large letter” from M;UMs.
Specifically, let H,,, =Sp(Sp, M1S}i, USy, M2S5;, ) C L2(M).
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Let ¢1,(€SE" and ¢, ¢4€SEI. Then, for all by,by€B and for all K, L>ng, we
have that EB((CigiKblq)*(CégijgC;)):5giCéEB((§iKb1Cf)*(ijbQC;)), and we also have
that Ep((£0205) (6 01¢1)")=0¢,¢, En((§502)(€b1)*). Hence,

(CLEFDICT, ChET b2C3) =To Ep((C1E5 b1¢T) " (Ch€) b2(3))
=3¢, moEp((€501¢7)* (€]0265))
=0¢1¢40¢, 0005 (€5 b1, € ba).

Also, if €S, and be B, then (C|EKby¢F, (b) =70 Ep((Ch)* Kby () =0.

Hence, we have the following direct sum of orthogonal subspaces of H,,,,:

M= P Hea D Hicc

¢E8n, {12}
.Sy

where H¢=(B and H; ¢,c=5p ('{¢X} ksno BC.
Since {€]}j50="{,}seF,, we may find mg>2ng such that

{& ?iﬂfgﬁgjgno ci{& ;'n:or

We will show that H,,, CH,, .

Let Ky be the Hilbert space generated by all vectors of the form 7'bn*, where be B,
n=gt L€ =6 L6 iy F ki, ntm<mo, and j,, 1, <mg for all p. If {,¢'€Sn,,
and z€M;©B, then we may find (1, (] €SE" and (o, ()€ Sn,NM; such that ¢=(1(o,
and ¢'=¢|¢,. We have that if P is the projection onto the subspace sp{¢/ 1% B then

L (ChaCs —P(ChaCs) — Ep(ChaCd)) St € Hipy s CHP(Ch2¢E )¢ €Ko, and
G EB(Cr¢E)C € Sng BSE, -

If ¢, C’Egno and be B then, if ¢ and ¢’ do not end with a letter in the same algebra,
we have that ¢('b(*€Ky. Also, if both ¢ and ¢’ end with something in {fg}po, then, as
L(Fy) commutes with B and since {¢} ?21{f§}>1k<j<noc{§§ 710, we may rewrite ¢'b(*
to see that it is in Ky, otherwise as above we may find (1, g{esfff and (o, ¢, € Sn, NM;
such that (=(1{o and ¢'=(j(y, and then decompose ¢'b¢* into parts in H, , Ko and
something in §n0 Bgno with shorter words. Hence, by induction, to show that H,, CH,
it is enough to show that Ko CHy, .

Let n and ' be as above, and take be B. If n=0, i.e. n=1, then n'bn*=n'beH,,,.
Also, if i, =3, then, since L(F3) commutes with B and (Ef:)*e{% 70, we can rewrite

n'bn* so that n and 7’ are still in §m0 but such that the length of 7 is shorter. If
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in=1€{1,2} then, since EB((bfg:’)*):O, as above we may replace (bgf:)* by P((b&f:)*)
and (bﬁf:)* fP((bgg:)*), and in so doing rewrite 7'bn* as a sum of things where the word
on the right has shorter length plus something in #,, . Thus, by induction, we have
shown that KCo CH;, and so H,, CH,,, -

Let P,, be the orthogonal projection of L2(M) onto H,,.

Fact 3. For all e>0 and for all yl,...,yHEJ\Zf, there exists weld(Q) such that
| Py (y;‘wyk)||§<s for all j and k.

Let mg be as above. Then, by Fact 2, there exists wel{(Q) such that
1B, (Cyiw™y;C5 < 32l S, |

for all j, k<n and for all C,C’Ggmo.
Thus, for all (Egm and all be B, we have

0
|Cb, g5 wyi) * = |7(Es (yiw*y; Ob)|* < | Ear, (yrw™y; QI3 1013 < 5¢lSmo | [1CDII3,

and so

1Prec (55 wync) 13 < 5215mo |-

Also, for i€{1,2}, all ¢,¢'€ SR and all £€8p{EX} km, B, we have

0
(S"E¢™ y5wyr) |? = 17 (B, (Cyrw™y;¢NE P < [ B, (Cyfw™y; <3 116113
< 3elSm, PlIC'ECT 13,
and so
| P,

i

N4 (yj*wyk)H% < %E|Sm0 |2'

Therefore

1P (g wyie) 13 < 11 Pry,, (55 wun) 13

2
= > P oy 34> D Y 1P, (ywys)ll3 <€

CESm, i=1¢reSiy ceShy

for each j, k<n. Thus, we have proved Fact 3.

Next we note that if Q'N(M,ep) contains a non-zero finite-trace projection, then
so does Q'N{M,epr,) and so, by our assumption, we are in the position of applying
Proposition 3.3.
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Hence, there exists a non-zero partial isometry veM such that vy=0(y)v for all
y€Q. Let >0 and take n; large enough so that there exists vg€sp §mB satisfying
[lv—vp||2< ge. Using the notation in Proposition 3.4, let LEN be such that

|EL ()2 < 5ellvol> for all z € Q with ||z <1,

also let no=n;+3L and let mg be as above so that H,,CH;, . Then, as our basis is
bounded, we have that vy is bounded so, by Fact 3, there exists weld(Q) such that
|| Prng (vow)||2< 1e||vg|. Take wo€M such that Ep(wo)=0 and [|w—wol|2 < Fel|vo||?.

Let KCL?(M) be the right Hilbert B-module generated by 1 and all the vectors
fll ...517:‘66 such that if ir, =3 for some ko<n, then jr<n; for all k<kys. Note that
KM CK and so, since wg€e M and vy €K, we have that vgwgy €.

Let ¢, C’Ggﬁg, K >mg, and be B, then since K >n; we have that

CeKbe, if CeM and (€K,

0, otherwise.

ch(C’«fszC):{

Hence, P (Hn,)C Pxc(Hy,,) CHyny CHong -

Let us write v and wg in § as
0

vo= Y &be, and wo= > Eube,.
&u€0 EwEP

Take &, &, €3 such that b, #0 and be, #0, where &,=¢/" ... &/" and &,=¢! ... & . Thus,

" ¥ n

0(Ewbe, ) (Eube, )" = (ur, &L up, o, &4 i, be, )(BE, (E]7) o (€11)").

m

Let us assume that n>3m by adding on 1’s at the end of this word, if necessary. If ks <ng,

*

for all 1<s<m, then, since v} €sp gnlB and m<L, by decomposing uj, b, bg, (gg") as
its expectation onto B plus something with terms in B®L(F3) and zero expectation
onto B, we write 0(&,be,, ) (Exbe, )* as something in H,, plus something in £+. Otherwise,

if ks>mng for some s<m, then, by decomposing

b (% jn | * jn— in—2\*
iy (€67, (i, beu DE, (€7) ) (€020 )(E) )
just as above into its expectation onto B plus something with terms in B® L(F3) and
zero expectation onto B, we write 0(&,be, ) (§pbe,)* as something with shorter words plus
something in K+. Hence, by induction, we have shown that (&b, )(Epbe, )* €Hny +K1,
and hence also (wq)vg€Hyp, +K+.
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As Pc(Hp,) CHm, we have that P (0(wo)vo) CHum,. Thus

[{vowo, B(wo)vo) | = [{vowo, Pic(0(wo)vo))]
= [( P, (vowo), Pic(6(wo)vo))|
< [P (vowo) |2 (lwo —w||2]|vo [+ [vol|2)
< (1Prg (vow) |2+ [vo]| [lwo —wll2) (lwo —w|l2]|vo[|+[[vol|2)

< (zellvoll+gellvoll) (gellvoll+lvoll)
<ie

Hence we have shown that

lvl3 = lowll3 = (vw, O(w)v) < 2ljv—wvo|l2+|{vow, O(w)vo)|

< 2[lv—voll2+2|vo|*[lw—wo |2+ [{vowo, O(wo)vo)| < 2e+2e+1e <e,

which contradicts the assumption that v is non-zero. O

5. Rigid subalgebras in AFP factors: general Bass—Serre type results

We have shown in Theorem 4.3 that if @ is a relatively rigid von Neumann subalge-
bra of an AFP algebra M =M;jxp Ms, then there exists a non-trivial Hilbert bimodule
HC L?*(M) intertwining @Q into one of the M;’s. We now deduce that a corner of Q can be
conjugated by a unitary element into that same M;. When M; and M, are factors, one
can in fact uniquely partition 1 with projections q1, g2 € Q'NM such that Qg; is unitarily
conjugate into M;, i=1,2. This general Bass—Serre type result will be used in the next
sections to derive more specific statements in the cases B=C, B=A, abelian Cartan,
and B=R, the hyperfinite II; factor.

THEOREM 5.1. Let (M;,7;), i=0,1,2, be finite von Neumann algebras with a com-
mon von Neumann subalgebra BCM;, i=0,1,2, such that 7o|p=71|p=72|B, and such
that the inclusions BCM; are homogeneous. Let M=MyxpMixpMy. Let QCM be
a relatively rigid diffuse von Neumann subalgebra. Assume that no corner of @ can be
embedded into My inside M.

(1) There exist i€{1,2}, projections €@ and ¢" €Q' NM with qq"#0, and a uni-
tary element weld(M) such that uqQqq" v* C M;.

(2) If My and Mo are factors, then there exists a unique pair of projections q1,qs €
Q'NM such that ¢ +g2=1 and u;(Qq;)ul CM; for some unitary elements u;, €U(M),
1=1,2. Moreover, these projections lie in the center of Q'NM.
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Proof. (1) By Theorem 4.3 and [P8, I, Theorem 2.1], there exist i€ {0, 1, 2}, non-zero
projections ¢€P(Q) and peP(M;), an isomorphism v of ¢Qq into pM;p, and a non-zero
partial isometry ve€ M such that vo*€(qQq) NgMgq, v ve(¢Qq) NpMp and zv=vi)(x)
for all x€qQq. By hypothesis, i cannot be equal to 0, and thus i€{1,2}. Note that, by
shrinking ¢ if necessary, we may assume that xv=0 for x€qQq implies x=0. Also, if we
denote by ¢’ the support projection of Ejs, (v*v), then, by replacing if necessary ¢ by
q'¥(-)q, it follows that we may assume that ¢'=p.

Now note that if a corner of ¥(gQq) can be embedded into pBp inside pM;p, then,
by Lemma 1.12; a corner of @ can be embedded into B (and thus into MyD B as well)
inside M, contradicting the hypothesis. Thus, no corner of 1(qQq) CpM;p can be embed-
ded into B inside M;, so we can apply Theorem 1.1 to conclude that Q{NpMpCpM;p.
Hence, v*veQ{NpMpCM,;. Taking ¢”"=vv* and a unitary element u€M such that
uqq”’ =v, the statement follows.

(2) Let z2=2(q) denote the central support of ¢ in @ and note that z¢” is then the
central support of g¢” in Qq”. By the factoriality of M;, :=1,2, it follows that there
exists a unitary element uweld (M) such that Q¢"zCuM;u*. (Indeed, this is because
whenever Qo CN is an inclusion of finite von Neumann algebras, go €P(Qo) and NoyC N
is a subfactor with ¢QoqC Ny, then there exists u€U(N) such that Qpz(q) CuNgu*.)
Thus, the projection pi=¢"2€Q'NM together with the unitary element u satisfy the
condition u@pyu* C M;.

Let F be the set of all families of mutually orthogonal projections
{pi}ier CP(Q'NM),

with the property that for all i€ there exists j(i)€{1,2} (unique by Theorem 1.1) and
v; €U (M) such that v;Qpjv; C M;(;). The set F is clearly inductively ordered with respect

to the order given by inclusion. Let {p}};cr be a maximal element. Let
G=> 1 @=> 1
j()=1 J(i)=2

and set ¢'=1—¢]—d5.

Assume that ¢'#0. Since @ is diffuse, there exists g€ P(Q) such that 7(¢'q)=1/n for
some integer n>1. Let @CM be a von Neumann algebra isomorphic to M, «,(¢Qqq’)
with ¢Qqq’ equal to the upper-left corner qq’ @qq’ and ¢¢’ having central trace 1/n in @
By [P5, §4], @CM is a rigid inclusion. Thus, we can apply the first part of the proof to
get i€{1,2}, O;éq’e@’ﬁM and a unitary element we M such that wQ§' w* C M. Since
qq' has scalar central trace in @, it follows that the projection

p=4qq'q € (qQq)'NgMq=q(Q'NM)q
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is non-zero. Thus p=qq” for some projection ¢”€Q'NM with ¢’"<q’. Since p<q’, we
also have w(qQqq" )w* C M;, implying that if we let p’=2(q)q"” (where z(q) is the central
support of ¢ in Q) then p'€eQ’'NM, p’<q’ and there exists a unitary element v in M such
that u(Qp")u*C M;. But then {p,};c;U{p'} lies in F, thus contradicting the maximality
of {p;}ier-

We have thus shown that ¢} +¢5=1. On the other hand, by the factoriality of the
My’s, k=1,2, for each fixed k we can choose the unitary elements {v;:j(¢)=k} which
satisfy v; (Qp})vi C My, so that v;piv} be mutually orthogonal projections in Mj,. Taking
up €U(M) to be a unitary element extending Ej(i):k v;, it follows that ug(Qq},)u; C M,
k=1,2.

This proves the existence part of fact (2). But the uniqueness part is then clear,
since if p}, p is another pair of projections in Q'NM satisfying p] +p5=1, v;(Qp})vy CM;
for some v;eU(M), i=1,2, and we assume x=p}¢5h7#0, then the partial isometry w in
the polar decomposition of  lies in @Q'NM, and if we denote p=ww™* then vy (Qp)vy C M
while ugw* (Qp)wuj C Ma, contradicting Theorem 1.1.

To finish the proof of (2), we need to show that ¢; and ¢} are in the center of
Q'NM. Since ¢} +g5=1, this amounts to showing that their central supports in Q'NM
are disjoint.

Assume by contradiction that there exist non-zero projections ¢ <}, q/€Q'NM
with v'qf (u')*=¢4 for some v’ €U (Q'NM). But then uk(Qqy)uj C My, k=1, 2, are diffuse

and are conjugate by the unitary element usu'uf, contradicting Theorem 1.1 again. [

THEOREM 5.2. Let I be a set of indices with 0€I and (M;,1;), i€1, be a family of
finite von Neumann algebras with a common von Neumann subalgebra B C M;, such that
To|lB=T:|B for all i. Assume that M; are factors for i£0, and that the inclusions BC M;
are homogeneous for all i€l. Denote by M=xp ;cr M, the free product with amalgama-
tion over B of the algebras M;, i€I. Let t>0 and QCM? be a relatively rigid diffuse von
Neumann subalgebra such that no corner of Q can be embedded into My inside M and
such that the normalizer of Q in M generates a factor N. Then there exists a unique
i€I\{0} and a unitary element ue M such that uQu* C M}. Moreover, such u satisfies
uNu*C M}, and in fact uNu*C M}, where N=N(N, M!; B) is as in Definition 1.2,

Proof. Note first that the fact that QCM? is rigid implies that Q is countably
generated (see, e.g., [PeP]). Thus, there exists a countable subset S50 of indices i€ I such
that QC (xp,;esM;)". By Corollary 3.2, QC (xp,icsM;)" is rigid and, by Theorem 1.1, all
of N is contained in (*p;esM;)". This shows that it is sufficient to prove the statement
in the case when M;, i>0, is a sequence of algebras.
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Moreover, since QC M is rigid and since the factors M (K, t)=My*x (*Brex M),
with K being a finite subset of {1,2,... }, tend to M?, it follows by [P5] that there exists
a non-zero projection ¢’€Q'NM?, a unitary element ve M* and a finite set K C{1,2,... }
such that v(Qq’)v*CM(K, t). But ¢'€N and, by [P8, I, Lemma 3.5], Q¢’ is quasi-regular
in ¢ N¢', so, by Theorem 1.1, we have v(q’Nq’)v*CM(K, t). Since N is a factor, v can
be modified so that vNv* C M (K, t). In particular vQu* C M (K, t).

Since @ is diffuse, there exists ¢€P(Q) such that 7(¢)<t~!. Thus, we may assume
that v(qu)v*CZ\NJKdéfMO*B(*B,keKMk), and notice that, by [P5, Proposition 4.7], the
unital inclusion v(gQq)v* CpMpgp is rigid, where p=vquv*. Since K is finite, Theorem 5.1
applies to get i€ K, O#qge(quqv*)’ﬂpMKp and a unitary element we My such that
w(vgQqu*q})w* C M;. Moreover, since 7(q) <t~ !, we can view w(vqQqu*q.)w* as a (possi-
bly non-unital) subalgebra of M}. Since ¢} € (vqQqu*) NpMp, it follows that ¢, €vgN qv*
(recall that N is generated by the normalizer of @ in M). By [P8, I, Lemma 3.5] and
Theorem 1.1 again, it follows that w(q,vgNqug})w* CM;, implying that wqivg can be
extended to a unitary element u€M?® such that uNu*CM}. Thus uQu*CM}. Also,
by Theorem 1.1, ¢ is unique with this property, while, by Corollary 1.3, it follows that
uNu*C M}, O

6. Amalgamation over C: free product factors with prescribed §F(M)

We first apply Theorem 5.1 to plain free product factors, where the result becomes an
analogue of the classical Kurosh theorem for groups. The first Kurosh-type results in
operator algebra framework were obtained by N. Ozawa in [O]. He proved that if N is a
non-prime non-hyperfinite II; subfactor of a free product M = Mj * M of semiexact finite
factors M; and My, then N can be unitarily conjugated into either M; or My (this is an
analogue of the “Kurosh subgroup theorem”). As a consequence, he showed that if two
free products *;M; and *;N; of non-hyperfinite non-prime semiexact factors N; and M;
are isomorphic, then the “length” of the two free products must be the same and each
N; is unitarily conjugate to M;, after some permutation of indices (this is an analogue
of the “Kurosh isomorphism theorem”).

In turn, our results cover different classes of algebras. Thus, our analogue of the
“Kurosh subgroup theorem” allows M; and M, to be arbitrary finite von Neumann
algebras, but only gives information about relatively rigid subalgebras @ of M M.
Our corresponding “isomorphism theorem”, which in fact we obtain for amplifications of
free products, will require the factors IV; and M; to be either w-rigid, i.e. to have diffuse
regular relatively rigid subalgebras, or to be group measure space factors associated with
actions of w-rigid ICC groups. In particular, it holds for II; factors IN; and M; with the



AMALGAMATED FREE PRODUCTS OF WEAKLY RIGID FACTORS 119

property (T) (in the sense of [CJ]), and more generally for tensor products of property (T)
I1; factors with arbitrary finite factors. Moreover, since the factors N=L(Z?xF,) in
[P5] are w-rigid and have trivial fundamental group (see Corollary 7.18 for a different
proof), this will allow us to obtain large classes of factors with trivial fundamental group,
different from the ones in [P5] and [P8]. More generally, using also [DyR], we construct
a completely new class of factors with prescribed fundamental group which, unlike the
ones in [P5] and [P8], have no Cartan subalgebras (by [V2], cf. Remark 6.6 below).

THEOREM 6.1. Let (M;,7;), i=0,1,2, be finite von Neumann algebras and let M=
MoxMyxMsy. Assume that no direct summand of (Mo, 19) has relatively rigid diffuse
von Neumann subalgebras (which, e.g., holds if My=C, or more generally if My has
the Haagerup property). Let QCM be a relatively rigid diffuse von Neumann subalgebra
of M.

(1) There exist i€{1,2}, qeP(Q), ¢ €P(Q'NM) and uweld (M) such that qq'#0
and uqQqq'u* C M;.

(2) If, in addition, My and My are factors, then there exists a unique pair of projec-
tions q,q¢,b€Q'NM such that ¢4 +qhb=1 and u;(Qq})ui CM; for some unitary elements
w; €U(M), i=1,2. Moreover, q},qgh€Z(Q'NM).

(3) If instead of M; and Ms we consider a whole family of finite factors M;, i>1,
we take a rigid inclusion QCMt=(My*MyxMax...)t, for some t>0, and we assume that
the normalizer of Q in M generates a factor N, then there exists a unique i>1 and a
unitary element w€ M" such that uQu* C M}. Moreover, such a u satisfies uNu*C M},
and in fact uﬁu*CMf, where N=N(N, M!; C) is as in Definition 1.2.

Proof. As in the proof of Theorem 5.2, note that @ is relatively rigid implies that @
is countably generated. Thus, there exist countably generated von Neumann subalgebras
MPc M;,i=0,1,2, such that QC M{*M?*MJ3. Hence, to prove (1), it is clearly sufficient
to prove it in the case where the M;’s are countably generated, i=0,1,2. But then
each CCM; is homogeneous by Lemma 4.2. Let us show that no corner of ) can be
embedded into My inside M. Assume that this is not true. By [P8, I, Theorem 2.1], it
follows that there exist non-zero projections ¢€@ and pe My, a unital isomorphism
of ¢Qq into pMyp and a non-zero partial isometry v€M such that vv*€(¢Qq) NgMg,
v*veY(qQq) NpMp and zv=vi)(z) for all z€qQq. Let ¢"=vv*€Q'NM.

Since 1 (qQq) CpMyp is a diffuse von Neumann subalgebra, by Theorem 1.1, it follows
that ¥(qQq) NpMpCpMop. Thus v*vepMyp. This shows that v*¢QqvCpMyp, which
in turn implies that ¢Qqq” CwMyw* for some unitary element we M extending v. Since
QCM is rigid, by [P5, Proposition 4.7], ¢Qqq"” Cqq”’Mqq" is also rigid, which trivially
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implies that ¢Qqq" ®(1—qq¢”)CCM is rigid. But then it follows that
w*(qQqq" & (1—qq")C)w C Mo

is rigid by Corollary 3.2. By taking a suitable amplification of w*(¢Qqq")w in My and
using again [P5, Proposition 4.7], this implies that a direct summand of My contains a
relatively rigid diffuse von Neumann subalgebra, a contradiction.

Altogether, this shows that the conditions required in Theorem 5.1 are satisfied, so
part (1) of the statement follows as a particular case of that theorem.

For part (2), simply notice that if M; and M, are factors, then the countably
generated von Neumann subalgebras M{, MY, MY with the property QC MM MY
can be chosen so that MY and MY are factors as well, so Theorem 5.1 (2) applies.

Part (3) follows then from part (2) and Theorem 5.2. O

Definition 6.2. A finite von Neumann algebra (M,7) is weakly rigid (w-rigid) if
it contains a regular relatively rigid diffuse von Neumann subalgebra, i.e. a subalgebra
QCM such that Ny (Q)'=M and QCM is a rigid inclusion (or Q is a relatively rigid
subalgebra of M [P5]). Note that if G is a w-rigid group as defined in [P3], [P5], [P6]
and [P8], i.e. G contains an infinite normal subgroup with the relative property (T) of
Kazhdan-Margulis ([M]; see also [dHV]), then L(G) is w-rigid. Also, if M is w-rigid and

P is an arbitrary finite von Neumann algebra, then M®P is w-rigid.

THEOREM 6.3. Let (Mo, Tar,) and (No,Tn,) be finite von Neumann algebras which
have no relatively rigid diffuse subalgebras (which, e.g., is true if My and Ng have
Haagerup’s compact approzimation property). Let My, ..., My, and Ny, ..., N, be I1; fac-
tors, where n,m>=1 are some cardinals (finite or infinite) and assume that each M; and
each Nj is w-rigid. If 0 is an isomorphism of M= M; onto N*, where N=x]_oN;
and t>0, then m=n and, after some permutation of indices, 0(M;) and N} are unitarily

conjugate in Nt for all i>1.

Proof. For each 1<i<m let @; C M; be a regular relatively rigid diffuse von Neumann
subalgebra. Since M; are factors and Q); C M; are regular inclusions, it follows that for any
5>0 the factor M contains a regular diffuse relatively rigid subalgebra. To see this, note
that My, (Q;) acts ergodically on the center of Q;, so Z(Q;) is either diffuse or atomic.
In both cases we can find projections ¢’ € Z(Q;) and ¢€@Q;q’ such that the central trace
of ¢ in @, is a scalar mutiple of ¢’ and 7(q)=s/k, for some k>t. By [P8, I, Lemma 3.5],
it follows that the inclusion ¢@Q;qCqM;q is regular and, by [P5, Proposition 4.7], it is
rigid as well. But then My, xx(qQ:q) C Mixi(¢M;q)=DM} is regular and rigid ([P5]).

Moreover, note that any diffuse von Neumann subalgebra B; C M satisfies

B/NM?*C M;.
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To see this, note first that by taking direct sums of k copies of B; embedded diagonally
into My r(MF)=MFs

7

pEP(B;) with 7(p)=1/s and note that if we assume by contradiction that

with k sufficiently large, we may assume that s>1. Then take

BINM?* +# B.NM;,

then (pB;p) NpM®p#(pB;p) NpM¢p. But (pM7ipCpMp)~(M;CM) and M splits off
M; as a free product. Thus, by Theorem 1.1, the relative commutant in pM®*p=M of
the diffuse subalgebra pB;pCpM;p=M; must be contained in pM;p, contradicting the
assumption.

Taking now s=1/t, it follows that Mil/ * has a diffuse regular relatively rigid subal-
gebra, implying that P;=60'/ t(Mil/ t) has such a subalgebra B; as well. In particular, the
inclusion B; C N is rigid. In addition, B,NN C P;. Since the inclusion B;C N is rigid and
regular, by Theorem 6.1 (3), there exists a unique j(¢)€{1,2,...,n} and a unitary u;€ N
such that B; Cu;Njyu; and P;Cu;Njyu;. Thus, there exists a unique j(i) such that
for some unitary element v; € Nt we have O(Mi):PithiN;(i)v;‘.

Similarly, by applying the above to §~!, we get for each 1<j<n a unique 1<k(j)<m
and a unitary element in w; €M such that O*I(N})ijMk(j)w;. Altogether, for each

1<i<m we get
M; = 971(9(MZ)) C Gfl(viN;(i)vf) C usz(J(l))uf, (61)

where u;=wj(;0~*(v;). By Theorem 1.1, it follows that k(j(i)) =i, i.e. ke j=id. Similarly,
jeok=id. Thus m=mn, j and k are onto isomorphisms and the inclusions (6.1) are in fact

equalities. O
In the next statement, for a finite permutation 7€5,, and 1<i<m we denote by
m(,i) the cardinality of the set {7*(i):k>1}.

COROLLARY 6.4. Let meN and let My, ..., My, be w-rigid 11y factors. Let (Mo, Tar,)
be a finite von Neuman algebra which contains no rigid diffuse von Neumann subalgebras.
Let M =" M;. Then

sanc {J 3@ c () Fmtm.
TES, 1=1 i=1

In particular, if one of the factors M;, 1<i<m, has trivial fundamental group, then so
does M.

Proof. For teF(M), let 0: M — M* be an isomorphism. Applying the previous theo-
rem, we get that there exists 7 €S, such that 8(M;) and M;(i) are unitarily conjugate in
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M. In particular, we have that Mi%MTtr( ; for all 1<i<m which, by induction, implies
that M;= MY, for all 1<i<m, keN.

Fixing i and letting k=m(m,i), we obtain that ™(™) cF(M;), or equivalently t€
S(Mi)m(”’i)fl. By intersecting over all values of i, taking the union over all possible

permutations and noticing that m(m,i) divides m, the result follows. O

For the next corollary, we denote by X5, the set of all finite tuples of positive numbers
{t;}_;CR*, n>2, and by X the set of all infinite sequences {t;};>1 CR*. Also, we
let X=X5,UX. If X={t;}; and Y={s,}, are in &, then we write X~Y if both have
the same “length” and there exists a permutation (bijection) 7 of the (common) set of
indices {1,2, ... } such that s =t; for all i.

Given a II; factor M and X={t;};€ X, we let MX =x;M'. Note that if X,Y€X
and X ~,Y, then 7 induces a natural isomorphism 6,: MX~M?Y  in the obvious way.
For t>0 and X={t;};€X we let tX={tt;};€X.

COROLLARY 6.5. Let M be a w-rigid 11y factor with trivial fundamental group, e.g.
M=L(Z?xSL(2,Z)) (cf. [P5]).

(1) If X, YeX, then MX~MY if and only if X~Y, which holds if and only if
MXxL(Fp)~MY xL(Fy) for some 1<k<oo0.

(2) F(MX)={1} for all X € Xs,. Moreover, if we denote by Xy the set of elements
X in Xgn with min X =1, then {MX:X€Xy} is a continuous family of mutually non-
stably isomorphic 11 factors.

(3) For each X €Xo let Sx={teR*:tX~X}. Then F(M*X)=Sx. In particular,
if SCRY is an infinite countable subgroup and X € X has the elements of S as entries,
each one repeated with the same (possibly infinite) multiplicity, then F(M'X)=S for all
t>0. Moreover, M**X and M®X are stably isomorphic if and only if t; and to are
in the same class in R*/S. Thus, {M'X:teR*/S} is a continuous family of mutually
non-stably isomorphic 11y factors all with fundamental group equal to S.

(4) If SCRY is an arbitrary infinite (possibly uncountable) subgroup then the II;
factor M®=x,c5M? has fundamental group equal to S.

Proof. (1) If MX=MY then, by Theorem 6.3, X and Y have the same length and
there exists a bijection 7 of the corresponding (finite or infinite) set of indices {1,2,... }
such that Mt =M3~® for all i. Since M has trivial fundamental group, this implies that
ti=8x(;) for all i, and thus X~;Y. The second equivalence has exactly the same proof,
using Theorem 6.3 with My=L(F},).

(2) If X={t;};~, and Y={s; 7, are in Xg, and MX~(MY)t, then

MX«L(Foo)~ (MY ) 5 L(Fy).
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But, by [DyR], the last factor is isomorphic to M*Y * L(F,). Thus,
MY L(Fo) ~ MY « L(F.),

which, by part (1), implies that X ~tY. Thus, if X=Y (resp. X,Y €X),) then t=1 and
we get F(MX)={1} (resp. X~Y). This implies both statements.

(3) By [DyR], if X€X,, then (MX)'=M'™. Thus MX=(MX)! if and only if
X ~tX, which readily implies all statements.

(4) Tt is easy to see that, in fact, the proof of the amplification formula (M)t~ M*S
in [DyR] does not depend on the fact that the infinite set S is countable. Thus, since
for t€S we have tS=S as sets, it follows that (M®)'=M"=M%. Hence SCF(M5).
Conversely, if seR* satisfies (M%)*~M?9, then M*3~M% which, by Theorem 6.3,
implies that tS=S5, so that s€S. O

Remarks 6.6. Dima Shlyakhtenko pointed out to us that, by combining Voiculescu’s
initial argument for showing that L(F,,) has no Cartan subalgebras, with Kenley Jung’s
“monotonicity” [Ju], it follows that any free product of type-II; factors which embed
into R¥ is “Cartan-less” (see [Sh] for a detailed argument). Thus, unlike the examples of
factors with prescribed fundametal group in [P8], which are group measure space factors
associated with equivalence relations coming from Connes—Stgrmer Bernoulli actions,
the examples of factors M that we produce here (in Corollary 6.5) have no Cartan
subalgebras, and altogether no diffuse hyperfinite “core”. In particular, they cannot be
written as crossed products of the form M =RxI" with R being the hyperfinite factor.

It is interesting to note that Theorem 5.1 can be used to give a completely new
proof of the by now classical result of Connes and Jones showing that property (T)
factors cannot be embedded into the free group factor [CJ]. Thus, rather than using
Haagerup’s property (i.e. “deformation by compact c.p. maps”), as the original proof

does, this new proof uses a “deformation by automorphisms” of the free group factors.

COROLLARY 6.7. ([CJ]) For every n, 2<n< oo, the free group von Neumann algebra

L(F,,) contains no relatively rigid diffuse subalgebra.

Proof. 1t we write L(F,) as L(Z)*L(Z)*...«xL(Z) and then apply recursively the
first part of Theorem 5.1 and Corollary 3.2, it follows that a corner of L(Z) contains a

rigid diffuse von Neumann subalgebra, a contradiction. O

7. Amalgamation over Cartan subalgebras: vINE/OE rigidity results

In this section we apply Theorem 5.1 to study group measure space factors of the form
Ax,T', where I is a free product of groups I'=T'g*I'; ... and o is a free ergodic m.p. ac-
tion of ' on A=L>(X, u), for a probability space (X, ut). Such a factor can alternatively
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be viewed as a free product with amalgamation M =M% M1*4..., where M;=Ax,,T';,
o;=0|r,, with ACM, with the algebra of coefficients A of the crossed product AxTI' now
becoming the “core” of the amalgamated free product. It is this form that will allow us
to use Theorem 5.1.

Following [P8], we regard an isomorphism of such group measure space factors as
a von Neumann equivalence (VNE) of the corresponding actions (o, *;I';). Thus, the
main result we prove in this section is a rigidity result showing that vINE of actions
of free products of groups I'; satisfying some weak rigidity conditions (of property (T)
type) entails the orbit equivalence (OE) of the actions o, with componentwise OE of the
actions (o;,I";). Due to its analogy to similar statements on (amalgamated) free products
of groups in Bass—Serre theory, we refer to this as vNE Bass—Serre rigidity. We note that
when applied to isomorphisms of group measure space factors that come from OE of the
actions, they give OE Bass—Serre rigidity results.

Since we study the group measure space factors M=Ax (I'g+'1*...) as AFP factors
(AxDg)*a(AxT1)*x4..., it is worth noticing that if M=My*a My*4... is an AFP factor
coming from Cartan subalgebra inclusions A=L>(X, u)CM;, i>0, then it follows that
the AFP “core” A is regular in M, but in general it may not be maximal abelian (and
thus not Cartan) in M. For instance, if A is a Cartan subalgebra of a II; factor N, then
A is not maximal abelian in M=N=x4 N, because for any u€Ny(A) with E4(u)=0 the
element uxu~1! is still perpendicular to A yet acts trivially on it. For more on general
properties of AFP factors arising from Cartan inclusions, we refer the reader to [Ko],
[U1] and [U2].

In case M;=Ax,,I';, with each o; being a free m.p. action, then there exists a unique

m.p. action o of I'=Tg*I';*... on A such that o

r,=o0; for all i, and we still have the
natural identification M =Ax,I'=My* 4 Mi*4..., as in the case when o is a free action
mentioned above. Then A is Cartan in M if and only if o is a free action, i.e. if and only
if o; are “freely independent” actions (in the obvious sense). For general equivalence
relations (or Cartan subalgebras), the definition of “free independence” was formulated
by Gaboriau [G1] and is recalled below. Recall that if B is a finite von Neumann algebra,
p and g are non-zero projections in B and 6: pBp—qBq is a x-morphism, then 0 is called

properly outer if b€ B and the condition 8(z)b=>bx for all x€ B implies that b=0.

Definition 7.1. ([G1]) Let {R;}icr be a family of countable measurable measure-
preserving equivalence relations on the same standard non-atomic probability space
(X, 1) (see e.g. [FM]). We alternatively view each R; as a pseudogroup of local m.p.
isomorphisms ¢:Y1~Y> with Y7, YoC X measurable and the graph of ¢ contained in
R; [D], [FM]. We say that {R;}; are freely independent if for any n and any prop-
erly outer local isomorphisms ¢;€R;;, 1<j<n, i; €I, with ;7#i;11,1<j<n—1, the
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product ¢1¢s ... ¢, is properly outer.

In the case when each of the equivalence relations R; is generated by properly outer

automorphisms, Definition 7.1 can be viewed as a particular case of the following.

Definition 7.1/ Let (B, 7) be a finite von Neumann algebra and S; CAut(B, 1), i€1,
be a family of sets of 7-preserving automorphisms, with each §€.5; either properly outer or
equal to idp. We say that {S;}; are freely independent if for any n and any 6;€S; \ {idg},
1<j<n, i;€1, with i1 #ig#... %4y, the product 6,16 ... 0, is properly outer.

The next lemma translates the freeness conditions in Definition 7.1 into the frame-

work of operator algebras (see [U2]).

LEMMA 7.2. Let (M, T,), n=1, be finite von Neumann algebras with a common
Cartan subalgebra ACM,, such that T,|a=Tm|a for all n and m. Then

ACMi*aMo*4...

is a Cartan subalgebra if and only if the equivalence relations R,=Racm,, n=1, are

freely independent.
Proof. Since A is clearly regular in M =M% Msx*4..., all we need to prove is that
ACM is maximal abelian if and only if {R,},>1 are freely independent. But this is

trivial by the definitions of freeness and of the amalgamated free product over A. O

The next result, essentially due to Térnquist [T6], shows that a sequence of actions
of countable groups (or merely countable m.p. equivalence relations) can be made “freely
independent” by conjugating each one of them with a suitable m.p. automorphism. We

include a proof, based on Lemma A.1 in the appendix, for the reader’s convenience.

PROPOSITION 7.3. (1) Let (X, u) be a standard non-atomic probability space and
on: Gp—Aut(X, 1) be free m.p. actions of discrete countable groups G, n=1. Then
there exists a free m.p. action o of G=+21G,, on (X, u) such that o|g, 1is conjugate
to oy, for all n>=1. More generally, if {R,}n>1 are standard equivalence relations on
(X, u) then there exists an equivalence relation R on (X, ) generated by a family of
freely independent subequivalence relations R, CR, n>1, such that R,~R., for all n.

(2) Let (My,T,) be countably generated finite von Neumann algebras with a common
diffuse Cartan subalgebra ACM,,, n>0, such that T,|a=Tm|a for all n and m. Then
there exist Cartan subalgebra inclusions {ACNy}n>0 such that (ACN,)~(ACM,,) for
all n, and such that A is a Cartan subalgebra in Noxs Ni%4Ns ...

Proof. (1) This is an immediate application by induction of Lemma A.1, once we
notice that any R,, can be extended to a countable m.p. equivalence relation S,, on (X, u)
which is generated by countably many properly outer m.p. automorphisms.
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(2) By Lemma 7.2, we only need to make the equivalence relations R acyy, freely

independent, so the first part applies. O

We also notice the following general “compression formula” for restrictions of “free
products of equivalence relations” R=x*_,R;, i.e. for relations R that are generated by

freely independent subequivalence relations R; CR,1<i<n.

PROPOSITION 7.4. (1) Let M;, 1<i<n, be 11 factors, for some 2<n< o0, with a
common Cartan subalgebra A and assume that ACM=Myx 4 Msx4...x s M, is Cartan.
If p€A is a projection of trace 1/m for some integer m>=1 then the Cartan subalgebra
inclusion ApCpMp is naturally isomorphic to ApC Mo* appM1D* Ap ... ¥ aAppMpDp, where
(ApC Mo)=(ApCApXF (,_1)(m—1)) for some free action of the free group F(,_1)m—1)
on Ap.

(2) Let Ryq,..., Ry be freely independent countable ergodic m.p. equivalence relations
on the same standard probability space (X, u) and denote the equivalence relation they
generate by R. If Y CX is a subset of measure 1/m then the restriction RY of R to Y
1s generated by the freely independent ergodic subequivalence relations R}f, 1<i<n, and
Ro, where RY is the restriction of R; to Y and Ry is generated by a free m.p. action

of a free group with (n—1)(m—1) generators F(,_1y(m—1) on Y.

Proof. Tt is clearly sufficient to prove part (1). By the representation of AFP algebras
(1.1), the von Neumann algebra generated by pM;p, 1<i<n, in pMp is isomorphic to
the AFP algebra pMip*ap...%appM,p. On the other hand, since 7(p)=1/m and each
M; is a factor, by Dye’s Theorem [D], there exist matrix units {egk}lgj,kgm in the
normalizing groupoid GNy, (A) of A€ M; such that e}’l =p and egjzeg,j, for all 1<4,4'<n
and for all 1<j<m. Let uZ:e%’jeg’IEpMp, 2<i<n, 2<j<m, and notice that there
are (n—1)(m—1) such unitary elements. The expansion (1.1) of My*4...x4 M, implies
that {ui}” are the generators of a free group F(,,_1)(m—1), all of whose elements #1
are perpendicular to Ap. Since ACM is Cartan, this implies that the action induced
by F(n_1)(m—1) on Ap is free. Moreover, if we let MozAp\/{ug Zjl’ApNF(nq)(mq),
then it is immediate to check that if v=wv;v;,...v;; EpMp is an “alteranting word”,
with v;, in the normalizing groupoid of Ap in pM;,p for all [, and 43#is#...#%, in
{0,1,...,n}, Eap(v;,)=0 for all I, then v has expectation 0 on Ap as well, E,(v)=0.
Thus, if we denote by NCpMp the von Neumann algebra generated by pM;p, 0<i<n,
then (ApC N)=(ApC Mo*appMip*ap...* appMyD).

Finally, since e{’lug :eg’l, we have that M is generated by N=pNp and the matrix
unit {e{k}j,k. This also implies that pMp is generated by /", pM;p. Altogether, this
shows that (ApCpMp)=(ApCN)=(ApC Mo* 4pDM1p* ap ... * ap p M, D). O

The above result shows in particular that if F,,~X is a free m.p. action on the
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probability space with restrictions to each of the generators of F,, acting ergodically
on X, then the amplification of the corresponding orbit equivalence relation Ry, by
1/m is an equivalence relation that can be induced by a free ergodic m.p. action of
a free group with m(n—1)+1 generators, thus recovering the “compression formula”
R;{Lm:RF7"(,"71)+1 in [Hj]. On the other hand, Proposition 7.4 can be viewed as an AFP
version of the “compression formula” for plain free product factors in [DyR].

Theorem 7.7 below will require the following notation.

Notation 7.5. Let {T';; }?;0 be discrete countable groups, 1<n; <oo, i=1,2. Let G;=
TioxDy %% ., i=1,2. Let 0y: G;—Aut(X;, p;) be a free m.p. action on a standard
probability space (X;, p;), i=1,2. Let A;=L>(X;, p;), Mi=A;ixq,G; and M;;=A; X,

I'ij, where 0;5=0;|r,; for all 0<j<n;, i=1,2.

The general result that we prove shows that, under suitable weak rigidity conditions
on the groups I';;, an isomorphism between the factors M; and M, must take each of the
“component inclusions” (A; CM;;) onto each other, modulo some permutation of indices
and unitary conjugacy. Since the weak rigidity assumption on the I';;’s is somewhat
technical, we display the conditions separately and give right away a list of examples

when they are satisfied.

Assumption 7.6. I'1 o and I's o have the Haagerup property, and if both I'; g and I's o
are finite then we must have n;>2 for at least one i€{1,2}. For each j>1, i=1,2, T;;
contains a subgroup H;; with the following properties:

(a) The subgroup H;; is non-virtually abelian and the pair (I';;, H;;) has the relative
property (T) ([M]; see also [dHV]).

(b) The normalizer N;; of H;j in T;; is ICC in Ty; (i.e. [{hgh™':h€N;;}|=00 for all
g€l';;\{e}) and o;; is ergodic on N;;.

(c) For any proper intermediate subgroup N;; CN;;CI';; there exists geT';;\ N}
such that g(N};)g~'NN]; is non-virtually abelian.

Note that condition (c¢) above on the inclusion N;; CT';; is similar to the wg-normal
condition in [P6] and [P8]. It is equivalent to the existence of a well-ordered strictly
increasing family of intermediate subgroups {G;:0<I<L} such that Go=N;;, G =T},
and Ggi1={9g€Tl;:9Grg ' NG is non-virtually abelian} for all k.

IfT';;, j>1, is ICC and has a normal non-virtually abelian subgroup with the relative
property (T), then conditions (a), (b) and (c) are trivially satisfied.

Related to conditions (a) and (b), note that if a non-virtually abelian group H is
normal in an ICC group G, then L(H) has no type-I summand, i.e. it is of type II;.
Indeed, this is because G acts ergodically on the center of L(H), so if L(H) has non-zero
type-I part then it is homogeneous of type I,, for some 2<n< oo, contradicting [T}, [Ka].
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THEOREM 7.7. (vNE Bass—Serre rigidity) With Notation 7.5 and Assumption 7.6,

if 0: Mi~M?} for some t>0, then ni=ns and there exist a permutation 7 of indices

j=1 and unitary elements uj€ M3 such that, for all =1, Ad(u;)(0(M, ;))=ML () and
Ad(u;)(0(A1))=AL. In particular, Ry, ~RL, and R, ZR‘thm(a‘) for all j>1. Also, if

I',0=T20=1, 2<n; <00, then the existence of such an isomorphism forces t to be 1.

Proof. We denote by Q;; CM;; the “rigid part” of M;;, i.e. Q;;=L(H;j;), where
H,;;CT;; is a subgroup satisfying properties (a), (b) and (c) in Assumption 7.6. Also, we
denote by F;; the von Neumann algebra generated by the normalizer of @;; in M;;. Thus,
P;; D L(N;j), where N;; is the normalizer of H;; in I';; in (b). Notice that Assumption 7.6
implies that P;;NM;;=C so that by Theorem 1.1 we also have P/;NM;=C, for all j>1,
t=1,2. Also, note that @);; is relatively rigid in M;;, and thus in M;.

Assume first that ¢t<1. For simplicity, let Ap=A, My=M, Go=G, I'y ;=I"; and
let {ug}gec CM denote the canonical unitary elements. Let g€ A be so that 7(¢)=t
and 0(1)=q. Fix i>1. Since Q;,CM; is a rigid inclusion, Q=60(Q1,)CgMgq is a rigid
inclusion [P5].

Let us show that no corner of () can be embedded into My inside M. Assume
by contradiction that there exist non-zero ¢o€P(Q) and po€P(Mz o), a unital isomor-
phism 9 of goQqo into poMs opp, and a non-zero partial isometry v€Ms ¢ such that
v*v€(qoQq0) NgoMqo, vv*€1(qoQq0)' NpoMpo and vy=1)(y)v for all y€qoQqo. Since Q
is of type II, ¥(goQqo) CMas o is of type II, so no corner of ¥(gyQqo) can be embedded
into A. By Theorem 1.1, this implies that 1(qoQqo)'NM C Ms . Thus

vQU* =v(qoQqo)v* C Ms .

But I'; o has the Haagerup property, so, by [P5], there exist unital trace-preserving
A-bimodular c.p. maps ¢, on Msg such that ¢, —idag,, and ¢, is compact relative
to A. Then ¢,*id—idy;. But, by [P5], vQu* Cvv* Muvv* is a rigid inclusion. By [P5]
again, this implies that

Tim (6, #id)(2) — ]2 =0

uniformly for z€(vQv*);. Since (¢ *id)(x)=¢,(z) for x€ M3 o DvQu*, this implies that
the maps ¢,,, which are A-bimodular and compact relative to A, tend uniformly to the
identity on the unit ball of the type-1I; algebra vQuv*. By [P5], this implies that a corner
of vQu* can be embedded into A inside Ms o, a contradiction.

Since no corner of () can be embedded into M,  inside M, we can apply Theorem 5.1.
Thus, there exist j=j(i)>1, a non-zero projection ¢'€Q'NgMgq and a unitary element
ueM, such that uQq'u* CgMs jq=q(AxTs ;)g. Since P=6(P; ;) is generated by the
normalizer of @), we have ¢’ € P and, by [P8, I, Lemma 3.5 (1)], Q¢' C¢' P¢’ is quasi-regular.
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By Theorem 1.1, it follows that ug’Pq¢'u*CqM>, ;q. Since P is a factor and a corner of
it is contained in gM> jq, it follows that u can be suitably modified in order to satisfy
uPu*CqM, ;q. If veEqMq is such that P,=vPv*NP is of type II;, then P,CqM> ;q and
no corner of P, can be embedded into the abelian algebra A. Since (P,)v=vP CvMj; ;, by
Theorem 1.1 it follows that ve€ M, ;. By applying this recursively, by Assumption 7.6 (c)
it follows that 6(L(T'1,;)) CgMa ;q.

Thus, if {u1 ,:h€G1} denotes the canonical unitary elements in M;=A4; XxGy, then
vp=0(u1,n)€qMq, h€Gy, are in the normalizer of (A;) in ¢Mq. Thus, the unitary
elements {uvpu* :hel"l,j}Cqu,jq normalize uf(A;)u* and they generate a II; von Neu-
mann algebra N CgMs ;jq. By Theorem 1.8, this implies that uf(A;)u*CM,; and
w(uf(Ar)u*)w* =Aq for some weld(¢M;;q). Taking v=wu, it follows that

U(H(L(Flﬂ)))v* C Mg,j and ’U@(Al)’U* C Mg,j.

Thus UG(MLZ')U*CMQJ'.
This shows that if ¢<1, then for all i>1 there exists j=j(¢)>1 (unique by Theo-

rem 1.1) and a unitary element v€ M} such that
Ad(v)0(My,;) = Mij and Ad(v)(0(A;)) = AL.

Let us now consider the case t>1. Let n>t be an integer and note that if we let
B=Mxn(A2) CMyxn(M2)=M, G=G2 and extend o5 to the action o which acts triv-
ially on M, «n(C)C My wpn(M2)=M, then M=Bx,Gs. Let g€ A=D,,® Ay be a projec-
tion of trace t/n.

The hypothesis then states that : M;~¢gMq is an onto isomorphism. Fix i>1 and
let Q=0(Q1,)CqMq and P=0(P;;)CqgMgq. As in the case t<1, it follows that there
exist j=7(i)>1 and a unitary element u in ¢Mq=MJ$ such that

uwPu* Cq(BxTy;)q=M; ;.

In particular, {0(uy,,):h€l'1 ;} CqMs jq and they normalize uf(A;)u*. By applying The-
orem 1.8 to Ag=ub(A1)u* CqBq, it follows that u(6(A;))u*Cq(B =T ;)q as well, so that
Ad(u)(0(My ;) C Mj ;. Since Ad(u)(0(A1)) is regular in Mj=qMgq, by Corollary 1.4 and
[P5, §A.1] it follows that there exists a unitary element in M ; that conjugates 6(A;)
onto Ab.

Since we have dealt with both cases t>1 and ¢<1, we can apply the above equally
well to # and 61, to obtain the following: for all 1<i<n; and 1<j<ngy, there exist uni-
tary elements u; € M4 and v; €M, and indices j(i)€{1,2,...,n2} and i(j)€{1,2,...,n1}
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such that

9(141 - Ml,i) C ’LLZ(AQ C MQ,j(i))tuf,

1<7;<TL1,

071 ((A2 C My ;)") Cwj(A1 C My))v;,  1<j<ny,

so, altogether,
O(My 1) CAd(urd(vjry)) (MiiGry)), 1<k<ng,

which, by Theorem 1.1, implies i(j(k))=Ek for all k. Similarly, j(i(k))=Fk for all k. Thus,
ni=ne=n and j defines a permutation 7 of the set of indices 1<i<n.
To prove the last part, note that the equivalence R, zRf,z and [G1] imply that

> A1) 0-1) =1 (Re) = 2257 (0 ) -1 ).
j=1 j=1

On the other hand, by the equivalence R, , ~R}, o We get BT ;)=P1(Ta,x(5))/t for
all 7>1, while, by [BeVa] and Assumption 7.6, all I'; ;’s have 0 as first £2-Betti number,
B1(T'1,;)=0. (Indeed, this follows easily from [BeVa, Corollary 4] and the argument in

the proof of [P6, Lemma 2.4].) Altogether we get n—1=(n—1)/t, implying that t=1. O

Before stating specific OE applications, recall from [Ful] that two groups I' and A
are said to be measure equivalent (ME) with dilation constant t>0 if there exists free
m.p. actions (0,T") and (6, A) such that R,~R}. We will use the notation I'~og, A to
denote this property. It was recently proved in [G2] that if T';~og, A; for all i>0, then
#;I'j~0g, *;A;. Note that an alternative proof of this fact follows from Proposition 7.3 (1)
(see also [MoS, Comment 2.27]).

The OE rigidity result below, of Bass—Serre type, can alternatively be viewed as
a converse to Gaboriau’s ME result above, for free products of w-rigid ICC groups.
Note however that we need the actions involved to be “separately ergodic” (which is not
assumed in [G2]).

COROLLARY 7.8. (OE Bass—Serre rigidity) Let T'g and Ao be Haagerup groups, and
I and Aj, 1<i<n< oo, 1<j<m< o0, be ICC groups having normal non-virtually abelian
subgroups with the relative property (T). Let o (resp. 0) be a free ergodic m.p. action
of P=ToxI'1*... (resp. A=Ag*Ai*...) on the probability space such that o;=c|r, (resp.
0;="0|a,) is ergodic for all j=1. If Ror~Rj 5, then n=m and there exists a permutation

w of the set of indices =1 such that R%piz’Rgm)’Am) for all i>1.

The condition on the groups I'; and A;, ¢, 7>1, in Corollary 7.8 can be weakened by
using the full generality of Theorem 7.7.
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COROLLARY 7.8/ The same statement as in Corollary 7.8 holds true if we assume
that each (o|r,,T;) (resp. (0]a,,N:)), i1, satisfies Assumption 7.6.

COROLLARY 7.9. Let T';, 0<i<n, I'=TgxI'1*... and o be as in Corollaries 7.8
or 7.8". Assume that Out(R,, r,)={1} and (o1,T1) is not orbit-equivalent to (o;,T;)
for any i#1. Then Out(Ryr)={1} and Out(Ax,I')=H!(0,T). Also, if n is finite and
either all T; are finitely generated or there exists i>1 with 5, (T;)#£0, 00, then

F(Ax,I)= {1}

Proof. The first part is trivial by Theorem 7.7. The last part follows from [G1]. O

Outer automorphism groups of equivalence relations are usually hard to calculate
and there are only a few special families of group-actions (o1,T';) for which one knows
that Out(R,, )={1} (cf. [Ge2], [Fu2] and [MoS]). Similarly for the 1-cohomology group
H!, where the only known calculations are in [Gel], [PSa] and [P6]. Below we recall some
examples from [Ge2], [Fu2] and [MoS], where both calculations can be made. We add
a new construction of examples, in Example 7.12 below, which uses the Monod—Shalom
OE rigidity theorem to calculate Out and [P6] to calculate H!.

Ezample 7.10. (Gefter [Ge2], Furman [Fu2]) Take I'; to be a lattice in SO(p, q),
with p>¢>2 and notice that I'y has rkg >2 (thus has property (T)) and admits a dense
embedding into the compact Lie group SO(n), where n=p+q. Let o1 be the action by
left translation of I'; on the homogeneous space SO(n)/SO(n—1). Then Out(R,,)={1}.

Ezample 7.11. (Monod-Shalom [MoS]) Let G=SO(n), n>5, and let Ag be an ICC
torsion-free Kazhdan group which admits a dense embedding into G and has no outer
automorphisms (such groups exist for any n>5, for instance lattices in SO(p, ¢q) with
p>q>2 and n=p+q as in Example 7.10). Let K be any torsion-free group embeddable
into G and KyCK be a non-trivial subgroup such that K is not isomorphic to K (for
instance, Ko=F,CF =K, for some s>r>1). Let I'y=(Ao*K) x (Ag*Kp) and note that
any automorphism of the group I'y is inner on Agx Ag (by Kurosh or Bass—Serre). Let o1
be the action of I'y =(Ag*xK) X (Ag*xKp) on G by left-right translation. Notice that this
action is free ergodic on Ag x Ag and that, by [MoS], one can choose the embedding K CG

1

such that oy is free on I'; (by considering all embeddings gK¢~*, g€G, and using a Baire

category argument). Then I'; is in the class Cgeom 0f Monod—-Shalom and Out(R,,)={1}.

Example 7.12. Let this time Ay be any torsion-free ICC group with only inner
automorphisms and which cannot be decomposed as Zx*A{, (note that if Ag is w-rigid
then it does have this latter “free indecomposability” property). Let K be any torsion-
free group with KyCK being a non-trivial subgroup such that K, is not isomorphic
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to K. Let A=Ag+xK and I'; =(Ag*K) x (Ag*xKog) CAxA. Denote by o7 the action of I’y
on the product probability space (X, 11)=[],cA(Xo, H0)g by left-right (double) Bernoulli
shifts. Then Out(R,,)={1}. Indeed, noticing that Ao*K, Ag*KoECgeom and that oy is
separately ergodic (on Agx K and Ag*Ky), it follows from [MoS] that any automorphism
0€Aut(R,,) is an inner perturbation of a conjugacy oj~ojoy with respect to some
~v€ Aut(Ty). But I'y has only inner automorphisms (again by Kurosh or Bass—Serre).
Thus, any such # is an inner perturbation of an automorphism of the probability space
that commutes with o1(T'1). But this commutant is trivial if for instance (Xo, po) is
atomic with non-equal weights, as shown by the following proposition.

PROPOSITION 7.13. Let A be a countable discrete group with two subgroups A
and Ao such that Ag=A1NAy satisfies |[{hgh~t:h€Ao}|=0cc for all geA, g#e. Let
(Bo, 7o) be a finite von Neumann algebra and let (B,7)=[],cx(Bo,70)g. Let o be the

action of Ay xAy on (B,T) given by opn, n,((2g)g)=(2})q, where x;:xhl—lghz for geA,

g
hi€Aq and hao€As. Then o is a free separately mizing action of A1 xAs on (B, T) and
the following are true:

(1) If 6eAut(B,7) commutes with o(A1 X As) then there exists a unique
0o € Aut(Bo, To)

such that 0 is the product action given by 6o, i.e. =[] (60),-

(2) Any d€Aut(A) satisfying 0(A;)=A;, i=1,2, induces an automorphism
A=A(5)eAut(B,7), by A((by)y)=(5(by))g, which satisfies AcA~1=g24.

(3) If (Bo,70)=(L>*(Xo,10), [ - dvg) for some atomic probability space (Xo, o),
then the commutant of o(A1xAg) in Aut(X, p) is equal to Aut(Xo, po)=Aut(By, 70).
Moreover, if o is conjugate to another double Bernoulli shift o' with atomic base space

(X(/)’ M(/))7 then <X07 MO)Z(X(/), UB)

Proof. Part (2) is trivial. To prove part (1), it is sufficient to show that any 6 com-
muting with ¢ must take the subalgebra B§=...1®(By).®1 ... of B into itself. Indeed,

because if we let §p=60

Bg and regard it as an automorphism of By then 90(]_[9(00)9)*1
still commutes with o(A; X Ag) and it acts as the identity on B§, and thus on o(g1, g2)(B§)
for all g1, g2€Ag. Since A;As=A, the latter generate all of B. Thus G:Hg(eg)g.

To show that 6 leaves B globally invariant, it is sufficient to show that the fixed
point algebra {b€B:o(g,g)(b)=b for all g€y} coincides with B§. This in turn follows
trivially from the fact that for any finite subset FCA\{e} there exists g€Ag such that
gFg 'NF=0. To see that this latter property holds true, note that if some finite set
@#FCA\{e} would satisfy |[gFg t*NF|>1, for all g€ Ag, then the “left-right” represen-
tation m(g)(f)=X(g9)o(g)(f) on £2(A) would satisfy (7(g)(xr), xr)=|F|~! for all g€ Aq.
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Taking the element f of minimal Hilbert norm in ¢ “{r(g)(xr):9€ Ao} CL?(A), it follows
that f>0, f#0 (because (f,xr)>|F|™!) and 7(g)(f)=f for all g A. But then any ap-
propriate “level set” K for f will be finite non-empty, and will satisfy 7(g)(xx)=xx for

all ge Ay, i.e. gKg !

=K for all g€ Ag, implying that A has elements with finite conjugacy
class, a contradiction.

The first part of (3) is trivial by (2). Then to see that conjugacy of double Bernoulli
shifts entails isomorphism of the base spaces, note that o conjugate to ¢’ implies that
all “diagonal” actions c®c” and ¢’ ®c” must also be conjugate, for all ¢”, thus having
isomorphic commutants in Aut. Taking ¢” to be itself a double Bernoulli I'j-action of
base (X{/, ug), it follows that Aut((Xo, o) X (X, pgy))=Aut((X§, po) % (X§, 1g)) for all
(X{, ug), which easily implies the result. O

Notation 7.14. Denote by w75 the class of groups G that have a non-virtually abelian
subgroup HyCG such that: (G, Hy) is a property (T) pair; the normalizer H of Hy in G
satisfies [{hgh~1:h€ H}|=00 for all g€ G\ {e}; the wq-normalizer of H in G generates G.
Note that any group in w7; is ICC and that if G is ICC and has a normal non-abelian
relatively rigid subgroup then G€w7Z;. Thus, any group of the form G=Hyx K with Hy
being ICC Kazhdan and K being either ICC or equal to 1, is w-rigid and thus in w7s.
Also, if GewT; then (GxKy) x K €wT; for any ICC group K and any arbitrary group K.

COROLLARY 7.15. Let T'g be a Haagerup group and T';€wTs for 1<i<n, where
1<n<oo. Assume that T'1 is as in Examples 7.10-7.12. Then I'=[g*I'1*... has a free
ergodic m.p. action o with Out(R,)={1}. Moreover, the following are true:

(1) If Ty is as in Examples 7.11 or 7.12, then there exist uncountably many non-
stably orbit-equivalent actions o of T with Out(R,)={1} and §F(R,)={1}.

(2) If in addition Ty is a product of amenable groups, then given any discrete count-
able abelian group K, the uncountable family of actions o in (1) can be taken to satisfy
H'(0,T)=GJ™! x G x][;5, Char(T';) x K"~ where G is the Polish group U(L> (T, \))
and Go=G/T.

Proof. By Proposition 7.3, we can take the free m.p. action o of T on A=L>(X, u)
so that for each i#1, o;=0|r, is a (left) Bernoulli I';-action, or a quotient of it as in [P6],
and of one of the forms in Examples 7.10-7.12 for ¢=1. Notice that in Example 7.10 the
group I'y has property (T) and is ICC, and thus I'y €w75. Then, in both Examples 7.11
or 7.12, I'; has Agx Ay as a relatively rigid subgroup, which is wg-normal in I'y, with
A x A being ICC in I';. Furthermore, since Out(R,,) is huge for :>2 and trivial for i=1,
o1 cannot be stably orbit-equivalent to o;, i>2. The existence of “many actions” ¢ in
the cases of Examples 7.11 and 7.12 follows from the existence of uncountably many non-

stably OE relations (o1,T'1) of the form in Example 7.11 (cf. [MoS]), and respectively of
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the form in Example 7.12 (by Proposition 7.13 (3) and [MoS]).

Finally, the calculation of the 1-cohomology groups follows from [P6, Corollary 2.12,
Lemmas 3.1, 3.2] and the fact that in all the cases of Examples 7.10, 7.11 and 7.12 one
has H!(o1,I'1)=Char(I'1). Indeed, in case o7 is as in Example 7.10 or 7.11, then this
calculation follows from [Gel] and [P6, Corollary 2.12], while in the case of Example 7.12
the calculation is in [P6]. O

COROLLARY 7.16. Let I'=x;>0I';, K and o be as in Corollary 7.15(2), and let
A=L>(X,u) and M=Ax,T. Then §(M)={1} and

Out(M)=H"(0,T) =G{ ' xGx | [ Char(T;) x K.

Jjz1
Proof. This is trivial by Corollaries 7.9 and 7.15. O

Note that Out(M) is abelian and non-locally compact in all examples in Corol-
lary 7.16 above, but if we denote by (Sﬁlt(M) the quotient of Out(M) by the connected
component of idys (which is closed in Out(M), with the latter being a Polish group in
all examples considered), then C’)\t;u(M) is the quotient of [, Char(I';) x K"~1 by the
connected component of 1, which for n<oo is a totally disconnected separable locally
compact group.

We end this section by mentioning another rigidity result, which from an isomor-
phism of group measure space factors corresponding to relatively rigid actions of free
products of groups derives the orbit equivalence of the actions. This type of results were
first obtained in [P5] for HT group actions, and in [P8] for Bernoulli shift actions of groups

containing infinite subgroups (not necessarily normal) with the relative property (T).

THEOREM 7.17. (vNE/OE rigidity) Let (M;j,7;) be type-II; von Neumann alge-
bras with a common Cartan subalgebra ACM;, i=1,2, such that Ti|a=T2|a. Assume
that M=My*aMs is a factor and A is Cartan in M. (N.B. By Lemma 7.2, this is
the same as requiring that Racu,, i=1,2, are freely independent). If AgCM? is a rigid
Cartan subalgebra, for some t>0, then there exists a unitary element u€M? such that
uAdou*=At.

Proof. It is clearly sufficient to prove this in the case t=1. If some corner of Ay can
be embedded into A inside M, then the statement follows by [P5, §A.1]. If we assume
that this is not the case, then we can apply Theorem 7.7 to get a non-zero pe P(Aq) such
that vAgpv* C M; for some i€{1,2} and veld(M). Moreover, since M is a factor and Ag
is Cartan in M, we may assume that vpv* is central in M;, so in particular p; =vpv™* lies
in A (the latter being maximal abelian in M;). Then vAgpv* is Cartan in p; Mpy, so, by
Corollary 1.4, we have p; Mopy = Apy, contradicting the fact that Ms is of type II. O
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COROLLARY 7.18. Let F be the class of groups that can be written as a free product
of two (or more) infinite groups. Let o: G— (X, pu) be a free ergodic m.p. action of a
group GEF and denote by M=L>*(X,u)x,G the corresponding group measure space
IT; factor, with A=L>(X, u)CM being the corresponding Cartan subalgebra. Let My be
a Il; factor with a relatively rigid Cartan subalgebra Ao C My and let Ro=R a,c M, -

(1) If 9: Mo~=M? for some t>0, then 0 can be perturbed by an inner automorphism
50 as to take Ay onto A'. In particular, Ro~R! and thus B2 (Ro)=B82(G)/t for all n.

(2) If GeF satisfies 552)(61)7&0,00 for some n (for instance, if G=T1xTy, with
'y and Ty being finitely generated infinite groups, in which case ﬂ%z)(G)#O, o0) and the
action o is relatively rigid, then F(M)={1}.

Proof. All statements are trivial by Theorem 7.17 and [G1]. O

Note that Corollary 7.18 (2) above shows in particular that F(L(Z?xF,))={1} for
any F,,CSL(2,Z), with 2<n<oo, thus giving a new proof (but still using Gaboriau’s

work [G1]) of one of the main results in [P5].

Definition 7.19. A countable measurable standard m.p. equivalence relation R is

t
o)

an FT equivalence relation if it is of the form R=R!, where >0 and (o,T') are free
ergodic m.p. actions on the probability space (X, u) with the following properties: (a)
The group T is a free product of two (or more) infinite groups; (b) o is relatively rigid,
in the sense of [P5, Definition 5.10.1], i.e. L (X, u)CL>(X, 1) X, G is a rigid inclusion
[P5, Definition 4.2.1]. The above Corollary 7.18 thus shows that all OE invariants for FT
equivalence relations R are in fact vNE invariants for R, i.e. are isomorphism invariants
of the associated group measure space II; factors M=L(R,w), where weH?(R). We

denote by F7 the class of all such I1; factors M.

Note that if R=R! . for some free ergodic m.p. action (o,T') with " being a free
product of two infinite groups, then R is HT; in the sense of [P5] if and only if it
is FT and T' has the Haagerup property. Thus, all equivalence relations coming from
amplifications of actions o of non-amenable subgroups I'CSL(2, Z) on L>°(T? \) are FT
actions. However, actions o of groups such as SL(n,Z)+*H, with H being an infinite
group and o|gr,(,,z) being isomorphic to the canonical action of SL(n,Z) on (T", \), give
FT equivalence relations which are not HTs. Thus, the class F7 provides additional
group measure space Iy factors for which orbit equivalence invariants of the actions,
such as Gaboriau’s £2-Betti numbers, become isomorphism invariants of the factors.

We end by mentioning an application of Proposition 7.3 (1) which brings some light
to [P5, Problems 5.10.2 and 6.12.1] and to the problem of existence of “many” non-OE

actions for non-amenable groups, as a consequence of [GP, Corollary 7].
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COROLLARY 7.20. (1) The class of groups T" which admit free ergodic relatively rigid
m.p. actions on the probability space is closed to free products with arbitrary groups I".
Also, if T is an HT; group (i.e. T’ has Haagerup’s property and admits relatively rigid
actions, see [P5, 6.11]), then '« is HT; for any I with Haagerup property.

(2) If T admits a relatively rigid action (e.g. if TCSL(2,Z) is non-amenable, or
' is an arithmetic lattice in an absolutely simple non-compact Lie group with trivial
center, cf. [P5] and [Va]) and T7 is an arbitrary infinite amenable group, then I’
has uncountably many non-stably OE free ergodic m.p. actions on the probability space.
Also, if T is an arbitrary group and 'y and Ty are non-trivial amenable groups, at least
one having more than two elements, then Tox['1*I'y has uncountably many non-stably

OE free ergodic m.p. actions on the probability space.

Proof. Part (1) is a trivial consequence of Proposition 7.3 (1) and of the (trivial)
property of relatively rigid equivalence relations R that any R that contains R is also
relatively rigid (see e.g. [P5, Proposition 4.6.2]).

Part (2) is just the combination of [GP, Corollary 7]) and Proposition 7.3. O

8. Amalgamation over R: factors with no outer automorphisms

In this section we prove another rigidity result for AFP factors, this time in the case
M=MyxgMi*gx*..., where R is the hyperfinite II; factor. As an application, we obtain
factors M with Out(M)={1}, thus answering a well-known problem posed by A. Connes
in 1973.

Like in the group measure space case in §7, we only consider crossed product inclu-
sions (RCM;)=(RCRx,,T;), with the o; being freely independent, i.e. inducing a free
action o of '=Tg*I'; *... on R. Thus, M will be viewed alternatively as a crossed product
factor M=Rx,I', with the algebra of coefficients R having trivial relative commutant
in M.

The key assumption is that the action (o, *;I';) has the relative property (T), i.e. that
RCM is a rigid inclusion in the sense of [P5]. The rigidity result shows the uniqueness,
modulo unitary conjugacy, of the “core” R of such factors. Since the normalizer of R
in M completely encodes the group I', we can completely recover the isomorphism class
of the groups T';, by classical Bass—Serre theory. The result is similar to the vNE/OE
rigidity Theorem 7.17 (where however only the orbit equivalence class of T' could be
recovered) and to the unique crossed product decomposition result in [P9]. But since we
also get the componentwise unitary conjugacy of the factors M;, it is again a Bass—Serre
type rigidity result.
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Through this theorem, the calculation of Out(M) and §(M) reduces to the calcu-
lation of the commutant of o(T') in Out(R), like in [P9], where however no such com-
mutant could be calculated! This time, due to Bass—Serre arguments and the possibility
of choosing the actions (o;,I';) with prescribed properties (cf. Proposition 8.2 below),
we can control such commutants and calculate Out(M) completely for large classes of

factors.

LEMMA 8.1. Let M,, n>0, be II; factors with a common subfactor NCM,. Then
NCM=Mqyxn Mi*nMsx*y... is irreducible and regular if and only if N CM,, is regular,

irreducible for all n>1, and the groups of outer automorphisms
I, ={Ad(u):ueNy, (N)}JU(N), n=0,
on N are freely independent.

Proof. This is trivial by the definitions of freeness and of amalgamated free product
over NN, respectively. O

The result below is the analogue for actions on the hyperfinite II; factor R of the
result on the existence of freely independent actions on the probability space in Propo-
sition 7.3. It shows the existence of free actions o of groups I'=[g*I'1*I'2%... on R
such that the restriction of o to each individual group I'; is conjugate to a prescribed
free action of I'; on R. It will be frequently used in this section. The proof relies on

Lemma A.2 in the appendix.

PROPOSITION 8.2. Let 0,:T'yy— Aut(R) be free actions of countable discrete groups
G., n=20. Then there exists a free action o of the group G=+,I',, on R such that olp,

s conjugate to oy for all n>=0.

Proof. For each n>0 let én:GO*Gl*...*Gn. Assume that we have constructed a
map &, of Gy, into Aut(R) such that the quotient map &/, of @ into Aut(R)/Int(R) is
a faithful group morphism with &,|q, conjugate to o, for all 0<j<n. We then apply
Lemma A.2 to {6,,(9):9€Gn}U{ons1(h):h€Gpir} to get an automorphism 6,4, of R
such that 6n(én) and 9n+10n+1(Gn+1)9;}r1 are freely independent. Denoting by &,,41
the map of én+1:én*Gn+1 into Aut(R) which restricted to én equals &, and restricted
to G141 equals 9n+1an+1(Gn+1)9;11, the statement follows by induction. O

THEOREM 8.3. Let G;=I';o*I';1x..xI; ,,, with T'y;, 0<j<n;, being non-trivial
groups, for some 1<n;<oo, i=1,2. For each i=1,2 let 0;: G;—Aut(N;) be a free ergodic
action on a 11 factor N;. Let M;=N;x,,G;, i=1,2, and assume that N;CM; are rigid
inclusions, i=1,2. Let 0: M1~MY for some t>0. Then the following are true:

(1) There exists ueld (ML) such that Ad(u)(0(N1))=NE. Thus, G1~Gs, and o1

and o are cocycle conjugate actions with respect to the identification G1~G>.
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(2) If in addition T'; o are free groups and T';; are free, indecomposable and not equal
to the infinite cyclic group, for all 1<j<n;, i=1,2, then I'y g=~I's o, n1=no and there

ezists a permutation 7 of the indices j>1 and unitary elements u; € M} such that
Ad(u;)(0(Mi 4)) =M2t77r(j) and Ad(u;)(0(N1))=N%  for all j>1.

In particular, I'y ;=T ~(;), and o1,; and O’é =(j) are cocycle conjugate with respect to this

identification of groups, for all j>1.

Proof. We first prove that a corner of §~1(N}) can be embedded into Ny inside M;.
Assume that this is not the case. By applying recursively Theorem 5.1 (2), it follows that
there exist a unitary element u€l{(M;) and some 1<j<n; such that uf = (NS)u*C M ;.
Since uf~1(NL)u* is regular in M;, using again the assumption by contradiction, Corol-
lary 1.4 implies that a corner of uf~!(N)u* can be embedded into Ny inside M; ; (and
thus inside M; as well). Altogether, this shows that a corner of 6~!(N4) can be embedded
into N inside M;.

Similarly, a corner of O(N;)/*=0"/t(N}/") can be embedded into Ny inside Mo.
Thus, a corner of Ny can be embedded into §~!(NY) inside M;. Since both N; and
6~1(NY) are regular in My, with Ny, (N1)/U(N1)~G and with the other similar quotient
isomorphic to Ga, and since both G and G4 are ICC (being free products of non-trivial
groups), the unitary conjugacy of Ny and §~*(NN%) in M; (equivalently, of #(NN;) and N}

in M}) follows from the following general result.

LEMMA 8.4. Let M be a 11 factor and P,QCM be irreducible reqular subfactors.
Assume that T=Np (P)/U(P) and A=Ny(Q)/U(Q) are ICC groups. Also, assume that
each one of the inclusions PCM and QCM is an amplification of a genuine crossed
product inclusion. If L?*(M) contains non-zero P-Q Hilbert bimodules H,KCL?(M)
such that dim(pH)<oo and dim(Kg)<oo, then P and Q are unitarily conjugate in M.

Proof. We first prove that L?(M) is generated by irreducible P-Q Hilbert bimodules
that are finite-dimensional both as left P modules and as right ¢ modules. We will
actually prove this by only using the fact that P and @) are quasi-regular in M. Note
that, by [P5, §1.4], HO=HNM is dense in H and contains an orthonormal basis over Q.
Similarly, since @ is quasi-regular in M and it is a factor, L2(M) is generated by Hilbert
Q-Q bimodules Hy such that Hy=HsNM is dense in Hy and contains both left and
right orthonormal bases over Q. But then H°-HJ span all of L*(M) and are finite-
dimensional over ). Equivalently, P'NJy Q' Jys is generated by projections that have
finite trace in Jyp;Q'Jys. Similarly, P’'NJQ’J is generated by projections that have finite
trace in P’. Thus, A=P'NJQ’J is generated by projections that are finite with respect
to both traces, thus corresponding to Hilbert P-@ bimodules which are finite-dimensional
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both from right and left. Since P and @ are factors, by [J], each such bimodule is a direct
sum of irreducible bimodules.

Let now HCL?(M) be an irreducible P-Q bimodule. By [J], we have
dim(pH)dim(Hg) >1

and the equality means that the orthogonal projection py of L?(M) onto H satisfies
pHEP'N(M,eq), Triareq,)(pr)=1 and py(M,eq)pr=Ppy. Thus, by [P3, proof of
Lemma 1], upyu*=eg for some uveld(M), which also satisfies uPu*=0Q).

Assume now that Tr(py)>1. By [P8, I, Theorem 2.1], there exist a projection pe P,
a unital isomorphism : pPp— (@ and a partial isometry v€ M such that

w =p, ¢ =v'vey(PPp)NQ and zv=uvy(zx) for all x€pPp.

Moreover, the finite-dimensionality plus irreducibility of H as a P-Q bimodule, implies
that Q1= (pPp) has finite index in @ and trivial relative commutant in @, and that ¢’
is minimal in @y NM.

By appropriately amplifying @ C M, we may assume that this inclusion is a genuine
crossed product inclusion Q CQ X, I'. Denote by {u,}, CM=Q x,I" the canonical unitary
elements implementing o on Q. Let ¢'=3_  zqugy, with z,€Q. By identification of Fourier
series, it follows that z,u,€QjNM for all g. Thus v z;=r,uyu;r; €Q1NQ=C, so that
all z, are scalar multiples of unitary elements in ). Let KoCI' be the support of this
Fourier expansion of ¢’. Let also K CT be the set of all k€T such that u can be perturbed
by a unitary element in @ so as to fix @1 pointwise. Since [Q:Q1]<oo and Q;NQ=C,
K is a finite subgroup of I' and Ky C K.

Since @1 NQ=C, by Connes’ vanishing 1-cocycle for finite groups, the unitary ele-
ments wg €Q satisfying Ad(wgug)|g, =idg, can be chosen of the form oy (w)w*, k€K,
for some unitary element we Q. Thus, by perturbing all {u,}4er by a 1-cocycle, we may
assume that Ad(uy) act trivially on Q1. Let T'o CT be the subgroup of all g€T" such that
ug can be perturbed by a unitary element in @) so as to normalize @);. Clearly, K CI'y
and K is normal in I'g. We will prove that I'g has finite index in I, thus contradicting
the hypothesis.

By the minimality of ¢’ in Q| NM, it follows that ¢’ is minimal in the group algebra
L(K)=sp{ug:k€ K}. Identify pPpCpMp with Q1¢'Cq'Mq' via Ad(v). Let {v,:heA}
be a choice of canonical unitary elements in M =P x A, which we assume commute with
peP (we can do that for each h by perturbing if necessary with unitary elements in
the factor P). For each h€A, h#e, let vhzzg xZugeQxaF be the Fourier expansion
of vy, and denote by 6} the action implemented by Ad(vy) on Q1~Q1¢'=pPp. Thus,
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vpy=0h(y)vy, for all ye@q. Identifying the Fourier series in {ug}y, this implies that
On(y) (zhug)=(zhug)y for all ye@Q1. As before, this implies that each z! is a scalar
multiple of a unitary element in () and that Ad(:z:’;ug) normalizes Q1. Thus, the support
K, of the Fourier series for vy, is contained in I'g. Since Q1¢' C¢’M¢' is the closure of the
span of elements in Q1v,q’, h€ A, and each vy, is supported on I'g, as a Fourier expansion
in {ug}y with coefficients in @, it follows that ¢'M¢'CD cr, L?(Q)uy. In particular,
since ¢'€ L(K)CL(Ty), we get ¢'L(T")¢'=q L(Ty)q’, which clearly implies that I’y has
finite index in I". But this implies that I'y is also ICC, so in particular it cannot have a
non-trivial normal subgroup K. This contradiction finishes the proof. O

End of proof of Theorem 8.3. By Lemma 8.4, §(Ny) and N} are conjugate by a
unitary element, so we may assume that 6(N;)=N&. Thus, § induces an isomorphism
between the groups I't =N, (N1)/U(N1) and T'o=Nyy, (N2)/U(N3). But then, by the
classical Kurosh theorem (see e.g. [LS]) and the condition on “free indecomposability”
of the groups I';;, it follows that ny=mny=n and that there exists a permutation 7 of
the indices 1<j<n such that gjfl,jg]-_lzfzﬂ(j), for some elements g; €G. Thus, u;=ug,

normalizes Ny and Ad(u;) takes (M ;) onto M, . O

Notation 8.5. We denote by f7g the class of free actions o:T'g*I'y — Aut(R) on the
hyperfinite II; factor R, with the properties:

(1) T is free indecomposable; I'y is w-rigid (in particular free indecomposable);

(2) op=0lr, has the relative property (T), i.e. RCRx,,Ig is a rigid inclusion;
o1=0|r, is a non-commutative Bernoulli shift action of I'y on R=®y(No, 7o)y, where
No=R or No=M,,x,(C) for some n>2;

(3) o(I'1) and the normalizer of o(I'g) in Out(R) (which is countable by [P5]) are
freely independent.

LEMMA 8.6. Let T'y be an arbitrary w-rigid group and To=SL(n,Z), n>=2, or more
generally Ty be a free indecomposable arithmetic lattice in an absolutely simple non-

compact Lie group with trivial center. Then T'oxI'y has fTgr actions on R.

Proof. By [M], [Bu], [Fe], [Va], any such I'g has a free ergodic action on some Z™
such that the pair (Z™ xTy, Z™) has the relative property (T) of Kazhdan-Margulis [M].
By [Ch] and [NPSal, it follows that I'y admits a free action o on the hyperfinite 1Ty
factor R such that RC Rx,, ' has the relative property (T). By [P5], it follows that the
normalizer Ny of 0o(Tg) in Out(R) is countable. Let ¢’ be a fixed copy Bernoulli shift
action of I'y. By Proposition 8.2, it follows that there exists an automorphism 6 of R
such that 6(o’(I'1))0~! is freely independent from Ng.

Thus, if we denote by ¢ the unique action of I'=T'g*I'; on R given by o|r, =09 and
olr,=00'071, then conditions (1)—(3) in Notation 8.5 are all satisfied. O
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THEOREM 8.7. Let 0;:T'; o+I'; 1 —Aut(R;), i=1,2, be fTr actions, G;=T; o*I; 1
and M;=R;x,,G;, i=1,2. If 6: My~M} is an isomorphism, for some projection t>0,
then t=1 and there exist a unitary element u€M,, a character v of I'ao and isomor-
phisms 6: G1~G2 and A: Ry~Ry such that Op=Ad(u)=07-0 satisfies Ho(a:u;):A(x)ug(g)
for all x€ Ry, g€ Gy, where {uy},CM; are the canonical unitary elements implementing
04, 1=1,2. Moreover, any other isomorphism 0': My1~My is a perturbation of 6 by an
automorphism of My of the form Ad(v)<0" for some veld(M,) and +'€Char(Gs).

Proof. Since R;CR; X, I'; o are rigid inclusions, R; C R; X, G;=M; are rigid as well.
We can thus apply Theorem 8.3 to get a unitary element ve M4 such that

v(0(Ry))v* =R, and v(0(My1))v* = (Ms,)" for some j € {0,1},

where M;;=R;xT';;, i=1,2, j=0,1. But by [P5] or [P8], Ry CM; is not rigid, while
(RaC Mas )" is rigid, so the only possibility is that j=1. Thus,

(R1C M)~ (RaC M)

and both inclusions come from crossed products associated with non-commutative
Bernoulli shift actions of w-rigid groups. By [P7], this implies that t=1.

On the other hand, Adv-f induces an isomorphism §:T'; g*I'y 1 ~I'g g*I'2 1, which
takes I'y; onto I's ;. By Kurosh’s theorem, 5(F1,0):gI‘2,og’1 for some geG5. But by

[GoS], the groups gT'y g~ !

and I'y; can generate I'; gxI'y 1 only if g=g;g2 for some
gi€l'2;, i=0,1. By conjugating with g, we may thus assume that the unitary element v
is such that 6p=Ad(v)-60 induces an isomorphism §: G4 ~G5 which takes I'; j onto I's j,
j=0,1. Thus, after identifying R; with Ry via A=0y|r, and G1~G> via J, we are left
with finding all automorphisms « of My that take Rs onto itself and take the canonical
unitary elements u, into unitary elements wgu,, g€Ga, for some w: Go—U(R2) a 1-
cocycle for os.

By [P7], this implies that w is co-boundary modulo scalars when restricted to I' 1,
ie. wgeCogy(w)w* for all g€’y 1, for some unitary element we Ry. Thus, by replacing
a by Ad(w*)oa, we may assume that a(uy)€Cuy for all gel's 1. Thus o|r, €Aut(R2)
commutes with o2(T'2.1), while still normalizing 02(I'2,0). But, by condition (3) in Nota-
tion 8.5, the latter condition implies that «|g, is freely independent from o2(T'2.1). This
contradicts the commutation condition with o2(I' 1), unless ag, is inner. By perturbing
a by Ad(wp) for an appropriate wo€U(Rz), we may thus assume that ag,=idg,. Thus,

« is given by a character of Gs. O

The above theorem shows in particular that the fundamental group of any f7x
factor M=Rx,(TgxT'1), corresponding to an f7g action (o,To*I), is trivial, while its
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Out-group is equal to Char(I'g) x Char(I';). By Lemma 8.6, one can take I'o=SL(n, Z),
which has only trivial characters, thus making Aut(M)=Char(I';), with I'; being an
arbitrary w-rigid group. For instance, one can take I'y=SL(3,Z)x H, where H is an
arbitrary discrete abelian group, and hence getting Aut(M ):FAI . We thus obtain the

following result.

COROLLARY 8.8. Let 0:Tg+I'y = Aut(R) be an fTr action and let
M:RX]U(Fo*Fl).

Then the following are true:

(1) §(M)={1} and Out(M)=Char(I'g) x Char(I';)=0ut(M>).

(2) Given any compact abelian group K, there exists (o,ToxI'1) such that the corre-
sponding fTg factor M satisfies Out(M)=K=0ut(M>°). For instance, if T'9=SL(n,Z)
and I‘1:SL(m7Z)><I? for some n,m>=3, then Out(M)=K.

Remark 8.9. One can use Remark A.3(2) in place of Lemma A.2 in all the above
proofs, to construct more II; factors with small calculable symmetry groups. Thus,
let f7} be the class of free actions o:T'g*I'y —Aut(R) on the hyperfinite II; factor R,
satisfying the properties:

(a) T and I'y are free, indecomposable and not equal to Z;

(b) RCR%4,I'g is a rigid inclusion and o;=0c|r, is a non-cocycle conjugate to
oo=0|r, (note that this is indeed the case if oy is a non-commutative Bernoulli shift);

(c) o(T'y) is freely independent with respect to the set N (og(Tg))UNP(o0(Ty)),

)
consisting of all automorphisms and anti-automorphisms of R* that normalize oo (Ty).

By Remark A.3 (2) and Lemma 8.6, it follows that there exist such actions o for any
linear group I'y as in Lemma 8.6 and for any free indecomposable I';. It then follows as in
Corollary 8.8 that the corresponding crossed product II; factors M =R, (I'gxI'1) satisfy
Out(M)=Char(Tg*I'1). Moreover, if teF(M) and 6: M~M?", then # must normalize
o(Dg), contradicting condition (c) above. Thus, F(M)={1}. Notice that to get this
calculation we no longer have to use the results in [P7] on the fundamental group of
RCRx4,I'1. Similarly, if o is an anti-automorphism of M, then the same argument
shows that it must normalize o¢(T'g), in contradiction to the choice (c). Altogether, this
shows that in addition to the properties F(M)={1} and Out(M)=Char(T'o+I1), the
factors M in the class f7} have no anti-automorphisms either. This provides a fairly
large new family of factors with this latter property, after Connes’ first examples in [C2].
Thus, if we choose the groups I'g and I'; without characters, e.g. I';=SL(n;,Z), n; >3,
then the resulting factors M have no outer symmetries at all. Moreover, noticing that
[T} factors are w-rigid, it follows that any factor of the form N#M, with N being a
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property (T) II; factor (e.g. N=L(PSL(n,Z)), n>3) and M€ fT}, has all the above
properties (as a consequence of Theorem 6.3 and of the properties of M), and in addition
has no Cartan subalgebras (by [V2], cf. Remark 6.6)!

Appendix. Constructing freely independent actions

We now prove the technical results needed in the proofs of Propositions 7.3 and 8.2,
which established the existence of free actions of groups I'=g*I'y*... on A=L>(X, )
and on R with restrictions to I'; isomorphic to prescribed actions (o;,I';), for all i.

More precisely, we prove that given any countable set {6, },>1 of properly outer
automorphisms of (X, p) (resp. of R) the set V of € Aut(X, ) (resp. 6€ Aut(R)) with
the property that all alternating words 6;,600;,60716,,00,,6~! ... are properly outer, is
Gs-dense in Aut(X, p) (resp. Aut(R)). Writing V as an intersection of open sets V), is
obvious, and the non-trivial part is to show that each V,, is dense. To prove the density,
in the commutative case (Lemma A.1) we use a maximality argument inspired from [P3],
while in the hyperfinite case (Lemma A.2) we use directly a result from [P3], not having
to re-do such a maximality argument.

The idea of using Baire category, in both the proofs of Lemmas A.1 and A.2, was
triggered by [MoS, Remark 2.27] and [T6, category lemma]. In fact, the commutative
case A.1 below is essentially contained in [T6]. We have included the complete proof,

with a different treatment of the “density”, for the reader’s convenience.

LEMMA A.l. Let (X, p) be a standard non-atomic probability space and

{0n}n>1 CAut(X, p)

be a sequence of properly outer m.p. automorphisms of (X, u). Denote by VCAut(X, p)
the set of all € Aut(X, ) with the property that 0;, H;lzl 901-2]._16"101-2]. is properly outer,
for all n>1, 41,49, ...,49,-1€{1,2,3,... } and ip,i2,€{0,1,2,... }, where 8y=idx. Then
V is a Gs-dense subset of Aut(X,u). In particular, V#O.

Proof. Let A=L>(X, p) and 7= [ - du. Denote by F the set of all finite partitions
of the identity {p; }; CP(A). If p€ Aut(X, u), then we still denote by p the automorphism
that it induces on (A, 7). As usual, Aut(A,7) is endowed with the topology given by
pointwise || - ||2-convergence, with respect to which it is metrizable and complete.

For each g€ Aut(A, 1), let k(o)=inf{||>=; o(pi)pi|,:{pi}i€F}. Note that g is prop-
erly outer if and only if k(9)=0. Also, if D,, denotes the set of p€Aut(A,r) with
k(0)<1/n then D, is clearly open in Aut(A, 7). Given an n-tuple (61, ...,0,) CAut(A4, 1),
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we denote by V,=V (01, ...,0,) the set of all p€ Aut(A, 7) with
!
aio H 99i2j—1 9_101'2]‘ €D,
j=1

for all 1<I<n and all choices 41,12, ...,i9—-1€{1,2,...,n} and ig,i9€{0,1,2,...,n}.

It is immediate to see that V), is open in Aut(A4,7) and that (1,5, Va=V. We have
to prove that each V, is also dense in Aut(A4, 7), i.e. that any fixed o’ € Aut(A, 7) can be
approximated arbitrarily well (in the point || - ||2-norm convergence on A) by some o€V,.

By replacing, if necessary, {6;}; by the properly outer automorphisms

{6;3,0{0"0k(0") "},

it follows that in order to prove the density of V,, it is sufficient to prove that id4 is in
the closure of V,,=V(04,...,0,), for any n-tuple of properly outer automorphisms.

To this end we will use the ultrapower II; factor R¥ [McD] as a framework. Thus,
we choose a free ultrafilter w on N and let R¥=¢>*(N, R)/Z,, where 7, is the ideal
associated with the trace 7, ((¥n)n)=limy, 7(zy), i.e. Zo={x=(n)n:7,(z*z)=0}.

We regard the abelian von Neumann algebra (A, 7) as a Cartan subalgebra of R.
By [D], given any po€Aut(A,7), any finite set FCA and £>0, there exists vENg(A)
such that ||o(a)—Ad(v)(a)|l2<e for all a€F. Thus, there exist u, ENg(A) such that
u=(un)n € R¥ satisfies uau*=p(a) for all ac ACA“CR”. Note that p is properly outer
if and only if F4/qge(u)=0.

Write A= mw, for some increasing sequence of finite-dimensional subalgebras
of A. Let N, denote D, NNg(A), i.e. the part of the normalizer of A in R that leaves
D,, be pointwise fixed. To prove that id 4 is in the closure of V), it is sufficient to prove

the following fact:

Let Uy=1,U1,Us, ..., U, € Nge(A) with Exnge (U;) =0 for all ¢ 0. For all
m > 1, there exists u € N, such that Eaqpge (s, Hi-:l uUs,, ,u*U;,,) =0for (A.1)
all 1<I<n and all 41,14, ...,99;—1 €{1,2,...,n} and ig,i9 €{0,1,2,...,n}.

We construct u by a maximality argument, “patching together” partial isometries
in gmdéf{vp:ve./\/'m and peP(A)}=D, NGNR(A).

Thus, for each vE€G,, with vv*=v*v and each 1<k<2n, we denote by V} the set of
all products of the form Hf;é(Uijvo‘f)Uik, where i;€{1,2,...,n} for 1<j<k—1, i, ix€
{0,1,...,n}, a;€{£1} and oy #as#...#ar. We also put Vi ={U;:1<i<n}. Note that if
io,i2€40,1,...,n} and iy, i, .., in—1€{1,2,...,n}, then Uy, []'_, vUsj_10*Us; €V We
let

W={veG,, v =v"vand Egnpge(z)=0 for all z €V}, 1 <k <2n}.



AMALGAMATED FREE PRODUCTS OF WEAKLY RIGID FACTORS 145

We endow W with the order given by: v<v' if v=v'v*v. (W, <) is clearly inductively
ordered. Let vg€W be a maximal element. Assume that 0#p=1—vovi€P(A). Since
E 4 (2)=0 for all zeV,°, 1<k<2n, it follows that E/(pzp)=0 as well. Since all such

elements w=pxp satisfy ww*, w*we A and wAw* =Aww*, by [D] it follows that

there exists 0+# g1 € P(Ap) such that ¢; D,, = Cq; and qywg; = Ex (w)gy =0

A2
for all we J7", Vi°. (A4.2)

Let v1 €Ny, rq, (Aq1). Note that v1 €G,, and vivf =vjv1=q1. Set u=vo+v;. We will
show that if v1 €Ny, kg, (Aq1) is chosen appropriately, then €W, thus contradicting the

maximality of vg. Write

k—1 k—1
x= H (Ui, u®)U;, = Z H (Uijvgj)Uik = Z Yg,
Jj=0 B =0 B
where the sum is taken over all choices ﬂ:(ﬂj).’j;(%e{o, 1}*. We will show that v; can
be taken such that E4/(yg)=0 for all 3 and all xEUiZO V. For =(0,0,...,0) we have
ys=I15=0 (Us,v67)U;, €V}°, s0 that Ea(ys)=0, by the fact that vo€W.
The k terms yg corresponding to just one occurrence of vy (i.e. B=(f, ..., Bx) with
all 3;=0 except one), are of the form woviw;, with wg,w €U§;3 V;O. Thus, each w;
satisfies w;w}, wiw; € A and w; Aw;=Aw,;w}, i=0, 1. By shrinking ¢; recursively, we may
assume that (wiwo)g1 (wiwy) is either equal to 0 or to g1, for all such yg and all 0<k<2n.
For the yg for which (wiwo)g:(wiwi)=0 we have y3=0 and there is nothing to prove.
For the yg with (wjwo)q (wiwi)=q1, take ug, us ENge(A) such that upgr=woq; and
Gur=qiwr. Then Ea (yg)=E s (uov1u1) =uoEas (v1uiuo)ug, so that

[Ear(yp)llr = | Ear(viuiug)|1-

Shrinking g1 recursively again, all conditions so far are still satisfied, while we can assume
that giuiugqr is either 0 or an element in A’NRY, for all ug and u; coming from all wy
and wy arising as above. Thus, if we take v1 €Ny, rq, (Ag1) to be properly outer, then in
both cases E4 (v1uiug)=0 for all ug and u;. We have thus shown that ¢; and v; can be
chosen so that for all 5=(01, ..., B) having just one occurrence of 1 we have E4/(yg)=0
as well.

Finally, the yg with at least two occurrences of v; can be written as
ys = zo(viwoi )1,
with weV,® for some 0<I<k—2, o, 0’ €{£1} and partial isometries ;. Thus

1Ea(yp)ll < llyslly <[loiwo® 1 = lgwa |l = [| Ear (W) [l =0,
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the last equality by (A.2).

Altogether, E4/(z)=0 for all mEUiZO Vi, showing that ueWW. But this contradicts
the maximality of vyg. Thus vy must be a unitary element, finishing the proof that V), is
dense in Aut(A, 7) and thus the proof of the statement. O

LEMMA A.2. Let {0,}n>1 be a sequence of properly outer automorphisms of the hy-
perfinite 11y factor R. Denote by V the set of all automorphisms 6 of R such that
any automorphism of R of the form 6;, H;—;l 992-%719_192»2]. is outer, for all n>1,
1,02, ., t2n—1€{1,2,3, ...} and ig,i2,€40,1,2,... }, where Og=idg. Then V is a Gs-
dense subset of Aut(R). In particular, V#O.

Proof. Let {u,}n>1 be a sequence of unitary elements in R, dense in U(R) in the
Il l2-norm and with each element repeated infinitely many times. For each z€R and

o€Aut(R), denote by k(p,x) the unique element of minimal || - ||2-norm in
K(p,z)=c0"{o(v)zv*:velU(R)}.

Let D,, be the set of automorphisms g of R with the property that ||k(o,u;)||2<1/n for
all 1<i<gn.

We claim that D,, is open in Aut(R). To see this, let p€D,, and for each 1<i<n
choose v}, v}, ...,v¢ €U(R) such that

Y Ymy

my

1 i (e
|

Jj=1

1
< —.
n

If >0 is sufficiently small, then any ¢’ €Aut(R) satisfying [|o'(v})—o(v})||2<d, for all
1<i<n and for all 1<j<m,;, will satisfy

m;

: . 1
1 o' (v )uvi || < —

m; <
7’]: 2

implying that ||k(¢',u;)||2<1/n for all 1<i<n. Thus ¢'€D,,.
Denote by V,,=V,, (61, ..., 0,) the set of all p€ Aut(R) with the property that

l
Uio H Q9i2j71 Q710i2j 6 Dn
j=1

for all 1<I<n and all choices i1, g, ..., 1911 €{1,2,...,n} and ig,i2,€{0,1,2,...,n}. Since

D,, is open and
l

Aut(R) > p—0;, H 00i,, g719i2j

Jj=1
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is a continuous map, for each m and i; as before, it follows that V,, is open in Aut(R).

It is immediate to see that ﬂn>1 V,=V. Thus, in order to show that V is a G-
dense subset of Aut(R), we have to prove that each V), is dense in Aut(R). Moreover,
arguing as in the proof of Lemma A.1, we see that, by replacing if necessary {60, }n>1
with the sequence {0/, },51={0n}n>1U{00:m0" " }m>1, it is enough to show that idg is in
the closure of V,,. We will prove that in fact idg is in the closure of V,,NInt(R), i.e., given
any finite-dimensional subfactor RyC R, there exists u€U(R,NR) such that Ad(u)€V,.
In turn, this will be an easy consequence of [P3, Theorem 2.1].

To make the ideas more transparent, let us consider first the case when {6,,},>0 is
an enumeration of the automorphisms of a free cocycle action of a countable group I' on
R, 0:T—Aut(R). Let M=RxT and Uy=1,U;,Us,...cU(M) be the canonical unitary
elements implementing 6y, 61,.... Since the action is free (i.e. 6, is non-inner for all
g#e), we have R'"NM=C. Fix a free ultrafilter w on N. We view RC M as subalgebras
of constant sequences in the ultrapower II; factor M<.

Since (R{NR)' NM =Ry, by [P3, Theorem 2.1], there exists a unitary element V&
(R{NR)¥Y C M* such that

VRV*VM ~ Rxp, M.

In particular, if weld(RyNR) is a Haar unitary element and we put U=VwV*€V RV*,
then for any choice of 1<I<n, i,i2,...,991—1€{1,2,....,n}, ig,i2€{0,1,2,...,n} and

1<r<n, the unitary elements

l
Ad <Ui0 H(UUi2j1U_1)Ui2j> (UM, U*, k=1,2,.. (A.3)

j=1

are mutually orthogonal with respect to the scalar product given by the trace. To see

this, we need to show that

l
T(Ad (U H(UUQ].IU”)U@) (U’“)urU_k> =0 for all k#0.

j=1

This amounts to showing that

l l
T <Uk < H UUi?J‘—l UlUi?j) Uk < H Ui;lfzj UUi;lfzjﬂ Ul)u’"> = 0’
J=1 J=1

which does indeed hold true, because after some appropriate word-reduction we are left
with a word of alternating “letters” U* €V RV*S Ry, for all k#£0, and Ui;, U;; eMoRC
]\4@f€07 for all ’L]#O
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By the orthogonality of the elements in (A.3), it follows that for large enough N we

have
l

N
1
H ~ > Ad <Ui0 [[wu,_, U_l)Uizj) (UF)u,U*
k=1

j=1

1
< - (A4)
9 n

for all choices of 1<I<n, i1,19,...,421-1€{1,2,...,n}, i9,i2€{0,1,2,...,n} and 1<r<n.
Writing U as a sequence of unitary elements in RyNR, U=(v,,), it follows that for m

large enough u=wv,, satisfies

< % (A.5)

2

N !
1 " _
HN g 0, ( H Ad(u)0;,, _, Ad(u )9i2j> (uF)u,u*
k=1 j=1

for all 1<I<n, all 41,49, ...,99—1€{1,2,...,n}, ig,i2€{0,1,2,...,n} and all 1<r<n. Thus
Ad(u)€V),, finishing the proof of this particular case.

Now, in the general case we can take 8y=idg, 61, 02, ... to be a lifting in Aut(R)
of an injective group morphism I'—Out(R), with T' generated by n elements. Notice
that the automorphisms 6;®6;” on R®R induce a cocycle action 0:T — Aut(RRR°P)
(see e.g. [P4, §3]), so we can consider the crossed product factor M = R®R°P xT". Denote
by U,€M the canonical unitary elements implementing 0,®0°P. By [P4] again, we
can view R®RCM as the symmetric enveloping inclusion associated with a “diagonal
subfactor” NCR~M,,1(N), with the embedding of N given by x®6;(x)®...®0,(x).
Moreover, the associated Jones tower NC RC Ny C... /*N, can be viewed as a sequence
of subalgebras of M , making a non-degenerate commuting square:

RQR® C M
U U
RVR'NNy C Ny

As before, we view M as the algebra of constant sequences in M*. Since
(RYNR)' NN = RyVR' NNy

and each R'NNj, is finite-dimensional, we can apply [P3, Theorem 2.1] to get a unitary
element Ve (RyNR)* CNZ such that VNooV*V Noo ~Noo*govrnN.. Noo- By the above
commuting square, we then also have VMV*\/J\NJ:]\ZT*RO\,RW M.
Like before, take a Haar unitary element weld(R{NR) and let U=VwV*eV RV*.
For any choice of 1<I<n, 11,19, ...,091-1€{1,2,...,n}, i9,i2,€{0,1,2,...,n} and 1<r<n,
the unitary elements
1
Ad (Uio H(UUizlel)UhJ (UM, U, k=1,2,.., (A.3)

Jj=1
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are then mutually orthogonal with respect to the scalar product given by the trace.
Indeed, as UF€eVRV*©RyCV N V*SRyVN'NNy for k#£0, and Ui;, U;, €MERVR®
for i;7£0, it follows that

l
T(Ad (U H(UUizle_l)Uizj) (U’“)uTU_k) =0 for k#0,
j=1
showing the orthogonality in (A.3").
Now, by the orthogonality of the elements in (A.3"), it follows that for large enough

N, we have

1
<= (A4
9 n

N 1
1
H ~ > Ad (U H(UUiZle_l)Ui2j> (UF)u,U*
k=1 j=1
for all choices of 1<I<n, i,i9,...,421-1€{1,2,...,n}, i0,i2,€{0,1,2,...,n} and 1<r<n.

Writing U as a sequence of unitary elements in RyNR, U=(v,,), it follows again that for

large enough m the unitary element u=v,, satisfies

1 /
<= (A.5)

N l
1 " _
HN > i ( [T Adw)6i,,_, Ad(u )9%) (WP uu*
k=1 j=1

2
for all 1<I<n, i1,49,...,421-1€{1,2,...,n}, i0,i21€{0,1,2,...,n} and 1<r<n. Thus
Ad(u) € V. O

Remarks A.3. The proofs of both Lemmas A.1 and A.2 can of course be carried
out without using the hyperfinite II; factor R and its ultrapower R“ as framework,
working exclusively in the spaces Aut(X, p) and Aut(R), respectively. But while it is
straightforward to re-write the proof of Lemma A.1 this way, the proof of Lemma A.2
then becomes much more tedious, as one can no longer use results from [P3]. Instead,
one has to go through a similar maximality argument as in the proof of Lemma A.1,
but with the non-commutativity requiring some complicated estimates, similar to [P3,
pp- 189-192].

When written in the “Aut(X, ) framework”, a suitable adaptation of the proof of

Lemma A.1 shows the following result.

(1) Let (X,X,v) be a standard probability space and denote by A the set of all
measurable isomorphisms g of X into X such that vep is non-singular with respect to v.
Let p be another measure (not necessarily finite) on (X, X), equivalent to v. Denote by
Aut(X, p) the p-preserving automorphisms in A. If {6, },,>1 €A are properly outer, then
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the set VCAut(X, p) of all 6€ Aut(X, u) with the property that 6;, [T}_, 66;,, ,67'0
is properly outer, for all n>1, 41,49, ...,42,—1€{1,2,3, ... } and ig, i2,€{0,1,2, ... }, where
fo=idx, is a Gs-dense subset of Aut(X, p).

’igj

In turn, the proof of the non-commutative case in the “Aut(R) framework” can be

adapted to show the following more general result.

(2) For each n>1, let 6,,: R°°— R be either an endomorphism or an anti-endomor-
phism of the hyperfinite I, factor R> such that 6,, is outer, Tro6,, is a finite multiple
of the trace Tr and 6, (R*°)'NR>™ is atomic, for all n. Denote by V the set of all
trace-preserving automorphisms 6 of R* such that any product 6;, H;:l 991-2].710’191-2].
is outer, for all n>1, iy, s, ..., i2,—1€{1,2,3,... } and ig,i2,€40,1,2,... }, where y=idg.
Then V is a Gs-dense subset of Aut(R*>°).

The case [R*:0,,(R*>)] < oo, for all n, of (2) follows easily from [P3, Theorem 2.1], by
arguing exactly as in the proof of Lemma A.2 above. The only change in that argument is
the definition of the finite index subfactor N C R, which will again be a “diagonal” inclu-
sion, but with R~N* for some appropriate amplification of N, and N embedded into it
by taking a partition py, ..., p, €P(R) and defining N~poRp, t=7(po) ! and N—~N!=R
by @+ 0i(x)pi, x€poRpo, where 7(p;)/7(po)=dTre0;/dTr, 8;: po Rpo—p; Rp; being
“corners” of the endomorphisms 6;: R* — R°°. When the resulting subfactor is extremal,
the rest of the argument is identical, while in case it is not extremal, then one replaces
the symmetric enveloping algebra of N C R by an appropriately defined enveloping alge-
bra M , containing N, and satisfying appropriate commuting square properties.

Note that this result shows in particular that given any two subfactors of finite
Jones index of the hyperfinite II; factor, PC R and Q C R, there exists a subfactor NCR
having standard invariant “free product” of the standard invariants Gp g and Gg g, as
considered in [BJ].
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