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1. Introduction

In this paper we are concerned with LP estimates for discrete operators in certain non-
translation-invariant settings, and the applications of such estimates to ergodic theorems
for certain families of non-commuting operators. We first describe the type of operators
that we consider in the translation-invariant setting. Assume that P: Z% —Z% is a poly-
nomial mapping and K: R4\ B(1)—C is a Calderén—Zygmund kernel (see formulas (1.3)
and (1.4) for precise definitions). For (compactly supported) functions f:Z9 —C, we

define the maximal operator

M(f)(m)= sup

)

1
W Z f(m—P(n))

neB(r)NZd1
and the singular integral operator

T(f)m)= Y K(n)f(m-P(n)).

nezi1\ {0}

The maximal operator M (f) was considered by Bourgain [3], [4], [5], who showed that
||M(f)”LP(Zd2) < Cp||fHLP(Zd2)a pe(l,00], if dy=dy=1. (1.1)

Maximal inequalities such as (1.1) have applications to pointwise and L?, p€(1, c0),
ergodic theorems; see [3], [4] and [5]. A typical theorem is the following: assume that
P:Z—1Z is a polynomial mapping, (X, ) is a finite measure space and T: X =X is a

measure-preserving invertible transformation. For Fe LP(X), pe(1,00), let

A (F)(@)= 2r1+1

Z F(TP™z) for any reZ,.

In|<r

Then there is a function F, € LP(X) with the property that

lim A,(F)=F, almost everywhere and in L”.
r—00

In addition, F,=u(X)™" [y F(z)dp if T9 is ergodic for ¢=1,2, ....

The related singular integral operator f( f) was considered first by Arkhipov and
Oskolkov [1] and by Stein and Wainger [15]. Following earlier work of [1], [15] and [17],
Tonescu and Wainger [8] proved that

||T(f)||Lp(zdz) <Cpllfllpr(zezy, pE(1,00). (1.2)

A more complete description of the results leading to the bound (1.2) can be found in
the introduction of [8].
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In this paper, we start the systematic study of the suitable analogues of the operators
M and T in discrete settings which are not translation-invariant.(!) As before, the
maximal function estimate has applications to ergodic theorems involving families of
non-commuting operators.

Motivated by models involving actions of nilpotent groups, we consider a special class
of non-translation-invariant Radon transforms, called the “quasi-translation” invariant
Radon transforms. Assume that d,d’ >1 and let P: Z¢x Z?—Z% be a polynomial map-
ping. For any >0 let B(r) denote the ball {zcR%:|z|<r}. Let K: R4\ B(1)—C denote
a Calderén—Zygmund kernel, i.e.

2| K (2)|+ 2| VK (2)| <1, [a] > 1, (1.3)

and
<1 forany N >1. (1.4)

‘/ K(x)dx
|z|€[1,N]

For (compactly supported) functions f:deZd/—>C we define the discrete maximal

Radon transform

M(f)(m1,ma)=sup
r>0

Z flmy—n,my—P(mq,n))|, (1.5)

n€B(r)NZ?

1
| B(r)NZ|
and the discrete singular Radon transform

T(f)(m1,mg) = Z K(n)f(mi—n,ma—P(my,n)). (1.6)
neZ\{0}

The operator T was considered by Stein and Wainger [16], who proved that
||T||L2(zdxzd’)—>L2(zdxzd’) <C. (1.7)

In this paper, we prove estimates like (1.7) in the full range of exponents p for both the

singular integral operator 7" and the maximal operator M, in the special case in which
the polynomial P has degree at most 2. (1.8)

THEOREM 1.1. Assuming condition (1.8), the discrete maximal Radon transform M
extends to a bounded (subadditive) operator on LP(Z4xZ%), pe(1, oc], with

||M||LP(deZd’)ﬁ>LP(Zd><Zd,) <G

The constant C,, depends only on the exponent p and the dimension d.

(1) Such operators, called Radon transforms, have been studied extensively in the continuous
setting; see [6] and the references therein.
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THEOREM 1.2. Assuming condition (1.8), the discrete singular Radon transform T
extends to a bounded operator on LP(Z? de/), pe(l,00), with

HTHLP(deZd')aLP(deZd’) <Gy

The constant C,, depends only on the exponent p and the dimension d.

See also Theorems 2.1-2.4 and 5.2 for equivalent versions of Theorems 1.1 and 1.2
in the setting of nilpotent groups. In the special case d=d'=1 and P(mj,n)=n?, Theo-

rem 1.1 gives

< Cpllfllzr(z2) (1.9)
L (2?)

sup m Z |f(m1—n, mz—n2)|

r>0 [n|<r
for any pe€(1,00] and f€LP(Z?). We consider functions f of the form
f(my1,ma) =g(ma2)1_ns,ar(m1);

by letting M — o0, it follows from (1.9) that

gCPHgHLP(Z),
Lr(Z)

1
sup W Z lg(m—n?)]

r>0 Inl<r
which is Bourgain’s theorem [5] in the case P(n)=n?.

We now state our main ergodic theorem. Let (X, ) denote a finite measure space,
and let 11, ...,T4,S1, ..., Sq¢ denote a family of measure-preserving invertible transforma-

tions on X satisfying the commutator relations
[T;,Sk) =[5;,Sk]=1 and [1},T}],T;]=1 forall j, kand !l (1.10)

Here I denotes the identity transformation and [T, S]=T"1S~1TS the commutator of T
and S. For a polynomial mapping

QR=(Q1,..,Qu): Z4 74 of degree at most 2, (1.11)

and FeL?(X), pe(1,00), we define the averages

1 n ’
A (F)(2) = ot > F(T .. Trag@r ™ 59e™ gy (1.12)
|B(’I”)ﬂz | n=(ni,...,nqg) EB(r)NZ?
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THEOREM 1.3. Assume that Ti,...,Tq,S1,...,S¢ satisfy (1.10) and let Q be as
in (1.11). Then, for every FeLP(X), pe(l,00), there exists F,€ LP(X) such that

lim A,.(F)=F. almost everywhere and in LP. (1.13)

r—00

Moreover, if the family of transformations {T}, S;:1<j<d and 1<k<d'} is ergodic for

every integer q=1, then

1
F*:m/Xqu. (1.14)

See also Theorem 5.1 for an equivalent version formulated in terms of the action of
a discrete nilpotent group of step 2.

It would be desirable to remove the restrictions on the degrees of the polynomials
P and Q in (1.8) and (1.11), and allow more general commutator relations in (1.10).(?)
These two issues are related. In this paper we exploit the restriction (1.8) to connect
the Radon transforms M and T to certain group translation-invariant Radon transforms
on discrete nilpotent groups of step 2. We then analyze the resulting Radon transforms
using Fourier analysis techniques. The analogue of this construction for higher degree
polynomials P leads to nilpotent Lie groups of higher step, for which it is not clear
whether the Fourier transform method can be applied. We hope to return to this in the
future.

We describe now some of the ingredients in the proofs of Theorems 1.1-1.3. In §2
we use a transference principle and reduce Theorems 1.1 and 1.2 to Lemmas 2.7 and 2.8
on the discrete nilpotent group GO#.

In §3 we prove four technical lemmas concerning oscillatory integrals on Lz(Zg)
and L%(Z?). These bounds correspond to estimates for fixed @ after using the Fourier
transform in the central variable of the group G# . We remark that natural scalar-valued
objects, such as the Gauss sums, become operator-valued objects in our non-commutative
setting. For example, the bound ||Sa/q|\L2(zg)—>L2(zg) <¢~'/? in Lemma 3.1 is the natural
analogue of the standard scalar bound on Gauss sums |S%/49|<Cq~1/2.

In §4 we prove Lemma 2.7 (which implies Theorem 1.1). In §4.1 we prove certain
strong L? bounds (see Lemma 4.1); the proof of these L? bounds is based on a variant of
the “circle method”, adapted to our non-translation-invariant setting. In §4.2 we prove
a restricted LP bound, p>1, with a logarithmic loss. The idea of using such restricted
LP estimates as an ingredient for proving the full L? estimates originates in Bourgain’s
paper [5]. Finally, in §4.3 we prove Lemma 2.7, by combining the strong L? bounds in
84.1, and the restricted LP bounds in §4.2.

(2) A possible setting for the pointwise ergodic theorem would be that of polynomial sequences in
nilpotent groups; compare with [2] and [9].
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In §5 we prove Theorem 1.3. First we restate Theorem 1.3 in terms of actions of
discrete nilpotent groups of step 2, see Theorem 5.1. Then we use a maximal ergodic
theorem, which follows by transference from Theorem 1.1, to reduce matters to proving
almost everywhere convergence for functions F' in a dense subset of LP(X). For this we
adapt a limiting argument of Bourgain [5].

In §6 we prove Lemma 2.8 (which implies Theorem 1.2). In §6.1 we prove strong
L? bounds, using only Plancherel’s theorem and the fixed @ estimates in §3. In §6.2 we
recall (without proofs) a partition of the integers and a square function estimate used by
Ionescu and Wainger [8]. In §6.3 we complete the proof of Lemma 2.8. First we reduce
matters to proving a suitable square function estimate for a more standard oscillatory
singular integral operator (see Lemma 6.6). Then we use the equivalence between square
function estimates and weighted inequalities (cf. [7, Chapter V]) to further reduce to
proving a weighted inequality for an (essentially standard) oscillatory singular integral
operator. This weighted inequality is proved in §7.

In §7, which is self-contained, we collect several estimates related to the real-variable
theory on the group Gg& . We prove weighted LP estimates for maximal averages and
oscillatory singular integrals, in which the relevant underlying balls have eccentricity
N>1. The main issue is to prove these LP bounds with only logarithmic losses of the
type (log N)¢. These logarithmic losses can then be combined with the gains of N—¢
in the L? estimates in Lemmas 4.1 and 6.1 to obtain the theorems in the full range
of exponents p. The proofs in this section are essentially standard real-variable proofs

(compare with [14]); we provide all the details for the sake of completeness.

2. Preliminary reductions: a transference principle

In this section we reduce Theorems 1.1 and 1.2 to Lemmas 2.7 and 2.8 on the discrete
free group G# defined below. This is based on the “method of transference” (see, for
example, [11]). Since the polynomial mapping P in Theorems 1.1 and 1.2 has degree at

most 2 (see condition (1.8)), we can write
P(my,n) = R(n,mi—n)+A(mi—n)+B(mi), (2.1)

for some polynomial mappings A, B: 7?7 and a bilinear mapping R: Z¢ x YAy L
The representation (2.1) follows simply by setting

(m, m),
A(m)=P(m ) P(m,m),
R(m,m')=P(m+m’,m)+P(m’',m')—P(m+m’,m+m’)—P(m’,0).

)
I
"U
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Since R(m,0)=R(0,m’)=0 for any m,m’€Z?, it follows from (1.8) that R is bilinear.
Definitions (1.5) and (1.6) show that

M(f)(my, ms) :M(fA)(mlamQ_B(ml))»
T(f)(m1,ma) =T (fa)(m1, ma—B(my)),

where f4(my, ma)=f(m1, my—A(m1)), and M and T are defined in the same way as M
and T, by replacing P(m1,n) with R(n,m;—mn). Therefore, in proving Theorems 1.1
and 1.2 we may assume that P(mi,n)=R(n,m;—n), where R is a bilinear mapping. In
this case, the operators M and T can be viewed as group translation-invariant operators
on certain nilpotent Lie groups, which we define below.

Assume that d, d’>1 are integers and R: R% x RI—R? is a bilinear map. We define
the nilpotent Lie group

G= {(l’, 5) € Rd XRd, : (l‘, 5)(ya t) = (£E+y, S+t+R($, y))}a (22)
with the standard unimodular Haar measure dx ds. In addition, if
R(Z*x2%) CZ?, (2.3)

then the set
G#*=7xZ% CG (2.4)

is a discrete subgroup of G, equipped with the counting Haar measure.
For any (bounded compactly supported) function F: G—C we define the discrete
maximal Radon transform

M(F)(z, s) :ig%

Borzn X Feotea), e

n€B(r)NZ4

and the discrete singular Radon transform

T(F)(x.s)= Y. Km)F((n,0) " (z,s)). (2.6)

n€Z4\{0}

Assuming condition (2.3), for (compactly supported) functions f: G#—C, we define

M*(f)(m,u) =sup

r>0

W > S(0,07"(m,w)) (2.7)

n€B(r)NZ
and

TH(Hmwy= Y Kn)f(n,0" (m,u). (2.8)

neZ\{0}

In view of equation (2.1), Theorems 1.1 and 1.2 follow from Theorems 2.1 and 2.2 below.
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THEOREM 2.1. Assume that R:Z%xZ¢—Z% is a bilinear map satisfying condi-
tion (2.3). Then the discrete mazimal Radon transform M7 extends to a bounded (sub-
additive) operator on LP(G¥), pe(1, o], with

”M#(f)HLP(G#) <Cpllfllr(a#)-

The constant C,, depends only on the exponent p and the dimension d.

THEOREM 2.2. Assume that R:ZixZ%—Z is a bilinear map satisfying condi-
tion (2.3). Then the discrete singular Radon transform T# extends to a bounded operator
on LP(G7), pe(1,00), with

IT#(F)llrc#) < Cpll fllra#)-

The constant C,, depends only on the exponent p and the dimension d.
Theorems 2.1 and 2.2 can be restated as theorems on the Lie group G.

THEOREM 2.3. Assume that R:ZxZ4—Z% is a bilinear map. Then the discrete
mazimal Radon transform M extends to a bounded (subadditive) operator on LP(G),
pe(1, 0], with

IM(F)l (@) S Cpll Fllr(c)-

The constant Cp, may depend only on the exponent p and the dimension d.

THEOREM 2.4. Assume that R:ZexZ4—Z is a bilinear map. Then the discrete

singular Radon transform T extends to a bounded operator on LP(G), pe(1,00), with
|7 (F)llzr (@) < CpllFllLr(a)-
The constant C, may depend only on the exponent p and the dimension d.

Assuming condition (2.3), we now justify the equivalence of Theorems 2.3 and 2.1
and Theorems 2.4 and 2.2. We notice that the map ®: G# x[0,1)?x[0,1)* =G,

O((m,w), (1, @) = (m,w)- (p, @) = (m+p, ut-a+R(m, p)),

establishes a measure-preserving bijection between G# x [0,1)¢x[0,1)% and G. For any
(compactly supported) function f: G#—C we define

F:G—C, F(®((m,u), (g a)))=rf(m,u).
The definitions show that for any (u,«)€[0,1)%x[0,1)%,
M- (F)(m, w) = MF)(@((m, ), (1, ),
TH(f)(m,u) =T (F)(2((m, u), (i, @))).
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Thus Theorem 2.3 implies Theorem 2.1 and Theorem 2.4 implies Theorem 2.2.
For the converse, assume that F: G—C is given. For any (u, a)€[0,1)4x[0,1)? we
define

f(u,,oc):G# —C, f(u,a)(mv u):F((I)((m’u)v(.u’a)))'

The definitions show that

<
=
=
3
s
=
2
T

M# (f(u,oc))(mv u),
=T# (f(u,a))(m7 u)7

2
>
E
3
£
=
£
|

so Theorem 2.1 implies Theorem 2.3 and Theorem 2.2 implies Theorem 2.4.
We further reduce Theorems 2.3 and 2.4 to a special “universal” case. We define
the bilinear map Ry: R xR4—R¥ by

d
Ro(x,y)z Z L1 Y15 €l 155 (29)

l1,l2=1

where {e;,1,:11,12=1, ...,d} denotes the standard orthonormal basis of R™. Using the bi-
linear map Ry, we define the nilpotent Lie group Gy as in (2.2). For any (bounded com-
pactly supported) function F: Go—C, we define M (F) and 7o(F') as in (2.5) and (2.6).

LEMMA 2.5. The discrete maximal Radon transform My extends to a bounded op-
erator on LP(Gy), p€(1, ).

LEMMA 2.6. The discrete singular Radon transform Ty extends to a bounded operator
on LP(Gy), pe(1,00).

We now show that Lemmas 2.5 and 2.6 imply Theorems 2.3 and 2.4, respectively.
Assume that the bilinear map R in the definition of the group G is

d
R(sc,y)z Z Z1,Y15Vi415,

l1,l2=1

for some vectors v;,;, €R?. We define the linear map L: RY »R? by L(eyy1,)=wi,1, (so
L(Ro(x,y))=R(z,y) for any x,y€R?) and the group morphism

L:Gy— G, L(z,s)=(x,L(s)).
We define the isometric representation m of Gg on LP(G), pe[l, o], by

m(90)(F)(9)=F(L(gy")-9), 9o € Go,F€LP(G),g€G.
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For r>0 we define the generalized measures p,. and v, on C.(Gg) by

i (Fo) = % > Fy(n,0),

\B(r)ﬂZ n€B(r)NZ4
v (Fy) = > K (n)Fy(n,0).
neB(r)NZ4\{0}

Clearly, for any (bounded compactly supported) function Fy: Go—C,

Mo (Fo)(g0) = Sl>11(f)) | Fo* per (o)l

To(Fo)(g90) = Tlgglo Foxv,(go).

Moreover, the definitions show that for any (bounded compactly supported) function
F:G—=C,

M(F)(g) = sup

r>0

T(F)(g)= lim [ [m(g0)(F)](g) dv+(g0)-

r—00 GO

/G i (g0) (F))(g) i (90)|.

By [12, Proposition 5.1], we have that Theorems 2.3 and 2.4 follow from Lemmas 2.5
and 2.6, respectively.

Finally, we define the discrete subgroup G# :ZdXZdZQGO. Then we define the
operators M7 and 7 as in (2.7) and (2.8):

M (f)(m,u) =sup

r>0

L 1
1B(r)nzd| > f(n0)7 - (m,w)

n€B(r)NZ?

and

T (Hmu)= Y Kn)f(n,0)7"(m,u)),

neZi\{0}

for (compactly supported) functions f: G#—>C. In view of the equivalence discussed
earlier (since Ry clearly satisfies condition (2.3)), it suffices to prove the following two

lemmas.

LEMMA 2.7. The discrete mazimal Radon transform /\/lé£ extends to a bounded op-
erator on LP(G¥), pe(1,2].

LEMMA 2.8. The discrete singular Radon transform ’]E)# extends to a bounded oper-
ator on LP(G#), pe(l,00).
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We remark that in Lemma 2.8 it suffices to prove the estimate for p€ (2, 00). Indeed,
assume that pe(1,2], p'=p/(p—1)€[2,00), and let K(n, v)=K(n)li(v), K: G#HC.
Then ’ZB#( H=f * K and, by duality,

||7—O#||LP(GO#)*>LP(G#) = sup (2.10)

[,

[ 1w
G§

=1 Ly (GY)
We define now the “dual” group G/Z:
G'¥ ={(m,u) € ZxRY : (m,u)-(n,v) = (m+n, u+v+R)(m,n))},

where R{(m,n)=Ry(n, m)2271,12:1 my, Ny ei, - The right-hand side of equation (2.10)

is equal to

_ Fg MR h) dh
G,O

sup

11 e, =1 = 5w e Kl @) (21D
LP (GIO)

’
L (@) 1l =1

We use now the bijection

19
G# G 0> (mv Z ul1l26l1l2> — (ma Z 7-”11261211) .

ll,lg ll’l2

Since p’ €[2, 00), it follows from Lemma 2.8 that
Hf*(;/g*KHLp’(G/f) <Cy ||f||Lp’(G/#)-

Using (2.10) and (2.11), it follows that ”ZJ#HLP(GO#)HLP(G#)gcp’ as desired.

3. Oscillatory integrals on L?(Z¢) and L?(Z¢)

In this section we prove four lemmas concerning oscillatory integrals on L?. The bounds
in these lemmas depend on a fixed parameter € in the Fourier space corresponding to
taking the Fourier transform in the central variable of the group G# . In Lemma 3.1,
f0=a/q (the Gauss sum operator). In Lemma 3.2, 0 is close to a/q, ¢ large. In Lemma 3.3,
0 is close to a/q, g small. Finally, Lemma 3.4 is an estimate for a singular integral. The
main issue in all these lemmas is to have a quantitative gain over the trivial L?— L2
estimates with bound 1. Lemmas of this type have been used in [10] and [16].

We assume throughout this section that d’=d?, and that Gf is the discrete nilpotent
group defined in §2. For any p>1let Z,=ZN[1, pu]. If a=(a1,1,)1, 1o=1....a€Z" is a vector
and ¢>1 is an integer, then we denote by (a, ¢) the greatest common divisor of a and ¢,
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i.e. the largest integer ¢’ >1 that divides ¢ and all the components a;,;,. Any number in

Qd/ can be written uniquely in the form
a/q, q€{1,2,..},a€Z (a,q)=1. (3.1)

A number as in (3.1) will be called an #rreducible d’'-fraction. For any irreducible d’-
fraction a/q and g: Z¢—C we consider the (Gauss sum) operator

S g m) =g 3 glaye ol 32

nGZd

LEMMA 3.1. (Gauss sum estimate) With the notation above,

||5a/q(9)||L2(zg) <qfl/2||g|\L2(zg)- (3.3)

Proof. We consider the operator S“/q(S“/q)*; the kernel of this operator is

d d
L(m, n) _ q—2d Z e~ 2miRo(m—n,w)-a/q _ q—Zd H 6q< Z (mll _nl1)'alll2>7 (3.4)

weZd lo=1 I1=1
where 6,:Z—{0, ¢},

_[q ifm/qeZ,
5‘1(m)_{0, if m/qé¢Z. (3.5)

We have to show that ) .. |L(m,n)| and ) g |L(m,n)| are bounded uniformly
q q

by ¢ 1.
(ma, ... md)ezg of the system

In view of equation (3.4), it suffices to prove that the number of solutions

d
Z my, a1, =0 (mod ¢) for any lx=1,...,d, (3.6)
I1=1
is at most ¢4~ 1.

(9]

Assume that ¢=pi"...pp* is the unique decomposition of ¢ as a product of powers

of distinct primes. Any integer m can be written uniquely in the form

H'M»

q/pj (mod ¢), m’ € Z . (3.7)
J
We write aj,;, and my, as in (3.7). Since the primes p; are distinct, the system (3.6) is
equivalent to the system
d

Zm{la{1l2:0 (mod p?j) for any lo=1,...,d and j=1,..., k. (3.8)
=1
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We now use the fact that a/q is an irreducible d’-fraction. Thus for any j=1,...,k
there are some 11(j),l2(j)€{1,...,d} with the property that (a;, (jy,(;),p;)=1. For any
j=1,...,k we consider only the equation in the system (3.8) corresponding to lo=I5(j).
Since ay, (jy,(;) is invertible in the ring Z/p?j Z, for any fixed j the system (3.8) can have
?j}dq

at most [p solutions (m7, ..., mg)eZ;‘f%. The lemma follows. O

J
Assume now that j>0 is an integer and ®;: R?—C is a function supported in the
set {x:|x|<29t1} such that

2U |3 (z)|+21H DI |V, (x)| <1, zeR< (3.9)
For R and (compactly supported) functions g: Z%—C we define

U(g)(m) = 3 Bj(m—n)g(n)e2rHalm-na)e, (3.10)

nezd
We prove two L? bounds for the operators U (g).
LEMMA 3.2. (Minor arcs) Assume that a/q is an irreducible d’'-fraction, §>0 and

9cRY . Assume also that there are some indices k1, koe{l,...,d} with the property that

Aoy ko /4= Qhr kg /T kas  (Qhykgs Qi) = 1,
(3.11)

200 < Gk, <2277 and (O, ky — By ko /Tiaka| <27

Then
1147 (9| L2 (zey < C27°||gll 2 (ze), 0" >0. (3.12)

Proof. Clearly, we may assume that j>C. The kernel of the operator L{j‘? (Uf )* is
Lg(m7 n)= Z D (m—w)®;(n—w)e 2T Holm=—nw)6, (3.13)
weZd

Notice that the kernel Lf is supported in the set {(m,n):|m—n|<2/72} and the sum
in equation (3.13) is taken over |w—m|<2/Tt. Let A, (m)zX:Z:1 my, 01,1,. We write
w=(w,,w’). It follows from equation (3.13) that

L (m,n)| < Y

w/ezd—l

Z q)j (mi (wkz 5 wl))(i)j (ni (wk27 wl))672ﬂ'iwk2 Ak (M=) .
Wy €Z

(3.14)

By summation by parts, it is easy to see that

Z 6727riv§h(v)

vEZ

<Co(&) IR ||z
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for any he C'(R), where o(¢) denotes the distance from the real number ¢ to Z. Using
inequality (3.9), it follows that

L5 (m,n)| < C27 V1 g4z (Jm—n]) [14+27 o( Ag, (m—n))] . (3.15)

We estimate Y cza |L%(m,n)| and Y- cza |[L9(m,n)|. We write m=(my,,m’) and n=
(ng,,n'). Using the bound (3.15),

2J+2
> ILmun)+ > LS (mn)|<C2 7 sup Y (1427 0(Ok,kv+p)] T (3.16)
neZzd meZd “eszfﬂJrZ

Thus, for the bound (3.12), it suffices to prove that for some constants C'>1 and ¢’>0,
#{v e [-2772 2F2NZ: o(Op, pyv+p) < C 12717907} < 0201700 (3.17)

for any p€R and j>C. Since |0k, k, — Gk, ky /Ty k| <272 (see conditions (3.11)), we may
replace Ok, k, DY @k, k, /T, k, in the bound (3.17). We have two cases: if g, r, =274, then
the set of points {ag, k,v/q, k, vE[—27T2, 29 2]NZ} is a subset of the set {b/qk, k,:bEZ}
and G, ky ¥/ Thy ky — ks ko V' /ey iy €2 i V£V €[—29F229T2]NZ. Using coniditions (3.11),
Tk oo <2(2=9)7, Thus the number of points in {b/qkykyDEZ/Gr, 1, Z} that lie in an interval
of length C~12-(1=7 is at most G, x, C 127197 +1<C200-97  as desired.

Assume now that gi,x, <2/7*. We divide the interval [—27%2 2/%2] into at most

C27 /Gy, k, intervals J of length <@k, x,/2. By the same argument as before,
#{U eJNZ: Q(&klkzv/qhkz +:u) < 07127(176’)3'} < q7k1k207127(17§/)j +1,

for any of these intervals J and any p€R. The bound (3.17) follows since 2% <G, ,, see
conditions (3.11). O

LEMMA 3.3. (Major arcs) Assume that a/q is an irreducible d'-fraction, 0€R?
q<2/* and |0—a/q| <2774, (3.18)

Then
147 (9 220y < Cq~ M2 (14+2710—a/q)) " *|lgll 12 (2)- (3.19)

Proof. We may assume that j>C and let 6=a/q+&. Since Ry is bilinear, we may
assume that the functions g and Uf (g) are supported in the ball {m:|m|<C27}. We write

m=qgm'+u and n=gn'+v,
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with p, I/GZZ and |m/|, |n'|<C27 /q, and identify Z¢ with Z< x ZZ using these maps. Since
Ry is bilinear, it follows from inequalities (3.9) and (3.18) that

q)j (m_n)ef%riRo(mfn,n)»O (3 20)
_ [qdq)j (q(m/_n/))e—2wiRo(m’—n’,n/)~q25] [q—de—QmRo(M—v,u)'a/Q] +E(m,n), '
where |E(m,n)|<C279/227% 1y 5;43)(Jjm—n|). The operator defined by this error term
is bounded on L? with bound C277/2, which suffices. Let Z/~I]9 denote the operator defined
by the first term in equation (3.20), i.e

Ul (g)(m', )

— Z Z n V q q) ( (m/_n/>)e—QﬂiRo(m/—n’,n’)'ng][q—de—Q-rriRo(,u—u,l/)Aa/q]
n'€Z vE(Zg

=2 Sa/q (9) (', 1)g"®;(q(m’ —n’))e2mifiolm' =n'm) %€,
n’€Zd
(3.21)

In view of Lemma 3.1, for the bound (3.19) it suffices to prove that

Z gl(n/)qdé‘j (q(m/_n/))e—2ﬂ'iRo(m/—nl7n/).q25

n’€Za

< C(H‘?zj|§|)_1/4H9/||L2(zd),
L2(z4)

for any (compactly supported) function g’: Z¢—C. Using the restriction (3.18), it suffices
to prove that

1245 (9) 12 20y < CL+2%[E) Tl gllp2 ey, iF €] <2797, (3.22)

In proving the bound (3.22) we may assume that |¢|>C27%/ (and that j is large).

Fix ki, ke€{1,...,d} with the property that |&x k,|=>C71£]. We repeat the Z/lf(Uf’)*

argument from Lemma 3.2. In view of inequality (3.16), it suffices to prove that

97 +2
27 sup Y (142 0k kv+p)] T <CERYIEN T, (3.23)
HER | Toite

provided that [€x,1,|€[27%,27%/4] (see inequality (3.22)). The points
{£k1k20+:u‘ e [72j+27 2j+2} mz}

lie in an interval of length 1. We partition this interval into C27 subintervals of length 2.

Each of these subintervals contains at most C(27[&gip2|) ™!

of the points in the set
{€ky v+ pive€[—27T2 20T2]NZ}. An easy rearrangement argument then shows that the
sum in the left-hand side of inequality (3.23) is dominated by
C279(2 |€pn2)) ™ > K
k€[1,C227|Ek1k2(]NZ

which proves the bound (3.23). O
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Our last lemma in this section concerns Calderén-Zygmund kernels. Assume that
K;R"—C, j>1,
are kernels as in (6.1) and (6.2). For any finite set IC{1, ... } we define

K'=>"K;. (3.24)
jel
For #eR? and (compactly supported) functions g: Z¢—C we define

Vi(g)(m)= ") K'(m—n)g(n)e 2 Holn=mnmn)?, (3.25)

neZd

LEMMA 3.4. Assume that a/q is an irreducible d'-fraction, 0cR? and
IC{j:q®<2¥<|0—a/q '} (3.26)

Then
||V10(9)||L2(Zd) < Cq71/2||g||L2(Zd)~ (3.27)

Proof. Let 8=a/q+¢&. Since Ry is bilinear, we may assume that the functions g and
V9(g) are supported in the ball {m:|m|<C|¢|7'/2}. As in Lemma 3.3, we write

m=qgm'+u and n=gn'+v,

with 1, v€Z and |m/|, [n/|<C[€]71/2 /q, and identify Z? with Z¢ x ZZ using these maps.

Since Ry is bilinear, it follows from inclusion (3.26) that

KI (m_n)ef%riRo(mfn,n)-G

e (3.28)
:[quI(q(m/_n/))e 2miRo(m'—n',n")-q 5][q de 27t Ry (u—v,v) a/q]_’__E/(?n’n)7

where |E’(m7n)|<Cq|m—n\’d’l/zl[q4/272‘£|71/2](|m—n\). The operator defined by this
error term is bounded on L? with bound Cq~', which suffices. Let V¢ denote the operator
defined by the first term in equation (3.28), i.e.

Vi(9)(m', )
_ Z Z g(n/’ l/)[quI (q(m/_n/))e—2ﬂiRo(m'—n’,n’)-q2§] [q—de—27riR0(,u—u,u)<a/q]

n'€Zd veZd

= > S (0, w)g K (q(m! ')y 2R =i,
n'€Z4
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In view of Lemma 3.1, for the bound (3.27) it suffices to prove that

D7 g/ n)g K (gl —n'))em 2ol —nl e
n’'€zd

<Cllg'll 22z (3.29)
L2(27)

for any (compactly supported) function ¢’: Z¢—C.
Since Ry is bilinear, if |m/|, |n/|<C|€|~Y/?/q then

—271 m’'—n’ n')-¢>
7K (q(m’ —n'))e= 27 Rolm =n'n)-a"e _ gl | (q(m' —n'))]
<SC@E1V?)(27/a) " ai-g.2501 g (M —n]).

Thus
|quI(q(m/_n/))6727riR0(mlfn',n')»qQE_quI(q(m/_n/))| < E”(m’—n'),

where ||E”||1(zay<C. The estimate (3.29) follows from the boundedness of standard

singular integrals on Z?. O

4. The maximal Radon transform

In this section we prove Lemma 2.7. The proof is based on three main ingredients: a
strong L? bound, a restricted (weak) LP bound, p€(1,2], and an interpolation argument.
We assume throughout this section that d’=d? and that G# is the discrete nilpotent
group defined in §2.

4.1. L? estimates

The main result in this subsection is Lemma 4.1, which is a quantitative L? estimate.
The proof of Lemma 4.1 is based on a non-commutative variant of the circle method,
in which we divide the Fourier space into major arcs and minor arcs. This partition
is achieved using cutoff functions like \I!;VR defined in equation (4.6). The minor arcs
estimate (4.12) is based on Plancherel’s theorem and Lemmas 3.2 and 3.3. The major
arcs estimate (4.13) is based on the change of variables (4.28), the L? boundedness of
the standard maximal function on the group G# , and Lemma 3.1.

In this section we assume that Q: R4—[0,1] is a function supported in {z:|z|<4},
and

|Q(x)|+|VQ(2)|< 10 for any x € RY,

. _ (4.1)
Q(x)=2"%Q(x/29), j=0,1,...
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Clearly, if Q(z)=1 in the set {z:|z|<1}, then

ME(F)(m,u) <Csup > Q(n) f((n,0)~"(m,u)),
j>OnEZd
for any (compactly supported) function f: Géﬁ —10,00). For integers j >0 and (compactly
supported) functions f: G# —C let

M;(f)(m,u) =Y Q;(n) f((n,0)7"-(m, u)). (4.2)
nezd

To prove Lemma 2.7, it suffices to prove that for any (compactly supported) function
f:GE=C,
sup | M. H <Ol oretrs pE(1,2]. 43
[sup 1], ) <ol riy pE 012 (4.3)

For any (compactly supported) function f: Gé# —Clet f denote its Fourier transform

in the central variable, i.e.,

fm,0)= " f(mu)e ™? mez? geR”. (4.4)
ueZd’
Then
Mi(f)(m.0)= 3" Qj(m—n)f(n,0)e2miRolm=mnn)o (4.5)
neZa

We use formula (4.5) and multipliers in the Fourier variable 6 to decompose the opera-
tors M.

Let ¥: R4 — [0, 1] denote a smooth function supported in the set {£:]£|<2} and equal
to 1 in the set {£:1¢|<1}. Assume that Ne€ [i,oo), j€[0,00)NZ and that RCQ? is a
discrete periodic set (i.e. if 7€ R then r+a€R for any acZ?, and RN[0,1)% is finite).
We define

UYRO) =Y pR¥INT(0-7)). (4.6)
rer

The function \Ilj\[R is periodic in @ (i.e. \I/;-V’R(Q—l—a):\lléyﬁ(e) if a€ Z%), and supported in
the union of the 2N2~%/-neighborhoods of the points in R. We will always assume that j
is sufficiently large (depending on N and R) such that these neighborhoods are disjoint,
SO ‘Il;-V’R:Rd/—>[O, 1]. By convention, \I/;-V’g:O. For (compactly supported) functions
f1Gif —C we define MY®(f) by

—

MER(F)(m, 0) = M;()(m, )8R (0). (4.7)

J

Our main lemma in this subsection is the following L? estimate.
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LEMMA 4.1. (Strong L? bound) Assume that N € [%, oo), that Ry CQY is a discrete

periodic set and that Jn gy €[0,00) is a real number with the properties

{a/q:q€[1,N] and (a,q) =1} C Ry,

4 (4.8)
2INRy > [100 max q] .
a/qERN and (a,q)=1
Then
sup M (f) = MVRN ‘ KONVl o eutins 4.9
HM?RN\ S =M oy SONHD Ul 2y (4.9)

where ¢=¢(d)>0.

Remark. In §5, Lemma 5.5, we need to allow for slightly more general kernels €,
that is Q: R?—10, 1], supported in the set {z:|z|<4}, equal to 1 in the set {z:|z|<2},
and satisfying

|VQ(z)] <A for any z€RY,

where A>>1. In this case the bound (4.9) becomes

sp (M) =MITNDI o SACNED) Nl

JZINR N

Proof. Estimate (4.3) for p=2 corresponds to the case Nzé, Ry=2 and Jy g,y =0
in Lemma 4.1. The condition (4.8) guarantees that \I’;.V’RN:Rd,—)[O, 1] if 52JINRry-
N, RN
J
“major arcs” (in #) and an error-type contribution coming from the complement of these

We decompose the operator M; —M into the main contribution coming from the

major arcs. For integers j,s>0 let

(‘5){1, if 20 < j%/2,
TEZ0, iross e,

For (compactly supported) functions f: GgE —C we define J\/'Jﬁ’RN (f) by

NN (£)(m,0) =1, ) IV (F) ()~ MY RN (1) (m, 0] S (25+2(0—a/q)),
25 Lq<2st!

(4.10)

where the sum is taken over irreducible d’-fractions a/q with 2°<g<2°*!. Then we write

MG(f)=MITN ()= NN () +EVTN(f). (4.11)

s=0
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This is our basic decomposition. It follows from properties (4.8) that ./\/JI\QRN (f)=0if
25T N. Thus, for Lemma 4.1, it suffices to prove that

1/2
(> &) CONH) e, (412)
JETn R L2(GY)
and
H sup  [NNRY(f |’ ey SO It (4.13)
JZJINR N
if 25t > N.

Proof of estimate (4.12). (Minor arcs estimate) Let s(j) denote the largest integer
>0 with the property that 2°0) <;j3/2. Notice that

(E-JN,RN(f)(m’e): NRN Z Q m Tl Tl 9) 727riRo(mfn,n)~0’
nezd
with
mV RN () = [1 - NR () [1 S @ 0-a/)|, (1)
g<2s(H+1 -1

where the sum in (4.14) is taken over irreducible d’-fractions a/q with ¢<2°*()*1—1. For

9cR? and (compactly supported) functions g: Z%— C, we define

=Y Q(m—n)g(n)e>riHolmmmb, (4.15)
nezZa
By Plancherel’s theorem,
1/2)2
N i A
I( 5 emor) [ I OPRE G0 e
iZJINRy Lz(G#) [0,1)d ]>JNRN

Using Plancherel’s theorem again, for the bound (4.12) it suffices to prove that

ST R O) PN gty oty < CN 1) 2 (4.16)

JZINR N

for any 0cR? fixed.

By Diriclet’s principle, for any A>1 and £€R there are g€Z=ZN[1,A] and a€Z,
(a,q)=1, with the property that |{—a/q|<1/Agq. For 9cR? we apply this to each
component 0y, ;,; thus there are q;,;, €Za and ay,1, €Z, (a,1,,q1,1,) =1, with the property

that
lile = Wiqyla /Yl 1o \ Aq ’

1l2
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Assume that #eR? is fixed. For any j=JNry We use the approximation (4.17)
with A=22-9)7 where §=0(d)>0 is sufficiently small (§=1/10d" would work). Thus

there are irreducible 1-fractions a{ L/ qu 1, such that
1t2 1t2

_ , _ . C
J 2-96 J J
1<ql1l2 <2( ¥ and |9l1127a1112/ql112| S

<——. (4.18)
2(2_5)]q-l7112

We fix these irreducible 1-fractions a{l Iy /qu1 1, and partition the set ZN[Jy Ry, 00) into
two subsets:

I = {.] € Zm[']N,RNa OO):l lmax dqullz >2j/6d/}
1,l2=1,...,

and
I2Z{j€Zﬁ[JN,RN,OO):l max qlll2 < 29/64'y

1,l2=1,

For jel; we use Lemma 3.2:

N,R _
> m Y O PIU N7 2 gy 12y < Y, 277 SC(N+1)™°
JEI je€L

as desired.

For jelI, let aj/q; denote the irreducible d’-fraction with the property that

aj/qj = (afllz/qullz)11,12=1,...,d-
In view of properties (4.18) and the definition of I,

C

1<¢; <25 and |0—a;/q| < @55

(4.19)
An easy argument, using properties (4.19), shows that if j, j’€ly and j,j'>C then

either a;/qj=aj /q; or |g;/q|¢[3.2]. (4.20)

We further partition the set I5:

IQZUIg/q7 where I3/ ={j€l,:a;/q;=a/q}. (4.21)
a/q

For je]g/q we use Lemma 3.3:

N,R N,R
Z |m ~(0)? ||u0||L2(Zd)—>L2(Zd) c Z H(1+2%]0—a/ql)” 1/2|mj ¥(0)]%.
]EI;/Q Jela/q
(4.22)
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To estimate the right-hand side of (4.22), we consider two cases: ¢<N and ¢>N. If
g<N, then, using (4.8), (4.6) and (4.14), [m}"™ (0)]2<1( ) (2% N~ 1|0 —a/q|). Thus
the right-hand side of (4.22) is dominated by Cq~*N~1/2. If ¢>N, then, using (4.14)

and the fact that j>22)/3 the right-hand side of (4.22) is dominated by
c > g+c > g (14250 —a/q) 7?11 2,00 (270 —a/q)
j€Iy’N[0,Cq2/3] jeIy’N[Cq?/3,00)

< Cq—l/?).

The bound (4.16) follows since the possible denominators ¢ form a lacunary sequence

(see property (4.20)). This completes the proof of estimate (4.12).

Proof of estimate (4.13). (Major arcs estimate) Clearly, if j>max(Jy x,,22/3,C),
then

S w0/ 00 0) = Y w0-n),

25<q<23+1 reRr/’

where R'={a/qe Q% \Rn:(a,q)=1 and ge[2%,2571)}. We define M}/47R/(f) by

MR (), 0) = (1), 0) 3 (226 -r) (4.23)

rerR’
(compare with equation (4.7)). Thus, for estimate (4.13), it suffices to prove that if s>0
and R'C{a/q:(a,q)=1 and g€[2%,2°T1)}, then

| s 1My ()]

j>225/3

—cs
L2(G¥#) <02 Hf”Lz(G#)'
We partition the set R'C{a/q:(a,q)=1 and q€[2%,2°1)} into at most C22°/> subsets
with the property that each of these subsets contains irreducible d’-fractions with at

most 23%/% denominators ¢. Thus, it suffices to prove that if $>0,

R'C{a/q:(a,q)=1and g€ S}, SC[2°,2°7)NZ and [S]<2%/°,  (4.24)
then

M1,/4,R’ ’ g 0275/2 ) 425

| s 14 1] T (4.25)

In view of the definitions (4.5) and (4.23), and the Fourier inversion formula,

MR (F) (m,w)

J

= Z f(n,v)Qj(m—n)/ ( Z ¢(22j+2(0_r))>e27ri(uvRg(mnm))-@ do
SOk reRrR’

(n,v)GG# [
= Y f(,0)Q(m—n)nea(u—v—Ro(m—n,n)) Y emilmvolmmmm)r
(n,v)eGE reR’'N[0,1)4’

(4.26)
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where 1(s)=[go ¥(£)e*™* ¢ d¢ is the Euclidean inverse Fourier transform of ¢, and
Nozi+2 () =274 2312y (5/927+2) We recognize that formula (4.26) is the convolution on
G of the function f and the kernel

(m7 U) — Qj (m)n22j+2 (u,) Z eQTr’iu~r.
reR/N[0,1)4

Let Q=]],cs ; see (4.24). Since |S]<235/5,
Q <26 +2 (4.27)

To continue, we introduce new coordinates on GO# adapted to the factor ). For integers
@>1 we define

0q: Gf x[Z4 xZL.] — G,
Do ((m',u'), (1, @) = (Qm' +p, Qv +a+QRo(p, m")).

Notice that ®q((m', '), (p, @))=(u, a)-(Qm', Q*u’) if we regard (u, @) and (Qm’, Q*u’)
as elements of Gg& . Clearly, the map ®¢ establishes a bijection between GZ?E X [Zé X ZgQ]
and GE'. Let F((n',v'), (v, 3))=f(@q((n',v"), (v, B))) and

Gy ((m ), () = MYV (1) (@ (! ), (1. ).
Since QreZ for any reR’, formula (4.26) is equivalent to
G((m' ), (1, @))
= ¥ S R, (v 8)(Qm —n')+ Br)

("':U')EGO# (u,ﬁ)EZdQ ><Z‘1Q,2

X M2i+2 (Q%(u' —v' — Ro(m' —n/,n))+ E») Z e2rila—f—Ro(p—vv))r
reR/N[0,1)4’

(4.28)

where E1=p—v and

By = (=B —=Ro(p—v,v))+Q(Ro(u, m'—n') = Ro(m/ =0, v)).

92s/3 93s/5

In view of estimates (4.25) and (4.27), 27>2 and Q<20+
Clearly, |E1|<CQ and |E2|<C27Q if |m/—n'|<C27/Q. Let
Gi((m/ ), (p, )
= > > F(( ), (v, 8)92,(Q(m' —n))

(0 0)EGE (1,8)€ZL X2, (4.29)

X 192512 (Q%(u —v' = Ro(m' —n’, n’))) Z e2mila=f=Ro(p=—vw))r
rerR/N[0,1)d

, thus C27>Q1°.
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In view of the estimates above on |E;| and |Es|, and the fact that the sum over re
R'N[0,1)% in equation (4.29) has at most C22% terms, we have

‘Gj((m/’u/)’ (,u,oz))—Gj((m’,u’), (/’L’ Oé))|

<C29°(Q/?) Yo F(@ ), )

(n' w)EGT (v.B)EZH X2,
< (20 /Q) Mg, 021 (Im = s o —' — R (' =, '),
where, as in definition (7.7),
3(s) = (1+]s[) " @HHI2 and g, (s) =1~V (s/r), r=1.

Thus,
~ _9s/2
Z ||Gj_Gj||L2(G#x[zgngz]) <02 HFHL?(G#x[zg)ngz])'

j>225/3

For estimate (4.25), it suffices to prove that

where éj is defined in equation (4.29). For this, we notice that the function C~}’j is

aup G

—s/2 ,
230 <C2 ||FHL2(GO#><[Z%><Z‘1Q2])’ (430)

L2(G0#><[zgngQ])

obtained as the composition of the operator

APma)=Q Q" S fup) Y emiletRolnr (431

(u,ﬁ)eZdeng reR/N[0,1)

acting on functions f: Zd xZ& 02 —C, followed by an average over a standard ball of radius
~27/Q in G¥ (with the termlnology of §7). In view of estimates (7.11) with N=1, for
estimate (4.30) it suffices to prove that

A ez ety < O 1 sz ity (432)
For functions f: Zd X Zd —C, we define the Fourier transform in the second variable

77rio¢-a2 !
Fra/@)= Y f(uajemon/@ qez.

d/
aEZQ

It is easy to see that

1/2
”fHL?(dengz)— (Z Z Hva/Q ) ,

€z, a
M aGZQ
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for any f: ZdQ X Zdle —C (Plancherel’s identity). Since R’ C{a/Q?*:acZ? } (see (4.24) and
the definition of @), it follows from equation (4.31) that

A (1 0/Q*) =1 (a/Q)Q™" Y f(v,a/Q?)em2m Folimv)a/@”,

d
VvEZG

By Plancherel’s identity, for estimate (4.32) it suffices to prove that for any reR’ and
any g: Zg—>C,

HQ—d Z g(l/)e—%riRo(u—V,y)q-

d
veEZg

< CQ_S/QHQHLg(zg))-
£2(z4)

This follows from Lemma 3.1 and the fact that r=a/q, (a,q)=1, ¢€[2%,25"1) (see (4.24)).
This completes the proof of Lemma 4.1. O

4.2. A restricted LP estimate

Recall that the operators M; were defined in equation (4.2). In the rest of this section,
in addition to conditions (4.1), we assume that Q(x)=1 if |2|<2. In this subsection we

prove the following restricted LP estimate.

LEMMA 4.2. (Restricted L estimate) Assume that J>2 is an integer. Then

s [M;(f)]

Hje[J+1,2J]

o SO gy P2 (@439

The idea of using restricted LP estimates like (4.33) together with L? bounds to prove
the full L? estimates (4.3) originates in Bourgain’s paper [5]. In proving Lemma 4.2,
we exploit the positivity of the operators M. Let S~2j: G#—)[O,oo) denote the kernel
ﬁj(m,u):Qj(m)l{O}(u), S0 ./\/lj(f):f*ﬁj7 and let Q;-(h)zﬁj(h_l). To be able to use
the same notation as in the previous section, it is more convenient to prove the maximal

inequality

| suppre0)
FE[T+1,2J]

LP(G#)gcp(log‘])‘l.f”LP(G#)a pe(1,2]. (4.34)
The bounds (4.33) and (4.34) are equivalent, in view of the duality argument following
the statement of Lemma 2.8. By interpolation, we may assume that p’=p/(p—1) is an
integer >2 and it suffices to prove the LP— LP>*° estimate

sup [f+9Y)|
FJE[T+1,2J]

/
ooty SO D gy P ERoONZ (435)
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By duality, the bound (4.35) is equivalent to the inequality

27 B 27
Z fj*Qj ng(log J) Z fj y
J=T+1 LE(GE) j=J+1  IL¥GE)

where k=p/(p—1) is an integer >2 and the f;’s are characteristic functions of disjoint,
bounded sets. We may assume that J>C}, and partition the set [J+1,2J]NZ into at
most Ck(log J) subsets S with the separation property

SC[J+1,2J]NZ and if j#j €S then |j—j'| > Ar(log J), (4.36)

where Ay is a large constant to be fixed later. It suffices to prove that if S is as above

and k>2 is an integer, then

1y

jes

<k
Lk(G¥)

, (4.37)
LHGE)

ij

jes

where the f;’s are characteristic functions of disjoint, bounded sets. Let o denote the
smallest constant Cy>1 for which the bound (4.37) holds. By expanding the left-hand
side of inequality (4.37),

k
> 58y <Cp Y /#(fj1*9j1)~--(fjk*9jk)dg
jes LF(GE) 1<..<jn ’ GO
. (4.38)
Gi \jes

since the f;’s are characteristic functions. The second term in the right-hand side of
inequality (4.38) is dominated by Cjo*~ || > jes fi||’zrc((;#)'
0
To deal with the first term, we will prove the bound

N #2) e (i# Q) (2, =) 2ty < ORI F it Fiill oy (4:39)

provided fj,, ..., f;, are characteristic functions of disjoint, bounded sets, j; <...<jp €S,
and the constant Ay, in (4.36) is sufficiently large. Assuming the bound (4.39), we would

have

’/#(fjl*ﬁjl)~-~(fjk*ﬁjk)dg—/#(fjl*ﬁJ)(sz*ﬁjz)~-~(fjk*§jk)dg‘
G G§

2
> 1

jes

k
= ijik
L2(GE)

<CpJF ij

jE€S

b
LG
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since the f;’s are characteristic functions of disjoint, bounded sets. Thus the first term

in the right-hand side of inequality (4.38) can be estimated by

Zf] kY / (Zf]*(2>fm*9j2) (fi#Q5,) dg. (4.40)

jeS Lk(G#) j2<...<jk 0 jeS

Ck

Since the f;’s are characteristic functions of disjoint, bounded sets, ZjES fi *S~2J<C.
Thus the expression in (4.40) can be estimated by Cy(1+0"1)|| Y jes fj”’zk((}#)' It
follows from estimate (4.38) that o* <Cy(1+0"71), so o< C}, as desired.

It remains to prove the bound (4.39). Clearly, we may assume that J>C). We
start with a sequence of appropriate constants Bs<...<Bj, which depend only on the
constant ¢>0 in Lemma 4.1, and define N;=J5 and Ry, ={a/q:q€[1, N}] and (a,q)=1},
=2, ....,k. By Lemma 4.1,

N R _
||sz(sz) ,l M (f]z HL2 G#) <CJ b ||sz HL?(G#) l:2a ceey k. (4-41)

A computation similar to (4.26) shows that

(sz) f]l *L
NL,RNZ i .
i (m,u) =<y, (m)%?n/m (u) Z &2 ) (4.42)

re€Rn,N[0,1)

Nl "R, Ny 7RNL

L

Since Ry, has at most C.J(@TDBi elements, IIL?ZI’HU(G?;&)SCJ(d/“)Bl. Thus

Ni, RN,
Ji

HM (f]l)||L°° Go )<C‘](d +1)Bl l:27"'7k7 (443)

since the f;,’s are characteristic functions of sets. Now, by replacing each M, (f;,) by

Nl ey (f;,), for {=2, ..., k, one at a time, the left-hand side of (4.39) is dominated by
VR
M (F12) =M (i)l o [IM G, (Fia) =
Na, Ry, N, R
+.. +||M (i) pee e [IMG (Fi) = MG (fi) e (4.44)

Nk RNy,

MO (£, o M (fi)l% (2, =) e

By choosing the constants B; in geometric progression and using estimates (4.41) and
(4.43), for (4.39) it remains to control the last term in expression (4.44). We now examine
formula (4.42) and notice that each kernel L NRe

kernels. For any irreducible d’-fraction a;/q, let

is the sum over r of at most CjJC*

L;-\Zl’al/ql (m’ ’U,) = le (m)n2211 N, (u)e%riu-az/(n . (445)

To control the last term in (4.44) it suffices to prove the following lemma.
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LEMMA 4.3. With the notation above, for any constant Ek,
DI . L3 e (f o L ) (9, =) 22 < O™ PH Iyt fi 22, (4:46)

provided fj,, ..., fj, are characteristic functions of disjoint, bounded sets, ngJé’f, ar/q
are irreducible d'-fractions with q<JP%, 1=2,..,k, J<j1<j2<..<jpx<2J and jo—j1>
A log J, Ay sufficiently large depending on By,.

Proof. From the definitions,

[(fra* LN2 %Y L (f LR ) (2, — ) (g)

_ B (4.47)
:/[G#]“ Fia(h2) . £ (hi)H(g-hy ", . g-hy t) dho .. dh,
0

where
H(ga,ogt) =Y (2, (n) =2 (n) LY/ ((n,0)-g2) .. LY /% ((n, 0)-gx). (4.48)
neZd
Let g;=(my,u;), {=2, ..., k. With ¢ as in defition (7.7), we show that

k

[H (g2, -, 1) < Cid P (272 12772 TT () g v, (). (4.49)
1=2

Assuming (4.49), the bound (4.46) follows easily from equation (4.47) and the fact that
the f;,’s are characteristic functions.
To prove the bound (4.49) let

Q=qo.qr, Q<JF VB (4.50)

Writing n=Qn’+v, n' €Z?, v€Z%, equation (4.48) becomes

|H (g2 -, gi)| = Z Z 51 (Qn/+v)=Q,(Qn'+v))
n'€Z yeZd
k (4.51)
x [T (mu+@Qn’ +v)myein v, (wi+ Ro (Qn' +v,my)) e o tvmo-en/ar,
1=2

We use (4.50) on @ and the observation that |n/|<100-271/Q in (4.51). It follows that

1€, (my+Qn" +v) 1924, /v, (w14 Ro (Qn' v, m4)) =y, (ma) 1923 v, ()|
SCON 291y o (ma) dozin v, ().
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Thus, using equation (4.51),

k
|H (g2, .-, gr)| < Cy H Q2 (mu) dozi s, (wr)
1=2
~ k
% (JBijlJZ Z Z s Qn +l/ QJ(Q’R/+I/)) HeQﬂ'iRo(V,mz)-az/Ql )
n' €24 veZY, 1=2
(4.52)
We make the simple observations
192, (Qn'+v) =, (Qn)| < CQ2™1Qy, 42(Qn),
12(Qn’+v) =2, (Qn")] < CQ277Q,;(Qn'),
since [v|<Q. In addition, since [, (€, (#')—Q;(2')) dz’=0, we have
QY Y (2, (@n)-Qs(@n))| <CQ2.
n’/€Zd
The bound (4.49) follows from inequality (4.52). O

4.3. Proof of Lemma 2.7

In this subsection we prove the bound (4.3) for any p>1, thus completing the proof of
Lemma 2.7. Our main ingredients are the bound (7.11) in §7, and Lemmas 4.1 and 4.2.
The bound (4.3) follows by interpolation (see [8, §7]) from the following more quantitative

estimate.

LEMMA 4.4. Assume that pe(1,2] is an exponent and e=(p—1)/2. Then, for any
A€ (0,00), there are linear operators A;\:A;@ and 83\:8;-"5 with MjZA?—i-B;\,

C
A
Jsup 13O g, < S0 (153)
and
BA H <CA° . 4.54
H§l>113| 7l (G ° 1) (4.54)

The rest of this subsection is concerned with the proof of Lemma 4.4. In view of
Lemma 4.1 with N:% and Ry =9, in proving Lemma 4.4 we may assume A>C.. With

¢ as in Lemma 4.1, we define

No=A/ Ry, ={a/No':acZ?} and JNO,RN():NOQ. (4.55)
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Property (4.8) is clearly satisfied if A is sufficiently large. For j<Jn, Ry, let A;\EO and
B;‘EMj. By Lemma 4.2,

BN, e, SCOBN 1 oy
0

jE[O,JNO,RNO YNZ

which is better than estimate (4.54). For j=>Jn, Ry, , let

A;‘EMJ—M;YO’RNO and B;\EM;VO’RNO.
By Lemma 4.1 and definition (4.55),
C
3 A —_
| s O] e, < T acty

j?JNO,RNO

which gives the bound (4.53). To complete the proof of Lemma 4.4, it suffices to show
that

| s M)

JZJINg. Ry,

ity S Ol NI e (4.56)

To prove the bound (4.56), we use estimates (7.11) and the change of coordi-

nates (4.28). By the Fourier inversion formula, as in equation (4.26),

No,R
MO () mu) = Y f(n,0)Q(m—n)mes n, (u—v—Ro(m—n,n))
(n,v)GG?ﬁ'E (4 57)
~ Z e2ﬂi(u—v—R0(m—n,n))<r. '
r€RN,N[0,1)%
Let @=Ny!. Definition (4.55) shows that
Z eQﬂi(u—v—Ro(m—n,n))~r — (5@ (U—U—Ro (m_n7 n))’
r€RN,N[0,1)4
where
, d/ .f Zd/
60: 2" — 17, 5Q(u):{ @ ! u/QeZs, (4.58)
0, if u/Q ¢ Z%.

We use the change of coordinates ®q: Gff x [ZdQ dele]—>G0# described in (4.28). Let
F((n/7 vl)? (l/’ /8)):f(¢Q((n/7 Ul)? (V7 ﬂ))) a’nd

No,Rng

Gj((mlv ul)7 (:ua Oé)) = Mj (f)((I)Q((m/’ u/)’ (:U’7 O‘)))
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Formula (4.57) is equivalent to
G;((m', ), (1, )
= > Yo F((v), (v, 8)92;(Q(m' —n')+Ey)
(n' w)eGH¥ (V,B)GZdQXZZ;2
s (@0 ! — Ro(om’ ') + B )= Ro(p—,1)),
where E1=p—v and
Es=(a—B—Ro(pu—v,v))+Q(Ro(p, ' —n’)— Ro(m' —n',v)).
Clearly, 2/ >2M0 and Q<2N3/2, and thus 27 >Q'0. Also,
|E1|<CQ and |E| <C2Q if |mun’|<%.
Let
G ('), (1, @)
= > Yo F(( ), (v, 8)2(Q(m —n))
(n' w)eGH¥ (u,B)EZdQXZdQ'2
X192 /v (Q° (W —v' = Ro(m' —n',n")))8q (a— B~ Ro(n—v,v)).
In view of the estimates above on |E4| and |Es|, we have

|G ((m '), (1, @) =G ('), (1. )|

AL SR ), A

2J
(n' v)EGE (v,8)€ZY, ng2

i\—d
9i
X(Q) 19,021 /g (|m' —n'[)da2i /g2 Ny (W =0 — Ro(m' —n’, n")),

where ¢ is as in definition (7.7). Thus,
Zz G, *Gj”Lp(c;#x[zgngQ]) S C”F“LP(G#X[Z%nga})'
J>Ng

For the bound (4.56), it remains to prove that

[ sup. 1651 <8N Fll ity (459

L»(G¥ x[zgng’Q])
For this, we notice that the function éj is obtained as the composition of the operator
FQQ N fwB)dgla— - Rolu—v,v))

(v.8)€Zd xde’z

acting on functions f:Z x Zgg —C, which is clearly bounded on LP(Zg, x Zgg)7 followed
by an average dominated by the maximal operator M~ of Lemma 7.1. The bound (4.59)
follows from estimates (7.11).
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5. The ergodic theorem

In this section we prove Theorem 1.3. We first reduce matters to proving Theorem 5.1
below (in fact, we only need this theorem for a special group G# and a special polynomial
mapping P). Then we use a maximal ergodic theorem (which follows from Theorem 1.1

and a transference argument) and adapt a limiting argument of Bourgain [5].

5.1. Preliminary reductions and a maximal ergodic theorem

Assume that (X, @) is a finite measure space. A result equivalent to Theorem 1.3 can be
formulated in terms of the action of the step 2 discrete nilpotent group G# defined in
(2.2) and (2.4), corresponding to a bilinear mapping R: Z<¢ x 7174 . Suppose that G#
acts on X via measure-preserving transformations, and denote the action G# x X — X
by (g,2)—g-x. For a polynomial map P:Z%¢—Z% of degree at most 2, and FeLP(X),
p€E (1, 00], define the averages

1

MT(F)(CB):W

Y. F(n,P(n)-x). (5.1)

neB,.NZ

THEOREM 5.1. For every FeLP(X), pe(1l,00), there exists F,€LP(X) such that

lim M, (F)=F, almost everywhere and in LP. (5.2)

r—00

Moreover, if the action of the subgroup (qZ)?x (¢Z)* is ergodic on X for every integer
q=1, then

1
F*M(X)/Xqu. (5.3)

We now prove the equivalence of Theorems 1.3 and 5.1, and reduce matters to prov-
ing Theorem 5.1 on a special discrete group G# with special polynomial map Py. We first
show that Theorem 1.3 implies Theorem 5.1. Assume that G# is as in Theorem 5.1 and
acts on X via measure-preserving transformations. For g€ G define the transformation
Ty: X=X by Tg(x)=g-z. Let {g; ?:lu{hk}g;l denote the standard basis of Z¢x Z%
and let T;=T, and Sy=Tj,. For n=(ny,...,nq) €L, m:(ml,...,md/)ezd' it follows
from the definitions that

d d’
H T H Si =T, m+Qo(n))s (5.4)
j=1 k=1

where Qo: Z*—Z% is a polynomial mapping of degree 2. Thus, the averages in (5.1) re-
duce to those in (1.12) associated with the polynomial map Q(n)=P(n)—Qqo(n). Also, it
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is clear from equation (5.4) that the family of transformations {7} }9_, U{S}] @ gener-
ates the subgroup Gq# =(qZ)?*x (qZ)d/, hence the ergodicity of the action of the subgroup
implies that of the family {T¢}4_, U{S7}i_,.

We now start the proof of Theorem 1.3. Notice that the coefficients of the polynomi-
als Q;: Z¢—7Z of degree at most 2 must be integers or half integers. Writing n; :2n; +e;,
1<j<d, for some fixed residue classes ¢; modulo 2, it follows that the average in (1.12)
can be written as a linear combination of 2¢ averages, where the exponents are polyno-
mials with integer coefficients. Thus one can assume that the polynomial mapping Q

in (1.11) has integer coefficients. Also, one may write

d’

d
[Is2™=s1Ts" [I si™, (5.5)

=1 j=1 1<j<k<d

by expanding SIQZ )

into a product of factors with monomial exponents n; and n;ny,
and collecting all the resulting factors with a given exponent. If one puts Tj:Tjgj,
1<j<d, then the transformations Tj7 1<j5<d, and gj;“ 1< j<k<d, satisfy the commu-
tator relations (1.10). Moreover, the ergodicity of the family {T;]}?ZlU{gfkhgjgkgd
implies that of the family {77 ?Zlu{Sf’ }&~ . Thus, it is enough to prove Theorem 1.3

for the special polynomial map
Qo: 24 — ZUHD/2 with QI (ny,...,ng) =njng, 1<j<k<d. (5.6)

We identify the group generated by the transformations Tj, 1<5<d, and §jk, 1<5<
k<d, as an isomorphic image of a step 2 nilpotent group G# on Z% x Z%. More precisely,
it follows from the relations (1.10) that

d

d d , )
Mz Tz =11z T 1m.mm (5.7)
j=1 k=1 j

=1 1<k<j<d

This implies that the group G# defined by the bilinear form R():Z”l><Zd—>Zd2 with

components

_ n. ifl<k<j<d,
B (') = { njn, TLSk<g (5.8)
0, if1<j<k<d,
acts on X via
d — — — —
U%m)x=IIT? (T}, Tj, "% II S (@), (5.9)

j=1 1<k<;j<d 1<j<k<d
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where n:(nj)?zl and m:(mjk)?’kzl. In terms of this action, the averages in (1.12) take

the form
1

AT(F)(I):W

> F((n,0,Py(n))-). (5.10)
n€B,NZ4
Thus, Theorem 1.3 reduces to Theorem 5.1 in the special case d'=d?,
P(n)= Z njng-ejr, and R(n,n')= Z NjNg €k, (5.11)
1< <k<d 1<k<j<d
where {e;1,}9,_, denotes a standard orthonormal basis of R,
We conclude this subsection with a maximal ergodic theorem, which follows from
Theorem 1.1 and a general transference argument.

THEOREM 5.2. (Maximal ergodic theorem) With the notation as in Theorem 5.1,
let M(F)(z)=sup |M,F(z)|. Then
>0

[ME)| e x) < CpllF'llLex)- (5.12)

Using Theorem 5.2 and the Lebesgue dominated convergence theorem, it suffices
to prove the almost everywhere convergence in statement (5.2). We can also assume in
Theorem 5.1 that F' is in a suitable dense subspace of LP(X), such as L>°(X).

5.2. Pointwise convergence

Assume that FeL>°(X) and, for a given 1<§<2, define the averages

MY(P)@) = T 3 L 0/#)F((n. P(w) ). (1)

where Q°: R%—[0,1] is a smooth function, such that Q°(y)=1 for |y|<1 and Q°(y)=0
for |y|>6. For a given r>1, let j be such that §/<r<§’*! and compare the averages
M,.(F) and M?(F) Since F e L, it follows easily that for any x€ X,

| M, (F)(@) =M (F)(2)| < Ca(6~7 46 = 1)|| F|| 1=

Thus, it suffices to show that for each 1<d<2 the averages M;S(F ) converge almost
everywhere as j—oo. For simplicity of notation, we drop the superscript § and write
M](F):M‘]S(F)

Next, we identify subspaces of L?(X) on which the convergence of M, (F) is imme-
diate. For integers ¢>1, let Gq#:(qZ)d x (qZ)%, i.e. the subgroup of points with all the

coordinates divisible by ¢. Define the corresponding space of invariant functions by

LYX)={FeL*(X):T,F=F forall ge G¥} and L} (X)=]J L2(X), (5.14)

mv
g=1
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where Ty F'(x)=F(g-z). Notice that L (X)CLZ (X) if ¢ divides g2, hence L, (X) is a
closed subspace of L?(X).

LEMMA 5.3. Assume that g1 and let FGLz(X), Then, for every xeX,
lim M;(F)(z)=¢"* Y F((v,P(v))-z) (5.15)
j—oo
ve(Z/qZ)?

Proof. If n=v (mod q), then (n, P(n))=(v, P(v)) (mod q) (see (5.11)), hence there
is a g€ G¥ such that (n, P(n))=g-(v, P(v)). Thus F((n, P(n))-z)=F((v, P(v))-x), since
FeLZ(X). In view of the definitions, it is enough to show that for every ve(Z/qZ)?,

1 )
lim ——— Z Q%(n/o?)=q74,

A 5 j
Imree ”Q ”Ll 6! n=v (mod q)

which is an elementary observation. O

If for each g the action of G# on X is ergodic, then L2 _(X) contains only constant

functions. Thus, for statements (5.2) and (5.3), it suffices to prove that for Fe L2 _(X)*,
leIglo M;(F)(z)=0 for almost every z € X. (5.16)
We now identify a dense subspace of the orthogonal complement of Lg(X ).
LEMMA 5.4. Assume that g=1. Then
LA(X)* =Span{T,H—H :g€ G} and H € L>=(X)}, (5.17)

where Span S denotes the subspace spanned by the set S.
Proof. Let FeL?(X) and assume that for all HeL>*(X) and geG¥,
(F,T{H—H)=0.
That is, for every ge(}q#7
(T,-«F—F,H)=0 forall He L*(X),

which means that T, F'=F for all geG#, SO F€L§ (X). This proves the lemma. O

Following an idea described in [3], we will show statement (5.16) by proving L?
bounds for a family of truncated maximal functions. We will use the following construc-
tion: let £;, j€N, be a family of bounded linear operators on L?*(X), and let {ji}rez,
be an increasing sequence of natural numbers. Then we define the maximal operators

Lip(F)(z)= = max [L;(F)(z)].

TSI <Jr+1
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Let FeL?

2 (X)*, and assume indirectly that for a set of positive measure

lim M, (F)(z) £0.

Jj—oo

Then, there exists £ >0 such that

u{xeX:limsup |M;(F)(z)| >E} >e.

j—oo
It is now easy to see that there is an increasing sequence {j }rez, such that

3
. €
IME(E)Z2x) > 5 (5.18)

for all k€Z,. Moreover, the sequence {ji}rez, can be chosen to be rapidly increasing,
so we may assume that jri1>37k.

Let X:R—[0,1] denote a smooth function supported in [—2,2] and equal to 1 in
[-1,1]. For zeX and L>>1, we define

fr2(9)=F(g-x)xL(9), (5.19)

where yz: RIxRY — [0,1] is given by

xolmw =5 )5 (1
L ) L L2
(recall that G#*=ZIxZ" as sets). Clearly, HXLHLl(G#)%Ld“dz. For f:G#—=C, j>0
and 6€(1, 2], we define, as in formula (5.13),
— 1 ,
Mj(f)(g)zm Z 96(”/5J)f((nap(”))'g)~ (5.20)
L neZd
Using the definitions, for any k€Z, and L> Ly large enough,

* C N *
IMLP ) < Tz [ i) o o)
We assume from now on that the sequence j; <jo<... is fixed. To summarize, for the

statement (5.16), it suffices to prove Lemma 5.5 below.

LEMMA 5.5. Assume that F€L? (X)* and define fr. . asin (5.19). Then for every

>0 and §€(1,2] (see (5.13)) there exist k=k(F,e,d) and L(jxi1, F,e,d) such that

e ),
Lated |

for any L>L(ji11,F,¢€,9).

2

By

Je<I<Jr+1

d < 5.21
oy (@) < (5.21)
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We now show how to reduce Lemma 5.5 to Lemma 5.6 below. We may assume that

||F||L2(X):1a SO
1
7z [ falfae) dula) <CIFian <C for any L>1. (5.22)
Also, for feL?(G#), we may redefine

M;(N)g) =27 3" Q°(n/2) f((n, P(n))-g), (5.23)

nezd

where Q%: R?— 0, 1] is a smooth function, Q(y)=1 for |y|<cy and Q°(y)=0 for |y|>cyd,
1<co<2.

We will use the notation and the results of §4.1, especially the remark following
Lemma 4.1. Assume that ¢ >0 and e (1, 2] are fixed. We now relate the averages M ()
in equation (5.23) and M (f) in equation (4.2). We identify G# and G with Z¢ x Z®".
By taking the Fourier transform in the central variable, for 6 in R? we have

Z Q(S m n n 0) 727TiR0(mfn,n)-9,

nezd

Z Q5 m TL TL 0) 727ri(7P(n7m)7R(n7m,m))-07

nezd

where Qf(z)=2"4Q°(—z/27). For N=N(g, ) sufficiently large, let
RN:{a/qEQdZ:qéN and (a,q)=1}.
For j> N define, as in equations (4.6) and (4.7),

YO)=> p@N(0-r)

r€ERN

and

—

MY (£)(m, 0) = My(f) (m, 0)- % (0).

Simple changes of variables, using (5.11), and the remark following Lemma 4.1 show that

|sup IM; (1) = M5 (1)

jzN

(e *||f||L2(G#)

for any f€L?(G*#), provided N=N(g, ) is fixed sufficiently large. Thus, using (5.22),

dp(x) <

3
—. 5.24
L2(G#) 2 ( )

Ld+2d2/HSUP |M (fr,e)— fo \‘
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Assume from now on that N is fixed. We examine the operator /\N/ljV and, for
a/qERyN, j=N and f€L?(G#), we define

— o~

MY, (F)(m,0)= M, (£)(m.6) 3 92N (6-a/q—b)). (5.25)

beZd?
Thus, for Lemma 5.5, it suffices to prove Lemma 5.6 below.

LEMMA 5.6. Assume that FEL? (X)*, N>1, a/qgeRN and §€(1,2], and define

[z as in equation (5.19) and M?[a/q as in equations (5.25) and (5.23). Then, for every

>0, there exist k=k(F,N,e,d) and L(jr+1,F, N,e,8) such that

|,
[,d+2d? X

for any L>L(ji41,F, N,e,0).

2

et du(x)<e (5.26)

sup M)

JeSI<Tk+1

Proof. As in formula (4.26), by the Fourier inversion formula,

Mig(Pmow) = 37, 0)(m=n)izes v (u=v+ P(n=m)+R(n—m,m))
(n,v)€Zd x Z*
% 627ri(u7v+P(n7m)+R(n7m,m))-a/q7

(5.27)

where nES(Rdz) is defined as in formula (4.26) and nr(s):r_dQn(s/r), r=1. Asin §7,
we define ¢: R%" —[0,1] by ¢(s)=(1+|s|>)" @+ and ¢,(s)=r"" ¢(s/r). Then

MY <Oy D7 1f(0,0)Q8 (m—n)doz (u—v+R(n—m,m)), (5.28)
(n,v)€Zd x Z*

<G<rrr \Mﬁa/q(fﬂ is bounded on L?(G#) (compare

with Lemma 7.1). Thus, using Lemma 5.4 and statement (5.22), in proving Lemma 5.6

so the maximal function f+>sup;

we may assume that
F(z)=H(go-x)—H(z) for some go€G¥ and H e L>®(X) with [|H|p~=1. (5.29)

We may also replace the function 1 with a smooth function 77 compactly supported in
the set {s€R%":|s|<N’'(e,N)}; this is due to the fact that the bound (5.28) gains an
additional small factor on the right-hand side for the part of the operator corresponding
to n—mn.

Using equations (5.19) and (5.29),

fr.(9)=x1(9)[H (g09-x)—H(g-7)]. (5.30)
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It suffices to prove that for k£ and L as in Lemma 5.6, and fr, , as in equation (5.30),

),
Lava |

where M; (f) is defined as in equation (5.27), with 7 replacing 7.
We define the kernels Kj: G#—=C by

2 d B
< —
L2(G#) uiw) 2

sup [ M(f1.0)l|

Je<I<Jk+1

, (5.31)

Kj(n,0) = Q}(=n)ijp2s n (—v-+P(n))m P ala, (5.32)

J
So, using formula (5.27),

Mi(Hmu)= > fn,0)K;((n,0)-(myu) ™).

(n,v)EG#

Using equation (5.30) and simple changes of variables, it follows that

M(fra)(9)= Y H(hg-z)[xr(go ' hg)K;(g5 'h)—xr(hg)K;(h)] (5.33)
heG#

for any g€ G#. We now use (5.29), i.e. ||H|z~=1. Since g; ' €G¥, the oscillatory parts
of Kj(h) and K;(gy 'h) agree. Simple estimates then show that (with h=(n,v))

IxL(90 ' hg) K (g5 " h) —xL(hg)K;(h)| < Clg0, N, &,8)j;, ' Xar(9)25 12(n)do2i (v),
if k is sufficiently large, and then L is sufficiently large compared to jiy1. Thus,

C(g()?N?EJ 6)

MG (fr.)(9)] < A

xar(9),

and inequality (5.31) follows. O

6. The singular Radon transform

In this section we prove Lemma 2.8. The main ingredients are the L? bounds in
Lemma 6.1, a super-orthogonality argument of Ionescu and Wainger [8] which reduces
matters to square function estimates, and the weighted inequality in Lemma 7.4. We
assume throughout this section that d’=d?, and that G# is the discrete nilpotent group
defined in §2.
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6.1. L? estimates

Our main result in this subsection is Lemma 6.1, which is a quantitative L? estimate.
The proof of Lemma 6.1 is based on Plancherel’s theorem and Lemmas 3.2-3.4.

Let K denote the Calderén—Zygmund kernel defined in §1. Without loss of generality
(compare with [14, p.624]), we may assume that K:Z;io K, where K is supported
in the set {z:|z|€[2971,29%1]} and satisfies the bound

2| K;(2)|+]x| T VE; (z)| <1, zeR, j>1, (6.1)
and the cancellation condition

Kj(x)dz=0, j>1 (6.2)

To#(f)zzz-(f), where f}(f)(m,@): Z Kj(m—n)f(n, 0)e2mifo(m=—nmn)0 (g 3)

Jj=1 nezd

As in §4, let ¢: RY — 1[0, 1] denote a smooth function supported in the set {£:|€|<2} and
equal to 1 in the set {£:|¢|<1}, N€ [%, oo) a real number, j€[0,00)NZ a non-negative
integer and RC Qd/ a discrete periodic set. As in equation (4.6), let

UYR0)=> YN 0-7)),

reER

and, by convention, \I!JN’Q:O. For (compactly supported) functions f: G# —C we define
TV (f) by

TR () (m, 0) =T;(f)(m, 6)T;7" (6). (6.4)
Our main lemma in this section is the following L? estimate.

LEMMA 6.1. (Strong L? bound) As in Lemma 4.1, assume that N € [%,oo), RnC

Qd/ is a discrete periodic set and Jy ry €[0,00) is a real number with the properties

{a/q:q€[1,N] and (a,q) =1} C RN,

4 (6.5)
2INRN > [100 max q
a/qeERN and (a,q)=1
Then
N, R —c
> (G- SCINH1) | fll 12 (e (6.6)
PR L2(GY)

for any N>0, where ¢=¢&(d)>0.
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Proof. Notice that the case N:%, Ry=@ and Jy g, =0 corresponds to L? bound-
edness of the operator ’ZB#. For #eR? and (compactly supported) functions g: Z¢—C,
let

— Z Kj(m7n)g(n)6727ri30(m7n,n)~9. (67)
nezd
By Plancherel’s theorem,
2
N,Rn
> (TL-T(0)
J>TNRy L2(GY)
. 2
-/ (=W (@)U (F(-,0)) ()| do.
[0,1)# mGZd .7>=]N Ry

Using Plancherel’s theorem again, for the bound (6.6) it suffices to prove that

DR PR )74

JiZJINRN

<C(N+1)~° (6.8)
L2(Z4)L2(Z4)

for any 6 eR? fixed.
Assume that 0cR? is fixed. As in 84, for any j>Jy g, we use the approxima-
tion (4.17) with A=2797 and §=4(d) >0 sufficiently small. Thus, there are irreducible

1-fractions a{lb /qull2 such that

C

_ 6.9
2(2_6)qu]112 (6.9)

1<q], <2®7%7 and |0,,—a], /q] | <
We fix these irreducible 1-fractions a{l Iy /qu1 1, and partition the set ZN[Jy Ry, 00) into

two subsets:

I, = {j EZN[IN Ry oo):l lmax dqullz >2j/6d/}
1,2 .y

and

- . j i/6d'
I, = {j €ZN[INRy,0) 'll,lgi&}%__,dqullz <29/ }

For jel;, we use Lemma 3.2:

S - v R ()l

Jj€nh

S SERCIIERaEIa
L2(Z29)—L*(Z2%)  jer,

as desired.

For jeIs, let a;/q; denote the irreducible d’-fraction with the property that a;/q;=
(a{ll2 /qulzz)ll,lzzl,wd' In view of (6.9) and the definition of I,
C

1<qj<2j/6 and [0— aj/QJ| = 9(2-08)5

(6.10)
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We recall (see property (4.20)) that if j,j'€I5 and 7,5’ >C then

either aj/q;=aj /gy or |q;i/ay|¢|[5.2]. (6.11)
As in §4, we further partition the set Is:

IgzUIS/q, where Ig/q:{jefg:aj/qj:a/q}. (6.12)
a/q

For je]g/q, we show that

<C(N+gq)~“ (6.13)
L2(Z4)—L2(Z4)

H PC R A ()7

jeI;/q

This would suffice to prove (6.8), since the possible denominators ¢ form a lacunary
sequence (see (6.11)). To prove (6.13), we have two cases: ¢<N and ¢>N. If ¢<N, we
use Lemma 3.3 together with definitions (4.6) and (4.8). It follows that the left-hand
side of (6.13) is dominated by

CY 1oy 2YNH0—a/ql)g /2 (14+2%(0—a/q|)/* <CqV/PNTV4,
JEZ

as desired. If ¢> N, then the left-hand side of inequality (6.13) is dominated by
D SR SO Y W e e

jergla jery’?
27 €[g8,|0—a/q|~1/2] 27>[0—a/q|~1/2

L2(Z4)L2(Z4)
(6.14)

For the first term in (6.14), we use Lemma 3.4 for the kernels (1—\I/;-V’RN (0))K;(m). To
control the second term in (6.14), we use Lemma 3.3. It follows that the expression (6.14)
is dominated by Cq~'/2, which suffices to prove the bound (6.13). This completes the
proof of Lemma 6.1. O

6.2. An orthogonality lemma

In this subsection we review a partition of integers and a square function estimate from [8].
The point of this construction is to find a suitable decomposition of the singular integral
operator and exploit the super-orthogonality (i.e. orthogonality in L?", r€Z,) of the

components.
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Recall that for any integer p>1, Z,,={1, ..., u}. Assume that o€ (O, %0] is given and
D denotes the smallest integer >2/5. Assume that N >10 is an integer. Let N’ denote
the smallest integer >N°/2 and V={pi,ps,...,p,} the set of prime numbers between

N’'+1 and N. For any k€Zp, let

WH(N) = {p;" pzc’“ :p;, €V distinet and oy, € Zp, 1=1, ..., k}

i1

and let W(N)=Uyez, W¥(N) denote the set of products of up to D factors in V, raised
to powers between 1 and D.

We say that a set W/ CW/(N) has the orthogonality property O if there is k€Zp and
k sets S1, 89, ..., Sk, S;={qj.1, - 4,8()}> J€Zy, with the following properties:

(i) gj,s=p; 3 for some p; €V and a;€Zp;

(i) (g, q5,5) =1 if (4, ) # (5", 8");

(iii) for any w’' €W’ there are (unique) numbers g1 5, €51, ..., qk,s, €Sk With

/
w = QI,sl qk:,sk .

For simplicity of notation, we say that the set W’'={1} has the orthogonality prop-
erty O with £k=0. The orthogonality property O is connected to Lemma 6.3 below.
Notice that if a set has the orthogonality property O then all its elements have the same
number of prime factors. The main result in [8, §3] is the following decomposition.

LEMMA 6.2. (Partition of integers) With the notation above, the set W (N)U{1} can
be written as a disjoint union of at most Cp(log N)P~1 subsets with the orthogonality

property O.
Let Qo=[N"!]” and define

Yv ={wQ :weW(N)U{l} and Q'|Qo}. (6.15)

Notice that for any meZy there is a unique decomposition m=w@’, with we W(N)U{1}
and Q'|Qo. In addition, wQ’gND2 [N’!]DéeNé if N>Cjs. Thus, for N>Cs,

ZnCYnCZ,ys. (6.16)

Let
w(Nu{t}=J w
s€s
denote the decomposition (guaranteed by Lemma 6.2) of W(N)U{1} as a disjoint union
of subsets W/ with the orthogonality property O, where |S|<Cp(log N)?/%. Using this

decomposition, we write Y=, ¢ Y% (disjoint union), where

seS

Yy ={wQ :weW. and Q'|Qo}. (6.17)
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This is the partition of integers we will use in §6.3.
For any integer g>1 let
P,={ac VAR (a,q)=1} and JSq =P,N[o, q)d/.

Let Si,S2,..., Sk denote sets of integers S;={q;1,..-,q;,3(j)}, J€Zr. Assume that for
some Q,
¢j,s €[2,Q] forany jeZ and s€Zg;, (6.18)

and
(Qj,san',s’):l if (.7’ 8)7&(3/75/) (619)
For any je€Zy, let
Ty =1ajs/0,s:s€Zgy and a; s € Py,  } C Qd/

denote the set of irreducible fractions with denominators in S;. Furthermore, for any set
A={j1, ., Jw } CZy;, let

Ta={rj+..+rj, rj, €Ty, for l€Zyp} C Qd/,
Finally, for A={jy, ... ji'}SZx and any (sj,, ., 85,/ ) €Zp(j.) X - X L), let
UA,s;'l,...,SJ,C, = {Cljl,sh /le,sh —l—...—f—ajk/,sg-k/ /ij/,sjk, Hjy,s;, € qul,SjL for l € Zk,}7

that is the subset of elements of Ty with fixed denominators gj, s, , .-, Bjpr 55, - If A=2
then, by definition, TA:UA:Zd'. Notice that the sets T4 and UAysjly--WS' , are discrete

g

periodic subsets of Q?'. Let fAzTAﬁ[O, 1)d/ and ﬁA,Sh)m?Sjk/ :UA7Sj17""Sij n[o, 1)d/.
Assume that >1 is an integer with the property that
(Q,qj,s)=1 forany j€Zy and s€Zg(. (6.20)

Assume that p>1 is an integer and fix
v =(8pQQ™*) 1, (6.21)
where @ is such that condition (6.18) holds.
For any reTy, , let fT€L2(Zd') denote a function whose Fourier transform is sup-
ported in a y-neighborhood of the set {r+a/Q:acZ®}, i.e. in the set
U r+a/Q+B(),

acZ

where B(y)={¢:|¢|<v}. We assume that f.=f,.,q for any a€Z? . Let (Z%,dn) denote
the set of lattice points in R with the counting measure. The main estimate in this
subsection is the following lemma.
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LEMMA 6.3. (Square function estimate) With the notation above we have

2p
/d, Z fr(w)| du
Z —
reT:
“ - (6.22)
< ¥ 2 [(Z] 2 seew] )
A:{j17---ajk/}Sjl""7sjk/ Z r’G’f’cA uGﬁA,sjl,,_,,sjk,

where the sum in the right-hand side is taken over all sets A={j1, ..., ji } CZy and all
(84155 85, V€L ) X - X Lig(5,,)- The constant Cy,, may depend only on k and p.

See [8, §2] for a proof.

6.3. Proof of Lemma 2.8

In this subsection we complete the proof of Lemma 2.8. The main ingredients are the L?
estimate in Lemma 6.1, the partition of the integers in Lemma 6.2, the square function
estimate in Lemma 6.3 and the weighted estimate in Lemma 7.4. The kernels K; satisfy
conditions (6.1) and (6.2), and the operators 7; are as in equation (6.3). Lemma 2.8

follows by interpolation (see [8, §7]) from the following more quantitative lemma.

LEMMA 6.4. Assume that 2p>4 is an even integer and e=1/(2p—2). Then, for any
A€ (0,00), there are two linear operators .A;‘:A;"E and B?:B;’E with 'Z}ZA;‘—&-B?,

C.
S0 <SGl (6.29
i1 L2(GY)
and
> BN/ SCX (£l v ety (6.24)
L2 (GF)

j=z1
In estimate (6.24), L271(G{') denotes the standard Lorentz space on G .

Proof. In view of Lemma 6.1, we may assume that A>C.. With ¢ as in Lemma 6.1,

let
ce

6=——. 2
100 (6.25)
Let
Ny denote the smallest integer > \1/¢,
Ry, =1{a/q:(a,q)=1and g €Yy, }, (6.26)

JN(),RNO =A%,
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where Yy, denotes the set defined in (6.15) with d=¢c=/100 as in (6.25). Property (6.5)
is satisfied for A>C., using (6.16). For j<Jn, Ry, let .A;—‘EO and B;‘E’]}. Clearly,

> B}Mf)

j€[1,JN0,RNU NZ

SOX | fll 20y
L2 (G¥) et

which gives the bound (6.24). For j=>Jn, ry, let A.;-\E’Z}-—’Z}NO’RN"
with ’Z}NO’RNO defined as in (6.4). By Lemma 6.1,

> AN

iZIng Ry,

No.R
and B)=T. "N,

J J

C-
<7||f”L2(G#)’

HLz(G#)

which gives the bound (6.23). To complete the proof of Lemma 6.4 it suffices to show
that

S Ty

JZINg. RN,

< CaAstHL%(G#) (627)

L2 (GY)
for any characteristic function of a bounded set f.
For simplicity of notation, let

Jo = Ing Ry =A°-

We use the notation in §6.2, with 6=¢&=/100, D the smallest integer >2/0, N=Ny, N'=N|
and
Qo=[NJP <™. (6.28)

Then Yy, =U,cq Yn, and Ry,=U RJV\I,/(; (disjoint unions), where Yy is defined in

equation (6.17) and

ses

RI]/V% —{d'Jw' +b/Qo:d’,be Z% (a',w') =1 and w' € W'}. (6.29)

Clearly, for j>Jy,
7R (1) = ST ()
J - J )
seS

Since |S|<C:(log \)% (see Lemma 6.2), for the bound (6.27), it suffices to prove that
for any set W/ CW (Ny)U{1} with the orthogonality property O,

No,R¥!
> T, (f)

jzJo

SCA|fll oty (6.30)

L2 (GY)

for any characteristic function of a bounded set f.
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We fix the set W’ in inequality (6.30) and assume that W’ #{1} (the case W’'={1} is
significantly easier). Let Si,..., Sk, S;={q;1, .-, ¢j,8(;)}, denote the sets in the definition
of the orthogonality property O. Clearly k<C. and

gj,s € [2,A%]. (6.31)
For any 51625(1), oo Skezﬁ(k)v let

1, if q1,s1 -+ Qk,sy, GW’,

q,, -~-qk,~, = .
V(s ) { 0, ifqis - Qrs €W’

Any irreducible d’-fraction o’ /w’, w'€W’, can be written uniquely in the form

ai s, Ak, sy,

ot (mod Z%),

a1,s, Ak, sy

with g5, €5, and a; 4, 6]3%3[, I=1,...,k. Conversely, if v(¢1 s, --- Gr,s, )=1, then any sum
of the form aq s, /¢,y +---+ ks, /Qe,5,.» With @15, €S) and ay g, E]Sqlﬂ, 1=1, ..., k, belongs
to the set {a'/w':(a’,w')=1 and w’ € W’}. Thus

No,RY'
RS SN RN

51,01,57 3--+,5k,0k,s;, bEZY (632)

Xw(22j(9_a1,51 /qLSl _"'_ak,sk/qkysk _b/QO)/N0>7
where the sum is taken over all s;€Zg(;) and a; g, 613%51. For any
r=ais, /qus, e Faks, /Qs,  S1E€ ZLgg) and ay, € Py, .,

(so r€Tyz, with the notation in §6.2), we define GTGLZ(G#) by the formula

Gr(m, 0) =10, - Ghs) Y L(F)m.0) D (2 (0—r—b/Qo)/No).  (6.33)

izJo beZ’
In view of equation (6.32),

Z 7}N0,73N0 (f) _ Z G,,

32Jo reTy,

with fzk defined as in §6.2. Clearly, G, (m, -) is supported in a 2Ny2~270-neighborhood
of the set {r+b/Qg:beZ}. Condition (6.21) with Q=Qy and Q=A% is satisfied if \>C.
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(see formulas (6.26), (6.28) and (6.31)). We apply Lemma 6.3 to the functions G,.(m, u),
for any meZ?. With the notation in Lemma 6.3, it follows that

| =

r€lz,

L2r(GY)

<. ' ¥ % /G<z' z Gy, )

A={j1,....dpr } Sg1sSips r'ETcy /,J,EUA 5j

2\p
) dm du.

The sum over the sets ACZj, above has 28 =C. terms. To summarize, for estimate (6.30),

it suffices to prove that for any set A={j, ..., jx } CZy,

> (2] G, )

0 T GTLA [I.EUA SjpoeeeeSj

2\pP
) dmdu < Ce )\p5||fH

L2p G#) (634)

Sg1sSips
Tt

for any characteristic function of a bounded set f.
For (sj,, .., 8, )€EZg(j,) X - X ZLg(j,,y and 7' €Teq, let

GT’,sh...,sJ-k, = Z GT’+M‘

We also define the function fT/7sj1,,,,sjk/ ELQ(G#) by the formula

-F(fr’,s_jl...,s_jk,)(m m 0 Z Z 7/}(22J071(Q*TI*,LL*I)/Q())/N()).

bezd’ ;LGUAS LS

(6.35)
For the bound (6.34) it suffices to prove that

> [, (Z o (0 ) A CLF I, e (636)

Sj1reSip 0 7 €Ten

and

p
/G#< Z [e™ gy, (T u)|? )dmdu

’I‘ETCA
p
2
<ON* /G #( D sy, (mou)] ) dm du

0 r’ETcA

(6.37)

for any (s;,, ..., 85, ) €Zg(j,) X - X Z(j,,) fixed. The bound (6.36) follows from Lemma 6.5
below. The bound (6.37) follows from Lemma 6.6 below and the identity

~ N ,'RT/, ’
Gr/)sjl...,sjk/ :’y(q('f'l)qjhsjl qjk/7sjk/) Z 7; ? @ (frl’sjl'“7sjk/ )7 (638)
j=Jo
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where Q'=Qogj, s;, --- By 55, and ¢(r') is the denominator of the irreducible d’-fraction
r’ (see the notation in Lemma 6.6). The identity (6.38) follows from the definitions and
the observation

Yoo > w0 —u—b/Qo)/No)

beZd’ ,LLGUAS -y
Z Y( 22] 0—r'=b'/Q")/No) Z Z $(2207H 01"~ u=b/Qo)/No)-
b ezd’ bezd /J.EUA,&]-I ..... S

LEMMA 6.5. With the notation above,

S [ (S g m? | dmdus A2,

SjpoenSi T 0 N e Tey

for any characteristic function of a bounded set f.

Proof. This is similar to the proof of [8, Lemma 4.3], and is inspired by the Little-
wood—Paley inequality in [13]. Clearly, since f: G#—>{0 1, 17112
addition, by Plancherel’s theorem,

sz(G# _||fHL2(G#)

S [ U () P du < C 1

Sg1oeSdg O preTey

since the function f[f,.gsh ](m, -) is supported in a 4Ny2~27-neighborhood of the

Sy

vy > b/Qo+p

beZd [LEﬁA,Sjl

set

These neighborhoods are disjoint, as r'€7Te4 and (84150 850 )ELg(jy) X o X Ligj,,); See
formulas (6.26), (6.28), and (6.31). Thus it suffices to prove that for any (s;,,...,s;,,)€
Zg(j,) % x L,y and (m,u)€ZIxZY,

Z |fr’,5j1 S (m7 ’LL)|2 < Ce~
T’ETCA

Thus, it suffices to prove that for (sj,, ..., s5,,)€Zg(j,) X ... X Zgy;, , fixed,

)

’ Z V(r/)fr’,sjl...,sjk/ (m7u) <C.

T/ETCA
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for any (m,u)€Z?xZ% and any complex numbers v/(r') with

> )P =1 (6.39)

T‘IETCA

Since || f||ze <1, it suffices to prove that for (s;,,...,s5,,)€Zg(j,) X ... X Zg(j,,) fixed,

7 (o 2 v P> v o -y )| <c
7 €Tey bezZ? pel , LY(z%)
..... .
(6.40)
As before, let n(z)=[ga 1(£)e*™ ¢ d¢ denote the Euclidean inverse Fourier trans-
form of the function 1. An easy calculation shows that
R D D S O [E
7/ €Tey beZ nela, iy,
§ (6.41)
- ( > <>)n/N <u>( > X 62”"“'<”/Q°+“’)~
7' €Tea lteﬁA,Sjl,,.,,Sjk/ bEZdQ/O

We first consider the sum over b and p in equation (6.41). For any integer Q' >1,
define the function dg/: Z% —Z as in formula (4.58). Clearly, ZbeZdQ’, e2mwb/Q =5, (u).
Recall from §6.2 that g; s, :p%j for some primes p; ;, €V and a;€[1, C:]JNZ. In addition,
it is easy to see that if g=p* and (Q,p)=1, then

{a/q+b/Q:beZ% and ac P} = {V//Qp® :b' € Z¥ W\ {V/'/Qp*~": ¥ € Z¥ }.

Thus, for <5j1 s ey Sjk,)EZﬁ(jl) X... X Zﬁ(jk’) fixed,

> D omutb/Qo)= Y (=1 Y m(b/Q) (6.42)

'LLEUA’Sjl""‘SJ'k/ bEZd,0 Ej1r9€hp €{0,1} bEZ%’,

for any periodic function m: RY —C, where

Q Q P iy 511 p‘?‘jk/_fjk/
J1:55, ’ j ’

Ik’ >S5y
The possible values of Q' are products of Qg and p?ﬁs v pj! SJ1 I=1,...,K, and the sum
over €;,,...,j,,€{0,1} contains 2% =(C. terms. Thus, for estimate (6.40)7 it suffices to
prove that

<Ce
L1 (z%)

H ( ezin )77 o (W) (1)

TET
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for any Q" with (see formulas (6.28) and (6.31))
Q' e, e’\a/s]ﬂZ and (Q',qj,s) =1 for any jeA, s€Zgj). (6.43)

This is equivalent to proving that

H ( Z V(T’)62MQ,U"W>,’722JO . (u)

T’chA

<c., (6.44)
LL(Z9)

provided conditions (6.39) and (6.43) hold.
Let 70=27272NyQ'<1. The function 7 is a Schwartz function on R; by Hélder’s
inequality, for estimate (6.44) it suffices to prove that

%'’ ( > v(r')ewu'r’)<1+v3|u2>—d’ <C.. (6.45)
' L2(z?)
r'€Tcy u
The left-hand side of inequality (6.45) is equal to
. 1/2
/2 —2d" 2miu-Q' (v —rl
WX vl [ gy e ha) L oo

ri,r5€Tecs

It remains to estimate the integrals over Z? in expression (6.46). If 7, =r} then

’/ (L3 ul?) 2 2w =r2) qu) < Cyg (6.47)
Zd

Recall that d’=d2. If v} #r} then, by (6.43), Q' (r; —r}) ¢ Z% . Let C=(Ci,1,)1,.10=1..... de-
note the fractional part of Q'(r} —74%). Since the denominators of v} and rj are bounded
by A%, there are l1,ly€{1,...,d} with the property that (;,;, €[\~ ,1-A"%]. By sum-

mation by parts in the variable u;,;, corresponding to this ¢,,,

‘/ (1+,yg|u|2)72d'627riu-Q’(rifr’2) du gc,yo—d’—i-l)\c’a (648)
z

if r{#r,. We substitute inequalities (6.47) and (6.48) in expression (6.46). It follows
that the left-hand side of inequality (6.45) is dominated by

o T wprn (X |u<r'>|)2>1

r’ech T’Ech

/2

Since |Tea| <A and yo<e"”, the bound (6.45) follows from condition (6.39) and
Holder’s inequality. This completes the proof of Lemma 6.5. O
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LEMMA 6.6. Assume, as before, that QG[Le)‘E/SNWZ7 Jo=X and Ny<\¢. For any
irreducible d'-fraction r=a/q with ¢€[1,\<]NZ and (Q,q)=1 let

Req={r+b/Q:beZ®},

and, as in equation (6.4),

FIT R (D)m,0)=T;(f) D (2% (0—r~b/Q)/No).

beZd’

Then,

Iz

r

> TS

jzJo

)/ (Z Ifr|2)1/2

for any (compactly supported) function f,: Gf—)C, where the sums are taken over irre-
ducible d'-fractions r=a/q with ¢€[1,A\%<]NZ and (Q,q)=

C.(log \) )\

. (6.49)

L?p(G#) L2r(G¥)

Proof. As in formula (4.26), in view of the definitions and the Fourier inversion

formula,

YR () myu) = S o 0) K (m—n)nges i, (u—v— Ro(m—n, n))
(nv)€GE (6.50)

« eQwi(u—v—Ro(m—n,n))'r(sQ (u—v—Ro(m—n, n))7
where d¢ is defined in (4.58). We use the change of variable
Oq: G¥ x[ZL x 28] — G¥
defined in (4.28). Let F,.((n',v"), (v, B))=fr (o ((n',v"), (v,3))) and

Gr((m/ ), (,0)) = > T2 (£)(@g(m ), (1, ).

Then, by formula (6.50),

Gr((m' '), (1, )
= Z ST R ), 1, 0) Y K (Qm! —n')+ Ey)
v)eG

(n' v)EGE (v,8)€ 2 X 2L, 327

X 7722j/N0(Q2(U —v'=Ro(m'—n',n"))+E2)dq(a—B—Ro(u—v, v))e2mibs T
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where F1=p—v,

Es=(a—B—Ro(u—v,v))+Q(Ro(p, ' —n’)— Ro(m' —n',v))

and
E3=Q*('—v'—Ro(m/—n',n))+Es.

Clearly, |E1|<CQ and |FE2|<C2/Q if |m'—n'|<C27/Q. Let

Go((m/ ), (1, @)
_ Z o R ), (18) Y K(Qm —n)) (6.51)
v)EG

¥ w.B)ezd ng; i=Jo
X 1925 /N, (Q*(W —v' = Ro(m’ —n’,n")))dg(a—B— Ro(pn—v, v))e?m il

In view of the estimates above on |E;| and |Es|, and the relative sizes of @, Jy and Ny

(see the statement of Lemma 6.6),

|G ('), (1, ) = Gr(m 2, ()|
<C ) Yoo B ), (1, 8)|QTQT* dg(a—B—Ro(u—v,v))

(n' w)EGH (v, B)EZE, ><Zd/2

N d
<25 OQ ( ) Lio,021 @) (Im' =1 [) o2y 2wy (' —v" = Ro(m/ =, '),
i=Jo

where ¢ is as in definition (7.7). The kernel in the formula defining

|G7'((ml7 u/)7 (,ua Oé)) —G,.((m’, u/)’ (:U’7 O‘))‘

has L' norm dominated by CNyQ/27°<C. In view of the Marcinkiewicz—Zygmund
theorem,

1/2
(5o-or)

1/2
()
LQP(G#X [Z% de/z]) r
Q

Thus, for estimate (6.49), it remains to prove that

|(ser)”

where G, is defined in (6.51).

L20 (G x[24 xZ2,])

< C:(log \)“
L2r(G¥ (2 ngz])

(o)

T

)

L?v(G#x[zgngz])
(6.52)
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Assume that r=a/q, (a,q)=1, and for any (v, ) fixed define

Hy((m/,u'), (v, 8))

=sup | Y F((0).(B) > Ki(Q(m/—n'))
a1 €21 , (n! 1)’)6G# JjzJdo
ageZd

% Qd77221/Q2N0 (ulfvlfRo(mlf’n/, n/))ezﬂ—i[al'(m/*’ﬂ,)+a2'(ulf’ulfRo(mlfn',n’))]/q '

Clearly,

|ér((m/aul)a(/‘7a))|< Z HT((m/,’u,/),(1/7ﬂ))Qidehl/5@(01—/8—]%0(,11,—1/, V))a

(v.0)€ZHx 2L,

so, using the Marcinkiewicz—Zygmund theorem again,

(S0 T, <l ()

Thus, for estimate (6.52), it suffices to prove that

(o)

(6.53)

L2 (G x (24 xZY,]) L2 (G x[28xZL,])

C.(log \) N

()

L2P(G0#><[Z‘é><zgz]).
(6.54)

To prove estimate (6.54), we use Lemma 7.4. The connection between weighted

L2 (GY x[24 ngz])

estimates and vector-valued inequalities is well-known (see, for example, [7, Chapter V,
Theorem 6.1]). In our case, let p’€(1, 0c0] denote the exponent dual to p. The left-hand
side of inequality (6.54) is dominated by

sup (/ / Z|H 2w ) . (6.55)
w:G#X[Z%XZgQ]H[O,oo) Zd deg]

llwll =1

We examine the definition of the functions H, above and notice that for fixed (v, )€
Z4 <28,
H,(h, (v, 8)) TN (-, (v, B)](h), heGY

with the notation in Lemma 7.3. The operators TNo% are as in the statement of

Lemma 7.3, using the kernels I?j(x):QdKj+jl (Qx), j=A°/2, where j; is the small-
est integer such that 27 >Q, and No=Q2?N,y/2%". These kernels K; clearly satisfy the
basic properties (6.1), (6.2) and condition (7.23). For fixed (v, 3) € Z x Ze &2 we define the
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function w ( (v, 8)) as in equation (7.21), and use the bounds (7.22) and Lemma 7.4
with p=C. log(No+1). The expression (6.55) is dominated by

1/2
sup csaogA)C( / ST IE P No) ,
G

’
w:G#x[ZéxZé’z]ﬁ[O,oo) I xzhx2zd,]
llwll, =1

which easily leads to estimate (6.54) (using again the bounds (7.22)). O

7. Real-variable theory on the group G#

In this section, which is self-contained, we discuss some features of the real-variable
theory on the group G#. Our basic reference is [14, Chapters I, IT and V]. The main
results in this section are the bound (7.11), which is used in §4.3, and Lemma 7.4, which
is used in §6.3. We assume throughout this section that d’=d? and G# is the discrete
nilpotent group defined in §2.

7.1. Weighted maximal functions
We define the “distance” function d: G x G¥ —[0, 00),
d(0, (m,u)) =max(|m|, |u|"/?), d(h,h')=d(0,h'-h~") if h,W' €eGE.  (7.1)
It is easy to see that d(h,h')=d(h’, h) and
d(h, i) < C(d(h, h')+d(h', k")) for any h,h' k" € GY.
We define the family of non-isotropic balls on G#:
B={B(h,r)={g-h:d(0,g)<r}:he G and r> 1}, (7.2)
and notice that we have the basic properties
if B(h,r)NB(h,r)#@ then B(h',r)C B(h,Cir), -
|B(h, C1r)| < C2| B(h, )], i

for any h, b/ EG# and r> % As a consequence, we have the Whitney decomposition (see
[14, p.15]): if OQGgE is a finite set, then there are balls B,€B, k=1, ..., K, with the
properties

K

ByNBy =@ forany k#k, O=|JBj and B"N°0+#, (7.4)
k=1
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where, if B=B(h,r), then B*=B(h,c*r) and B**=B(h, (c*)?r) for a sufficiently large
constant c*. In addition, there are pairwise disjoint Whitney “cubes” @ with the prop-
erties Uszl Qr=0 and B, CQLCB;.

For any set EQG(;?ﬁ and any function w: G#%[O, 00) let w(E)=[,w(h)dh. If
w: G#—> [0, 00) is a non-negative function, we define LP (w), p€[1, 00|, and L*>°(w) as the
corresponding weighted spaces on G# . It follows from properties (7.3) that the standard

non-centered maximal function

1
M= swp oo /B (o) dg (7.5)

extends to a bounded operator from L!(w) to LY (M (w)):
aw({h: M(f)(h)>a}) <C /G | [F ) M(w)(h) dh (7.6)

for any f: G# —C and ae(0,00) (see [14, p.53]).
Let ©Q and Q; be defined as in formula (4.1). In this section we assume, in addition,
that Q(z)=1 if |2|<2. Let ¢, ¢,: RY —[0,1] denote the functions

B(s) = (1+|s)~@+HD2 and ¢, (s)=r"Cd(s/r), r=1. (7.7)
Assume that N>1 is a real number. For integers j>log, N we define the kernels
AN AN GE — [0, 00),
by
A (m,u) = Q(m) oz iy (u) and - AN (9)=AN(g7"), ge G,
For N>1 and f: G —C, let

ME() ()= sup |fx(AY+AT)(h)[+sup |f+(A]+AT)(R)]. (7.8)
jzlogy N 7=0

We start with a weighted maximal inequality.

LEMMA 7.1. Assume that N,p€][l,00) and that w: G#—>(O,oo) is a function with

the property that
MY (w)(h) < ow(h) for any he GO#. (7.9)

Then, for any compactly supported function f: G#HC,
MY (Pl L1 (w) < Co* log(N+1)[| £l 11 ()

(7.10)
MY (Pl e w) < Cpo*1og(N+ )| fll oy, P € (1,00].
In particular, if w=1, then
MY (D)l 1wy < ClogN+ DI L1 -

MY (D) oty < Co LoVl oty pE (100l
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Proof. The main issue is to prove that there is only a logarithmic loss in IV in esti-
mates (7.10) and (7.11). Since the non-centered maximal operator M in equation (7.5)
is dominated by C ML, it follows from property (7.9) that

B
w|(B) <Cp zréirBl w(h) for any ball BeB. (7.12)

We recall the Calderén—Zygmund decomposition of functions on G# dif f €L1(szﬁ )
and a€(0, 00) is a given “height”, let E,={h:M(f)(h)>a} and E,=Ur_, Bi=U~r_, Qx
be the Whitney decomposition of the set E, (see properties (7.4)). Let

= 1 -
o) =1, () )+ 3 L0 () /Q S

1

be(h) =10, (h) (f(h)—m i

f(n')dn' )
Clearly, f:fo—i—ZkK:l br; in addition, directly from the definitions,

|fo(h)| <Ca  for any hEG#,

(7.13)
by is supported in @ and / ., bi.(h) dh=0.
GO
Also, using property (7.12) for the balls B} and the definition of by,
L et h) ah < Col 1,12 (714)
0

By interpolation, we only need to prove the L!(w)— L'*°(w) bound in (7.10). As-
sume that f: G#—)C is a compactly supported function and fix a€(0, 00). It suffices to
prove that

aw({h: M (f)(h) > a}) < Co* log(N+1)[| Il 2 (w)-

We use the Calderén—Zygmund decomposition f= f0+Z;§:1 b= fo+b at height «/C,
for C sufficiently large. It suffices to prove that

aw({h: MY (b)(h)>Lta}) <Co*log(N+1)|| £l 21 (w)- (7.15)

For estimate (7.15), it suffices to prove that

M=

a) w(Bi) <CP(fllLrw) (7.16)

k

1
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and
K

> M) (hyw(h) dh < Co®log(N+1)| £z (w). (7.17)
k=1"°Bi"
where the B;*’s are sufficiently large dilations of the balls B}, that appear in the Whitney
decomposition of the set £, /c.
To prove the bound (7.16), we use estimates (7.12) and (7.6):

ad w(By)<Coa Y |Bi| min, w(h)<cgaw({h:/\7(f)(h)>a/0})
k=1 k=1
<co |f<h>|/\7<w><h> dh < CeP| 3o

as desired.

To prove the bound (7.17), we use estimate (7.14) and the fact that the cubes Qy
are pairwise disjoint. By translation invariance, it suffices to prove that if B=B(0,r) is a
ball centered at 0 and f: G#—>C is a function supported in the ball B with the property
that [+ f(g) dg=0, then

S [ mim S [l o an

=z 2. (7.18)
<Colog(N+1) [ fll ot (w),

where, as before, B*=B(0,c*r), for ¢* sufficiently large. To prove estimate (7.18), it
suffices to control the first sum in the left-hand side (the second sum corresponds to the
particular case N=1). Since r> %, fix ko €ZN[—1, 00) such that 2k <r<2kol We divide
the sum over j into three parts: j<ko, j€[ko, ko+2log(N+1)] and j>ko+2log(N+1).

For log, N <j<ko, ignoring the condition fo f(g) dg=0, we notice that if he¢B*,
g€B and ¢* is sufficiently large, then min(d(0,h-g~'),d(0,g-h™"))>3c*2". From the
definitions,

(AY +AN) (hg™) S C2 (AR Lo+ Al 12) (gh ™).
Thus, using property (7.9),

| sy s ad il an< e [ 7)Y o+ ALY (0) do

<Co2 ™| fllL1 (),

(7.19)

which suffices to prove estimate (7.18) for this part of the sum.



DISCRETE RADON TRANSFORMS AND ERGODIC THEORY 289

For j>logy N and j€lkg, ko+2log(N+1)], we use property (7.9) as before, and
notice that the sum contains at most C'log(N+1) terms.
For j>ko+2log(N+1), we use the condition fG# g) dg=0 and write

If*(Aﬁ-V+A}N)(h)I</B\f(9)I |(AF + A7) (hg™") = (AT + AT (1) dg.

Assume that h=(n,v)€°B* and g=(m,u)€B. Then hg~!=(n—m,v—u—Ro(n—m,m))
and
AT (hg™") = AT ()] <19 (n—m) = (n)|$a2i/w (v)
+Q;(n—m)|¢a2i)n (v—u—Ro(n—m,m)) = dozi/n (v)|
SO(N+1)2877 (271 g 91451 (1)) P2i/nv (v)
SCO(N+1)2F7TAN 4(hg™").

(7.20)

Similar estimates show that
A (hg™ 1) = A (h)| SC(N+1)2 T AP 5 (hg ™).
Estimate (7.18) for this part of the sum follows using property (7.9), as in formula (7.19).

This completes the proof of Lemma 7.1. O

We now explain how to construct weights with property (7.9). Assume that pe (1, o],
w: G¥ —[0,00) and we LP(GE). For N>1, let

i C,plog(N+1))F(MI)* (w), (7.21)
k=0

where C), is a sufficiently large constant. Then, using estimates (7.11),
w(h)<wl (h) for any he G¥,

HwNHLp(G#) C’H’(UHLP(G#), (7'22)
MY (wN)(h)< Cplog(N+1)wX (h) for any he G¥.

In particular, property (7.9) holds for the function w?¥ with o=C), log(N+1). We used
this construction in the proof of Lemma 6.6 in §6.3.

7.2. Maximal oscillatory singular integrals

We now consider singular integrals on the group G# . The main result in this subsection
is Lemma 7.4. Let K;: R?—C, j=0,1,..., denote a family of kernels on R? with the
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properties (6.1) and (6.2). In this section it is convenient to make a slightly less restrictive
assumption on the supports of the K;’s, namely

K is supported in the set {z: |z] € [¢p2771, 27|} for some ¢p € [5,2].  (7.23)
Assume that neS(R?) is a fixed Schwartz function and let

nr(s) = r_d/n(s/r), seRY, r>1.
Let N>1 be a real number. For integers j>log, N, we define the kernels L;»V: GO#—>C,
L;V(m, u) = Kj(m)na2i/n (u).

For (compactly supported) functions f: G# —C let

TN ()= fLy and T =3 T ().

J7=J

LEMMA 7.2. (Maximal singular integrals) Assume that N€[l,00). The mazimal

singular integral operator

TN (f)(h)= sup |TZ(f)(h)]

jzlog N
extends to a bounded (subadditive) operator on LP(G{), pe(1,00), with
1T || o0 < Cplog(N+1))%. (7.24)

Proof. As in Lemma 7.1, the main issue is to prove that there is only a logarithmic
loss in N in inequality (7.24). We first show that

> TV

jzlog N

< Clog(N+1). (7.25)

L2—L2

In the proof of estimate (7.25) we assume that the kernels K; satisfy the slightly different
cancellation condition ) . K;(m)=0 instead of condition (6.2). The two cancellation
conditions are equivalent (at least in the proof of the bound (7.25)) by replacing K; with
K;—C;279¢; for suitable constants |C;|<C, where ¢: RY—0,1] is a smooth function

supported in {z:|z|€[3,2]} and ¢;(z)=(co2’) %p(2/co27). By abuse of notation, in
N
7

the kernels corresponding to these modified kernels K. Clearly, H’];N lz2—r2<C for any

the proof of estimate (7.25) we continue to denote by ’Z;-N, LY etc. the operators and

j=logy N. By the Cotlar—Stein lemma, it suffices to prove that

1T T o2+ TV T N2 n2 S C(N +1)2707H (7.26)
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for any j,k>logy N with [j—k|>2log(N+1). Assume that j>k. The kernel of the
operator ’Z}N [T,N]* is

Llo)= [ ¥ (LY (gh) .
G{

Using the cancellation condition (6.2), with h=(n,v),

LN [ NI e - @ [ L)LY (g dh
o] <20 +k o] >29+#
=ni(9)+1x(g)-

An estimate similar to (7.20) shows that
Ii(m,u) <C(N+1)2~ 3= k‘( j1[0,2j+3](m))¢22i/N(U)-

Also, by integrating the variable g first, it is easy to see that || 1o HLl(GO#) <C(N+1)2- 17K,
The bound for the first term in the left-hand side of (7.26) follows. The bound for the
second term is similar, which completes the proof of estimate (7.25).

The proof of estimate (7.20) shows that

> / |LY (hg™") =LY (h)| dh < C'log(N +1)

j=logy N B(0,c*r)

for any >0 and g€ B(0,7). Let TN (f)= ZJ>10gNTN It follows from estimate (7.25)
and standard Calderén—Zygmund theory that

| TN 21 opre <Clog(N+1) and || TV 2o e < Cplog(N+1), pe(1,00). (7.27)

We turn now to the proof of the bound (7.24). In view of estimates (7.11) and (7.27),

it suffices to prove the pointwise bound
TN (f)(h) < Clog(N+1)[M(MEY (| ) (R)+MITN ()]) (1)) (7.28)

for any he G¥, where M is the non-centered maximal operator defined in (7.5). By
translation invariance, it suffices to prove this bound for Ah=0. Thus, it suffices to prove
that for any ko >log, IV,

ST TN(f ] < Clog(N+1) MM (| 1)) +M(TN (£)])(0)]. (7.29)

j=ko

Assume ko fixed and let f1=f1pgor-2) and fo=f—f1. It follows from the definitions
that Ej;ko TjN(f)(O):ngko %N(fZ)(O)
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We first show that for any he€ B(0, c2¥0), for ¢ sufficiently small,

> TjN(fz)(O)TN(fz)(h)‘ < Clog(N+DIMI(IF)(0)+ MI(IfD(R)].  (7.30)

Jjzko
To prove the bound (7.30), we first notice that

> o= Y TjN<fz><h>\

j€lko,ko+21og(N+1)) j€lko,ko+2log(N+1))

is clearly controlled by the right-hand side of inequality (7.30). In addition,

> TYWo- Y TjN<f2><h>‘

j=ko+2log(N+1) j=ko+2log(N+1)
< X / g™ LY (9)~LY (hg)] dg
Jj=ko+2log(N+1)

<C > (N2 MY (| fa])(0),

j=ko+2log(N+1)

using an estimate on the difference |L§V (g)—L;V(hg)| similar to (7.20). Finally,

> TjN(fz)(h)F/G#Ifz(gl)I( > ) do

j€(logy N,ko) j€logy N,ko]
<c / Falg™ A (hg) dg
G¥

SCM (| f2])(R).
The bound (7.30) follows. Thus, for any he B(0, c2k?),

M TN(f ’ < Clog(N+D)IMI (| F)O)+ MY (LFN) AT () IIHITY (f1)(R)]-
j=ko

The proof of the bound (7.29) now follows easily as in [14, Chapter I, §7.3], using esti-
mates (7.11) and (7.27). This completes the proof of the lemma. O

In the proof of Lemma 6.6 we need bounds on more general oscillatory singular
integral operators. Assume that ¢g>1 is an integer, N>1 is a real number as before,
a1€Z? and aycZ? . For integers j>log,(2N¢q) and K satisfying properties (6.1), (6.2)
and (7.23), we define the kernels L G#—)C by

J,a1,a2"

L () = K (m)nges g (w)e?ien e/

J,a1,a2

For (compactly supported) functions f: G# —C let

N,q N,q N,q N,q
7}71117@2 (f) f*LJ ai,az and T>J ai, a2 T ,a1, az

Jj'=j
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LEmMA 7.3. (Maximal oscillatory singular integrals) Assume that N€[1,00). The

mazximal oscillatory singular integral operator

TNO(f)(h)= sup  sup TS0 (F)(B)]
a1€Z4 j>log,(2Nq)
ay€Z4

extends to a bounded (subadditive) operator on LP(GO#), pe(1,00), with

|72 2o e < Cp(log(N+1))2. (7.31)

N1 _ N
j,a1,az2 _Lj :

To deal with the case ¢>2, we use the coordinates (4.28) on G# adapted to the factor g:

Proof. Notice first that the case g=1 follows from Lemma 7.2, since L

O, GY x[23x 28] — G,
Dq((m/,u'), (1, @) = (qm/ +p, ¢*u' +a+qRo(p, m')).
Let F((n',0"), (v, 8))=f(®q((n',v'), (v, 8))) and
Garas (m', ), (1, @) = 250, o, (F)(@q (), (1, ).
The definitions show that

Gj,ah% ((mlv ul)v (/~L7 a))

= > Yoo P, w8) Y Kyla(m' —n')+En)

(n' v)eG¥ (Vﬂ)EngZZ; J'=3

~ 77221"/N(q2 (U/—U/—Ro (m/_n/’ n/))+E2)627Fi[a1'(#*V)+a2‘(Q*Q*RO(#*VW))]/Q7
where E1=p—v and
By = (a—pB—Ro(p—v,v))+q(Ro(p, m' —n') = Ro(m' —n', v)).

Clearly, |E1|<Cq and |Ey|<C27' q if |m/—n/|<C27'/q. Let

Gj;ahaz ((m/a U/), (ﬁ" Oé))
- > Yoo F( ), ,8) D a Ky (g(m! —n))g*”
(n' v")eGH (u,ﬁ)ezgng; J'=3

% 77221"/N (q2 (ulf’l)/fRO (m’fn', nl)))qqu72d'e27ri[a1~(ufu)+a2~(a7ﬁ7R0(ufll,V))]/q.
(7.32)
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In view of the estimates above on |E;| and | Fs|, we have
Gjar,as (M, 4), (11,0)) =G oy an (M 0), (1, @)

<C Y ST R ), (v B))lg g
(n’' w)eGY¥ (u,,@)ezgng’2

oo

-/ _d
qN (2
XZ 27" (q> Lo, 02017 (1M =) @921/ g2 (u' =" = Ro(m' —n’, ")),
J'=j

where ¢ is as in definition (7.7). Thus,

sup |Gj—éj\

a1,a2,j>log,(2Nq)

<CIF|l; )0 .
Lo(GYf x(ZgxZ%) 1Fllr i xizgxay)

For estimate (7.31), it suffices to prove that

sup |G|
ai,a2,j>log,(2Nq)

2
LG X < Cp(log(N+1))? | F|l 1 «[Z3x2))" (7.33)

where G ; is defined in formula (7.32). We examine definition (7.32) and notice first that
q2d,77229"/N(112 (W' —=v'=Ro(m'—n',n'))) = n(zj’/q)2/N(UI*U,*RO(m/*”/7 n’)).

Fix jo as the smallest integer with the property that co27/q=¢co€[$,2]. The kernels
K;j(2)=q"Kj;,(qz), j=>log, N, have the properties (6.1), (6.2) and (7.23). Let

2
~ N
V = 7q -
22jo

and define INJ?N’ and i{\Nr as before, using the kernels K ;. Then, from definition (7.32),

1Gjaran (), (o)) < D TN (E(( ), (v,8)) ().
(u,ﬁ)ezgxzj;

The bound (7.33) follows from Lemma 7.2. O
Finally, we prove a weighted version of Lemma 7.3.

LEMMA 7.4. (Weighted maximal oscillatory singular integrals) Assume that we
L®(GY), w: G —(0,00), satisfies condition (7.9), i.e.

MY (w)(h) < ow(h) for any he G#.
Then, for any compactly supported function f:Ggog—C,
1T ()| 2o () < Cpo® Qog(N+1)? (| fll Loy, PE (1,00), (7.34)

where T, is the mazimal operator defined in Lemma 7.3.
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Proof. We use the method of distributional inequalities, as in [14, Chapter V]. Fix
plzé(er 1)e(1,p), and assume that we could prove the distributional inequality

w({h: TX(f) () > a and MM (|f)")/7 () <yia})

(7.35)
<(1=r3)w({h:TX(f)(h) > (1-72)a})

for any a€(0, 00), for some small constants 1, v2,73>0 depending on p, ¢ and log(N +1)
with the property

1—% < (1=)P. (7.36)

By integrating and using the assumptions that f is compactly supported and weLOO(G# )
(so TV(f)eLP(w), pe(l,0)), it would follow that
1 —
MM D)2 o o
Y=L —73) (L —2) 7]/ B s
< Cp(mivs) "o log(N+1)[| £l o (w)»

1T () oy <

using Lemma 7.1. Thus, for estimate (7.34), it suffices to prove the distributional in-
equality (7.35) with property (7.36) satisfied and control over (y;73)~*.
The bound (7.12) shows easily that if @ is a “cube” (i.e. BCQCB* for some ball

BeB) and FCQ, then
w(F) 1 ( |F |>
—— < l——(1-= ). 7.38

w@ '\ ) )
Indeed, the bound (7.38) is equivalent to |G|/|Q|<Cow(G)/w(Q) for any GCQ, which
follows from (7.12). To prove inequality (7.35), we fix y3=(Cp)~! and y2=(Cpp)~! such
that property (7.36) holds. Let E denote the bounded set

E={h:T¥9(f)(h) > (1=72)a},

and let F/ :Uszl Q@ be its Whitney decomposition in disjoint cubes (see properties (7.4)).
For inequality (7.35) it suffices to prove that

w{h € Qi TN(f)(h) > a and MMY (|f)P)/7 (h) < ma}) < (1=7s)w(Qx)

for k=1, ..., K. In view of inequality (7.38), it suffices to prove that

Th e QT () (h) > and MM ()7 () <l <D0 (739)

for k=1, ..., K and some constant ~y; >0.
Since @y is a Whitney cube,

TN(f)(ho) < (1—2)a for some hg € Bi*. (7.40)



296 A.D. IONESCU, A. MAGYAR, E.M. STEIN AND S. WAINGER

In addition, either the inequality (7.39) is trivial or
M(|f[P)YP1(hy) <ma for some hy € B, (7.41)

since |f(h)|SMY(If[)(h) for any heGT. Let fi=f1pp, fo=fLepy and f=fr+fo.
The left-hand side of inequality (7.39) is dominated by

{1 TV (B) > drzal]|

(7.42)
|{ne By TNf)() > (1-392)a and MY (|fal) () <mia}].
However, using Lemma 7.3, the definition y2=(C,0)~! and property (7.41),
C
h:TNA(f1)(h) > 4 < —2— I TX ()T
|{ * (fl)( )> 2’720‘}{ (720[)111 H * (f1)| LP1
<G o gV [ Jfapran (743)

Bi*
< Cp(110(log(N+1))*)P1 Q.

We now fix 71 =(Cpo(log(N+1))?)~1, for C, sufficiently large, and show that the set in
the second line of expression (7.42) is empty. Assuming this, the bound (7.39) follows
and Lemma 7.4 follows from estimate (7.37).

It remains to show that the set in the second line of expression (7.42) is empty. We
will use property (7.40) and the definition of the operators TN?. Assume that the ball
Bj has radius re€[2ko, 2ko+1) ko e[—1,00)NZ. We notice that if h€ B} and g€€B;}* then
d(0,hg™1)> %C*Qko. If, in addition, logy N <j<kg, then

L5 ax (hg ™ S CAT (hg™!) < C27 AR o (hg ™),

J,a1,02

thus, for any j€[logy N, ko]NZ, a1 €Z® and ayeZ4

T 0y (F2) (W) S CP R MY (| 3

Jra1,az

)(h).

Since \7}{\(2’1‘1,(12(fg)(h)|<C/\/liV(|f2|)(h) for any j>log, N, j€[ko, ko+log N+C], we have
for any he B,

sup. > T3ty (F2) ()| < Clog(N+ DM (fal) (). (7.44)
:1E€ZZd/ j€[logy N,ko+log N+C]|
2

Now let j>min(log,(2Nq), ko+log N4+C), a1 €Z%, ayeZ¥ and h=(n,v)e B;. With
ho=(no,vo) as in property (7.40), let a; o€Z? be such that

ai,0-m=ay-m+az-Ro(n—ng,m) for any me Ze.
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Then, from the definitions,

oo
N,q
J al,az f2 ’ ZT a10a2 )(h‘O)
J'=J j'=j
< fa(m, w)e 2@ mtaz utaz-Ro(n—m,m))/q
CB**

(7.45)
X Z (m,uw) ™) =LY ((no, vo) - (m, u) )] dm du

Jj'=J

<[ Rl >0 1L (g = LY (heg )] dg.

j=ko-+log N+C

An estimate similar to (7.20) shows that
1LY (hg™) =L} (hog )| SC(N+1)25 7T AR 5 (hg ™),
since h, ho€B;* and j>ko+log N+C'. In addition, for j'>j>ko+log N+C,

T e () (ho) =T o (F)(ho) =Tk | (f1)(ho) =Tt o, () (ho).

Thus, from inequalities (7.44) and (7.45), for any he B},
TN(f2) (h) ST (f2) (ho) +Clog (N + )M (| fa) (),

so the set in the second line of expression (7.42) is empty, as desired. This completes the

proof of Lemma 7.4. O
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