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1. Introduction

In this paper we are concerned with Lp estimates for discrete operators in certain non-
translation-invariant settings, and the applications of such estimates to ergodic theorems
for certain families of non-commuting operators. We first describe the type of operators
that we consider in the translation-invariant setting. Assume that P :Zd1!Zd2 is a poly-
nomial mapping and K:Rd1 \B(1)!C is a Calderón–Zygmund kernel (see formulas (1.3)
and (1.4) for precise definitions). For (compactly supported) functions f :Zd2!C, we
define the maximal operator

M̃(f)(m) = sup
r>0

∣∣∣∣ 1
|B(r)∩Zd1 |

∑
n∈B(r)∩Zd1

f(m−P (n))
∣∣∣∣,

and the singular integral operator

T̃ (f)(m) =
∑

n∈Zd1\{0}

K(n)f(m−P (n)).

The maximal operator M̃(f) was considered by Bourgain [3], [4], [5], who showed that

‖M̃(f)‖Lp(Zd2 ) 6Cp‖f‖Lp(Zd2 ), p∈ (1,∞], if d1 = d2 =1. (1.1)

Maximal inequalities such as (1.1) have applications to pointwise and Lp, p∈(1,∞),
ergodic theorems; see [3], [4] and [5]. A typical theorem is the following: assume that
P :Z!Z is a polynomial mapping, (X,µ) is a finite measure space and T :X!X is a
measure-preserving invertible transformation. For F∈Lp(X), p∈(1,∞), let

Ãr(F )(x) =
1

2r+1

∑
|n|6r

F (TP (n)x) for any r∈Z+.

Then there is a function F∗∈Lp(X) with the property that

lim
r!∞

Ãr(F ) =F∗ almost everywhere and in Lp.

In addition, F∗=µ(X)−1
∫

X
F (x) dµ if T q is ergodic for q=1, 2, ... .

The related singular integral operator T̃ (f) was considered first by Arkhipov and
Oskolkov [1] and by Stein and Wainger [15]. Following earlier work of [1], [15] and [17],
Ionescu and Wainger [8] proved that

‖T̃ (f)‖Lp(Zd2 ) 6Cp‖f‖Lp(Zd2 ), p∈ (1,∞). (1.2)

A more complete description of the results leading to the bound (1.2) can be found in
the introduction of [8].
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In this paper, we start the systematic study of the suitable analogues of the operators
M̃ and T̃ in discrete settings which are not translation-invariant.(1) As before, the
maximal function estimate has applications to ergodic theorems involving families of
non-commuting operators.

Motivated by models involving actions of nilpotent groups, we consider a special class
of non-translation-invariant Radon transforms, called the “quasi-translation” invariant
Radon transforms. Assume that d, d′>1 and let P :Zd×Zd!Zd′ be a polynomial map-
ping. For any r>0 let B(r) denote the ball {x∈Rd :|x|<r}. Let K:Rd\B(1)!C denote
a Calderón–Zygmund kernel, i.e.

|x|d|K(x)|+|x|d+1|∇K(x)|6 1, |x|> 1, (1.3)

and ∣∣∣∣∫
|x|∈[1,N ]

K(x) dx
∣∣∣∣ 6 1 for any N > 1. (1.4)

For (compactly supported) functions f :Zd×Zd′!C we define the discrete maximal
Radon transform

M(f)(m1,m2) = sup
r>0

∣∣∣∣ 1
|B(r)∩Zd|

∑
n∈B(r)∩Zd

f(m1−n,m2−P (m1, n))
∣∣∣∣, (1.5)

and the discrete singular Radon transform

T (f)(m1,m2) =
∑

n∈Zd\{0}

K(n)f(m1−n,m2−P (m1, n)). (1.6)

The operator T was considered by Stein and Wainger [16], who proved that

‖T‖L2(Zd×Zd′ )!L2(Zd×Zd′ ) 6C. (1.7)

In this paper, we prove estimates like (1.7) in the full range of exponents p for both the
singular integral operator T and the maximal operator M , in the special case in which

the polynomial P has degree at most 2. (1.8)

Theorem 1.1. Assuming condition (1.8), the discrete maximal Radon transform M

extends to a bounded (subadditive) operator on Lp(Zd×Zd′), p∈(1,∞], with

‖M‖Lp(Zd×Zd′ )!Lp(Zd×Zd′ ) 6Cp.

The constant Cp depends only on the exponent p and the dimension d.

(1) Such operators, called Radon transforms, have been studied extensively in the continuous
setting; see [6] and the references therein.
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Theorem 1.2. Assuming condition (1.8), the discrete singular Radon transform T

extends to a bounded operator on Lp(Zd×Zd′), p∈(1,∞), with

‖T‖Lp(Zd×Zd′ )!Lp(Zd×Zd′ ) 6Cp.

The constant Cp depends only on the exponent p and the dimension d.

See also Theorems 2.1–2.4 and 5.2 for equivalent versions of Theorems 1.1 and 1.2
in the setting of nilpotent groups. In the special case d=d′=1 and P (m1, n)=n2, Theo-
rem 1.1 gives∥∥∥∥sup

r>0

1
|B(r)∩Z|

∑
|n|6r

|f(m1−n,m2−n2)|
∥∥∥∥

Lp(Z2)

6Cp‖f‖Lp(Z2) (1.9)

for any p∈(1,∞] and f∈Lp(Z2). We consider functions f of the form

f(m1,m2) = g(m2)1[−M,M ](m1);

by letting M!∞, it follows from (1.9) that∥∥∥∥sup
r>0

1
|B(r)∩Z|

∑
|n|6r

|g(m−n2)|
∥∥∥∥

Lp(Z)

6Cp‖g‖Lp(Z),

which is Bourgain’s theorem [5] in the case P (n)=n2.
We now state our main ergodic theorem. Let (X,µ) denote a finite measure space,

and let T1, ..., Td, S1, ..., Sd′ denote a family of measure-preserving invertible transforma-
tions on X satisfying the commutator relations

[Tj , Sk] = [Sj , Sk] = I and [[Tj , Tk], Tl] = I for all j, k and l. (1.10)

Here I denotes the identity transformation and [T, S]=T−1S−1TS the commutator of T
and S. For a polynomial mapping

Q=(Q1, ..., Qd′):Zd!Zd′ of degree at most 2, (1.11)

and F∈Lp(X), p∈(1,∞), we define the averages

Ar(F )(x) =
1

|B(r)∩Zd|
∑

n=(n1,...,nd)∈B(r)∩Zd

F (Tn1
1 ... Tnd

d S
Q1(n)
1 ... S

Qd′ (n)
d′ x). (1.12)
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Theorem 1.3. Assume that T1, ..., Td, S1, ..., Sd′ satisfy (1.10) and let Q be as
in (1.11). Then, for every F∈Lp(X), p∈(1,∞), there exists F∗∈Lp(X) such that

lim
r!∞

Ar(F ) =F∗ almost everywhere and in Lp. (1.13)

Moreover , if the family of transformations {T q
j , S

q
k :16j6d and 16k6d′} is ergodic for

every integer q>1, then

F∗ =
1

µ(X)

∫
X

F dµ. (1.14)

See also Theorem 5.1 for an equivalent version formulated in terms of the action of
a discrete nilpotent group of step 2.

It would be desirable to remove the restrictions on the degrees of the polynomials
P and Q in (1.8) and (1.11), and allow more general commutator relations in (1.10).(2)
These two issues are related. In this paper we exploit the restriction (1.8) to connect
the Radon transforms M and T to certain group translation-invariant Radon transforms
on discrete nilpotent groups of step 2. We then analyze the resulting Radon transforms
using Fourier analysis techniques. The analogue of this construction for higher degree
polynomials P leads to nilpotent Lie groups of higher step, for which it is not clear
whether the Fourier transform method can be applied. We hope to return to this in the
future.

We describe now some of the ingredients in the proofs of Theorems 1.1–1.3. In §2
we use a transference principle and reduce Theorems 1.1 and 1.2 to Lemmas 2.7 and 2.8
on the discrete nilpotent group G#

0 .
In §3 we prove four technical lemmas concerning oscillatory integrals on L2(Zd

q)
and L2(Zd). These bounds correspond to estimates for fixed θ after using the Fourier
transform in the central variable of the group G#

0 . We remark that natural scalar-valued
objects, such as the Gauss sums, become operator-valued objects in our non-commutative
setting. For example, the bound ‖Sa/q‖L2(Zd

q)!L2(Zd
q)6q

−1/2 in Lemma 3.1 is the natural
analogue of the standard scalar bound on Gauss sums |Sa/q|6Cq−1/2.

In §4 we prove Lemma 2.7 (which implies Theorem 1.1). In §4.1 we prove certain
strong L2 bounds (see Lemma 4.1); the proof of these L2 bounds is based on a variant of
the “circle method”, adapted to our non-translation-invariant setting. In §4.2 we prove
a restricted Lp bound, p>1, with a logarithmic loss. The idea of using such restricted
Lp estimates as an ingredient for proving the full Lp estimates originates in Bourgain’s
paper [5]. Finally, in §4.3 we prove Lemma 2.7, by combining the strong L2 bounds in
§4.1, and the restricted Lp bounds in §4.2.

(2) A possible setting for the pointwise ergodic theorem would be that of polynomial sequences in
nilpotent groups; compare with [2] and [9].
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In §5 we prove Theorem 1.3. First we restate Theorem 1.3 in terms of actions of
discrete nilpotent groups of step 2, see Theorem 5.1. Then we use a maximal ergodic
theorem, which follows by transference from Theorem 1.1, to reduce matters to proving
almost everywhere convergence for functions F in a dense subset of Lp(X). For this we
adapt a limiting argument of Bourgain [5].

In §6 we prove Lemma 2.8 (which implies Theorem 1.2). In §6.1 we prove strong
L2 bounds, using only Plancherel’s theorem and the fixed θ estimates in §3. In §6.2 we
recall (without proofs) a partition of the integers and a square function estimate used by
Ionescu and Wainger [8]. In §6.3 we complete the proof of Lemma 2.8. First we reduce
matters to proving a suitable square function estimate for a more standard oscillatory
singular integral operator (see Lemma 6.6). Then we use the equivalence between square
function estimates and weighted inequalities (cf. [7, Chapter V]) to further reduce to
proving a weighted inequality for an (essentially standard) oscillatory singular integral
operator. This weighted inequality is proved in §7.

In §7, which is self-contained, we collect several estimates related to the real-variable
theory on the group G#

0 . We prove weighted Lp estimates for maximal averages and
oscillatory singular integrals, in which the relevant underlying balls have eccentricity
N�1. The main issue is to prove these Lp bounds with only logarithmic losses of the
type (logN)C . These logarithmic losses can then be combined with the gains of N−c̄

in the L2 estimates in Lemmas 4.1 and 6.1 to obtain the theorems in the full range
of exponents p. The proofs in this section are essentially standard real-variable proofs
(compare with [14]); we provide all the details for the sake of completeness.

2. Preliminary reductions: a transference principle

In this section we reduce Theorems 1.1 and 1.2 to Lemmas 2.7 and 2.8 on the discrete
free group G#

0 defined below. This is based on the “method of transference” (see, for
example, [11]). Since the polynomial mapping P in Theorems 1.1 and 1.2 has degree at
most 2 (see condition (1.8)), we can write

P (m1, n) =R(n,m1−n)+A(m1−n)+B(m1), (2.1)

for some polynomial mappings A,B:Zd!Zd′ and a bilinear mapping R:Zd×Zd!Zd′ .
The representation (2.1) follows simply by setting

B(m) =P (m,m),

A(m) =P (m, 0)−P (m,m),

R(m,m′) =P (m+m′,m)+P (m′,m′)−P (m+m′,m+m′)−P (m′, 0).
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Since R(m, 0)=R(0,m′)=0 for any m,m′∈Zd, it follows from (1.8) that R is bilinear.
Definitions (1.5) and (1.6) show that

M(f)(m1,m2) = M̃(fA)(m1,m2−B(m1)),

T (f)(m1,m2) = T̃ (fA)(m1,m2−B(m1)),

where fA(m1,m2)=f(m1,m2−A(m1)), and M̃ and T̃ are defined in the same way as M
and T , by replacing P (m1, n) with R(n,m1−n). Therefore, in proving Theorems 1.1
and 1.2 we may assume that P (m1, n)=R(n,m1−n), where R is a bilinear mapping. In
this case, the operators M and T can be viewed as group translation-invariant operators
on certain nilpotent Lie groups, which we define below.

Assume that d, d′>1 are integers and R:Rd×Rd!Rd′ is a bilinear map. We define
the nilpotent Lie group

G= {(x, s)∈Rd×Rd′ : (x, s)·(y, t) = (x+y, s+t+R(x, y))}, (2.2)

with the standard unimodular Haar measure dx ds. In addition, if

R(Zd×Zd)⊆Zd′ , (2.3)

then the set
G# =Zd×Zd′ ⊆G (2.4)

is a discrete subgroup of G, equipped with the counting Haar measure.
For any (bounded compactly supported) function F :G!C we define the discrete

maximal Radon transform

M(F )(x, s) = sup
r>0

∣∣∣∣ 1
|B(r)∩Zd|

∑
n∈B(r)∩Zd

F ((n, 0)−1 ·(x, s))
∣∣∣∣, (2.5)

and the discrete singular Radon transform

T (F )(x, s) =
∑

n∈Zd\{0}

K(n)F ((n, 0)−1 ·(x, s)). (2.6)

Assuming condition (2.3), for (compactly supported) functions f :G#!C, we define

M#(f)(m,u) = sup
r>0

∣∣∣∣ 1
|B(r)∩Zd|

∑
n∈B(r)∩Zd

f((n, 0)−1 ·(m,u))
∣∣∣∣ (2.7)

and

T #(f)(m,u) =
∑

n∈Zd\{0}

K(n)f((n, 0)−1 ·(m,u)). (2.8)

In view of equation (2.1), Theorems 1.1 and 1.2 follow from Theorems 2.1 and 2.2 below.
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Theorem 2.1. Assume that R:Zd×Zd!Zd′ is a bilinear map satisfying condi-
tion (2.3). Then the discrete maximal Radon transform M# extends to a bounded (sub-
additive) operator on Lp(G#), p∈(1,∞], with

‖M#(f)‖Lp(G#) 6Cp‖f‖Lp(G#).

The constant Cp depends only on the exponent p and the dimension d.

Theorem 2.2. Assume that R:Zd×Zd!Zd′ is a bilinear map satisfying condi-
tion (2.3). Then the discrete singular Radon transform T # extends to a bounded operator
on Lp(G#), p∈(1,∞), with

‖T #(f)‖Lp(G#) 6Cp‖f‖Lp(G#).

The constant Cp depends only on the exponent p and the dimension d.

Theorems 2.1 and 2.2 can be restated as theorems on the Lie group G.

Theorem 2.3. Assume that R:Zd×Zd!Zd′ is a bilinear map. Then the discrete
maximal Radon transform M extends to a bounded (subadditive) operator on Lp(G),
p∈(1,∞], with

‖M(F )‖Lp(G) 6Cp‖F‖Lp(G).

The constant Cp may depend only on the exponent p and the dimension d.

Theorem 2.4. Assume that R:Zd×Zd!Zd′ is a bilinear map. Then the discrete
singular Radon transform T extends to a bounded operator on Lp(G), p∈(1,∞), with

‖T (F )‖Lp(G) 6Cp‖F‖Lp(G).

The constant Cp may depend only on the exponent p and the dimension d.

Assuming condition (2.3), we now justify the equivalence of Theorems 2.3 and 2.1
and Theorems 2.4 and 2.2. We notice that the map Φ:G#×[0, 1)d×[0, 1)d′!G,

Φ((m,u), (µ, α))= (m,u)·(µ, α) = (m+µ, u+α+R(m,µ)),

establishes a measure-preserving bijection between G#×[0, 1)d×[0, 1)d′ and G. For any
(compactly supported) function f :G#!C we define

F :G−!C, F (Φ((m,u), (µ, α)))= f(m,u).

The definitions show that for any (µ, α)∈[0, 1)d×[0, 1)d′ ,

M#(f)(m,u) =M(F )(Φ((m,u), (µ, α))),

T #(f)(m,u) = T (F )(Φ((m,u), (µ, α))).
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Thus Theorem 2.3 implies Theorem 2.1 and Theorem 2.4 implies Theorem 2.2.
For the converse, assume that F :G!C is given. For any (µ, α)∈[0, 1)d×[0, 1)d′ we

define
f(µ,α):G#−!C, f(µ,α)(m,u) =F (Φ((m,u), (µ, α))).

The definitions show that

M(F )(Φ((m,u), (µ, α)))=M#(f(µ,α))(m,u),

T (F )(Φ((m,u), (µ, α)))= T #(f(µ,α))(m,u),

so Theorem 2.1 implies Theorem 2.3 and Theorem 2.2 implies Theorem 2.4.
We further reduce Theorems 2.3 and 2.4 to a special “universal” case. We define

the bilinear map R0:Rd×Rd!Rd2
by

R0(x, y) =
d∑

l1,l2=1

xl1yl2el1l2 , (2.9)

where {el1l2 :l1, l2=1, ..., d} denotes the standard orthonormal basis of Rd2
. Using the bi-

linear map R0, we define the nilpotent Lie group G0 as in (2.2). For any (bounded com-
pactly supported) function F :G0!C, we define M0(F ) and T0(F ) as in (2.5) and (2.6).

Lemma 2.5. The discrete maximal Radon transform M0 extends to a bounded op-
erator on Lp(G0), p∈(1,∞].

Lemma 2.6. The discrete singular Radon transform T0 extends to a bounded operator
on Lp(G0), p∈(1,∞).

We now show that Lemmas 2.5 and 2.6 imply Theorems 2.3 and 2.4, respectively.
Assume that the bilinear map R in the definition of the group G is

R(x, y) =
d∑

l1,l2=1

xl1yl2vl1l2 ,

for some vectors vl1l2∈Rd′ . We define the linear map L:Rd2!Rd′ by L(el1l2)=vl1l2 (so
L(R0(x, y))=R(x, y) for any x, y∈Rd) and the group morphism

L̃:G0−!G, L̃(x, s) = (x, L(s)).

We define the isometric representation π of G0 on Lp(G), p∈[1,∞], by

π(g0)(F )(g) =F (L̃(g−1
0 )·g), g0 ∈G0, F ∈Lp(G), g ∈G.
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For r>0 we define the generalized measures µr and νr on Cc(G0) by

µr(F0) =
1

|B(r)∩Zd|
∑

n∈B(r)∩Zd

F0(n, 0),

νr(F0) =
∑

n∈B(r)∩Zd\{0}

K(n)F0(n, 0).

Clearly, for any (bounded compactly supported) function F0:G0!C,

M0(F0)(g0) = sup
r>0

|F0∗µr(g0)|,

T0(F0)(g0) = lim
r!∞

F0∗νr(g0).

Moreover, the definitions show that for any (bounded compactly supported) function
F :G!C,

M(F )(g) = sup
r>0

∣∣∣∣∫
G0

[π(g0)(F )](g) dµr(g0)
∣∣∣∣,

T (F )(g) = lim
r!∞

∫
G0

[π(g0)(F )](g) dνr(g0).

By [12, Proposition 5.1], we have that Theorems 2.3 and 2.4 follow from Lemmas 2.5
and 2.6, respectively.

Finally, we define the discrete subgroup G#
0 =Zd×Zd2⊆G0. Then we define the

operators M#
0 and T #

0 as in (2.7) and (2.8):

M#
0 (f)(m,u) = sup

r>0

∣∣∣∣ 1
|B(r)∩Zd|

∑
n∈B(r)∩Zd

f((n, 0)−1 ·(m,u))
∣∣∣∣

and

T #
0 (f)(m,u) =

∑
n∈Zd\{0}

K(n)f((n, 0)−1 ·(m,u)),

for (compactly supported) functions f :G#
0 !C. In view of the equivalence discussed

earlier (since R0 clearly satisfies condition (2.3)), it suffices to prove the following two
lemmas.

Lemma 2.7. The discrete maximal Radon transform M#
0 extends to a bounded op-

erator on Lp(G#
0 ), p∈(1, 2].

Lemma 2.8. The discrete singular Radon transform T #
0 extends to a bounded oper-

ator on Lp(G#
0 ), p∈(1,∞).
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We remark that in Lemma 2.8 it suffices to prove the estimate for p∈[2,∞). Indeed,
assume that p∈(1, 2], p′=p/(p−1)∈[2,∞), and let K̃(n, v)=K(n)1{0}(v), K̃:G#

0 !C.
Then T #

0 (f)=f ∗K̃ and, by duality,

‖T #
0 ‖Lp(G#

0 )!Lp(G#
0 ) = sup

‖f‖
Lp′ (G#

0 )
=1

∥∥∥∥∫
G#

0

f(h·g)K̃(h) dh
∥∥∥∥

Lp′
g (G#

0 )

. (2.10)

We define now the “dual” group G′#
0 :

G′#
0 = {(m,u)∈Zd×Rd2

: (m,u)·(n, v) = (m+n, u+v+R′0(m,n))},

where R′0(m,n)=R0(n,m)=
∑d

l1,l2=1ml1nl2el2l1 . The right-hand side of equation (2.10)
is equal to

sup
‖f‖

Lp′ (G′#0 )
=1

∥∥∥∥∫
G′#

0

f(g ·h)K̃(h) dh
∥∥∥∥

Lp′
g (G′#

0 )

= sup
‖f‖

Lp′ (G′#0 )
=1

‖f ∗G′#
0
K̃‖Lp′ (G′#

0 ). (2.11)

We use now the bijection

G#
0  !G′#

0 ,

(
m,

∑
l1,l2

ul1l2el1l2

)
 !

(
m,

∑
l1,l2

ul1l2el2l1

)
.

Since p′∈[2,∞), it follows from Lemma 2.8 that

‖f ∗G′#
0
K̃‖Lp′ (G′#

0 ) 6Cp′‖f‖Lp′ (G′#
0 ).

Using (2.10) and (2.11), it follows that ‖T #
0 ‖Lp(G#

0 )!Lp(G#
0 )6Cp, as desired.

3. Oscillatory integrals on L2(Zd
q) and L2(Zd)

In this section we prove four lemmas concerning oscillatory integrals on L2. The bounds
in these lemmas depend on a fixed parameter θ in the Fourier space corresponding to
taking the Fourier transform in the central variable of the group G#

0 . In Lemma 3.1,
θ=a/q (the Gauss sum operator). In Lemma 3.2, θ is close to a/q, q large. In Lemma 3.3,
θ is close to a/q, q small. Finally, Lemma 3.4 is an estimate for a singular integral. The
main issue in all these lemmas is to have a quantitative gain over the trivial L2!L2

estimates with bound 1. Lemmas of this type have been used in [10] and [16].
We assume throughout this section that d′=d2, and that G#

0 is the discrete nilpotent
group defined in §2. For any µ>1 let Zµ=Z∩[1, µ]. If a=(al1l2)l1,l2=1,...,d∈Zd′ is a vector
and q>1 is an integer, then we denote by (a, q) the greatest common divisor of a and q,
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i.e. the largest integer q′>1 that divides q and all the components al1l2 . Any number in
Qd′ can be written uniquely in the form

a/q, q ∈{1, 2, ... }, a∈Zd′ , (a, q) = 1. (3.1)

A number as in (3.1) will be called an irreducible d′-fraction. For any irreducible d′-
fraction a/q and g:Zd

q!C we consider the (Gauss sum) operator

Sa/q(g)(m) = q−d
∑

n∈Zd
q

g(n)e−2πiR0(m−n,n)·a/q. (3.2)

Lemma 3.1. (Gauss sum estimate) With the notation above,

‖Sa/q(g)‖L2(Zd
q) 6 q−1/2‖g‖L2(Zd

q). (3.3)

Proof. We consider the operator Sa/q(Sa/q)∗; the kernel of this operator is

L(m,n) = q−2d
∑

w∈Zd
q

e−2πiR0(m−n,w)·a/q = q−2d
d∏

l2=1

δq

( d∑
l1=1

(ml1−nl1)·al1l2

)
, (3.4)

where δq :Z!{0, q},

δq(m) =
{
q, if m/q ∈Z,
0, if m/q /∈Z.

(3.5)

We have to show that
∑

m∈Zd
q
|L(m,n)| and

∑
n∈Zd

q
|L(m,n)| are bounded uniformly

by q−1. In view of equation (3.4), it suffices to prove that the number of solutions
(m1, ...,md)∈Zd

q of the system

d∑
l1=1

ml1al1l2 =0 (mod q) for any l2 =1, ..., d, (3.6)

is at most qd−1.
Assume that q=pα1

1 ... pαk

k is the unique decomposition of q as a product of powers
of distinct primes. Any integer m can be written uniquely in the form

m=
k∑

j=1

mj ·(q/pαj

j ) (mod q), mj ∈Z
p

αj
j
. (3.7)

We write al1l2 and ml1 as in (3.7). Since the primes pj are distinct, the system (3.6) is
equivalent to the system

d∑
l1=1

mj
l1
aj

l1l2
=0 (mod pαj

j ) for any l2 =1, ..., d and j=1, ..., k. (3.8)
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We now use the fact that a/q is an irreducible d′-fraction. Thus for any j=1, ..., k
there are some l1(j), l2(j)∈{1, ..., d} with the property that (al1(j)l2(j), pj)=1. For any
j=1, ..., k we consider only the equation in the system (3.8) corresponding to l2=l2(j).
Since al1(j)l2(j) is invertible in the ring Z/pαj

j Z, for any fixed j the system (3.8) can have
at most [pαj

j ]d−1 solutions (mj
1, ...,m

j
d)∈Zd

p
αj
j

. The lemma follows.

Assume now that j>0 is an integer and Φj :Rd!C is a function supported in the
set {x:|x|62j+1} such that

2dj |Φj(x)|+2(d+1)j |∇Φj(x)|6 1, x∈Rd. (3.9)

For θ∈Rd′ and (compactly supported) functions g:Zd!C we define

Uθ
j (g)(m) =

∑
n∈Zd

Φj(m−n)g(n)e−2πiR0(m−n,n)·θ. (3.10)

We prove two L2 bounds for the operators Uθ
j (g).

Lemma 3.2. (Minor arcs) Assume that a/q is an irreducible d′-fraction, δ>0 and
θ∈Rd′ . Assume also that there are some indices k1, k2∈{1, ..., d} with the property that

ak1k2/q= āk1k2/q̄k1k2 , (āk1k2 , q̄k1k2) = 1,

2δj 6 q̄k1k2 6 2(2−δ)j and |θk1k2−āk1k2/q̄k1k2 |6 2−2j .
(3.11)

Then
‖Uθ

j (g)‖L2(Zd) 6C2−δ′j‖g‖L2(Zd), δ′> 0. (3.12)

Proof. Clearly, we may assume that j>C. The kernel of the operator Uθ
j (Uθ

j )∗ is

Lθ
j (m,n) =

∑
w∈Zd

Φj(m−w)Φ̄j(n−w)e−2πiR0(m−n,w)·θ. (3.13)

Notice that the kernel Lθ
j is supported in the set {(m,n):|m−n|62j+2} and the sum

in equation (3.13) is taken over |w−m|62j+1. Let Al2(m)=
∑d

l1=1ml1θl1l2 . We write
w=(wk2 , w

′). It follows from equation (3.13) that

|Lθ
j (m,n)|6

∑
w′∈Zd−1

∣∣∣∣ ∑
wk2∈Z

Φj(m−(wk2 , w
′))Φ̄j(n−(wk2 , w

′))e−2πiwk2 ·Ak2 (m−n)

∣∣∣∣.
(3.14)

By summation by parts, it is easy to see that∣∣∣∣∑
v∈Z

e−2πivξh(v)
∣∣∣∣ 6C%(ξ)−1‖h′‖L1
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for any h∈C1(R), where %(ξ) denotes the distance from the real number ξ to Z. Using
inequality (3.9), it follows that

|Lθ
j (m,n)|6C2−dj1[0,2j+2](|m−n|)[1+2j%(Ak2(m−n))]−1. (3.15)

We estimate
∑

n∈Zd |Lθ
j (m,n)| and

∑
m∈Zd |Lθ

j (m,n)|. We write m=(mk1 ,m
′) and n=

(nk1 , n
′). Using the bound (3.15),

∑
n∈Zd

|Lθ
j (m,n)|+

∑
m∈Zd

|Lθ
j (m,n)|6C2−j sup

µ∈R

2j+2∑
v=−2j+2

[1+2j%(θk1k2v+µ)]−1. (3.16)

Thus, for the bound (3.12), it suffices to prove that for some constants C>1 and δ′>0,

#{v ∈ [−2j+2, 2j+2]∩Z : %(θk1k2v+µ) 6C−12−(1−δ′)j}6C2(1−δ′)j (3.17)

for any µ∈R and j>C. Since |θk1k2−āk1k2/q̄k1k2 |62−2j (see conditions (3.11)), we may
replace θk1k2 by āk1k2/q̄k1k2 in the bound (3.17). We have two cases: if q̄k1k2 >2j+4, then
the set of points {āk1k2v/q̄k1k2 :v∈[−2j+2, 2j+2]∩Z} is a subset of the set {b/q̄k1k2 :b∈Z}
and āk1k2v/q̄k1k2−āk1k2v

′/q̄k1k2 /∈Z if v 6=v′∈[−2j+2, 2j+2]∩Z. Using coniditions (3.11),
q̄k1k2 62(2−δ)j . Thus the number of points in {b/q̄k1k2 :b∈Z/q̄k1k2Z} that lie in an interval
of length C−12−(1−δ′)j is at most q̄k1k2C

−12−(1−δ′)j +16C2(1−δ′)j , as desired.
Assume now that q̄k1k2 62j+4. We divide the interval [−2j+2, 2j+2] into at most

C2j/q̄k1k2 intervals J of length 6q̄k1k2/2. By the same argument as before,

#{v ∈J∩Z : %(āk1k2v/q̄k1k2 +µ) 6C−12−(1−δ′)j}6 q̄k1k2C
−12−(1−δ′)j +1,

for any of these intervals J and any µ∈R. The bound (3.17) follows since 2δj 6q̄k1k2 , see
conditions (3.11).

Lemma 3.3. (Major arcs) Assume that a/q is an irreducible d′-fraction, θ∈Rd′ ,

q6 2j/4 and |θ−a/q|6 2−7j/4. (3.18)

Then

‖Uθ
j (g)‖L2(Zd) 6Cq−1/2(1+22j |θ−a/q|)−1/4‖g‖L2(Zd). (3.19)

Proof. We may assume that j>C and let θ=a/q+ξ. Since R0 is bilinear, we may
assume that the functions g and Uθ

j (g) are supported in the ball {m:|m|6C2j}. We write

m= qm′+µ and n= qn′+ν,
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with µ, ν∈Zd
q and |m′|, |n′|6C2j/q, and identify Zd with Zd×Zd

q using these maps. Since
R0 is bilinear, it follows from inequalities (3.9) and (3.18) that

Φj(m−n)e−2πiR0(m−n,n)·θ

= [qdΦj(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ][q−de−2πiR0(µ−ν,ν)·a/q]+E(m,n),

(3.20)

where |E(m,n)|6C2−j/22−dj1[0,2j+3](|m−n|). The operator defined by this error term
is bounded on L2 with bound C2−j/2, which suffices. Let Ũθ

j denote the operator defined
by the first term in equation (3.20), i.e.

Ũθ
j (g)(m′, µ)

=
∑

n′∈Zd

∑
ν∈[Zq ]d

g(n′, ν)[qdΦj(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ][q−de−2πiR0(µ−ν,ν)·a/q]

=
∑

n′∈Zd

Sa/q(g)(n′, µ)qdΦj(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ.

(3.21)

In view of Lemma 3.1, for the bound (3.19) it suffices to prove that∥∥∥∥ ∑
n′∈Zd

g′(n′)qdΦj(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ

∥∥∥∥
L2(Zd)

6C(1+22j |ξ|)−1/4‖g′‖L2(Zd),

for any (compactly supported) function g′:Zd!C. Using the restriction (3.18), it suffices
to prove that

‖Uξ
j (g)‖L2(Zd) 6C(1+22j |ξ|)−1/4‖g‖L2(Zd), if |ξ|6 2−5j/4. (3.22)

In proving the bound (3.22) we may assume that |ξ|>C2−2j (and that j is large).
Fix k1, k2∈{1, ..., d} with the property that |ξk1k2 |>C−1|ξ|. We repeat the Uξ

j (Uξ
j )∗

argument from Lemma 3.2. In view of inequality (3.16), it suffices to prove that

2−j sup
µ∈R

2j+2∑
v=−2j+2

[1+2j%(ξk1k2v+µ)]−1 6C(22j |ξ|)−1/2, (3.23)

provided that |ξk1k2 |∈[2−2j , 2−5j/4] (see inequality (3.22)). The points

{ξk1k2v+µ : v ∈ [−2j+2, 2j+2]∩Z}

lie in an interval of length 1
2 . We partition this interval into C2j subintervals of length 2−j .

Each of these subintervals contains at most C(2j |ξk1k2|)−1 of the points in the set
{ξk1k2v+µ:v∈[−2j+2, 2j+2]∩Z}. An easy rearrangement argument then shows that the
sum in the left-hand side of inequality (3.23) is dominated by

C2−j(2j |ξk1k2|)−1
∑

k∈[1,C22j |ξk1k2|]∩Z

k−1,

which proves the bound (3.23).
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Our last lemma in this section concerns Calderón–Zygmund kernels. Assume that

Kj :Rd−!C, j> 1,

are kernels as in (6.1) and (6.2). For any finite set I⊆{1, ... } we define

KI =
∑
j∈I

Kj . (3.24)

For θ∈Rd′ and (compactly supported) functions g:Zd!C we define

Vθ
I (g)(m) =

∑
n∈Zd

KI(m−n)g(n)e−2πiR0(m−n,n)·θ. (3.25)

Lemma 3.4. Assume that a/q is an irreducible d′-fraction, θ∈Rd′ and

I ⊆{j : q8 6 22j 6 |θ−a/q|−1}. (3.26)

Then
‖Vθ

I (g)‖L2(Zd) 6Cq−1/2‖g‖L2(Zd). (3.27)

Proof. Let θ=a/q+ξ. Since R0 is bilinear, we may assume that the functions g and
Vθ

I (g) are supported in the ball {m:|m|6C|ξ|−1/2}. As in Lemma 3.3, we write

m= qm′+µ and n= qn′+ν,

with µ, ν∈Zd
q and |m′|, |n′|6C|ξ|−1/2/q, and identify Zd with Zd×Zd

q using these maps.
Since R0 is bilinear, it follows from inclusion (3.26) that

KI(m−n)e−2πiR0(m−n,n)·θ

= [qdKI(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ][q−de−2πiR0(µ−ν,ν)·a/q]+E′(m,n),

(3.28)

where |E′(m,n)|6Cq|m−n|−d−1/21[q4/2,2|ξ|−1/2](|m−n|). The operator defined by this
error term is bounded on L2 with bound Cq−1, which suffices. Let Ṽθ

I denote the operator
defined by the first term in equation (3.28), i.e.

Ṽθ
I (g)(m′, µ)

=
∑

n′∈Zd

∑
ν∈Zd

q

g(n′, ν)[qdKI(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ][q−de−2πiR0(µ−ν,ν)·a/q]

=
∑

n′∈Zd

Sa/q(g)(n′, µ)qdKI(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ.
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In view of Lemma 3.1, for the bound (3.27) it suffices to prove that∥∥∥∥ ∑
n′∈Zd

g′(n′)qdKI(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ

∥∥∥∥
L2(Zd)

6C‖g′‖L2(Zd) (3.29)

for any (compactly supported) function g′:Zd!C.
Since R0 is bilinear, if |m′|, |n′|6C|ξ|−1/2/q then

|qdKj(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ−qdKj(q(m′−n′))|

6C(2j |ξ|1/2)(2j/q)−d1[2j−1/q,2j+1/q](|m′−n′|).

Thus

|qdKI(q(m′−n′))e−2πiR0(m
′−n′,n′)·q2ξ−qdKI(q(m′−n′))|6E′′(m′−n′),

where ‖E′′‖L1(Zd)6C. The estimate (3.29) follows from the boundedness of standard
singular integrals on Zd.

4. The maximal Radon transform

In this section we prove Lemma 2.7. The proof is based on three main ingredients: a
strong L2 bound, a restricted (weak) Lp bound, p∈(1, 2], and an interpolation argument.
We assume throughout this section that d′=d2 and that G#

0 is the discrete nilpotent
group defined in §2.

4.1. L2 estimates

The main result in this subsection is Lemma 4.1, which is a quantitative L2 estimate.
The proof of Lemma 4.1 is based on a non-commutative variant of the circle method,
in which we divide the Fourier space into major arcs and minor arcs. This partition
is achieved using cutoff functions like ΨN,R

j defined in equation (4.6). The minor arcs
estimate (4.12) is based on Plancherel’s theorem and Lemmas 3.2 and 3.3. The major
arcs estimate (4.13) is based on the change of variables (4.28), the L2 boundedness of
the standard maximal function on the group G#

0 , and Lemma 3.1.
In this section we assume that Ω:Rd![0, 1] is a function supported in {x:|x|64},

and
|Ω(x)|+|∇Ω(x)|6 10 for any x∈Rd,

Ωj(x)= 2−djΩ(x/2j), j=0, 1, ... .
(4.1)
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Clearly, if Ω(x)=1 in the set {x:|x|61}, then

M#
0 (f)(m,u) 6C sup

j>0

∑
n∈Zd

Ωj(n)f((n, 0)−1 ·(m,u)),

for any (compactly supported) function f :G#
0 ![0,∞). For integers j>0 and (compactly

supported) functions f :G#
0 !C let

Mj(f)(m,u) =
∑

n∈Zd

Ωj(n)f((n, 0)−1 ·(m,u)). (4.2)

To prove Lemma 2.7, it suffices to prove that for any (compactly supported) function
f :G#

0 !C, ∥∥∥sup
j>0

|Mj(f)|
∥∥∥

Lp(G#
0 )

6Cp‖f‖Lp(G#
0 ), p∈ (1, 2]. (4.3)

For any (compactly supported) function f :G#
0 !C let f̂ denote its Fourier transform

in the central variable, i.e.,

f̂(m, θ) =
∑

u∈Zd′

f(m,u)e−2πiu·θ, m∈Zd, θ∈Rd′ . (4.4)

Then
M̂j(f)(m, θ) =

∑
n∈Zd

Ωj(m−n)f̂(n, θ)e−2πiR0(m−n,n)·θ. (4.5)

We use formula (4.5) and multipliers in the Fourier variable θ to decompose the opera-
tors Mj .

Let ψ:Rd′![0, 1] denote a smooth function supported in the set {ξ :|ξ|62} and equal
to 1 in the set {ξ :|ξ|61}. Assume that N∈

[
1
4 ,∞

)
, j∈[0,∞)∩Z and that R⊆Qd′ is a

discrete periodic set (i.e. if r∈R then r+a∈R for any a∈Zd′ , and R∩[0, 1)d′ is finite).
We define

ΨN,R
j (θ) =

∑
r∈R

ψ(22jN−1(θ−r)). (4.6)

The function ΨN,R
j is periodic in θ (i.e. ΨN,R

j (θ+a)=ΨN,R
j (θ) if a∈Zd), and supported in

the union of the 2N2−2j-neighborhoods of the points in R. We will always assume that j
is sufficiently large (depending on N and R) such that these neighborhoods are disjoint,
so ΨN,R

j :Rd′![0, 1]. By convention, ΨN,∅
j =0. For (compactly supported) functions

f :G#
0 !C we define MN,R

j (f) by

M̂N,R
j (f)(m, θ) =M̂j(f)(m, θ)ΨN,R

j (θ). (4.7)

Our main lemma in this subsection is the following L2 estimate.
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Lemma 4.1. (Strong L2 bound) Assume that N∈
[
1
2 ,∞

)
, that RN⊆Qd′ is a discrete

periodic set and that JN,RN
∈[0,∞) is a real number with the properties

{a/q : q ∈ [1, N ] and (a, q) = 1}⊆RN ,

2JN,RN >
[
100 max

a/q∈RN and (a,q)=1
q
]4
.

(4.8)

Then ∥∥∥ sup
j>JN,RN

|Mj(f)−MN,RN

j (f)|
∥∥∥

L2(G#
0 )

6C(N+1)−c̄‖f‖L2(G#
0 ), (4.9)

where c̄=c̄(d)>0.

Remark. In §5, Lemma 5.5, we need to allow for slightly more general kernels Ω,
that is Ω:Rd![0, 1], supported in the set {x:|x|64}, equal to 1 in the set {x:|x|62},
and satisfying

|∇Ω(x)|6A for any x∈Rd,

where A�1. In this case the bound (4.9) becomes∥∥∥ sup
j>JN,RN

|Mj(f)−MN,RN

j (f)|
∥∥∥

L2(G#
0 )

6AC(N+1)−c̄‖f‖L2(G#
0 ).

Proof. Estimate (4.3) for p=2 corresponds to the case N= 1
2 , RN =∅ and JN,RN

=0
in Lemma 4.1. The condition (4.8) guarantees that ΨN,RN

j :Rd′![0, 1] if j>JN,RN
.

We decompose the operator Mj−MN,RN

j into the main contribution coming from the
“major arcs” (in θ) and an error-type contribution coming from the complement of these
major arcs. For integers j, s>0 let

γ(j, s) =
{

1, if 2s 6 j3/2,
0, if 2s>j3/2.

For (compactly supported) functions f :G#
0 !C we define NN,RN

j,s (f) by

N̂N,RN

j,s (f)(m, θ) = γ(j, s)[M̂j(f)(m, θ)−M̂N,RN

j (f)(m, θ)]
∑

2s6q<2s+1

ψ(22j+2(θ−a/q)),

(4.10)
where the sum is taken over irreducible d′-fractions a/q with 2s6q<2s+1. Then we write

Mj(f)−MN,RN

j (f) =
∑
s>0

NN,RN

j,s (f)+EN,RN

j (f). (4.11)
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This is our basic decomposition. It follows from properties (4.8) that NN,RN

j,s (f)≡0 if
2s+16N . Thus, for Lemma 4.1, it suffices to prove that∥∥∥∥( ∑

j>JN,RN

|EN,RN

j (f)|2
)1/2∥∥∥∥

L2(G#
0 )

6C(N+1)−c̄‖f‖L2(G#
0 ) (4.12)

and ∥∥∥ sup
j>JN,RN

|NN,RN

j,s (f)|
∥∥∥

L2(G#
0 )

6C2−c̄s‖f‖L2(G#
0 ) (4.13)

if 2s+1>N .

Proof of estimate (4.12). (Minor arcs estimate) Let s(j) denote the largest integer
>0 with the property that 2s(j)6j3/2. Notice that

ÊN,RN

j (f)(m, θ) =mN,RN

j (θ)
∑

n∈Zd

Ωj(m−n)f̂(n, θ)e−2πiR0(m−n,n)·θ,

with

mN,RN

j (θ) = [1−ΨN,RN

j (θ)]
[
1−

∑
q62s(j)+1−1

ψ(22j+2(θ−a/q))
]
, (4.14)

where the sum in (4.14) is taken over irreducible d′-fractions a/q with q62s(j)+1−1. For
θ∈Rd′ and (compactly supported) functions g:Zd!C, we define

Uθ
j (g)(m) =

∑
n∈Zd

Ωj(m−n)g(n)e−2πiR0(m−n,n)·θ. (4.15)

By Plancherel’s theorem,∥∥∥∥( ∑
j>JN,RN

|EN,RN

j (f)|2
)1/2∥∥∥∥2

L2(G#
0 )

=
∫

[0,1)d′

∑
j>JN,RN

|mN,RN

j (θ)|2‖Uθ
j (f̂( · , θ))‖2L2(Zd) dθ.

Using Plancherel’s theorem again, for the bound (4.12) it suffices to prove that∑
j>JN,RN

|mN,RN

j (θ)|2‖Uθ
j ‖2L2(Zd)!L2(Zd) 6C(N+1)−2c̄ (4.16)

for any θ∈Rd′ fixed.
By Diriclet’s principle, for any Λ>1 and ξ∈R there are q∈ZΛ=Z∩[1,Λ] and a∈Z,

(a, q)=1, with the property that |ξ−a/q|61/Λq. For θ∈Rd′ we apply this to each
component θl1l2 ; thus there are ql1l2∈ZΛ and al1l2∈Z, (al1l2 , ql1l2)=1, with the property
that

|θl1l2−al1l2/ql1l2 |6
C

Λql1l2

. (4.17)
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Assume that θ∈Rd′ is fixed. For any j>JN,RN
we use the approximation (4.17)

with Λ=2(2−δ)j , where δ=δ(d)>0 is sufficiently small (δ=1/10d′ would work). Thus
there are irreducible 1-fractions aj

l1l2
/qj

l1l2
such that

1 6 qj
l1l2

6 2(2−δ)j and |θl1l2−a
j
l1l2

/qj
l1l2

|6 C

2(2−δ)jqj
l1l2

. (4.18)

We fix these irreducible 1-fractions aj
l1l2

/qj
l1l2

and partition the set Z∩[JN,RN
,∞) into

two subsets:
I1 = {j ∈Z∩[JN,RN

,∞) : max
l1,l2=1,...,d

qj
l1l2

> 2j/6d′}

and
I2 = {j ∈Z∩[JN,RN

,∞) : max
l1,l2=1,...,d

qj
l1l2

6 2j/6d′}.

For j∈I1 we use Lemma 3.2:∑
j∈I1

|mN,RN

j (θ)|2‖Uθ
j ‖2L2(Zd)!L2(Zd) 6

∑
j∈I1

2−δ′j 6C(N+1)−c̄,

as desired.
For j∈I2 let aj/qj denote the irreducible d′-fraction with the property that

aj/qj =(aj
l1l2

/qj
l1l2

)l1,l2=1,...,d.

In view of properties (4.18) and the definition of I2,

1 6 qj 6 2j/6 and |θ−aj/qj |6
C

2(2−δ)j
. (4.19)

An easy argument, using properties (4.19), shows that if j, j′∈I2 and j, j′>C then

either aj/qj = aj′/qj′ or |qj/qj′ | /∈
[
1
2 , 2

]
. (4.20)

We further partition the set I2:

I2 =
⋃
a/q

I
a/q
2 , where I

a/q
2 = {j ∈ I2 : aj/qj = a/q}. (4.21)

For j∈Ia/q
2 we use Lemma 3.3:∑

j∈I
a/q
2

|mN,RN

j (θ)|2‖Uθ
j ‖2L2(Zd)!L2(Zd) 6C

∑
j∈I

a/q
2

q−1(1+22j |θ−a/q|)−1/2|mN,RN

j (θ)|2.

(4.22)
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To estimate the right-hand side of (4.22), we consider two cases: q6N and q>N . If
q6N , then, using (4.8), (4.6) and (4.14), |mN,RN

j (θ)|261[1,∞)(22jN−1|θ−a/q|). Thus
the right-hand side of (4.22) is dominated by Cq−1N−1/2. If q>N , then, using (4.14)
and the fact that j>22s(j)/3, the right-hand side of (4.22) is dominated by

C
∑

j∈I
a/q
2 ∩[0,Cq2/3]

q−1+C
∑

j∈I
a/q
2 ∩[Cq2/3,∞)

q−1(1+22j |θ−a/q|)−1/21[1/2,∞)(22j |θ−a/q|)

6Cq−1/3.

The bound (4.16) follows since the possible denominators q form a lacunary sequence
(see property (4.20)). This completes the proof of estimate (4.12).

Proof of estimate (4.13). (Major arcs estimate) Clearly, if j>max(JN,RN
, 22s/3, C),

then ( ∑
2s6q<2s+1

ψ(22j+2(θ−a/q))
)

(1−ΨN,RN

j (θ))=
∑
r∈R′

ψ(22j+2(θ−r)),

where R′={a/q∈Qd′ \RN :(a, q)=1 and q∈[2s, 2s+1)}. We define M1/4,R′
j (f) by

M̂1/4,R′
j (f)(m, θ) =M̂j(f)(m, θ)

∑
r∈R′

ψ(22j+2(θ−r)) (4.23)

(compare with equation (4.7)). Thus, for estimate (4.13), it suffices to prove that if s>0
and R′⊆{a/q :(a, q)=1 and q∈[2s, 2s+1)}, then∥∥∥ sup

j>22s/3
|M1/4,R′

j (f)|
∥∥∥

L2(G#
0 )

6C2−c̄s‖f‖L2(G#
0 ).

We partition the set R′⊆{a/q :(a, q)=1 and q∈[2s, 2s+1)} into at most C22s/5 subsets
with the property that each of these subsets contains irreducible d′-fractions with at
most 23s/5 denominators q. Thus, it suffices to prove that if s>0,

R′⊆{a/q : (a, q) = 1 and q ∈S}, S⊆ [2s, 2s+1)∩Z and |S|6 23s/5, (4.24)

then ∥∥∥ sup
j>22s/3

|M1/4,R′
j (f)|

∥∥∥
L2(G#

0 )
6C2−s/2‖f‖L2(G#

0 ). (4.25)

In view of the definitions (4.5) and (4.23), and the Fourier inversion formula,

M1/4,R′
j (f)(m,u)

=
∑

(n,v)∈G#
0

f(n, v)Ωj(m−n)
∫

[0,1)d′

( ∑
r∈R′

ψ(22j+2(θ−r))
)
e2πi(u−v−R0(m−n,n))·θ dθ

=
∑

(n,v)∈G#
0

f(n, v)Ωj(m−n)η22j+2(u−v−R0(m−n, n))
∑

r∈R′∩[0,1)d′

e2πi(u−v−R0(m−n,n))·r,

(4.26)
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where η(s)=
∫
Rd′ ψ(ξ)e2πis·ξ dξ is the Euclidean inverse Fourier transform of ψ, and

η22j+2(s)=2−d′(2j+2)η(s/22j+2). We recognize that formula (4.26) is the convolution on
G#

0 of the function f and the kernel

(m,u)−!Ωj(m)η22j+2(u)
∑

r∈R′∩[0,1)d′

e2πiu·r.

Let Q=
∏

q∈S q; see (4.24). Since |S|623s/5,

Q6 2(s+1)23s/5
. (4.27)

To continue, we introduce new coordinates on G#
0 adapted to the factor Q. For integers

Q>1 we define

ΦQ:G#
0 ×[Zd

Q×Zd′

Q2 ]−!G#
0 ,

ΦQ((m′, u′), (µ, α))= (Qm′+µ,Q2u′+α+QR0(µ,m′)).
(4.28)

Notice that ΦQ((m′, u′), (µ, α))=(µ, α)·(Qm′, Q2u′) if we regard (µ, α) and (Qm′, Q2u′)
as elements of G#

0 . Clearly, the map ΦQ establishes a bijection between G#
0 ×[Zd

Q×Zd′

Q2 ]
and G#

0 . Let F ((n′, v′), (ν, β))=f(ΦQ((n′, v′), (ν, β))) and

Gj((m′, u′), (µ, α))=M1/4,R′
j (f)(ΦQ((m′, u′), (µ, α))).

Since Qr∈Z for any r∈R′, formula (4.26) is equivalent to

Gj((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

F ((n′, v′), (ν, β))Ωj(Q(m′−n′)+E1)

×η22j+2(Q2(u′−v′−R0(m′−n′, n′))+E2)
∑

r∈R′∩[0,1)d′

e2πi(α−β−R0(µ−ν,ν))·r,

where E1=µ−ν and

E2 =(α−β−R0(µ−ν, ν))+Q(R0(µ,m′−n′)−R0(m′−n′, ν)).

In view of estimates (4.25) and (4.27), 2j >222s/3
and Q62(s+1)23s/5

, thus C2j >Q10.
Clearly, |E1|6CQ and |E2|6C2jQ if |m′−n′|6C2j/Q. Let

G̃j((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

F ((n′, v′), (ν, β))Ωj(Q(m′−n′))

×η22j+2(Q2(u′−v′−R0(m′−n′, n′)))
∑

r∈R′∩[0,1)d′

e2πi(α−β−R0(µ−ν,ν))·r.

(4.29)
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In view of the estimates above on |E1| and |E2|, and the fact that the sum over r∈
R′∩[0, 1)d′ in equation (4.29) has at most C22s terms, we have

|Gj((m′, u′), (µ, α))−G̃j((m′, u′), (µ, α))|

6C2Cs(Q/2j)
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

|F ((n′, v′), (ν, β))|Q−dQ−2d′

×(2j/Q)−d1[0,C2j/Q](|m′−n′|)φ22j/Q2(u′−v′−R0(m′−n′, n′)),

where, as in definition (7.7),

φ(s) = (1+|s|2)−(d′+d+1)/2 and φr(s) = r−d′φ(s/r), r> 1.

Thus, ∑
j>22s/3

‖Gj−G̃j‖L2(G#
0 ×[Zd

Q×Zd′
Q2 ]) 6C2−2s/2

‖F‖L2(G#
0 ×[Zd

Q×Zd′
Q2 ]).

For estimate (4.25), it suffices to prove that∥∥∥ sup
2j>Q

|G̃j |
∥∥∥

L2(G#
0 ×[Zd

Q×Zd′
Q2 ])

6C2−s/2‖F‖L2(G#
0 ×[Zd

Q×Zd′
Q2 ]), (4.30)

where G̃j is defined in equation (4.29). For this, we notice that the function G̃j is
obtained as the composition of the operator

A(f)(µ, α) =Q−dQ−2d′
∑

(ν,β)∈Zd
Q×Zd′

Q2

f(ν, β)
∑

r∈R′∩[0,1)d′

e2πi(α−β−R0(µ−ν,ν))·r (4.31)

acting on functions f :Zd
Q×Zd′

Q2!C, followed by an average over a standard ball of radius
≈2j/Q in G#

0 (with the terminology of §7). In view of estimates (7.11) with N=1, for
estimate (4.30) it suffices to prove that

‖A(f)‖L2(Zd
Q×Zd′

Q2 ) 6C2−s/2‖f‖L2(Zd
Q×Zd′

Q2 ). (4.32)

For functions f :Zd
Q×Zd′

Q2!C, we define the Fourier transform in the second variable

f̃(µ, a/Q2) =
∑

α∈Zd′
Q2

f(µ, α)e−2πiα·a/Q2
, a∈Zd′ .

It is easy to see that

‖f‖L2(Zd
Q×Zd′

Q2 ) =Q−d′
( ∑

µ∈Zd
Q

∑
a∈Zd′

Q2

|f̃(µ, a/Q2)|2
)1/2

,
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for any f :Zd
Q×Zd′

Q2!C (Plancherel’s identity). Since R′⊆{a/Q2 :a∈Zd′} (see (4.24) and
the definition of Q), it follows from equation (4.31) that

Ã(f)(µ, a/Q2) =1R′(a/Q2)Q−d
∑

ν∈Zd
Q

f̃(ν, a/Q2)e−2πiR0(µ−ν,ν)·a/Q2
.

By Plancherel’s identity, for estimate (4.32) it suffices to prove that for any r∈R′ and
any g:Zd

q!C,∥∥∥∥Q−d
∑

ν∈Zd
Q

g(ν)e−2πiR0(µ−ν,ν)·r
∥∥∥∥

L2
µ(Zd

Q)

6C2−s/2‖g‖L2
ν(Zd

Q).

This follows from Lemma 3.1 and the fact that r=a/q, (a, q)=1, q∈[2s, 2s+1) (see (4.24)).
This completes the proof of Lemma 4.1.

4.2. A restricted Lp estimate

Recall that the operators Mj were defined in equation (4.2). In the rest of this section,
in addition to conditions (4.1), we assume that Ω(x)=1 if |x|62. In this subsection we
prove the following restricted Lp estimate.

Lemma 4.2. (Restricted Lp estimate) Assume that J>2 is an integer. Then∥∥∥ sup
j∈[J+1,2J]

|Mj(f)|
∥∥∥

Lp(G#
0 )

6Cp(log J)‖f‖Lp(G#
0 ), p∈ (1, 2]. (4.33)

The idea of using restricted Lp estimates like (4.33) together with L2 bounds to prove
the full Lp estimates (4.3) originates in Bourgain’s paper [5]. In proving Lemma 4.2,
we exploit the positivity of the operators Mj . Let Ω̃j :G

#
0 ![0,∞) denote the kernel

Ω̃j(m,u)=Ωj(m)1{0}(u), so Mj(f)=f ∗Ω̃j , and let Ω′
j(h)=Ω̃j(h−1). To be able to use

the same notation as in the previous section, it is more convenient to prove the maximal
inequality ∥∥∥ sup

j∈[J+1,2J]

|f ∗Ω′
j |

∥∥∥
Lp(G#

0 )
6Cp(log J)‖f‖Lp(G#

0 ), p∈ (1, 2]. (4.34)

The bounds (4.33) and (4.34) are equivalent, in view of the duality argument following
the statement of Lemma 2.8. By interpolation, we may assume that p′=p/(p−1) is an
integer >2 and it suffices to prove the Lp!Lp,∞ estimate∥∥∥ sup

j∈[J+1,2J]

|f ∗Ω′
j |

∥∥∥
Lp,∞(G#

0 )
6Cp(log J)‖f‖Lp(G#

0 ), p′ ∈ [2,∞)∩Z. (4.35)
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By duality, the bound (4.35) is equivalent to the inequality∥∥∥∥ 2J∑
j=J+1

fj∗Ω̃j

∥∥∥∥
Lk(G#

0 )

6Ck(log J)
∥∥∥∥ 2J∑

j=J+1

fj

∥∥∥∥
Lk(G#

0 )

,

where k=p/(p−1) is an integer >2 and the fj ’s are characteristic functions of disjoint,
bounded sets. We may assume that J>Ck and partition the set [J+1, 2J ]∩Z into at
most Ck(log J) subsets S with the separation property

S⊆ [J+1, 2J ]∩Z and if j 6= j′ ∈S then |j−j′|>Ak(log J), (4.36)

where Ak is a large constant to be fixed later. It suffices to prove that if S is as above
and k>2 is an integer, then∥∥∥∥∑

j∈S

fj∗Ω̃j

∥∥∥∥
Lk(G#

0 )

6Ck

∥∥∥∥∑
j∈S

fj

∥∥∥∥
Lk(G#

0 )

, (4.37)

where the fj ’s are characteristic functions of disjoint, bounded sets. Let % denote the
smallest constant Ck>1 for which the bound (4.37) holds. By expanding the left-hand
side of inequality (4.37),∥∥∥∥∑

j∈S

fj∗Ω̃j

∥∥∥∥k

Lk(G#
0 )

6Ck

∑
j1<...<jk

∫
G#

0

(fj1 ∗Ω̃j1) ... (fjk
∗Ω̃jk

) dg

+Ck

∫
G#

0

( ∑
j∈S

fj∗Ω̃j

)k−1

dg,

(4.38)

since the fj ’s are characteristic functions. The second term in the right-hand side of
inequality (4.38) is dominated by Ck%

k−1‖
∑

j∈S fj‖k
Lk(G#

0 )
.

To deal with the first term, we will prove the bound

‖ [(fj2 ∗Ω̃j2) ... (fjk
∗Ω̃jk

)]∗(Ω′
j1−Ω′

J)‖L2(G#
0 ) 6CkJ

−k‖fj2 +...+fjk
‖L2(G#

0 ), (4.39)

provided fj2 , ..., fjk
are characteristic functions of disjoint, bounded sets, j1<...<jk∈S,

and the constant Ak in (4.36) is sufficiently large. Assuming the bound (4.39), we would
have∣∣∣∣∫

G#
0

(fj1 ∗Ω̃j1) ... (fjk
∗Ω̃jk

) dg−
∫
G#

0

(fj1 ∗Ω̃J)(fj2 ∗Ω̃j2) ... (fjk
∗Ω̃jk

) dg
∣∣∣∣

6CkJ
−k

∥∥∥∥∑
j∈S

fj

∥∥∥∥2

L2(G#
0 )

=CkJ
−k

∥∥∥∥∑
j∈S

fj

∥∥∥∥k

Lk(G#
0 )

,
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since the fj ’s are characteristic functions of disjoint, bounded sets. Thus the first term
in the right-hand side of inequality (4.38) can be estimated by

Ck

∥∥∥∥∑
j∈S

fj

∥∥∥∥k

Lk(G#
0 )

+Ck

∑
j2<...<jk

∫
G#

0

( ∑
j∈S

fj∗Ω̃J

)
(fj2 ∗Ω̃j2) ... (fjk

∗Ω̃jk
) dg. (4.40)

Since the fj ’s are characteristic functions of disjoint, bounded sets,
∑

j∈S fj∗Ω̃J 6C.
Thus the expression in (4.40) can be estimated by Ck(1+%k−1)‖

∑
j∈S fj‖k

Lk(G#
0 )

. It

follows from estimate (4.38) that %k6Ck(1+%k−1), so %6Ck as desired.
It remains to prove the bound (4.39). Clearly, we may assume that J>Ck. We

start with a sequence of appropriate constants B2<...<Bk, which depend only on the
constant c̄>0 in Lemma 4.1, and define Nl=JBl andRNl

={a/q :q∈[1, Nl] and (a, q)=1},
l=2, ..., k. By Lemma 4.1,

‖Mjl
(fjl

)−MNl,RNl
jl

(fjl
)‖L2(G#

0 ) 6CJ−c̄Bl‖fjl
‖L2(G#

0 ), l=2, ..., k. (4.41)

A computation similar to (4.26) shows that

MNl,RNl
jl

(fjl
) = fjl

∗LNl,RNl
jl

,

L
Nl,RNl
jl

(m,u) =Ωjl
(m)η22jl /Nl

(u)
∑

r∈RNl
∩[0,1)d′

e2πiu·r. (4.42)

Since RNl
has at most CJ (d′+1)Bl elements, ‖LNl

jl
‖L1(G#

0 )6CJ
(d′+1)Bl . Thus

‖MNl,RNl
jl

(fjl
)‖L∞(G0) 6CJ (d′+1)Bl , l=2, ..., k, (4.43)

since the fjl
’s are characteristic functions of sets. Now, by replacing each Mjl

(fjl
) by

MNl,RNl
jl

(fjl
), for l=2, ..., k, one at a time, the left-hand side of (4.39) is dominated by

‖Mj2(fj2)−M
N2,RN2
j2

(fj2)‖L2 ... ‖Mjk
(fjk

)‖L∞

+...+‖MN2,RN2
j2

(fj2)‖L∞ ... ‖Mjk
(fjk

)−MNk,RNk
jk

(fjk
)‖L2

+‖ [MN2,RN2
j2

(fj2) ...M
Nk,RNk
jk

(fjk
)]∗(Ω′

j1−Ω′
J)‖L2 .

(4.44)

By choosing the constants Bl in geometric progression and using estimates (4.41) and
(4.43), for (4.39) it remains to control the last term in expression (4.44). We now examine
formula (4.42) and notice that each kernel L

Nl,RNl
jl

is the sum over r of at most CkJ
Ck

kernels. For any irreducible d′-fraction al/ql, let

L
Nl,al/ql

jl
(m,u) =Ωjl

(m)η22jl /Nl
(u)e2πiu·al/ql . (4.45)

To control the last term in (4.44) it suffices to prove the following lemma.
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Lemma 4.3. With the notation above, for any constant B̃k,

‖ [(fj2 ∗L
N2,a2/q2
j2

) ... (fjk
∗LNk,ak/qk

jk
)]∗(Ω′

j1−Ω′
J)‖L2 6CkJ

−B̃k‖fj2 +...+fjk
‖L2 , (4.46)

provided fj2 , ..., fjk
are characteristic functions of disjoint , bounded sets, Nl6J B̃k , al/ql

are irreducible d′-fractions with ql6J B̃k , l=2, ..., k, J<j1<j2<...<jk62J and j2−j1>

Ak log J , Ak sufficiently large depending on B̃k.

Proof. From the definitions,

[(fj2 ∗L
N2,a2/q2
j2

) ... (fjk
∗LNk,ak/qk

jk
)]∗(Ω′

j1−Ω′
J)(g)

=
∫

[G#
0 ]k−1

fj2(h2) ... fjk
(hk)H(g ·h−1

2 , ..., g ·h−1
k ) dh2 ... dhk,

(4.47)

where

H(g2, ..., gk) =
∑

n∈Zd

(Ωj1(n)−ΩJ(n))LN2,a2/q2
j2

((n, 0)·g2) ... LNk,ak/qk

jk
((n, 0)·gk). (4.48)

Let gl=(ml, ul), l=2, ..., k. With φ as in defition (7.7), we show that

|H(g2, ..., gk)|6CkJ
B̃k(2j1−j2 +2−J/2)

k∏
l=2

Ωjl+2(ml)φ22jl /Nl
(ul). (4.49)

Assuming (4.49), the bound (4.46) follows easily from equation (4.47) and the fact that
the fjl

’s are characteristic functions.
To prove the bound (4.49) let

Q= q2 ... qk, Q6J (k−1)B̃k . (4.50)

Writing n=Qn′+ν, n′∈Zd, ν∈Zd
Q, equation (4.48) becomes

|H(g2, ..., gk)|=
∣∣∣∣ ∑
n′∈Zd

∑
ν∈Zd

Q

(Ωj1(Qn
′+ν)−ΩJ(Qn′+ν))

×
k∏

l=2

Ωjl
(ml+Qn′+ν)η22jl /Nl

(ul+R0(Qn′+ν,ml))e2πiR0(ν,ml)·al/ql

∣∣∣∣.
(4.51)

We use (4.50) on Q and the observation that |n′|6100·2j1/Q in (4.51). It follows that

|Ωjl
(ml+Qn′+ν)η22jl /Nl

(ul+R0(Qn′+ν,ml))−Ωjl
(ml)η22jl /Nl

(ul)|

6CNl2j1−jlΩjl+2(ml)φ22jl /Nl
(ul).
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Thus, using equation (4.51),

|H(g2, ..., gk)|6Ck

k∏
l=2

Ωjl+2(ml)φ22jl /Nl
(ul)

×
(
J B̃k2j1−j2 +

∣∣∣∣ ∑
n′∈Zd

∑
ν∈Zd

Q

(Ωj1(Qn
′+ν)−ΩJ(Qn′+ν))

k∏
l=2

e2πiR0(ν,ml)·al/ql

∣∣∣∣).
(4.52)

We make the simple observations

|Ωj1(Qn
′+ν)−Ωj1(Qn

′)|6CQ2−j1Ωj1+2(Qn′),

|ΩJ(Qn′+ν)−ΩJ(Qn′)|6CQ2−JΩJ(Qn′),

since |ν|6Q. In addition, since
∫
Rd(Ωj1(x

′)−ΩJ(x′)) dx′=0, we have

Qd

∣∣∣∣ ∑
n′∈Zd

(Ωj1(Qn
′)−ΩJ(Qn′))

∣∣∣∣ 6CQ2−J .

The bound (4.49) follows from inequality (4.52).

4.3. Proof of Lemma 2.7

In this subsection we prove the bound (4.3) for any p>1, thus completing the proof of
Lemma 2.7. Our main ingredients are the bound (7.11) in §7, and Lemmas 4.1 and 4.2.
The bound (4.3) follows by interpolation (see [8, §7]) from the following more quantitative
estimate.

Lemma 4.4. Assume that p∈(1, 2] is an exponent and ε=(p−1)/2. Then, for any
λ∈(0,∞), there are linear operators Aλ

j =Aλ,ε
j and Bλ

j =Bλ,ε
j with Mj =Aλ

j +Bλ
j ,∥∥∥sup

j>0
|Aλ

j (f)|
∥∥∥

L2(G#
0 )

6
Cε

λ
‖f‖L2(G#

0 ) (4.53)

and ∥∥∥sup
j>0

|Bλ
j (f)|

∥∥∥
Lp(G#

0 )
6Cελ

ε‖f‖Lp(G#
0 ). (4.54)

The rest of this subsection is concerned with the proof of Lemma 4.4. In view of
Lemma 4.1 with N= 1

2 and RN =∅, in proving Lemma 4.4 we may assume λ>Cε. With
c̄ as in Lemma 4.1, we define

N0 =λ1/c̄, RN0 = {a/N0! : a∈Zd′} and JN0,RN0
=N2

0 . (4.55)
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Property (4.8) is clearly satisfied if λ is sufficiently large. For j<JN0,RN0
, let Aλ

j ≡0 and
Bλ

j ≡Mj . By Lemma 4.2,∥∥∥ sup
j∈[0,JN0,RN0

)∩Z

|Bλ
j (f)|

∥∥∥
Lp(G#

0 )
6C(log λ)2‖f‖Lp(G#

0 ),

which is better than estimate (4.54). For j>JN0,RN0
, let

Aλ
j ≡Mj−M

N0,RN0
j and Bλ

j ≡M
N0,RN0
j .

By Lemma 4.1 and definition (4.55),

∥∥∥ sup
j>JN0,RN0

|Aλ
j (f)|

∥∥∥
L2(G#

0 )
6
C

λ
‖f‖L2(G#

0 ),

which gives the bound (4.53). To complete the proof of Lemma 4.4, it suffices to show
that ∥∥∥ sup

j>JN0,RN0

|MN0,RN0
j (f)|

∥∥∥
Lp(G#

0 )
6Cp(logN0)‖f‖Lp(G#

0 ). (4.56)

To prove the bound (4.56), we use estimates (7.11) and the change of coordi-
nates (4.28). By the Fourier inversion formula, as in equation (4.26),

MN0,RN0
j (f)(m,u) =

∑
(n,v)∈G#

0

f(n, v)Ωj(m−n)η22j/N0(u−v−R0(m−n, n))

×
∑

r∈RN0∩[0,1)d′

e2πi(u−v−R0(m−n,n))·r.
(4.57)

Let Q=N0!. Definition (4.55) shows that∑
r∈RN0∩[0,1)d′

e2πi(u−v−R0(m−n,n))·r = δQ(u−v−R0(m−n, n)),

where

δQ:Zd′−!Z, δQ(u) =
{
Qd′ , if u/Q∈Zd′,
0, if u/Q /∈Zd′.

(4.58)

We use the change of coordinates ΦQ:G#
0 ×[Zd

Q×Zd′

Q2 ]!G#
0 described in (4.28). Let

F ((n′, v′), (ν, β))=f(ΦQ((n′, v′), (ν, β))) and

Gj((m′, u′), (µ, α))=MN0,RN0
j (f)(ΦQ((m′, u′), (µ, α))).
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Formula (4.57) is equivalent to

Gj((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

F ((n′, v′), (ν, β))Ωj(Q(m′−n′)+E1)

×η22j/N0(Q
2(u′−v′−R0(m′−n′, n′))+E2)δQ(α−β−R0(µ−ν, ν)),

where E1=µ−ν and

E2 =(α−β−R0(µ−ν, ν))+Q(R0(µ,m′−n′)−R0(m′−n′, ν)).

Clearly, 2j >2N2
0 and Q62N

3/2
0 , and thus 2j >Q10. Also,

|E1|6CQ and |E2|6C2jQ if |m′−n′|6 C2j

Q
.

Let

G̃j((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

F ((n′, v′), (ν, β))Ωj(Q(m′−n′))

×η22j/N0(Q
2(u′−v′−R0(m′−n′, n′)))δQ(α−β−R0(µ−ν, ν)).

In view of the estimates above on |E1| and |E2|, we have

|Gj((m′, u′), (µ, α))−G̃j((m′, u′), (µ, α))|

6C
N0Q

2j

∑
(n′,v′)∈G#

0

∑
(ν,β)∈Zd

Q×Zd′
Q2

|F ((n′, v′), (ν, β))|Q−dQ−2d′

×
(

2j

Q

)−d

1[0,C2j/Q](|m′−n′|)φ22j/Q2N0(u
′−v′−R0(m′−n′, n′)),

where φ is as in definition (7.7). Thus,∑
j>N2

0

‖Gj−G̃j‖Lp(G#
0 ×[Zd

Q×Zd′
Q2 ]) 6C‖F‖Lp(G#

0 ×[Zd
Q×Zd′

Q2 ]).

For the bound (4.56), it remains to prove that∥∥∥ sup
j>N2

0

|G̃j |
∥∥∥

Lp(G#
0 ×[Zd

Q×Zd′
Q2 ])

6Cp(logN0)‖F‖Lp(G#
0 ×[Zd

Q×Zd′
Q2 ]). (4.59)

For this, we notice that the function G̃j is obtained as the composition of the operator

f 7−!Q−dQ−2d′
∑

(ν,β)∈Zd
Q×Zd′

Q2

f(ν, β)δQ(α−β−R0(µ−ν, ν))

acting on functions f :Zd
Q×Zd′

Q2!C, which is clearly bounded on Lp(Zd
Q×Zd′

Q2), followed
by an average dominated by the maximal operatorMN0

∗ of Lemma 7.1. The bound (4.59)
follows from estimates (7.11).
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5. The ergodic theorem

In this section we prove Theorem 1.3. We first reduce matters to proving Theorem 5.1
below (in fact, we only need this theorem for a special group G# and a special polynomial
mapping P ). Then we use a maximal ergodic theorem (which follows from Theorem 1.1
and a transference argument) and adapt a limiting argument of Bourgain [5].

5.1. Preliminary reductions and a maximal ergodic theorem

Assume that (X,µ) is a finite measure space. A result equivalent to Theorem 1.3 can be
formulated in terms of the action of the step 2 discrete nilpotent group G# defined in
(2.2) and (2.4), corresponding to a bilinear mapping R:Zd×Zd!Zd′ . Suppose that G#

acts on X via measure-preserving transformations, and denote the action G#×X!X
by (g, x) 7!g ·x. For a polynomial map P :Zd!Zd′ of degree at most 2, and F∈Lp(X),
p∈(1,∞], define the averages

Mr(F )(x) =
1

|Br∩Zd|
∑

n∈Br∩Zd

F ((n, P (n))·x). (5.1)

Theorem 5.1. For every F∈Lp(X), p∈(1,∞), there exists F∗∈Lp(X) such that

lim
r!∞

Mr(F ) =F∗ almost everywhere and in Lp. (5.2)

Moreover , if the action of the subgroup (qZ)d×(qZ)d′ is ergodic on X for every integer
q>1, then

F∗ =
1

µ(X)

∫
X

F dµ. (5.3)

We now prove the equivalence of Theorems 1.3 and 5.1, and reduce matters to prov-
ing Theorem 5.1 on a special discrete group G# with special polynomial map P0. We first
show that Theorem 1.3 implies Theorem 5.1. Assume that G# is as in Theorem 5.1 and
acts on X via measure-preserving transformations. For g∈G# define the transformation
Tg:X!X by Tg(x)=g ·x. Let {gj}d

j=1∪{hk}d′

k=1 denote the standard basis of Zd×Zd′ ,
and let Tj =Tgj and Sk=Thk

. For n=(n1, ..., nd)∈Zd, m=(m1, ...,md′)∈Zd′ it follows
from the definitions that

d∏
j=1

T
nj

j

d′∏
k=1

Smk

k =T(n, m+Q0(n)), (5.4)

where Q0:Zd!Zd′ is a polynomial mapping of degree 2. Thus, the averages in (5.1) re-
duce to those in (1.12) associated with the polynomial map Q(n)=P (n)−Q0(n). Also, it
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is clear from equation (5.4) that the family of transformations {T q
j }d

j=1∪{S
q
k}d′

k=1 gener-
ates the subgroup G#

q =(qZ)d×(qZ)d′ , hence the ergodicity of the action of the subgroup
implies that of the family {T q

j }d
j=1∪{S

q
k}d′

k=1.

We now start the proof of Theorem 1.3. Notice that the coefficients of the polynomi-
als Ql:Zd!Z of degree at most 2 must be integers or half integers. Writing nj =2n′j +εj ,
16j6d, for some fixed residue classes εj modulo 2, it follows that the average in (1.12)
can be written as a linear combination of 2d averages, where the exponents are polyno-
mials with integer coefficients. Thus one can assume that the polynomial mapping Q

in (1.11) has integer coefficients. Also, one may write

d′∏
l=1

S
Ql(n)
l = 	S0

d∏
j=1

	S
nj

j

∏
16j6k6d

	S
njnk

jk , (5.5)

by expanding S
Ql(n)
l into a product of factors with monomial exponents nj and njnk,

and collecting all the resulting factors with a given exponent. If one puts 	Tj =Tj
	Sj ,

16j6d, then the transformations 	Tj , 16j6d, and 	Sjk, 16j6k6d, satisfy the commu-
tator relations (1.10). Moreover, the ergodicity of the family {	T q

j }d
j=1∪{	S

q
jk}16j6k6d

implies that of the family {T q
j }d

j=1∪{S
q
l }d′

l=1. Thus, it is enough to prove Theorem 1.3
for the special polynomial map

Q0:Zd−!Zd(d+1)/2 with Qjk
0 (n1, ..., nd) =njnk, 1 6 j6 k6 d. (5.6)

We identify the group generated by the transformations 	Tj , 16j6d, and 	Sjk, 16j6

k6d, as an isomorphic image of a step 2 nilpotent group G# on Zd×Zd2
. More precisely,

it follows from the relations (1.10) that

d∏
j=1

T
nj

j

d∏
k=1

T
n′k
k =

d∏
j=1

T
nj+n′j
j

∏
16k<j6d

[Tj , Tk]njn′k . (5.7)

This implies that the group �G#
0 defined by the bilinear form 	R0:Zd×Zd!Zd2

with
components

	Rjk
0 (n, n′) =

{
njn

′
k, if 1 6 k < j6 d,

0, if 1 6 j6 k6 d,
(5.8)

acts on X via

(n,m)·x=
d∏

j=1

	T
nj

j

∏
16k<j6d

[	Tj , 	Tk]mjk

∏
16j6k6d

	S
mjk

jk (x), (5.9)
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where n=(nj)d
j=1 and m=(mjk)d

j,k=1. In terms of this action, the averages in (1.12) take
the form

Ar(F )(x) =
1

|Br∩Zd|
∑

n∈Br∩Zd

F ((n, 0, P0(n))·x). (5.10)

Thus, Theorem 1.3 reduces to Theorem 5.1 in the special case d′=d2,

P (n) =
∑

16j6k6d

njnk ·ejk and R(n, n′) =
∑

16k<j6d

njn
′
k ·ejk, (5.11)

where {ejk}d
j,k=1 denotes a standard orthonormal basis of Rd2

.
We conclude this subsection with a maximal ergodic theorem, which follows from

Theorem 1.1 and a general transference argument.

Theorem 5.2. (Maximal ergodic theorem) With the notation as in Theorem 5.1,
let M(F )(x)=sup

r>0
|MrF (x)|. Then

‖M(F )‖Lp(X) 6Cp‖F‖Lp(X). (5.12)

Using Theorem 5.2 and the Lebesgue dominated convergence theorem, it suffices
to prove the almost everywhere convergence in statement (5.2). We can also assume in
Theorem 5.1 that F is in a suitable dense subspace of Lp(X), such as L∞(X).

5.2. Pointwise convergence

Assume that F∈L∞(X) and, for a given 1<δ62, define the averages

Mδ
j(F )(x) =

1
‖Ωδ‖L1δj

∑
n∈Zd

Ωδ(n/δj)F ((n, P (n))·x), (5.13)

where Ωδ:Rd![0, 1] is a smooth function, such that Ωδ(y)=1 for |y|61 and Ωδ(y)=0
for |y|>δ. For a given r>1, let j be such that δj 6r<δj+1 and compare the averages
Mr(F ) and Mδ

j(F ). Since F∈L∞, it follows easily that for any x∈X,

|Mr(F )(x)−Mδ
j(F )(x)|6Cd(δ−j +δd−1)‖F‖L∞ .

Thus, it suffices to show that for each 1<δ62 the averages Mδ
j(F ) converge almost

everywhere as j!∞. For simplicity of notation, we drop the superscript δ and write
Mj(F )=Mδ

j(F ).
Next, we identify subspaces of L2(X) on which the convergence of Mj(F ) is imme-

diate. For integers q>1, let G#
q =(qZ)d×(qZ)d′ , i.e. the subgroup of points with all the

coordinates divisible by q. Define the corresponding space of invariant functions by

L2
q(X) = {F ∈L2(X) :TgF =F for all g ∈G#

q } and L2
inv(X) =

⋃
q>1

L2
q(X), (5.14)
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where TgF (x)=F (g ·x). Notice that L2
q1

(X)⊆L2
q2

(X) if q1 divides q2, hence L2
inv(X) is a

closed subspace of L2(X).

Lemma 5.3. Assume that q>1 and let F∈L2
q(X). Then, for every x∈X,

lim
j!∞

Mj(F )(x) = q−d
∑

ν∈(Z/qZ)d

F ((ν, P (ν))·x) (5.15)

Proof. If n≡ν (mod q), then (n, P (n))≡(ν, P (ν)) (mod q) (see (5.11)), hence there
is a g∈G#

q such that (n, P (n))=g ·(ν, P (ν)). Thus F ((n, P (n))·x)=F ((ν, P (ν))·x), since
F∈L2

q(X). In view of the definitions, it is enough to show that for every ν∈(Z/qZ)d,

lim
j!∞

1
‖Ωδ‖L1 δj

∑
n≡ν (mod q)

Ωδ(n/δj) = q−d,

which is an elementary observation.

If for each q the action of G#
q on X is ergodic, then L2

inv(X) contains only constant
functions. Thus, for statements (5.2) and (5.3), it suffices to prove that for F∈L2

inv(X)⊥,

lim
j!∞

Mj(F )(x) = 0 for almost every x∈X. (5.16)

We now identify a dense subspace of the orthogonal complement of L2
q(X).

Lemma 5.4. Assume that q>1. Then

L2
q(X)⊥ =Span{TgH−H : g ∈G#

q and H ∈L∞(X)}, (5.17)

where SpanS denotes the subspace spanned by the set S.

Proof. Let F∈L2(X) and assume that for all H∈L∞(X) and g∈G#
q ,

〈F, TgH−H〉=0.

That is, for every g∈G#
q ,

〈Tg−1F−F,H〉=0 for all H ∈L∞(X),

which means that Tg−1F=F for all g∈G#
q , so F∈L2

q(X). This proves the lemma.

Following an idea described in [3], we will show statement (5.16) by proving L2

bounds for a family of truncated maximal functions. We will use the following construc-
tion: let Lj , j∈N, be a family of bounded linear operators on L2(X), and let {jk}k∈Z+

be an increasing sequence of natural numbers. Then we define the maximal operators

L∗k(F )(x) = max
jk6j<jk+1

|Lj(F )(x)|.
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Let F∈L2
inv(X)⊥, and assume indirectly that for a set of positive measure

lim
j!∞

Mj(F )(x) 6=0.

Then, there exists ε>0 such that

µ
{
x∈X : lim sup

j!∞
|Mj(F )(x)|>ε

}
>ε.

It is now easy to see that there is an increasing sequence {jk}k∈Z+ such that

‖M∗
k(F )‖2L2(X) >

ε3

2
(5.18)

for all k∈Z+. Moreover, the sequence {jk}k∈Z+ can be chosen to be rapidly increasing,
so we may assume that jk+1>3jk.

Let χ̃:R![0, 1] denote a smooth function supported in [−2, 2] and equal to 1 in
[−1, 1]. For x∈X and L�1, we define

fL,x(g) =F (g ·x)χL(g), (5.19)

where χL:Rd×Rd2![0, 1] is given by

χL(m,u) = χ̃

(
|m|
L

)
χ̃

(
|u|
L2

)
(recall that G#=Zd×Zd2

as sets). Clearly, ‖χL‖L1(G#)≈Ld+2d2
. For f :G#!C, j>0

and δ∈(1, 2], we define, as in formula (5.13),

M̃j(f)(g) =
1

‖Ωδ‖L1 δj

∑
n∈Zd

Ωδ(n/δj) f((n, P (n))·g). (5.20)

Using the definitions, for any k∈Z+ and L>Lk large enough,

‖M∗
k(F )‖2L2(X) 6

C

Ld+2d2

∫
X

‖M̃∗
k(fL,x)‖2L2(G#) dµ(x).

We assume from now on that the sequence j1<j2<... is fixed. To summarize, for the
statement (5.16), it suffices to prove Lemma 5.5 below.

Lemma 5.5. Assume that F∈L2
inv(X)⊥ and define fL,x as in (5.19). Then for every

ε>0 and δ∈(1, 2] (see (5.13)) there exist k=k(F, ε, δ) and L(jk+1, F, ε, δ) such that

1
Ld+2d2

∫
X

∥∥∥ sup
jk6j<jk+1

|M̃j(fL,x)|
∥∥∥2

L2(G#)
dµ(x) 6 ε (5.21)

for any L>L(jk+1, F, ε, δ).
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We now show how to reduce Lemma 5.5 to Lemma 5.6 below. We may assume that
‖F‖L2(X)=1, so

1
Ld+2d2

∫
X

‖fL,x‖2L2(G#) dµ(x) 6C‖F‖L2(X) 6C for any L> 1. (5.22)

Also, for f∈L2(G#), we may redefine

M̃j(f)(g) = 2−dj
∑

n∈Zd

Ωδ(n/2j)f((n, P (n))·g), (5.23)

where Ωδ:Rd![0, 1] is a smooth function, Ωδ(y)=1 for |y|6c0 and Ωδ(y)=0 for |y|>c0δ,
16c062.

We will use the notation and the results of §4.1, especially the remark following
Lemma 4.1. Assume that ε>0 and η∈(1, 2] are fixed. We now relate the averages M̃j(f)
in equation (5.23) and Mj(f) in equation (4.2). We identify G# and G#

0 with Zd×Zd2
.

By taking the Fourier transform in the central variable, for θ in Rd2
we have

M̂j(f)(m, θ) =
∑

n∈Zd

Ωδ
j(m−n)f̂(n, θ)e−2πiR0(m−n,n)·θ,

̂̃Mj(f)(m, θ) =
∑

n∈Zd

Ωδ
j(m−n)f̂(n, θ)e−2πi(−P (n−m)−R(n−m,m))·θ,

where Ωδ
j(x)=2−djΩδ(−x/2j). For N=N(ε, δ) sufficiently large, let

RN = {a/q ∈Qd2
: q6N and (a, q) = 1}.

For j>N define, as in equations (4.6) and (4.7),

ΨN
j (θ) =

∑
r∈RN

ψ(22jN−1(θ−r))

and ̂̃MN
j (f)(m, θ) = ̂̃Mj(f)(m, θ)·ΨN

j (θ).

Simple changes of variables, using (5.11), and the remark following Lemma 4.1 show that∥∥∥ sup
j>N

|M̃j(f)−M̃N
j (f)|

∥∥∥
L2(G#)

6
ε

C
‖f‖L2(G#)

for any f∈L2(G#), provided N=N(ε, δ) is fixed sufficiently large. Thus, using (5.22),

1
Ld+2d2

∫
X

∥∥∥ sup
j>N

|M̃j(fL,x)−M̃N
j (fL,x)|

∥∥∥2

L2(G#)
dµ(x) 6

ε

2
. (5.24)
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Assume from now on that N is fixed. We examine the operator M̃N
j and, for

a/q∈RN , j>N and f∈L2(G#), we define

̂̃MN
j,a/q(f)(m, θ) = ̂̃Mj(f)(m, θ)

∑
b∈Zd2

ψ(22jN−1(θ−a/q−b)). (5.25)

Thus, for Lemma 5.5, it suffices to prove Lemma 5.6 below.

Lemma 5.6. Assume that F∈L2
inv(X)⊥, N>1, a/q∈RN and δ∈(1, 2], and define

fL,x as in equation (5.19) and M̃N
j,a/q as in equations (5.25) and (5.23). Then, for every

ε>0, there exist k=k(F,N, ε, δ) and L(jk+1, F,N, ε, δ) such that

1
Ld+2d2

∫
X

∥∥∥ sup
jk6j<jk+1

|M̃N
j,a/q(fL,x)|

∥∥∥2

L2(G#)
dµ(x) 6 ε (5.26)

for any L>L(jk+1, F,N, ε, δ).

Proof. As in formula (4.26), by the Fourier inversion formula,

M̃N
j,a/q(f)(m,u) =

∑
(n,v)∈Zd×Zd2

f(n, v)Ωδ
j(m−n)η22j/N (u−v+P (n−m)+R(n−m,m))

×e2πi(u−v+P (n−m)+R(n−m,m))·a/q,

(5.27)

where η∈S(Rd2
) is defined as in formula (4.26) and ηr(s)=r−d2

η(s/r), r>1. As in §7,
we define φ:Rd2![0, 1] by φ(s)=(1+|s|2)−(d2+d+1), and φr(s)=r−d2

φ(s/r). Then

|M̃N
j,a/q(f)(m,u)|6CN

∑
(n,v)∈Zd×Zd2

|f(n, v)|Ωδ
j(m−n)φ22j (u−v+R(n−m,m)), (5.28)

so the maximal function f 7!supjk6j6jk+1
|M̃N

j,a/q(f)| is bounded on L2(G#) (compare
with Lemma 7.1). Thus, using Lemma 5.4 and statement (5.22), in proving Lemma 5.6
we may assume that

F (x) =H(g0 ·x)−H(x) for some g0 ∈G#
q and H ∈L∞(X) with ‖H‖L∞ =1. (5.29)

We may also replace the function η with a smooth function η̃ compactly supported in
the set {s∈Rd2

:|s|6N ′(ε,N)}; this is due to the fact that the bound (5.28) gains an
additional small factor on the right-hand side for the part of the operator corresponding
to η−η̃.

Using equations (5.19) and (5.29),

fL,x(g) =χL(g)[H(g0g ·x)−H(g ·x)]. (5.30)
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It suffices to prove that for k and L as in Lemma 5.6, and fL,x as in equation (5.30),

1
Ld+2d2

∫
X

∥∥∥ sup
jk6j<jk+1

|M′
j(fL,x)|

∥∥∥2

L2(G#)
dµ(x) 6

ε

2
, (5.31)

where M′
j(f) is defined as in equation (5.27), with η̃ replacing η.

We define the kernels Kj :G#!C by

Kj(n, v) =Ωδ
j(−n)η̃22j/N (−v+P (n))e2πi(−v+P (n))·a/q. (5.32)

So, using formula (5.27),

M′
j(f)(m,u) =

∑
(n,v)∈G#

f(n, v)Kj((n, v)·(m,u)−1).

Using equation (5.30) and simple changes of variables, it follows that

M′
j(fL,x)(g) =

∑
h∈G#

H(hg ·x)[χL(g−1
0 hg)Kj(g−1

0 h)−χL(hg)Kj(h)] (5.33)

for any g∈G#. We now use (5.29), i.e. ‖H‖L∞=1. Since g−1
0 ∈G#

q , the oscillatory parts
of Kj(h) and Kj(g−1

0 h) agree. Simple estimates then show that (with h=(n, v))

|χL(g−1
0 hg)Kj(g−1

0 h)−χL(hg)Kj(h)|6C(g0, N, ε, δ)j−1
k χ4L(g)Ωδ

j+2(n)φ22j (v),

if k is sufficiently large, and then L is sufficiently large compared to jk+1. Thus,

|M′
j(fL,x)(g)|6 C(g0, N, ε, δ)

jk
χ4L(g),

and inequality (5.31) follows.

6. The singular Radon transform

In this section we prove Lemma 2.8. The main ingredients are the L2 bounds in
Lemma 6.1, a super-orthogonality argument of Ionescu and Wainger [8] which reduces
matters to square function estimates, and the weighted inequality in Lemma 7.4. We
assume throughout this section that d′=d2, and that G#

0 is the discrete nilpotent group
defined in §2.
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6.1. L2 estimates

Our main result in this subsection is Lemma 6.1, which is a quantitative L2 estimate.
The proof of Lemma 6.1 is based on Plancherel’s theorem and Lemmas 3.2–3.4.

LetK denote the Calderón–Zygmund kernel defined in §1. Without loss of generality
(compare with [14, p. 624]), we may assume that K=

∑∞
j=0Kj , where Kj is supported

in the set {x:|x|∈[2j−1, 2j+1]} and satisfies the bound

|x|d|Kj(x)|+|x|d+1|∇Kj(x)|6 1, x∈Rd, j> 1, (6.1)

and the cancellation condition ∫
Rd

Kj(x) dx=0, j> 1. (6.2)

As in §4,

T #
0 (f) =

∞∑
j=1

Tj(f), where T̂j(f)(m, θ) =
∑

n∈Zd

Kj(m−n)f̂(n, θ)e−2πiR0(m−n,n)·θ. (6.3)

As in §4, let ψ:Rd′![0, 1] denote a smooth function supported in the set {ξ :|ξ|62} and
equal to 1 in the set {ξ :|ξ|61}, N∈

[
1
2 ,∞

)
a real number, j∈[0,∞)∩Z a non-negative

integer and R⊆Qd′ a discrete periodic set. As in equation (4.6), let

ΨN,R
j (θ) =

∑
r∈R

ψ(22jN−1(θ−r)),

and, by convention, ΨN,∅
j =0. For (compactly supported) functions f :G#

0 !C we define
T N,R

j (f) by

T̂ N,R
j (f)(m, θ) = T̂j(f)(m, θ)ΨN,R

j (θ). (6.4)

Our main lemma in this section is the following L2 estimate.

Lemma 6.1. (Strong L2 bound) As in Lemma 4.1, assume that N∈
[
1
2 ,∞

)
, RN⊆

Qd′ is a discrete periodic set and JN,RN
∈[0,∞) is a real number with the properties

{a/q : q ∈ [1, N ] and (a, q) = 1}⊆RN ,

2JN,RN >
[
100 max

a/q∈RN and (a,q)=1
q
]4
.

(6.5)

Then ∥∥∥∥ ∑
j>JN,RN

(Tj−T N,RN

j )(f)
∥∥∥∥

L2(G#
0 )

6C(N+1)−c̄‖f‖L2(G#
0 ) (6.6)

for any N>0, where c̄=c̄(d)>0.
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Proof. Notice that the case N= 1
2 , RN =∅ and JN,RN

=0 corresponds to L2 bound-
edness of the operator T #

0 . For θ∈Rd′ and (compactly supported) functions g:Zd!C,
let

Uθ
j (g)(m) =

∑
n∈Zd

Kj(m−n)g(n)e−2πiR0(m−n,n)·θ. (6.7)

By Plancherel’s theorem,∥∥∥∥ ∑
j>JN,RN

(Tj−T N,RN

j )(f)
∥∥∥∥2

L2(G#
0 )

=
∫

[0,1)d′

∑
m∈Zd

∣∣∣∣ ∑
j>JN,RN

(1−ΨN,RN

j (θ))Uθ
j (f̂( · , θ))(m)

∣∣∣∣2dθ.
Using Plancherel’s theorem again, for the bound (6.6) it suffices to prove that∥∥∥∥ ∑

j>JN,RN

(1−ΨN,RN

j (θ))Uθ
j

∥∥∥∥
L2(Zd)!L2(Zd)

6C(N+1)−c̄ (6.8)

for any θ∈Rd′ fixed.
Assume that θ∈Rd′ is fixed. As in §4, for any j>JN,RN

we use the approxima-
tion (4.17) with Λ=2(2−δ)j and δ=δ(d)>0 sufficiently small. Thus, there are irreducible
1-fractions aj

l1l2
/qj

l1l2
such that

1 6 qj
l1l2

6 2(2−δ)j and |θl1l2−a
j
l1l2

/qj
l1l2

|6 C

2(2−δ)jqj
l1l2

. (6.9)

We fix these irreducible 1-fractions aj
l1l2

/qj
l1l2

and partition the set Z∩[JN,RN
,∞) into

two subsets:
I1 =

{
j ∈Z∩[JN,RN

,∞) : max
l1,l2=1,...,d

qj
l1l2

> 2j/6d′
}

and
I2 =

{
j ∈Z∩[JN,RN

,∞) : max
l1,l2=1,...,d

qj
l1l2

6 2j/6d′
}
.

For j∈I1, we use Lemma 3.2:∥∥∥∥∑
j∈I1

(1−ΨN,RN

j (θ))Uθ
j

∥∥∥∥
L2(Zd)!L2(Zd)

6
∑
j∈I1

2−δ′j 6C(N+1)−c̄,

as desired.
For j∈I2, let aj/qj denote the irreducible d′-fraction with the property that aj/qj =

(aj
l1l2

/qj
l1l2

)l1,l2=1,...,d. In view of (6.9) and the definition of I2,

1 6 qj 6 2j/6 and |θ−aj/qj |6
C

2(2−δ)j
. (6.10)
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We recall (see property (4.20)) that if j, j′∈I2 and j, j′>C then

either aj/qj = aj′/qj′ or |qj/qj′ | /∈
[
1
2 , 2

]
. (6.11)

As in §4, we further partition the set I2:

I2 =
⋃
a/q

I
a/q
2 , where I

a/q
2 = {j ∈ I2 : aj/qj = a/q}. (6.12)

For j∈Ia/q
2 , we show that∥∥∥∥ ∑

j∈I
a/q
2

(1−ΨN,RN

j (θ))Uθ
j

∥∥∥∥
L2(Zd)!L2(Zd)

6C(N+q)−c̄. (6.13)

This would suffice to prove (6.8), since the possible denominators q form a lacunary
sequence (see (6.11)). To prove (6.13), we have two cases: q6N and q>N . If q6N , we
use Lemma 3.3 together with definitions (4.6) and (4.8). It follows that the left-hand
side of (6.13) is dominated by

C
∑
j∈Z

1[1,∞)(22jN−1|θ−a/q|)q−1/2(1+22j |θ−a/q|)−1/4 6Cq−1/2N−1/4,

as desired. If q>N , then the left-hand side of inequality (6.13) is dominated by∥∥∥∥ ∑
j∈I

a/q
2

2j∈[q6,|θ−a/q|−1/2]

(1−ΨN,RN

j (θ))Uθ
j

∥∥∥∥
L2(Zd)!L2(Zd)

+
∑

j∈I
a/q
2

2j>|θ−a/q|−1/2

‖Uθ
j ‖L2(Zd)!L2(Zd).

(6.14)

For the first term in (6.14), we use Lemma 3.4 for the kernels (1−ΨN,RN

j (θ))Kj(m). To
control the second term in (6.14), we use Lemma 3.3. It follows that the expression (6.14)
is dominated by Cq−1/2, which suffices to prove the bound (6.13). This completes the
proof of Lemma 6.1.

6.2. An orthogonality lemma

In this subsection we review a partition of integers and a square function estimate from [8].
The point of this construction is to find a suitable decomposition of the singular integral
operator and exploit the super-orthogonality (i.e. orthogonality in L2r, r∈Z+) of the
components.
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Recall that for any integer µ>1, Zµ={1, ..., µ}. Assume that δ∈
(
0, 1

10

]
is given and

D denotes the smallest integer >2/δ. Assume that N>10 is an integer. Let N ′ denote
the smallest integer >N δ/2 and V ={p1, p2, ..., pν} the set of prime numbers between
N ′+1 and N . For any k∈ZD, let

W k(N) = {pαi1
i1

... p
αik
ik

: pil
∈V distinct and αil

∈ZD, l=1, ..., k}

and let W (N)=
⋃

k∈ZD
W k(N) denote the set of products of up to D factors in V , raised

to powers between 1 and D.
We say that a set W ′⊆W (N) has the orthogonality property O if there is k∈ZD and

k sets S1, S2, ..., Sk, Sj ={qj,1, ..., qj,β(j)}, j∈Zk, with the following properties:
(i) qj,s=pαj

j,s for some pj,s∈V and αj∈ZD;
(ii) (qj,s, qj′,s′)=1 if (j, s) 6=(j′, s′);
(iii) for any w′∈W ′ there are (unique) numbers q1,s1∈S1, ..., qk,sk

∈Sk with

w′ = q1,s1 ... qk,sk
.

For simplicity of notation, we say that the set W ′={1} has the orthogonality prop-
erty O with k=0. The orthogonality property O is connected to Lemma 6.3 below.
Notice that if a set has the orthogonality property O then all its elements have the same
number of prime factors. The main result in [8, §3] is the following decomposition.

Lemma 6.2. (Partition of integers) With the notation above, the set W (N)∪{1} can
be written as a disjoint union of at most CD(logN)D−1 subsets with the orthogonality
property O.

Let Q0=[N ′!]D and define

YN = {wQ′ :w∈W (N)∪{1} and Q′|Q0}. (6.15)

Notice that for any m∈ZN there is a unique decomposition m=wQ′, with w∈W (N)∪{1}
and Q′|Q0. In addition, wQ′6ND2

[N ′!]D6eNδ

if N>Cδ. Thus, for N>Cδ,

ZN ⊆YN ⊆ZeNδ . (6.16)

Let
W (N)∪{1}=

⋃
s∈S

W ′
s

denote the decomposition (guaranteed by Lemma 6.2) of W (N)∪{1} as a disjoint union
of subsets W ′

s with the orthogonality property O, where |S|6CD(logN)2/δ. Using this
decomposition, we write YN =

⋃
s∈S Y

s
N (disjoint union), where

Y s
N = {wQ′ :w∈W ′

s and Q′|Q0}. (6.17)
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This is the partition of integers we will use in §6.3.

For any integer q>1 let

Pq = {a∈Zd′ : (a, q) = 1} and P̃q =Pq∩[0, q)d′ .

Let S1, S2, ..., Sk denote sets of integers Sj ={qj,1, ..., qj,β(j)}, j∈Zk. Assume that for
some Q̃,

qj,s ∈ [2, Q̃] for any j ∈Zk and s∈Zβ(j), (6.18)

and
(qj,s, qj′,s′) = 1 if (j, s) 6=(j′, s′). (6.19)

For any j∈Zk, let

T{j} = {aj,s/qj,s : s∈Zβ(j) and aj,s ∈Pqj,s}⊆Qd′

denote the set of irreducible fractions with denominators in Sj . Furthermore, for any set
A={j1, ..., jk′}⊆Zk, let

TA = {rj1 +...+rjk′ : rjl
∈T{jl} for l∈Zk′}⊆Qd′ .

Finally, for A={j1, ..., jk′}⊆Zk and any (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
, let

UA,sj1 ,...,sj
k′

= {aj1,sj1
/qj1,sj1

+...+ajk′ ,sj
k′
/qjk′ ,sj

k′
: ajl,sjl

∈Pqjl,sjl
for l∈Zk′},

that is the subset of elements of TA with fixed denominators qj1,sj1
, ..., qjk′ ,sj

k′
. If A=∅

then, by definition, TA=UA=Zd′ . Notice that the sets TA and UA,sj1 ,...,sj
k′

are discrete

periodic subsets of Qd′ . Let T̃A=TA∩[0, 1)d′ and ŨA,sj1 ,...,sj
k′

=UA,sj1 ,...,sj
k′
∩[0, 1)d′ .

Assume that Q>1 is an integer with the property that

(Q, qj,s) = 1 for any j ∈Zk and s∈Zβ(j). (6.20)

Assume that p>1 is an integer and fix

γ=(8pQ2pQ̃2pk)−1, (6.21)

where Q̃ is such that condition (6.18) holds.
For any r∈TZk

, let fr∈L2(Zd′) denote a function whose Fourier transform is sup-
ported in a γ-neighborhood of the set {r+a/Q:a∈Zd′}, i.e. in the set⋃

a∈Z

r+a/Q+B(γ),

where B(γ)={ξ :|ξ|6γ}. We assume that fr=fr+a for any a∈Zd′ . Let (Zd′, dn) denote
the set of lattice points in Rd′ with the counting measure. The main estimate in this
subsection is the following lemma.
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Lemma 6.3. (Square function estimate) With the notation above we have∫
Zd′

∣∣∣∣ ∑
r∈T̃Zk

fr(u)
∣∣∣∣2p

du

6Ck,p

∑
A={j1,...,jk′}

∑
sj1 ,...,sj

k′

∫
Zd′

( ∑
r′∈T̃cA

∣∣∣∣ ∑
µ∈ŨA,sj1

,...,sj
k′

fµ+r′(u)
∣∣∣∣2 )p

du,

(6.22)

where the sum in the right-hand side is taken over all sets A={j1, ..., jk′}⊆Zk and all
(sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )

. The constant Ck,p may depend only on k and p.

See [8, §2] for a proof.

6.3. Proof of Lemma 2.8

In this subsection we complete the proof of Lemma 2.8. The main ingredients are the L2

estimate in Lemma 6.1, the partition of the integers in Lemma 6.2, the square function
estimate in Lemma 6.3 and the weighted estimate in Lemma 7.4. The kernels Kj satisfy
conditions (6.1) and (6.2), and the operators Tj are as in equation (6.3). Lemma 2.8
follows by interpolation (see [8, §7]) from the following more quantitative lemma.

Lemma 6.4. Assume that 2p>4 is an even integer and ε=1/(2p−2). Then, for any
λ∈(0,∞), there are two linear operators Aλ

j =Aλ,ε
j and Bλ

j =Bλ,ε
j with Tj =Aλ

j +Bλ
j ,∥∥∥∥∑

j>1

Aλ
j (f)

∥∥∥∥
L2(G#

0 )

6
Cε

λ
‖f‖L2(G#

0 ) (6.23)

and ∥∥∥∥∑
j>1

Bλ
j (f)

∥∥∥∥
L2p(G#

0 )

6Cελ
ε‖f‖L2p,1(G#

0 ). (6.24)

In estimate (6.24), L2p,1(G#
0 ) denotes the standard Lorentz space on G#

0 .

Proof. In view of Lemma 6.1, we may assume that λ>Cε. With c̄ as in Lemma 6.1,
let

δ=
c̄ε

100
. (6.25)

Let
N0 denote the smallest integer >λ1/c̄,

RN0 = {a/q : (a, q) = 1 and q ∈YN0},

JN0,RN0
=λε,

(6.26)
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where YN0 denotes the set defined in (6.15) with δ=c̄ε/100 as in (6.25). Property (6.5)
is satisfied for λ>Cε, using (6.16). For j<JN0,RN0

, let Aλ
j ≡0 and Bλ

j ≡Tj . Clearly,∥∥∥∥ ∑
j∈[1,JN0,RN0

)∩Z

Bλ
j (f)

∥∥∥∥
L2p(G#

0 )

6Cλε‖f‖L2p(G#
0 ),

which gives the bound (6.24). For j>JN0,RN0
let Aλ

j ≡Tj−T
N0,RN0

j and Bλ
j ≡T

N0,RN0
j ,

with T N0,RN0
j defined as in (6.4). By Lemma 6.1,∥∥∥∥ ∑

j>JN0,RN0

Aλ
j (f)

∥∥∥∥
L2(G#

0 )

6
Cε

λ
‖f‖L2(G#

0 ),

which gives the bound (6.23). To complete the proof of Lemma 6.4 it suffices to show
that ∥∥∥∥ ∑

j>JN0,RN0

T N0,RN0
j (f)

∥∥∥∥
L2p(G#

0 )

6Cελ
ε‖f‖L2p(G#

0 ) (6.27)

for any characteristic function of a bounded set f .
For simplicity of notation, let

J0 =JN0,RN0
=λε.

We use the notation in §6.2, with δ=c̄ε/100, D the smallest integer >2/δ, N=N0, N ′=N ′
0

and
Q0 = [N ′

0!]
D 6 eλε/10

. (6.28)

Then YN0 =
⋃

s∈S Y
s
N0

and RN0 =
⋃

s∈S R
W ′

s

N0
(disjoint unions), where Y s

N0
is defined in

equation (6.17) and

RW ′
s

N0
= {a′/w′+b/Q0 : a′, b∈Zd′ , (a′, w′) = 1 and w′ ∈W ′

s}. (6.29)

Clearly, for j>J0,

T N0,RN0
j (f) =

∑
s∈S

T
N0,RW ′

s
N0

j (f).

Since |S|6Cε(log λ)Cε (see Lemma 6.2), for the bound (6.27), it suffices to prove that
for any set W ′⊆W (N0)∪{1} with the orthogonality property O,∥∥∥∥ ∑

j>J0

T
N0,RW ′

N0
j (f)

∥∥∥∥
L2p(G#

0 )

6Cελ
ε/2‖f‖L2p(G#

0 ) (6.30)

for any characteristic function of a bounded set f .
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We fix the set W ′ in inequality (6.30) and assume that W ′ 6={1} (the case W ′={1} is
significantly easier). Let S1, ..., Sk, Sj ={qj,1, ..., qj,β(j)}, denote the sets in the definition
of the orthogonality property O. Clearly k6Cε and

qj,s ∈ [2, λCε ]. (6.31)

For any s1∈Zβ(1), ..., sk∈Zβ(k), let

γ(q1,s1 ... qk,sk
) =

{
1, if q1,s1 ... qk,sk

∈W ′,
0, if q1,s1 ... qk,sk

/∈W ′.

Any irreducible d′-fraction a′/w′, w′∈W ′, can be written uniquely in the form

a1,s1

q1,s1

+...+
ak,sk

qk,sk

(mod Zd′),

with ql,sl
∈Sl and al,sl

∈P̃ql,sl
, l=1, ..., k. Conversely, if γ(q1,s1 ... qk,sk

)=1, then any sum
of the form a1,s1/q1,s1 +...+ak,sk

/qk,sk
, with ql,sl

∈Sl and al,sl
∈P̃ql,sl

, l=1, ..., k, belongs
to the set {a′/w′ :(a′, w′)=1 and w′∈W ′}. Thus

Ψ
N0,RW ′

N0
j (θ) =

∑
s1,a1,s1 ,...,sk,ak,sk

∑
b∈Zd′

γ(q1,s1 ... qk,sk
)

×ψ(22j(θ−a1,s1/q1,s1−...−ak,sk
/qk,sk

−b/Q0)/N0),

(6.32)

where the sum is taken over all sl∈Zβ(l) and al,sl
∈P̃ql,sl

. For any

r= a1,s1/q1,s1 +...+ak,sk
/qk,sk

, sl ∈Zβ(l) and al,sl
∈Pql,sl

(so r∈TZk
with the notation in §6.2), we define Gr∈L2(G#

0 ) by the formula

Ĝr(m, θ) = γ(q1,s1 ... qk,sk
)

∑
j>J0

T̂j(f)(m, θ)
∑

b∈Zd′

ψ(22j(θ−r−b/Q0)/N0). (6.33)

In view of equation (6.32),

∑
j>J0

T
N0,RW ′

N0
j (f) =

∑
r∈T̃Zk

Gr,

with T̃Zk
defined as in §6.2. Clearly, Ĝr(m, ·) is supported in a 2N02−2J0-neighborhood

of the set {r+b/Q0 :b∈Z}. Condition (6.21) with Q=Q0 and Q̃=λCε is satisfied if λ>Cε
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(see formulas (6.26), (6.28) and (6.31)). We apply Lemma 6.3 to the functions Gr(m,u),
for any m∈Zd. With the notation in Lemma 6.3, it follows that∥∥∥∥ ∑

r∈T̃Zk

Gr

∥∥∥∥2p

L2p(G#
0 )

6Cε

∑
A={j1,...,jk′}

∑
sj1 ,...,sj

k′

∫
G#

0

( ∑
r′∈T̃cA

∣∣∣∣ ∑
µ∈ŨA,sj1

,...,sj
k′

Gr′+µ(m,u)
∣∣∣∣2 )p

dmdu.

The sum over the sets A⊆Zk above has 2k=Cε terms. To summarize, for estimate (6.30),
it suffices to prove that for any set A={j1, ..., jk′}⊆Zk,∑

sj1 ,...,sj
k′

∫
G#

0

( ∑
r′∈T̃cA

∣∣∣∣ ∑
µ∈ŨA,sj1

,...,sj
k′

Gr′+µ(m,u)
∣∣∣∣2 )p

dmdu6Cελ
pε‖f‖2p

L2p(G#
0 )

(6.34)

for any characteristic function of a bounded set f .
For (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )

and r′∈T̃cA, let

G̃r′,sj1 ...,sj
k′

=
∑

µ∈ŨA,sj1
,...,sj

k′

Gr′+µ.

We also define the function fr′,sj1 ...,sj
k′
∈L2(G#

0 ) by the formula

F(fr′,sj1 ...,sj
k′

)(m, θ) = f̂(m, θ)
∑

b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

ψ(22J0−1(θ−r′−µ−b/Q0)/N0).

(6.35)
For the bound (6.34) it suffices to prove that∑

sj1 ,...,sj
k′

∫
G#

0

( ∑
r′∈T̃cA

|fr′,sj1 ...,sj
k′

(m,u)|2
)p

dmdu6Cε‖f‖2p

L2p(G#
0 )

(6.36)

and ∫
G#

0

( ∑
r′∈T̃cA

|G̃r′,sj1 ...,sj
k′

(m,u)|2
)p

dmdu

6Cελ
pε

∫
G#

0

( ∑
r′∈T̃cA

|fr′,sj1 ...,sj
k′

(m,u)|2
)p

dmdu

(6.37)

for any (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
fixed. The bound (6.36) follows from Lemma 6.5

below. The bound (6.37) follows from Lemma 6.6 below and the identity

G̃r′,sj1 ...,sj
k′

= γ(q(r′)qj1,sj1
... qjk′ ,sj

k′
)

∑
j>J0

T N0,Rr′,Q′

j (fr′,sj1 ...,sj
k′

), (6.38)
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where Q′=Q0qj1,sj1
... qjk′ ,sj

k′
and q(r′) is the denominator of the irreducible d′-fraction

r′ (see the notation in Lemma 6.6). The identity (6.38) follows from the definitions and
the observation∑
b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

ψ(22j(θ−r′−µ−b/Q0)/N0)

=
∑

b′∈Zd′

ψ(22j(θ−r′−b′/Q′)/N0)
∑

b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

ψ(22J0−1(θ−r′−µ−b/Q0)/N0).

Lemma 6.5. With the notation above,

∑
sj1 ,...,sj

k′

∫
G#

0

( ∑
r′∈T̃cA

|fr′,sj1 ...,sj
k′

(m,u)|2
)p

dmdu6Cε‖f‖2p

L2p(G#
0 )

for any characteristic function of a bounded set f .

Proof. This is similar to the proof of [8, Lemma 4.3], and is inspired by the Little-
wood–Paley inequality in [13]. Clearly, since f :G#

0 !{0, 1}, ‖f‖
2p

L2p(G#
0 )

=‖f‖2
L2(G#

0 )
. In

addition, by Plancherel’s theorem,

∑
sj1 ,...,sj

k′

∫
G#

0

∑
r′∈T̃cA

|fr′,sj1 ...,sj
k′

(m,u)|2 dmdu6C‖f‖2
L2(G#

0 )
,

since the function F [fr′,sj1 ...,sj
k′

](m, ·) is supported in a 4N02−2J0-neighborhood of the
set

r′+
∑

b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

b/Q0+µ.

These neighborhoods are disjoint, as r′∈T̃cA and (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
; see

formulas (6.26), (6.28), and (6.31). Thus it suffices to prove that for any (sj1 , ..., sjk′ )∈
Zβ(j1)×...×Zβ(jk′ )

and (m,u)∈Zd×Zd′ ,∑
r′∈T̃cA

|fr′,sj1 ...,sj
k′

(m,u)|2 6Cε.

Thus, it suffices to prove that for (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
fixed,∣∣∣∣ ∑

r′∈T̃cA

ν(r′)fr′,sj1 ...,sj
k′

(m,u)
∣∣∣∣ 6Cε
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for any (m,u)∈Zd×Zd′ and any complex numbers ν(r′) with∑
r′∈T̃cA

|ν(r′)|2 =1. (6.39)

Since ‖f‖L∞61, it suffices to prove that for (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
fixed,∥∥∥∥F−1

(
θ 7!

∑
r′∈T̃cA

ν(r′)
∑

b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

ψ(22J0−1(θ−r′−µ−b/Q0)/N0)
)∥∥∥∥

L1(Zd′ )

6Cε.

(6.40)

As before, let η(x)=
∫
Rd′ ψ(ξ)e2πix·ξ dξ denote the Euclidean inverse Fourier trans-

form of the function ψ. An easy calculation shows that

F−1

(
θ 7!

∑
r′∈T̃cA

ν(r′)
∑

b∈Zd′

∑
µ∈ŨA,sj1

,...,sj
k′

ψ(22J0−1(θ−r′−µ−b/Q0)/N0)
)

(u)

=
( ∑

r′∈T̃cA

ν(r′)e2πiu·r′
)
η22J0−1/N0

(u)
( ∑

µ∈ŨA,sj1
,...,sj

k′

∑
b∈Zd′

Q0

e2πiu·(b/Q0+µ)

)
.

(6.41)

We first consider the sum over b and µ in equation (6.41). For any integer Q′>1,
define the function δQ′ :Zd′!Z as in formula (4.58). Clearly,

∑
b∈Zd′

Q′
e2πiu·b/Q′=δQ′(u).

Recall from §6.2 that qj,sj =pαj

j,sj
for some primes pj,sj∈V and αj∈[1, Cε]∩Z. In addition,

it is easy to see that if q=pα and (Q, p)=1, then

{a/q+b/Q : b∈Zd′ and a∈ P̃q}= {b′/Qpα : b′ ∈Zd′}\{b′/Qpα−1 : b′ ∈Zd′}.

Thus, for (sj1 , ..., sjk′ )∈Zβ(j1)×...×Zβ(jk′ )
fixed,∑

µ∈ŨA,sj1
,...,sj

k′

∑
b∈Zd′

Q0

m(µ+b/Q0) =
∑

εj1 ,...,εj
k′
∈{0,1}

(−1)εj1+...+εj
k′

∑
b∈Zd′

Q′

m(b/Q′) (6.42)

for any periodic function m:Rd′!C, where

Q′ =Q0p
αj1−εj1
j1,sj1

... p
αj

k′
−εj

k′
jk′ ,sj

k′
.

The possible values of Q′ are products of Q0 and pαl
jl,sjl

or pαl−1
jl,sjl

, l=1, ..., k′, and the sum

over εj1 , ..., εjk′ ∈{0, 1} contains 2k′=Cε terms. Thus, for estimate (6.40), it suffices to
prove that ∥∥∥∥( ∑

r′∈T̃cA

ν(r′)e2πiu·r′
)
η22J0−1/N0

(u)δQ′(u)
∥∥∥∥

L1
u(Zd′ )

6Cε
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for any Q′ with (see formulas (6.28) and (6.31))

Q′ ∈ [1, eλε/5
]∩Z and (Q′, qj,s) = 1 for any j ∈ cA, s∈Zβ(j). (6.43)

This is equivalent to proving that∥∥∥∥( ∑
r′∈T̃cA

ν(r′)e2πiQ′u·r′
)
η22J0/2N0Q′(u)

∥∥∥∥
L1

u(Zd′ )

6Cε, (6.44)

provided conditions (6.39) and (6.43) hold.
Let γ0=2−2J02N0Q

′�1. The function η is a Schwartz function on R; by Hölder’s
inequality, for estimate (6.44) it suffices to prove that

γ
d′/2
0

∥∥∥∥( ∑
r′∈T̃cA

ν(r′)e2πiQ′u·r′
)

(1+γ2
0 |u|2)−d′

∥∥∥∥
L2

u(Zd′ )

6Cε. (6.45)

The left-hand side of inequality (6.45) is equal to

γ
d′/2
0

( ∑
r′1,r′2∈T̃cA

ν(r′1)ν(r′2)
∫
Zd′

(1+γ2
0 |u|2)−2d′e2πiu·Q′(r′1−r′2) du

)1/2

. (6.46)

It remains to estimate the integrals over Zd′ in expression (6.46). If r′1=r′2 then∣∣∣∣∫
Zd′

(1+γ2
0 |u|2)−2d′e2πiu·Q′(r′1−r′2) du

∣∣∣∣ 6Cγ−d′

0 . (6.47)

Recall that d′=d2. If r′1 6=r′2 then, by (6.43), Q′(r′1−r′2) /∈Zd′ . Let ζ=(ζl1l2)l1,l2=1,...,d de-
note the fractional part of Q′(r′1−r′2). Since the denominators of r′1 and r′2 are bounded
by λCε , there are l1, l2∈{1, ..., d} with the property that ζl1l2∈[λ−Cε , 1−λ−Cε ]. By sum-
mation by parts in the variable ul1l2 corresponding to this ζl1l2 ,∣∣∣∣∫

Zd′
(1+γ2

0 |u|2)−2d′e2πiu·Q′(r′1−r′2) du

∣∣∣∣ 6Cγ−d′+1
0 λCε (6.48)

if r′1 6=r′2. We substitute inequalities (6.47) and (6.48) in expression (6.46). It follows
that the left-hand side of inequality (6.45) is dominated by

C

( ∑
r′∈T̃cA

|ν(r′)|2+γ0λ
Cε

( ∑
r′∈T̃cA

|ν(r′)|
)2)1/2

.

Since |T̃cA|6λCε and γ06e−λε/2
, the bound (6.45) follows from condition (6.39) and

Hölder’s inequality. This completes the proof of Lemma 6.5.
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Lemma 6.6. Assume, as before, that Q∈[1, eλε/5
]∩Z, J0=λε and N06λC . For any

irreducible d′-fraction r=a/q with q∈[1, λCε ]∩Z and (Q, q)=1 let

Rr,Q = {r+b/Q : b∈Zd′},

and , as in equation (6.4),

F [T N0,Rr,Q

j (f)](m, θ) = T̂j(f)
∑

b∈Zd′

ψ(22j(θ−r−b/Q)/N0).

Then,∥∥∥∥( ∑
r

∣∣∣∣ ∑
j>J0

T N0,Rr,Q

j (fr)
∣∣∣∣2)1/2∥∥∥∥

L2p(G#
0 )

6Cε(log λ)C

∥∥∥∥(∑
r

|fr|2
)1/2∥∥∥∥

L2p(G#
0 )

, (6.49)

for any (compactly supported) function fr:G
#
0 !C, where the sums are taken over irre-

ducible d′-fractions r=a/q with q∈[1, λCε ]∩Z and (Q, q)=1.

Proof. As in formula (4.26), in view of the definitions and the Fourier inversion
formula,

T N0,Rr,Q

j (fr)(m,u) =
∑

(n,v)∈G#
0

fr(n, v)Kj(m−n)η22j/N0(u−v−R0(m−n, n))

×e2πi(u−v−R0(m−n,n))·rδQ(u−v−R0(m−n, n)),

(6.50)

where δQ is defined in (4.58). We use the change of variable

ΦQ:G#
0 ×[Zd

Q×Zd′

Q2 ]−!G#
0

defined in (4.28). Let Fr((n′, v′), (ν, β))=fr(ΦQ((n′, v′), (ν, β))) and

Gr((m′, u′), (µ, α))=
∑
j>J0

T N0,Rr,Q

j (fr)(ΦQ((m′, u′), (µ, α))).

Then, by formula (6.50),

Gr((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

Fr((n′, v′), (ν, β))
∑
j>J0

Kj(Q(m′−n′)+E1)

×η22j/N0(Q
2(u′−v′−R0(m′−n′, n′))+E2)δQ(α−β−R0(µ−ν, ν))e2πiE3·r,



discrete radon transforms and ergodic theory 283

where E1=µ−ν,

E2 =(α−β−R0(µ−ν, ν))+Q(R0(µ,m′−n′)−R0(m′−n′, ν))

and
E3 =Q2(u′−v′−R0(m′−n′, n′))+E2.

Clearly, |E1|6CQ and |E2|6C2jQ if |m′−n′|6C2j/Q. Let

G̃r((m′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

Fr((n′, v′), (ν, β))
∑
j>J0

Kj(Q(m′−n′))

×η22j/N0(Q
2(u′−v′−R0(m′−n′, n′)))δQ(α−β−R0(µ−ν, ν))e2πiE3·r.

(6.51)

In view of the estimates above on |E1| and |E2|, and the relative sizes of Q, J0 and N0

(see the statement of Lemma 6.6),

|Gr((m′, u′), (µ, α))−G̃r((m′, u′), (µ, α))|

6C
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

Q×Zd′
Q2

|Fr((n′, v′), (ν, β))|Q−dQ−2d′δQ(α−β−R0(µ−ν, ν))

×
∑
j>J0

N0Q

2j

(
2j

Q

)−d

1[0,C2j/Q](|m′−n′|)φ22j/Q2N0(u
′−v′−R0(m′−n′, n′)),

where φ is as in definition (7.7). The kernel in the formula defining

|Gr((m′, u′), (µ, α))−G̃r((m′, u′), (µ, α))|

has L1 norm dominated by CN0Q/2J0 6C. In view of the Marcinkiewicz–Zygmund
theorem,∥∥∥∥(∑

r

|Gr−G̃r|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

6C

∥∥∥∥(∑
r

|Fr|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

.

Thus, for estimate (6.49), it remains to prove that∥∥∥∥(∑
r

|G̃r|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

6Cε(log λ)C

∥∥∥∥(∑
r

|Fr|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

,

(6.52)
where G̃r is defined in (6.51).
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Assume that r=a/q, (a, q)=1, and for any (ν, β) fixed define

Hr((m′, u′), (ν, β))

= sup
a1∈Zd

a2∈Zd′

∣∣∣∣ ∑
(n′,v′)∈G#

0

Fr((n′, v′), (ν, β))
∑
j>J0

Kj(Q(m′−n′))

×Qdη22j/Q2N0(u
′−v′−R0(m′−n′, n′))e2πi[a1·(m′−n′)+a2·(u′−v′−R0(m

′−n′,n′))]/q

∣∣∣∣.
Clearly,

|G̃r((m′, u′), (µ, α))|6
∑

(ν,β)∈Zd
Q×Zd′

Q2

Hr((m′, u′), (ν, β))Q−dQ−2d′δQ(α−β−R0(µ−ν, ν)),

so, using the Marcinkiewicz–Zygmund theorem again,∥∥∥∥(∑
r

|G̃r|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

6C

∥∥∥∥(∑
r

|Hr|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

. (6.53)

Thus, for estimate (6.52), it suffices to prove that∥∥∥∥(∑
r

|Hr|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

6Cε(log λ)C

∥∥∥∥(∑
r

|Fr|2
)1/2∥∥∥∥

L2p(G#
0 ×[Zd

Q×Zd′
Q2 ])

.

(6.54)
To prove estimate (6.54), we use Lemma 7.4. The connection between weighted

estimates and vector-valued inequalities is well-known (see, for example, [7, Chapter V,
Theorem 6.1]). In our case, let p′∈(1,∞] denote the exponent dual to p. The left-hand
side of inequality (6.54) is dominated by

sup
w:G#

0 ×[Zd
Q×Zd′

Q2 ]![0,∞)

‖w‖
Lp′=1

(∫
G#

0 ×[Zd
Q×Zd′

Q2 ]

∑
r

|Hr|2w
)1/2

. (6.55)

We examine the definition of the functions Hr above and notice that for fixed (ν, β)∈
Zd

Q×Zd′

Q2 ,

Hr(h, (ν, β))6 T̃ Ñ0,q
∗ [Fr( · , (ν, β))](h), h∈G#

0 ,

with the notation in Lemma 7.3. The operators T̃ Ñ0,q
∗ are as in the statement of

Lemma 7.3, using the kernels K̃j(x)=QdKj+j1(Qx), j>λ
ε/2, where j1 is the small-

est integer such that 2j1 >Q, and Ñ0=Q2N0/22j1 . These kernels K̃j clearly satisfy the
basic properties (6.1), (6.2) and condition (7.23). For fixed (ν, β)∈Zd

Q×Zd′

Q2 we define the
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function wÑ0
∗ ( · , (ν, β)) as in equation (7.21), and use the bounds (7.22) and Lemma 7.4

with %=Cε log(Ñ0+1). The expression (6.55) is dominated by

sup
w:G#

0 ×[Zd
Q×Zd′

Q2 ]![0,∞)

‖w‖
Lp′=1

Cε(log λ)C

(∫
G#

0 ×[Zd
Q×Zd′

Q2 ]

∑
r

|Fr|2wÑ0
∗

)1/2

,

which easily leads to estimate (6.54) (using again the bounds (7.22)).

7. Real-variable theory on the group G#
0

In this section, which is self-contained, we discuss some features of the real-variable
theory on the group G#

0 . Our basic reference is [14, Chapters I, II and V]. The main
results in this section are the bound (7.11), which is used in §4.3, and Lemma 7.4, which
is used in §6.3. We assume throughout this section that d′=d2 and G#

0 is the discrete
nilpotent group defined in §2.

7.1. Weighted maximal functions

We define the “distance” function d:G#
0 ×G#

0 ![0,∞),

d(0, (m,u))= max(|m|, |u|1/2), d(h, h′) = d(0, h′ ·h−1) if h, h′ ∈G#
0 . (7.1)

It is easy to see that d(h, h′)≈d(h′, h) and

d(h, h′′) 6C(d(h, h′)+d(h′, h′′)) for any h, h′, h′′ ∈G#
0 .

We define the family of non-isotropic balls on G#
0 :

B=
{
B(h, r) = {g ·h : d(0, g) 6 r} :h∈G#

0 and r> 1
2

}
, (7.2)

and notice that we have the basic properties

if B(h, r)∩B(h′, r) 6= ∅ then B(h′, r)⊆B(h,C1r),

|B(h,C1r)|6C2|B(h, r)|,
(7.3)

for any h, h′∈G#
0 and r> 1

2 . As a consequence, we have the Whitney decomposition (see
[14, p. 15]): if O⊆G#

0 is a finite set, then there are balls Bk∈B, k=1, ...,K, with the
properties

Bk∩Bk′ = ∅ for any k 6= k′, O=
K⋃

k=1

B∗
k and B∗∗

k ∩cO 6= ∅, (7.4)
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where, if B=B(h, r), then B∗=B(h, c∗r) and B∗∗=B(h, (c∗)2r) for a sufficiently large
constant c∗. In addition, there are pairwise disjoint Whitney “cubes” Qk with the prop-
erties

⋃K
k=1Qk=O and Bk⊆Qk⊆B∗

k .
For any set E⊆G#

0 and any function w:G#
0 ![0,∞) let w(E)=

∫
E
w(h) dh. If

w:G#
0 ![0,∞) is a non-negative function, we define Lp(w), p∈[1,∞], and L1,∞(w) as the

corresponding weighted spaces on G#
0 . It follows from properties (7.3) that the standard

non-centered maximal function

M̃(f)(h) = sup
h∈B∈B

1
|B|

∫
B

|f(g)| dg (7.5)

extends to a bounded operator from L1(w) to L1,∞(M̃(w)):

αw({h :M̃(f)(h)>α}) 6C

∫
G#

0

|f(h)|M̃(w)(h) dh (7.6)

for any f :G#
0 !C and α∈(0,∞) (see [14, p. 53]).

Let Ω and Ωj be defined as in formula (4.1). In this section we assume, in addition,
that Ω(x)=1 if |x|62. Let φ, φr:Rd′![0, 1] denote the functions

φ(s) = (1+|s|2)−(d′+d+1)/2 and φr(s) = r−d′φ(s/r), r> 1. (7.7)

Assume that N>1 is a real number. For integers j>log2N we define the kernels

AN
j , A

′N
j :G#

0 −! [0,∞),

by
AN

j (m,u) =Ωj(m)φ22j/N (u) and A′Nj (g) =AN
j (g−1), g ∈G#

0 .

For N>1 and f :G#
0 !C, let

MN
∗ (f)(h) = sup

j>log2 N
|f ∗(AN

j +A′Nj )(h)|+sup
j>0

|f ∗(A1
j +A′1j )(h)|. (7.8)

We start with a weighted maximal inequality.

Lemma 7.1. Assume that N, %∈[1,∞) and that w:G#
0 !(0,∞) is a function with

the property that
MN

∗ (w)(h) 6 %w(h) for any h∈G#
0 . (7.9)

Then, for any compactly supported function f :G#
0 !C,

‖MN
∗ (f)‖L1,∞(w) 6C%2 log(N+1)‖f‖L1(w),

‖MN
∗ (f)‖Lp(w) 6Cp%

2 log(N+1)‖f‖Lp(w), p∈ (1,∞].
(7.10)

In particular , if w≡1, then

‖MN
∗ (f)‖L1,∞(G#

0 ) 6C log(N+1)‖f‖L1(G#
0 ),

‖MN
∗ (f)‖Lp(G#

0 ) 6Cp log(N+1)‖f‖Lp(G#
0 ), p∈ (1,∞].

(7.11)
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Proof. The main issue is to prove that there is only a logarithmic loss in N in esti-
mates (7.10) and (7.11). Since the non-centered maximal operator M̃ in equation (7.5)
is dominated by CM1

∗, it follows from property (7.9) that

w(B)
|B|

6C%min
h∈B

w(h) for any ball B ∈B. (7.12)

We recall the Calderón–Zygmund decomposition of functions on G#
0 : if f∈L1(G#

0 )
and α∈(0,∞) is a given “height”, let Eα={h:M̃(f)(h)>α} and Eα=

⋃K
k=1B

∗
k=

⋃K
k=1Qk

be the Whitney decomposition of the set Eα (see properties (7.4)). Let

f0(h) =1cEα
(h)f(h)+

K∑
k=1

1Qk
(h)

1
|Qk|

∫
Qk

f(h′) dh′,

bk(h) =1Qk
(h)

(
f(h)− 1

|Qk|

∫
Qk

f(h′) dh′
)
.

Clearly, f=f0+
∑K

k=1 bk; in addition, directly from the definitions,

|f0(h)|6Cα for any h∈G#
0 ,

bk is supported in Qk and
∫
G#

0

bk(h) dh=0.
(7.13)

Also, using property (7.12) for the balls B∗
k and the definition of bk,∫

G#
0

|bk(h)|w(h) dh6C%‖f1Qk
‖L1(w). (7.14)

By interpolation, we only need to prove the L1(w)!L1,∞(w) bound in (7.10). As-
sume that f :G#

0 !C is a compactly supported function and fix α∈(0,∞). It suffices to
prove that

αw({h :MN
∗ (f)(h)>α}) 6C%2 log(N+1)‖f‖L1(w).

We use the Calderón–Zygmund decomposition f=f0+
∑K

k=1 bk=f0+b at height α/C,
for C sufficiently large. It suffices to prove that

αw
({
h :MN

∗ (b)(h)> 1
2α

})
6C%2 log(N+1)‖f‖L1(w). (7.15)

For estimate (7.15), it suffices to prove that

α

K∑
k=1

w(B∗∗
k ) 6C%2‖f‖L1(w) (7.16)
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and
K∑

k=1

∫
cB∗∗k

MN
∗ (bk)(h)w(h) dh6C%2 log(N+1)‖f‖L1(w), (7.17)

where the B∗∗
k ’s are sufficiently large dilations of the balls Bk that appear in the Whitney

decomposition of the set Eα/C .
To prove the bound (7.16), we use estimates (7.12) and (7.6):

α

K∑
k=1

w(B∗∗
k ) 6C%α

K∑
k=1

|B∗∗
k | min

h∈B∗∗k

w(h) 6C%αw({h :M̃(f)(h)>α/C})

6C%

∫
G#

0

|f(h)|M̃(w)(h) dh6C%2‖f‖L1(w),

as desired.
To prove the bound (7.17), we use estimate (7.14) and the fact that the cubes Qk

are pairwise disjoint. By translation invariance, it suffices to prove that if B=B(0, r) is a
ball centered at 0 and f :G#

0 !C is a function supported in the ball B with the property
that

∫
G#

0
f(g) dg=0, then

∑
j>log2 N

∫
cB∗

|f ∗(AN
j +A′Nj )(h)|w(h) dh+

∑
j>0

∫
cB∗

|f ∗(A1
j +A′1j )(h)|w(h) dh

6C% log(N+1)‖f‖L1(w),

(7.18)

where, as before, B∗=B(0, c∗r), for c∗ sufficiently large. To prove estimate (7.18), it
suffices to control the first sum in the left-hand side (the second sum corresponds to the
particular case N=1). Since r> 1

2 , fix k0∈Z∩[−1,∞) such that 2k0 6r<2k0+1. We divide
the sum over j into three parts: j6k0, j∈[k0, k0+2 log(N+1)] and j>k0+2 log(N+1).

For log2N6j6k0, ignoring the condition
∫
G#

0
f(g) dg=0, we notice that if h∈cB∗,

g∈B and c∗ is sufficiently large, then min(d(0, h·g−1), d(0, g ·h−1))> 1
2c
∗2k0 . From the

definitions,

(AN
j +A′Nj )(hg−1) 6C2j−k0(AN

k0+2+A′Nk0+2)(gh
−1).

Thus, using property (7.9),∫
cB∗

|f ∗(AN
j +A′Nj )(h)|w(h) dh6C2j−k0

∫
B

|f(g)|(w∗(AN
k0+2+A′Nk0+2)(g)) dg

6C%2j−k0‖f‖L1(w),

(7.19)

which suffices to prove estimate (7.18) for this part of the sum.
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For j>log2N and j∈[k0, k0+2 log(N+1)], we use property (7.9) as before, and
notice that the sum contains at most C log(N+1) terms.

For j>k0+2 log(N+1), we use the condition
∫
G#

0
f(g) dg=0 and write

|f∗(AN
j +A′Nj )(h)|6

∫
B

|f(g)| |(AN
j +A′Nj )(hg−1)−(AN

j +A′Nj )(h)| dg.

Assume that h=(n, v)∈cB∗ and g=(m,u)∈B. Then hg−1=(n−m, v−u−R0(n−m,m))
and

|AN
j (hg−1)−AN

j (h)|6 |Ωj(n−m)−Ωj(n)|φ22j/N (v)

+Ωj(n−m)|φ22j/N (v−u−R0(n−m,m))−φ22j/N (v)|

6C(N+1)2k0−j(2−dj1[0,2j+3](n))φ22j/N (v)

6C(N+1)2k0−jAN
j+3(hg

−1).

(7.20)

Similar estimates show that

|A′Nj (hg−1)−A′Nj (h)|6C(N+1)2k0−jA′Nj+3(hg
−1).

Estimate (7.18) for this part of the sum follows using property (7.9), as in formula (7.19).
This completes the proof of Lemma 7.1.

We now explain how to construct weights with property (7.9). Assume that p∈(1,∞],
w:G#

0 ![0,∞) and w∈Lp(G∗
0). For N>1, let

wN
∗ =

∞∑
k=0

(Cp log(N+1))−k(MN
∗ )k(w), (7.21)

where Cp is a sufficiently large constant. Then, using estimates (7.11),

w(h)6wN
∗ (h) for any h∈G#

0 ,

‖wN
∗ ‖Lp(G#

0 )6C‖w‖Lp(G#
0 ),

MN
∗ (wN

∗ )(h)6Cp log(N+1)wN
∗ (h) for any h∈G#

0 .

(7.22)

In particular, property (7.9) holds for the function wN
∗ with %=Cp log(N+1). We used

this construction in the proof of Lemma 6.6 in §6.3.

7.2. Maximal oscillatory singular integrals

We now consider singular integrals on the group G#
0 . The main result in this subsection

is Lemma 7.4. Let Kj :Rd!C, j=0, 1, ... , denote a family of kernels on Rd with the
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properties (6.1) and (6.2). In this section it is convenient to make a slightly less restrictive
assumption on the supports of the Kj ’s, namely

Kj is supported in the set {x : |x| ∈ [c02j−1, c02j+1]} for some c0 ∈
[
1
2 , 2

]
. (7.23)

Assume that η∈S(Rd′) is a fixed Schwartz function and let

ηr(s) = r−d′η(s/r), s∈Rd′ , r> 1.

Let N>1 be a real number. For integers j>log2N , we define the kernels LN
j :G#

0 !C,

LN
j (m,u) =Kj(m)η22j/N (u).

For (compactly supported) functions f :G#
0 !C let

T N
j (f) = f ∗LN

j and T N
>j(f) =

∞∑
j′=j

T N
j′ (f).

Lemma 7.2. (Maximal singular integrals) Assume that N∈[1,∞). The maximal
singular integral operator

T N
∗ (f)(h) = sup

j>log N
|T N

>j(f)(h)|

extends to a bounded (subadditive) operator on Lp(G#
0 ), p∈(1,∞), with

‖T N
∗ ‖Lp!Lp 6Cp(log(N+1))2. (7.24)

Proof. As in Lemma 7.1, the main issue is to prove that there is only a logarithmic
loss in N in inequality (7.24). We first show that∥∥∥∥ ∑

j>log N

T N
j

∥∥∥∥
L2!L2

6C log(N+1). (7.25)

In the proof of estimate (7.25) we assume that the kernels Kj satisfy the slightly different
cancellation condition

∑
m∈Zd Kj(m)=0 instead of condition (6.2). The two cancellation

conditions are equivalent (at least in the proof of the bound (7.25)) by replacing Kj with
Kj−Cj2−jϕj for suitable constants |Cj |6C, where ϕ:Rd![0, 1] is a smooth function
supported in

{
x:|x|∈

[
1
2 , 2

]}
and ϕj(x)=(c02j)−dϕ(x/c02j). By abuse of notation, in

the proof of estimate (7.25) we continue to denote by T N
j , LN

j , etc. the operators and
the kernels corresponding to these modified kernels Kj . Clearly, ‖T N

j ‖L2!L2 6C for any
j>log2N . By the Cotlar–Stein lemma, it suffices to prove that

‖T N
j [T N

k ]∗‖L2!L2 +‖ [T N
j ]∗T N

k ‖L2!L2 6C(N+1)2−|j−k| (7.26)
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for any j, k>log2N with |j−k|>2 log(N+1). Assume that j>k. The kernel of the
operator T N

j [T N
k ]∗ is

LN
j,k(g) =

∫
G#

0

L̄N
k (h)LN

j (gh) dh.

Using the cancellation condition (6.2), with h=(n, v),

|LN
j,k(g)|6

∫
|v|62j+k

|LN
k (h)| |LN

j (gh)−LN
j (g)| dh+

∫
|v|>2j+k

|LN
k (h)| |LN

j (gh)| dh

= I1(g)+I2(g).

An estimate similar to (7.20) shows that

I1(m,u) 6C(N+1)2−|j−k|(2−dj1[0,2j+3](m))φ22j/N (u).

Also, by integrating the variable g first, it is easy to see that ‖I2‖L1(G#
0 )6C(N+1)2−|j−k|.

The bound for the first term in the left-hand side of (7.26) follows. The bound for the
second term is similar, which completes the proof of estimate (7.25).

The proof of estimate (7.20) shows that

∑
j>log2 N

∫
cB(0,c∗r)

|LN
j (hg−1)−LN

j (h)| dh6C log(N+1)

for any r>0 and g∈B(0, r). Let T N (f)=
∑

j>log N T N
j . It follows from estimate (7.25)

and standard Calderón–Zygmund theory that

‖T N‖L1!L1,∞ 6C log(N+1) and ‖T N‖Lp!Lp 6Cp log(N+1), p∈ (1,∞). (7.27)

We turn now to the proof of the bound (7.24). In view of estimates (7.11) and (7.27),
it suffices to prove the pointwise bound

T N
∗ (f)(h) 6C log(N+1)[M̃(MN

∗ (|f |))(h)+M̃(|T N (f)|)(h)] (7.28)

for any h∈G#
0 , where M̃ is the non-centered maximal operator defined in (7.5). By

translation invariance, it suffices to prove this bound for h=0. Thus, it suffices to prove
that for any k0>log2N ,∣∣∣∣ ∑

j>k0

T N
j (f)(0)

∣∣∣∣ 6C log(N+1)[M̃(MN
∗ (|f |))(0)+M̃(|T N (f)|)(0)]. (7.29)

Assume k0 fixed and let f1=f 1B(0,2k0−2) and f2=f−f1. It follows from the definitions
that

∑
j>k0

T N
j (f)(0)=

∑
j>k0

T N
j (f2)(0).
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We first show that for any h∈B(0, c2k0), for c sufficiently small,∣∣∣∣ ∑
j>k0

T N
j (f2)(0)−T N (f2)(h)

∣∣∣∣ 6C log(N+1)[MN
∗ (|f |)(0)+MN

∗ (|f |)(h)]. (7.30)

To prove the bound (7.30), we first notice that∣∣∣∣ ∑
j∈[k0,k0+2 log(N+1))

T N
j (f2)(0)−

∑
j∈[k0,k0+2 log(N+1))

T N
j (f2)(h)

∣∣∣∣
is clearly controlled by the right-hand side of inequality (7.30). In addition,∣∣∣∣ ∑

j>k0+2 log(N+1)

T N
j (f2)(0)−

∑
j>k0+2 log(N+1)

T N
j (f2)(h)

∣∣∣∣
6

∑
j>k0+2 log(N+1)

∫
G#

0

|f2(g−1)| |LN
j (g)−LN

j (hg)| dg

6C
∑

j>k0+2 log(N+1)

(N+1)2k0−jMN
∗ (|f2|)(0),

using an estimate on the difference |LN
j (g)−LN

j (hg)| similar to (7.20). Finally,∣∣∣∣ ∑
j∈[log2 N,k0)

T N
j (f2)(h)

∣∣∣∣ 6
∫
G#

0

|f2(g−1)|
( ∑

j∈[log2 N,k0]

|LN
j (hg)|

)
dg

6C

∫
G#

0

|f2(g−1)|AN
k0

(hg) dg

6CMN
∗ (|f2|)(h).

The bound (7.30) follows. Thus, for any h∈B(0, c2k0),∣∣∣∣ ∑
j>k0

T N
j (f)(0)

∣∣∣∣ 6C log(N+1)[MN
∗ (|f |)(0)+MN

∗ (|f |)(h)]+|T N (f)(h)|+|T N (f1)(h)|.

The proof of the bound (7.29) now follows easily as in [14, Chapter I, §7.3], using esti-
mates (7.11) and (7.27). This completes the proof of the lemma.

In the proof of Lemma 6.6 we need bounds on more general oscillatory singular
integral operators. Assume that q>1 is an integer, N>1 is a real number as before,
a1∈Zd and a2∈Zd′ . For integers j>log2(2Nq) and Kj satisfying properties (6.1), (6.2)
and (7.23), we define the kernels LN,q

j,a1,a2
:G#

0 !C by

LN,q
j,a1,a2

(m,u) =Kj(m)η22j/N (u)e2πi(a1·m+a2·u)/q.

For (compactly supported) functions f :G#
0 !C let

T N,q
j,a1,a2

(f) = f ∗LN,q
j,a1,a2

and T N,q
>j,a1,a2

(f) =
∞∑

j′=j

T N,q
j′,a1,a2

(f).
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Lemma 7.3. (Maximal oscillatory singular integrals) Assume that N∈[1,∞). The
maximal oscillatory singular integral operator

T N,q
∗ (f)(h) = sup

a1∈Zd

a2∈Zd′

sup
j>log2(2Nq)

|T N,q
>j,a1,a2

(f)(h)|

extends to a bounded (subadditive) operator on Lp(G#
0 ), p∈(1,∞), with

‖T N,q
∗ ‖Lp!Lp 6Cp(log(N+1))2. (7.31)

Proof. Notice first that the case q=1 follows from Lemma 7.2, since LN,1
j,a1,a2

=LN
j .

To deal with the case q>2, we use the coordinates (4.28) on G#
0 adapted to the factor q:

Φq:G
#
0 ×[Zd

q×Zd′

q2 ]−!G#
0 ,

Φq((m′, u′), (µ, α))= (qm′+µ, q2u′+α+qR0(µ,m′)).

Let F ((n′, v′), (ν, β))=f(Φq((n′, v′), (ν, β))) and

Gj,a1,a2((m
′, u′), (µ, α))= T N,q

>j,a1,a2
(f)(Φq((m′, u′), (µ, α))).

The definitions show that

Gj,a1,a2((m
′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

q×Zd′
q2

F ((n′, v′), (ν, β))
∞∑

j′=j

Kj′(q(m′−n′)+E1)

×η22j′/N (q2(u′−v′−R0(m′−n′, n′))+E2)e2πi[a1·(µ−ν)+a2·(α−β−R0(µ−ν,ν))]/q,

where E1=µ−ν and

E2 =(α−β−R0(µ−ν, ν))+q(R0(µ,m′−n′)−R0(m′−n′, ν)).

Clearly, |E1|6Cq and |E2|6C2j′q if |m′−n′|6C2j′/q. Let

G̃j,a1,a2((m
′, u′), (µ, α))

=
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

q×Zd′
q2

F ((n′, v′), (ν, β))
∞∑

j′=j

qdKj′(q(m′−n′))q2d′

×η22j′/N (q2(u′−v′−R0(m′−n′, n′)))q−dq−2d′e2πi[a1·(µ−ν)+a2·(α−β−R0(µ−ν,ν))]/q.

(7.32)
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In view of the estimates above on |E1| and |E2|, we have

|Gj,a1,a2((m
′, u′), (µ, α))−G̃j,a1,a2((m

′, u′), (µ, α))|

6C
∑

(n′,v′)∈G#
0

∑
(ν,β)∈Zd

q×Zd′
q2

|F ((n′, v′), (ν, β))|q−dq−2d′

×
∞∑

j′=j

qN

2j′

(
2j′

q

)−d

1[0,C2j′/q](|m
′−n′|)φ22j′/Nq2(u′−v′−R0(m′−n′, n′)),

where φ is as in definition (7.7). Thus,∥∥∥ sup
a1,a2,j>log2(2Nq)

|Gj−G̃j |
∥∥∥

Lp(G#
0 ×[Zd

q×Zd′
q2 ])

6C‖F‖Lp(G#
0 ×[Zd

q×Zd′
q2 ]).

For estimate (7.31), it suffices to prove that∥∥∥ sup
a1,a2,j>log2(2Nq)

|G̃j |
∥∥∥

Lp(G#
0 ×[Zd

q×Zd′
q2 ])

6Cp(log(N+1))2‖F‖Lp(G#
0 ×[Zd

q×Zd′
q2 ]), (7.33)

where G̃j is defined in formula (7.32). We examine definition (7.32) and notice first that

q2d′η22j′/N (q2(u′−v′−R0(m′−n′, n′)))= η(2j′/q)2/N (u′−v′−R0(m′−n′, n′)).

Fix j0 as the smallest integer with the property that c02j0/q=c̃0∈
[
1
2 , 2

]
. The kernels

K̃j(x)=qdKj+j0(qx), j>log2N , have the properties (6.1), (6.2) and (7.23). Let

Ñ =
q2N

22j0

and define L̃Ñ
j and T̃ Ñ

∗ as before, using the kernels K̃j . Then, from definition (7.32),

|Gj,a1,a2((m
′, u′), (µ, α))|6

∑
(ν,β)∈Zd

q×Zd′
q2

q−dq−2d′ T̃ Ñ
∗ (F (( · , ·), (ν, β))(m′, u′).

The bound (7.33) follows from Lemma 7.2.

Finally, we prove a weighted version of Lemma 7.3.

Lemma 7.4. (Weighted maximal oscillatory singular integrals) Assume that w∈
L∞(G#

0 ), w:G#
0 !(0,∞), satisfies condition (7.9), i.e.

MN
∗ (w)(h) 6 %w(h) for any h∈G#

0 .

Then, for any compactly supported function f :G0!C,

‖T N,q
∗ (f)‖Lp(w) 6Cp%

6(log(N+1))3‖f‖Lp(w), p∈ (1,∞), (7.34)

where T N,q
∗ is the maximal operator defined in Lemma 7.3.
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Proof. We use the method of distributional inequalities, as in [14, Chapter V]. Fix
p1= 1

2 (p+1)∈(1, p), and assume that we could prove the distributional inequality

w({h : T N,q
∗ (f)(h)>α and M̃(MN

∗ (|f |)p1)1/p1(h) 6 γ1α})

6 (1−γ3)w({h : T N,q
∗ (f)(h)> (1−γ2)α})

(7.35)

for any α∈(0,∞), for some small constants γ1, γ2, γ3>0 depending on p, % and log(N+1)
with the property

1− γ3

2
< (1−γ2)p. (7.36)

By integrating and using the assumptions that f is compactly supported and w∈L∞(G#
0 )

(so T N,q
∗ (f)∈Lp(w), p∈(1,∞]), it would follow that

‖T N,q
∗ (f)‖Lp(w) 6

1
γ1[1−(1−γ3)(1−γ2)−p]1/p

‖M̃(MN
∗ (|f |)p1)1/p1‖Lp(w)

6Cp(γ1γ3)−1%4 log(N+1)‖f‖Lp(w),

(7.37)

using Lemma 7.1. Thus, for estimate (7.34), it suffices to prove the distributional in-
equality (7.35) with property (7.36) satisfied and control over (γ1γ3)−1.

The bound (7.12) shows easily that if Q is a “cube” (i.e. B⊆Q⊆B∗ for some ball
B∈B) and F⊆Q, then

w(F )
w(Q)

6 1− 1
C%

(
1− |F |

|Q|

)
. (7.38)

Indeed, the bound (7.38) is equivalent to |G|/|Q|6C%w(G)/w(Q) for any G⊆Q, which
follows from (7.12). To prove inequality (7.35), we fix γ3=(C%)−1 and γ2=(Cp%)−1 such
that property (7.36) holds. Let E denote the bounded set

E= {h : T N,q
∗ (f)(h)> (1−γ2)α},

and let E=
⋃K

k=1Qk be its Whitney decomposition in disjoint cubes (see properties (7.4)).
For inequality (7.35) it suffices to prove that

w({h∈Qk : T N,q
∗ (f)(h)>α and M̃(MN

∗ (|f |)p1)1/p1(h) 6 γ1α}) 6 (1−γ3)w(Qk)

for k=1, ...,K. In view of inequality (7.38), it suffices to prove that

|{h∈Qk : T N,q
∗ (f)(h)>α and M̃(MN

∗ (|f |)p1)1/p1(h) 6 γ1α}|6
|Qk|

2
(7.39)

for k=1, ...,K and some constant γ1>0.
Since Qk is a Whitney cube,

T N,q
∗ (f)(h0) 6 (1−γ2)α for some h0 ∈B∗∗

k . (7.40)
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In addition, either the inequality (7.39) is trivial or

M̃(|f |p1)1/p1(h1) 6 γ1α for some h1 ∈B∗
k , (7.41)

since |f(h)|6MN
∗ (|f |)(h) for any h∈G#

0 . Let f1=f 1B∗∗k
, f2=f 1cB∗∗k

and f=f1+f2.
The left-hand side of inequality (7.39) is dominated by∣∣{h : T N,q

∗ (f1)(h)> 1
2γ2α

}∣∣
+

∣∣{h∈B∗
k : T N,q

∗ (f2)(h)>
(
1− 1

2γ2

)
α and MN

∗ (|f2|)(h) 6 γ1α
}∣∣. (7.42)

However, using Lemma 7.3, the definition γ2=(Cp%)−1 and property (7.41),∣∣{h : T N,q
∗ (f1)(h)> 1

2γ2α
}∣∣ 6

Cp

(γ2α)p1
‖T N,q

∗ (f1)‖p1
Lp1

6Cpα
−p1%p1(log(N+1))2p1

∫
B∗∗k

|f(h)|p1 dh

6Cp(γ1%(log(N+1))2)p1 |Qk|.

(7.43)

We now fix γ1=(Cp%(log(N+1))2)−1, for Cp sufficiently large, and show that the set in
the second line of expression (7.42) is empty. Assuming this, the bound (7.39) follows
and Lemma 7.4 follows from estimate (7.37).

It remains to show that the set in the second line of expression (7.42) is empty. We
will use property (7.40) and the definition of the operators T N,q

∗ . Assume that the ball
B∗

k has radius r∈[2k0 , 2k0+1), k0∈[−1,∞)∩Z. We notice that if h∈B∗
k and g∈cB∗∗

k then
d(0, hg−1)> 1

2c
∗2k0 . If, in addition, log2N6j6k0, then

|LN,q
j,a1,a2

(hg−1)|6CAN
j (hg−1) 6C2j−k0AN

k0+2(hg
−1),

thus, for any j∈[log2N, k0]∩Z, a1∈Zd and a2∈Zd′ ,

|T N,q
j,a1,a2

(f2)(h)|6C2j−k0MN
∗ (|f2|)(h).

Since |T N,q
j,a1,a2

(f2)(h)|6CMN
∗ (|f2|)(h) for any j>log2N , j∈[k0, k0+logN+C], we have

for any h∈B∗
k ,

sup
a1∈Zd

a2∈Zd′

∑
j∈[log2 N,k0+log N+C]

|T N,q
j,a1,a2

(f2)(h)|6C log(N+1)MN
∗ (|f2|)(h). (7.44)

Now let j>min(log2(2Nq), k0+logN+C), a1∈Zd, a2∈Zd′ and h=(n, v)∈B∗
k . With

h0=(n0, v0) as in property (7.40), let a1,0∈Zd be such that

a1,0 ·m= a1 ·m+a2 ·R0(n−n0,m) for any m∈Zd.
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Then, from the definitions,∣∣∣∣ ∞∑
j′=j

T N,q
j′,a1,a2

(f2)(h)
∣∣∣∣−∣∣∣∣ ∞∑

j′=j

T N,q
j′,a1,0,a2

(f2)(h0)
∣∣∣∣

6

∣∣∣∣∫
cB∗∗k

f2(m,u)e−2πi(a1·m+a2·u+a2·R0(n−m,m))/q

×
∞∑

j′=j

[LN
j′ ((n, v)·(m,u)−1)−LN

j′ ((n0, v0)·(m,u)−1)] dmdu

∣∣∣∣
6

∫
cB∗∗k

|f2(g)|
∞∑

j=k0+log N+C

|LN
j (hg−1)−LN

j (h0g
−1)| dg.

(7.45)

An estimate similar to (7.20) shows that

|LN
j (hg−1)−LN

j (h0g
−1)|6C(N+1)2k0−jAN

j+3(hg
−1),

since h, h0∈B∗∗
k and j>k0+logN+C. In addition, for j′>j>k0+logN+C,

T N,q
j′,a1,0,a2

(f2)(h0) = T N,q
j′,a1,0,a2

(f)(h0)−T N,q
j′,a1,0,a2

(f1)(h0) = T N,q
j′,a1,0,a2

(f)(h0).

Thus, from inequalities (7.44) and (7.45), for any h∈B∗
k ,

T N,q
∗ (f2)(h) 6 T N,q

∗ (f2)(h0)+C log(N+1)MN
∗ (|f2|)(h),

so the set in the second line of expression (7.42) is empty, as desired. This completes the
proof of Lemma 7.4.
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