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1. Introduction

Suppose P(z, D) is a linear partial differential operator on an open set { contained in
R" and that 4 is a closed subset of (). Given a class F(Q) of distributions on €, the set 4
is said to be removable for F(Q) if each f€ F(Q), which satisfies P(z, D)f=0in Q — 4, also
satisfies P(x, D)f=0 in Q. The problem considered in this paper is the following. Given
a class F(Q) of distributions on Q, what restriction on the size of A will ensure that A4
is removable for F(Q). We obtain results for Lf,, (Q) (p < o), C(Q), and Lip;(Q).

The first result of this kind was the Riemann removable singularity theorem: if a
function f is holomorphic in the punctured unit disk and f(z)=o0(|z|™") as z approaches
zero, then f is holomorphic in the whole disk. Bochner [1] generalized Riemann’s result by
considering the class F(Q) of functions f on Q such that f(x)=o(d(z, 4)?) uniformly for
in compact subsets of €2, and giving a condition on the size of A which insures that 4 is
removable for F(Q) (Theorem 2.5 below). Bochner’s theorem is remarkable in that the
condition on the size of 4 only depends on the order of the operator P(x, D). The theorem
applies, therefore, to systems of differential operators, such as exterior differentiation in
R" and 8 (the Cauchy-Riemann operator) in €*. The same can be said for the other results
in this paper. The proof of Bochner’s theorem provided the motivation for our results.

It is interesting to note that a very general result (Corollary 2.4) for Lf,, (Q2) (due to
Littman [7]) is an easy corollary of Bochner’s work. Here the condition on the singular
set A is expressed in terms of Minkowski content.

In section 4 the case of L{,(Q2) is studied again, and results in section 2 are improved
by replacing Minkowski content with Hausdorff measure. In addition, the cases C({2)
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and Lip, (Q) are considered. The facts about Hausdorff measure needed in section 4 are
developed in section 3. There are two lemmas here which may have independent interest.

A problem of a slightly different kind is considered in section 5. Here the singular set 4
is a hyper-surface in Q. Irstead of restricting the growth of the function f near 4, a better
result (Theorem 5.2) is obtained by requiring the jump across A (in a weak sense) of f,
and some normal derivatives of f, to be zero. As an illustrative example we obtain a new
proof of a strong form of the classical Schwarz reflection principle.

In section 6 we are concerned with the case where 4 is a d-dimensional smooth sub-
manifold of Q. First (Theorem 6.1) we examine a generalization of the question of removable
singularities: given f€L{,({)) which satisfies Pf=0 in Q — 4, what restrictions does this
place on the distribution Pf supported on 4? Theorem 6.1 (a) provides a new proof of part
(a) of Theorem 4.1 (for 4 smooth).

Bochner’s Theorem 2.5 is not sharp for the Laplacian in R? and 4 ={0}, or more
generally for elliptic operators whose order is the same as the codimension of 4. By utilizing
the theory of pseudo-differential operators we obtain (in section 6) sharp results for these
cases.

Throughout the paper €2 will denote an open subset of #-dimensional euclidean space
R"* and A4 will denote a relatively closed subset of (. The linear differential operator
P(x, D)=3 a,(x) D* will be assumed to have matrix coefficients a,€C®({2). The reader
will note that this is unnecessarily restrictive for most of the results. Here a=(oy, ..., ay)
is a multi-index, || =04 +...+a,, and D*=Df ... D;» where D;=(1/i)d/éx;. The formal
adjoint of P(xz, D) is the operator defined by P(z, D) ¢ =X, 1<n( —1)'* D*(a, ).

We will let d(x, B) denote the euclidean distance from the point z to the set B<R"
Then B,={x€ R™ d(x, B) <&} is the e-neighborhood of B. Let y, denote the characteristic
function of the set B and A(B) the Lebesgue measure of B. For 1 <p< cc, p’ is defined by

(1/p)+(1/p"y=1. For f€D'(Q), supp f will denote the support of f. The pairing between
D'(Q) and CF(Q) will be denoted by (f, @) = f(¢).

2. Two theorems of Bochner

Bochner’s basic theorem is (see [1]):

TaHEOREM 2.1. Suppose fELL,(Q) satisfies P(z, D)f=0 in Q—A. If
lim inf ™" || f|l, =0
&0+

for each compact set K < A then P(x, D)f=0 in Q.
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The proof depends upon the following lemma, also due to Bochner [1].

Lemuma 2.2. Suppose K <R" is compact. Then for every >0, there is a ¢, €CF(R")
with g, =1 in a neighborhood of K and supp ¢, = K, such that | D*@,(x)] <C, e for oll x
where O, is independent of ¢.

n x—
Proof. Let s (x)=¢ JXKW Wy (_83) dy,

where p€C§° has its support contained in {x: |x|<}} and satisfies | p(x)dw=1.
Then g (x)=1 if x€K, 4, supp g, < K s+ {2: |2| <¢/3}< K, and D“(pe(x):s’""“"fxxm(y)
D*y((x —y)/e) dy. Hence | D*q,(z)| < C, e '™ with C, = || D*yp||,.

Proof of Theorem 2.1. Suppose ¢ € C5°(Q) and let K = (supp¢) N 4. Since supp P(x, D)f<
A, we have with the g, of the lemma, (P(z, D)f, ¢)=(P(z, D)}, ¢.¢)=(f, ‘P(x, D)(p.)).
By the above lemma ||‘P(x, D) (g, )| <Ce™™, and hence |(P(z, D)f, ¢)| <Ce™™ ||xx,fll1
for all ¢ >0, which implies (P(x, D)f, p)=0.

Before proceeding to Bochner’s second theorem we define three set functions. Let d
be a non-negative real number. The d-dimensional lower Minkowski content of a bounded

set A is defined by
M, (A)=lim inf 27" A(4,).

s—>0+

The upper Minkowski content of A, M%A), is defined similarly using lim sup. For each
£>0, let A (A4)=inf {Z?.‘;lrf}, where the infimum is over all coverings of 4 by countable
collections of balls {S;}, where each ball S; has radius r;<e. The d-dimensional Hausdorff
measure of A, denoted A,(4), is im,_,,A%(A4). Hausdorff measure is a regular metric outer
measure and hence Ay (A4)=0 if and only if Ay (K)=0 for all compact subsets K of A.
In general, ¢; A (4) <My (A) <M A), where ¢, is a constant depending only on d. There
are examples ([6] and [4]) to show that the reverse inequalities are not true in general.
However, c;A;, My, and M° all agree with d-dimensional Lebesgue measure on compact
subsets of a d-dimensional smooth submanifold of R".

It is interesting to note that some very general results are easy corollaries of Bochner’s
theorem. Since by Holder’s inequality |y, f|l, <A(K)"”|lxx,f||l,» Theorem 2.1 gives the
following corollary.

COoROLLARY 2.3. Let 1<p<co. Suppose fELL.(Q) and P(x, D)f=01in Q—A. If
lim, o+ inf [e* " UK )" ||k, fll, =0, (where d=n—mp) for each compact set K< A, then
P(x,D)f=0 in Q.
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As an immediate consequence of Corollary 2.3, we have the following result of Littman
[7] (Littman used a different set function, which however is comparable to lower Minkowski

content).

COROLLARY 24. (a) (p<co). Suppose M,_,, (K)<oo for all compact sets K< A.
Then each f€Lf, (Q) which satisfies P(x, D) f=0 in Q— A also satisfies P(x, D)f =0 in Q.

(b) (p=o0). Suppose M, . (K)=0 for all compact sets K< A. Then each fE€LZ, ()
which satisfies P(x, DYf=0 in Q—A also satisfies P(x, D)f=0 in Q.

Bochner’s second theorem generalizes the classical Riemann removable singularity

theorem.

THEOREM 2.5. Suppose M™ ™ Y K) < oo for all compact sets K< A. If f€LL,.Q) satisfies
fx)=old(x, A)=%) uniformly for x in compact subsets of Q and P(x, D)f=0 in Q—A, then
P(z, D)f=0 in Q.

Proof. If <0, the theorem is a trivial consequence of Theorem 2.1, so suppose ¢ >0.
Let K< A be compact. The hypothesis implies that

Hxxad(x,A)_"IllgCe”‘. (2.1)

Let K,={z€K|d(z,d)<e27'}. Then [gd(z,4)%dz <3 jx,—x,+l(€/2j+1)—adz <
2720(e/2"1)79A(K,). By hypothesis, there is a constant ¢ such that A(K;) < c(e2~/)™+ for
all j. Therefore the above sum is less than (¢ 220(1)~%"™) ¢™ which proves (2.1).

For each ¢>0 there is a constant ¢, such that | X, (2)f(x)| <c.xx.d(x, A)~¢ with ¢,—~0
as £~>0. Therefore ||, f]|; < Cc,&™ by (2.1), which implies that P(z, D)f=0in Q by Theorem
2.1.

It is possible that upper Minkowski content could be replaced in Theorem 2.5 by lower
Minkowski content or Hausdorff measure. However, ‘0> cannot be replaced by “0”, at
least for 4 a d-dimensional linear subspace of R". First, assume that d=0. If n > 2, consider
the fundamental solution ¢,|2|?> ™ of the Laplacian. If n=2, consider the fundamental
solution E(x, t) of the wave equation. (E(x, t) is the characteristic function of the positive
light cone {(x, t): *—22>0 and ¢>0}.) If n=1, consider the fundamental solution i|x| of
d?/(d=?). Examples for arbitrary integral d can be obtained by tensoring the above examples
with the identity on R? (i.e., consider the function defined above on R" ¢ as a function on
R" independent of the last d variables).

If n—d>3, then Corollary 2.3 is sharp for the Laplacian. Consider the function
Jra(l&' B+]2" —y"|)® ™2 dy". However, if n —d=2, Theorem 2.5 is not sharp for the La-
placian. Sharp results for this case are included in the results of section 6.
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3. Fundamental lemmas

This section containg two lemmas which extend Lemma 2.2.

Before proceeding with Lemma 3.1 we take a closer look at Hausdorff measure. For
each integer k, there is a space filling collection of closed cubes of length 27%, the vertices of
which have coordinates of the form p27* where p is an integer. Such a cube will be called
a dyadic cube of length 27%. Two dyadic cubes will be called disjoint if their intersection has
no interior. Let A<R", and for each £¢>0 define L(4)=inf >2;s? where the infimum is
over all coverings of A by countable collections of dyadic cubes {@,} with length s,<e.
Define L,(A)=lim,,,L3(4). Note that the collections {;} may as well be taken to be
disjoint, since if the intersection of two dyadic cubes has non-empty interior, one is con-
tained in the other.

Each dyadic cube of length s is contained in a ball of radius (ﬁ/?)s. Similarly, each
ball of radius r can be covered by 3" dyadic cubes of length 27%, where 27% ! <r <27, These
facts can be used to show that there are constants ¢, and C, such that ¢, L,(4) <Ay (4) <
C,Ly(A) for any set A<R" Thus L, is comparable with Hausdorff measure. L, is much
easier to work with as the following lemma shows.

For a cube @ of length s, we let 3$Q denote the cube with the same center and
length 3s/2.

Lemuma 3.1. Let {Q,|1<i<N} be a finite disjoint collection of dyadic cubes of length
8. For each i, there is a function ¢, €0 (R") with supp ¢,< 3 Q, such that > ¥, ¢,(x)=1 for
all x€ UL, Q,. Furthermore, for each multi-index o, there is a constant C,, depending only on
a, for which | D*@,(x)| <C,si'™ for all x and 1 <¢<N.

Proof. In the proof we will use Cpn 4 to indicate a constant depending only on the
one or several multi-indices used as subscripts. It need not be the same constant in each
application.

Assume s, >8,>...>sy. Choose y€CF (R") such that p(x)=1 if || <1 for 1<i<n
and p(x) =0 if |2,| >3/2 for some i. Let y,(x) =y(2(x —;)/s,), Where , is the center of the
cube @, Define for 1<k<N, @1=v;, @ry=Vu41[1;~1(1—y,). Then ¢, €CF (R") and
supp ¢, <supp ¢, < 3Q,- An easy inductive proof shows that >} ., (p,— 1-TT -y
for £=1,2, .., N, and hence > p,x)=1 if z€ U¥,Q,.

It remains to prove the estimate on the derivatives of ¢,. Let 6, =2} ,¢,=1—
[Tf-1(1 —y,). Since s, >s,,, it suffices to prove the estimate for 6,. For integers »,, ..., ¥,
where 1<y,<k, define
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{ 0 if =9, for some i3
g dp osey V1 = - . .
eee? IT (1—v,) if all v, are distinct.
iy, cnrr
i<k

g depending only on the multi-index subscripts, such that

Daelc =Z Cﬂ‘ ..... ﬂ’( z [ T (Dﬂly)m) (Dm'l/’llz): cees (Dﬁrww))y

where the sum is over all sets of multi-indices {#, ..., 7} for which |f!| >1and g +...+f =
o. Therefore

Consider a typical sum: ¥ ;| DPy,(x)|. Note that Dy, (x)=0 unless z€ § @,. Further-
more, if z€ $Q,, | D?y, (x)| < Ops; . Therefore 3} 1 | Dy, (x)| < Cp 2, ;"% where the last
sum is over those cubes Q,, with length s,>s,, for which 2 € § @,. It is easily seen that for
each non-negative integer p there are at most 2" dyadic cubes @, of length s,=s,2?, for
which z€ 3 Q,. Hence

k )
> | Dy, ()| <27Cp 3 (52°) 7P < Cpsi'l.
v=1 =0

Therefore we have

| D*0,(x)| <> Cpr . pr(Cpse®), .., (Cprsi® 1) < Cpsic!™. (3.1)

.....

Lemma 3.2. Suppose K<R" is compact. Given d=n—mp’ and £>0, there is a
@€ O3 (R™) with ¢,=1 in a neighborhood of K and supp ¢,<K,, suchthat for |a| <m,
| D@l < C, ™1™ (Agy_p (K) + )17, where C, is independent of e.

Proof. For each £>0, choose a covering of K by a finite collection {@,} of dyadic
cubes of length s,<eg, with U3Q.<K,, and > sp ™" <L, . (K)+e We may assume
8, =832 ... 28y. Let {g;} be the partition of unity for {@,} constructed in Lemma 3.1 and
define ¢, =2 ¢;. Then supp p,< U$@, < K, and p(x)=1 on Ug,.

For k=1,2,..,N let T, =3¢;,—U>,3¢; Then {7} is a disjoint collection of sets
with UT,=U2Q., T,<3Q, for all X, and ¢,;(x)=0 if j>k and x€T,. Therefore if
€Ty, @s(2) =2F19,(x) =0 (x). By (3.1) | D*@s(x)| < Opsp'™ for all z€ T, where C, is a
constant not depending on ¢ or k. Hence

109 =3 [ 1D gt o0, Sagr e
T

<0, s(m—lal)p’z sz—mp' <O, s(m—lal)n’ (Lnempr (K)+ée).
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4. Results for Lf, (), C () and Lip; ()

Our first task in this section is to improve Corollary 2.4 by replacing lower Minkowski

content with Hausdorff measure.

THEOREM 4.1. (a) (p <oo). Suppose A,_,, (K)<oco for each compact set K< A. Then
each fELL,(Q) which satisfies P(x, D)f=0in Q— A, also satisfies P(x, D)f=0 in Q.

(b) (p=oc0). Suppose A,_,(4)=0. Then each f€Lj(Q) which satisfies P(z, D)f=0 in
Q — A also satisfies P(z, D)f=0 in Q.

Carleson [3] obtained part (a) for the Laplacian in R” and 4 compact. Later Serrin [9]
extended Carleson’s work to elliptic operators of second order with Hélder continuous

coefficients.

Proof of Theorem 4.1. Suppose ¢ €CF° (€2) and let K = 4 N supp ¢. Since supp (P(z, D)f)<
A, we have with the ¢, of Lemma 3.2, (Pf, ¢) = (Pf, p.p)=(f, ‘Plp,p)). By Hélder’s inequality

and Lemma 3.2,
|(Pf, @) <2 llo | *Plope @l < C ki, o (Ao (B) + )" (4.1)
Parts (a) and (b) follow immediately.

Remark. If inf {|jy||,, m: ¥ € C5°(Q), y=1 in a neighborhood of K} =0 then K is remov-
able for L{,.(Q) (p < o). For p < oo, this result is due to Littman [7]. It follows immediately
from (4.1), with yx, replaced by 1, and @, replaced by a suitably chosen .

For fixed d =n —mp’, Theorem 4.1 (a) says that 4 is removable for Lf, if p > (n —d)/
(n —d —m). At least for linear subspaces 4 of dimension d, the allowable range of p cannot
be improved. First assume d =0. For n =2, an example is provided by 1/nz, the fundamental
solution of the Cauchy-Riemann equations, which belongs to Lf,, for p <2. If n >3, then
cnlxlz—",b the fundamental solution of the Laplacian, belongs to L%, for p<n/(rn—2). To
get examples for more general d, it is only necessary to tensor this example with the identity
on R? If (n—d) >3, the allowable range of p is sharp for the Laplacian since the function
fra(]' 2+ |2 —y"[2)E """ dy” belongs to L, for p < (n—d)/(n—d —m).

In Theorem 4.1(b), it is not possible in general to replace the condition A, _,(4)=0
by A,_n(4)<co. Examples illustrating this are the fundamental solution of d/dz in R
or the wave equation in R?, and the function Vz(l——z) for the Cauchy—Riemann operatorin
€. These examples also illuminate Theorem 4.2 (a) below.

Next we prove a result for C(£2) and give a condition which implies Pf is a measure.

THEOREM 4.2. Suppose A, _,(K)< oo for each compact set K< 4.
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(a) If fELS(Q) satisfies P(x, D)f=0 in Q— A, then P(x, D)f is a measure supported
in 4.
(b) If f€C(Q) satisfies P(x, D)f=0 in Q— A, then | also satisfies P(x, D)f=0 in Q.

Proof. Let K< A4 be compact and suppose p€C (Q) with (supp ¢)N A< K. Then

with the ¢, of Lemma 3.2, we have
(Pf,9) = (Ph, 9e) = (, Ploey)) = ((Pge )+ 3. (f wa Do,
with y4€ C5°(€2) depending on ¢. By Lemma 3.2 we have
|(F, va PP @)| < C|lflloo| PP pel| < Ce™ A, _n(K) +6)7".

Therefore Pf is the weak limit in D’(Q2) of the net of functions {f*Pg,}.

By Lemma 3.2, ||*Pe.|,<C(A,_n(K)+e). Since A, ,(K)<oo, this proves that
[|*Pe, ||, < C independent of ¢. If f is bounded, the net {f*Pg,} is bounded in L!((2), and hence
its weak limit in D'(QQ) must be a measure. This proves (a).

Since the net {*Pg,} is bounded in LYQ) it has a subsequence which converges weakly
in C(Q). The limit of this subsequence must be zero, since the net {¢.}, and therefore
the net {*Pgp,} converges to zero in D'{Q). Now suppose f€C(Q). Then multiplication by f
is continuous in C(2)’. Hence a subsequence of the net {f*Pg,} converges weakly to zero in
C(Q)'. Since the net itself converges weakly to Pf in D'(Q), Pf=0.

For k a negative integer we make the following definitions: f €LY, 10, (Q) if for each set
w< <Q there are functions g,€ L?(w) such that f=2,<_x D*g, in w; f€ C,(Q) if for each
set < <) there are functions g, € C(w) such that f = ,<_x D*g, in w (this definition of
L% 1oc is standard for 1 <p < o).

The following is an easy extension of Theorem 4.1 and Theorem 4.2. Let k <m be an

integer.
THEOREM 4.3.(a) (p<oo) Suppose A, _um_ip (K)<co for each compact subset K< A.
Then each f€ L 10.(Q) which satisfies P(x, D)f=0 in Q — A, also satisfies P(x,D)f=0 in Q.
(b) (p=1c0) Suppose A,_.1x(A)=0. Then each f € Ly 1o (€2) which satisfies P(x, D)f=0
in Q— A, also satisfies P(x, D)f=0 in Q.

(¢) Suppose A,_,..(K)<oc for each compact subset K= A. If f€ L 1(£2) satisfies
Pz, D)f=0 in Q— A, then P(x, D)f is a measure supported in A.

(d) Suppose A, (K)<oo for each compact subset K< A. Then each f€ C*(Q) which
satisfies P(x, D)f=0 in Q— A, also satisfies P(x, D)f=0 in Q.
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Proof. First assume that k is a positive integer. For suitable partial differential opera-
tors @, of order <m —k we have P(z, D)= u<k Qu(x, D) D* Then (Pf, ¢) = (Pf, ;) =
Sia<k{D*f, Q. (pg.)). Now the proof proceeds analogously to the proofs of Theorems 4.1
and 4.2

If k is a negative integer, then

(Pf, ¢) = (Pf, PPe) =|¢|<Z—k(PDagw PP:)

and the rest of the proof is analogous to the proofs of Theorems 4.1 and 4.2.

Denote by Lip, (€2), 0<d <1, the space of all functions f defined in Q which satisfy a
Holder condition of order ¢ uniformly on compact subset of €, i.e., for each compact set
K <Q, there is a constant C such that |f(x) — f(y)| <C|x —y|’ for all x and y belonging to K.

THEOREM 4.4. Suppose A,,_,,,s(4)=0. Then each f € Lip, (Q) which satisfies P(x, D)f=0
in Q — A, also satisfies P(x, D)f=0 in Q.

Remark. Carleson ([2] and [3]) has proved this result if P(z, D) is the Laplacian and 4
is compact. In this case Carleson has also shown that the condition A, _,,s(A4)=0 is neces-

sary.

Proof. Let p €CF(Q) and let K=AN (supp ¢). Let {@,} be a finite disjoint collection
of dyadic cubes which covers K. Let z, be the center of @, and s, the length. We assume
8 <1. Let {g,} be the partition of unity for {Q,} constructed in Lemma 3.1. Then (Pf, )=
2. (Pf, gu @) = 2, (f, *Plgn@)). For each k we have (f, ‘P(@c@)) = Dia<m(f, D* (@ @i @))-
If || <m, we have |(f, D*(a, @i 9))| < f32 o | (@) D* (@, @) () |dx <Cpsf ™ < Cpsf™™*°
where for the last inequality we use the assumption s,<1. For|x|=m we note that
§D*(@pug) d=0, 50 |(f, D*(ay g )| = | fana, (@) — f(2)) D*(a, ¢ ) (@) dae| < Cpsp~ "+
since f€Lips(€2). Thus for each k, |(f, ‘Plg,¢))| <Csp™ ™" s0 |(Pf, ¢)| <C X sp™™*°. Since
this is true for all coverings {@,}, and A, _,, s(K) =0, we must have (Pf, ¢)=0.

Remark. It should be pointed out that the proof is valid if =1, and hence provides
an alternate proof of Theorem 4.3 for L, (Q).

Let C**°(Q) (k an integer and 0<§<1) denote the class of functions f€C*(Q) such
that D*f€ Lip,(Q) for |«|=%. Theorem 4.4 has the following extension for k<m.

THEOREM 4.5. Suppose A,_miris(A)=0. Then each fEC***(Q), which satisfies
P(x, D)f=0in Q— A, also satisfies P(x, D)f=0 in Q.

Examples. 1. Theorem 4.1(b) yields as an easy corollary the following. Suppose
is a connected open subset of R* and 4 is a closed subset of Q. If A,_,(4)=0, then Q@ —4 is
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connected. To see this, suppose Q — 4 is not connected. Then there is a non-constant fune-
tion f which is constant on components of Q—A. Since df=> (0f/éx,)dx,=0 in Q— A4,
Theorem 4.1 (b) implies that df =0 in Q and hence f is a constant function on Q.

2. Let Q be a bounded open set in R If A,,_,(6Q) < oo, then by Theorem 4.2 (a), dyq is
a measure. Similarly, if Q is a bounded open subset of C*, with A,, ;(0Q2)<<co, and f isa
holomorphic function in a neighborhood of Q, then d(fyq) =  f(9xa/0%;)dZ, is a measure.

3. Let AcQcC" and suppose Ay, (4)=0. Then by Theorem 4.1(b) every locally
bounded funetion, which is holomorphic in Q — 4, is holomorphic in Q.

If A is a sub-variety of Q then A,,_ ,(K) < oo for each compact subset K of 4 [4]. Hence
by Theorem 4.1 (a), every function which is locally square integrable in Q and holomorphic
in Q minus a proper sub-variety is holomorphic in .

These statements provide two different improvements of the well-known result that
a bounded function which is holomorphic outside a variety, extends to a holomorphic func-

tion across the variety.

4. The results of this section apply to such otherwise badly behaved operators as the

Hans-Lewy example (i.e., the induced Cauchy-Riemann operator on S3< (2).

5. Removable singularities on hypersurfaces

In this section we provide two generalizations of the classical result that a continuous
function on an open set Q) in the complex plane which is holomorphic in { off the real axis,
is holomorphic in Q. Notice that this statement follows from part (b) of Theorem 4.2.

In fact, Theorem 4.3 part (d) provides us with our first generalization.

THEOREM 5.1. Suppose A, ,(K)<oo for each compact subset K < A. Then each
f€ C™ Q) which satisfies P(x, D)f=0 in Q — A, satisfies P(x, D)f=0 in Q.

In Theorem 5.1, the set A4 is not required to have any smoothness, whereas the func-
tion f is assumed to be smooth across A. In the second generalization, 4 is an n—1 dimen-
sional C® submanifold of an open set in R", which by a change of coordinates we can
assume to be (locally) the hyperplane {z: z,=0}. Let R"~! denote this hyperplane, let Q
denote an open set in R", and let 4 denote R* 1N Q as well as {z": (2, 0) €Q}. For conveni-
ence we make the assumption that 4 x [ —a, a]J<Q for some ¢ >0. Let &' = (z, ..., %,_;) and
x=(x', z,). As before, let P(x, D)=2X a,D* with each a,€C®(Q). The normal order of
P(z, D) with respect to A is the largest a, for which a, %0. Let ;" and y; denote the char-
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acteristic functions of the sets {x€Q: z, >t} and {x €Q: z, <t} respectively. Let §, denote
the distribution defined by 8,(y) = p(«’, t)da’ for all yE€CF (RY).

TrEOREM 5.2. Suppose P(x, D) has normal order m =1 with respeci to A. If f€C®(Q — 4)
satisfies P(x, D)f=0 in Q—A, and if, for k=0, ..., m — 1, both the limits lim, o+ D% f(z’, )
and lim,,o- Dy, f(z, &) exist in D'(A) (weakly), and are equal, then F =lim o+ (s +Xz) f
exists in D'(Q) (strongly), and P(x, D)F=0 in Q.

Proof. Since P(x, D) is of normal order m with respect to A, there are functions

@, €C%(Q), depending only on the coefficients of P(x, D) such that for any g€C®(Q),
p€CY (Q) and t€ER

m-1

(P(x, D) (x{ 9), ) = (&f P(x, D)g, )+ kZ Drg(, t)%ak,ﬁ(x"t) Dig(a',t)da’.  (5.1)

=1 Jgr-1

This is Green’s formula for P(z, D). Let ¢, =2 sa; s Df@. Then Green’s formula can be
rewritten as

(Ple, D) (1 9, 9) = 3, [Dlg- 8 (p)+ (i Pl D) . ) 5.2)
Since (P(@, D) (4 9),#) = (P(z, D) 3, 9) = (Pla, D) (& 9),9), (5.2) implies
(P(@, D) (5 9)9) = = 3, Dkg ) (p) + (4 Pl D), ). 53)
Since Pz, D) f=0in Q— A4, (5.2) for t— s and (5.3) for t= —¢ imply

(Ple, D) [ f+ el ) = 5. [(DA) - 6,— (DEN-5_0] () (5.4)

In the following lemma we will prove that lim o+ (X7 f+ XZ.f) exists in D' (Q), and that
limg,o+[(DEf) - 6. —(DEf) - 0-.]=0 in D' (Q) for k=0, ..., m —1. This will, of course, com-
plete the proof of the theorem.

LeMma 5.3. Suppose g €C°(Q+) where Q+ = {2 €Q: x,>0} and v€D'(A). The following
conditions are equivalent.

(a) Hm, o+ g(x, &) = v weakly in D’'(A4).

(b) lim, o+ g(x, €) = v strongly in D’ (A).

(¢) lim, o+ g -8, = v® 4 strongly in D' (Q).

In addition, the above conditions imply

(d) The net {y; g} converges in the strong topology on D'(Q).
4 — 702902 Acta mathematica 125. Imprimé le 18 Septembre 1970.
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Proof. Obviously, (c¢) implies (a). For the sake of completeness we include the standard
proof that (a) implies (b). Condition (a) says that the map of [0, 1] into D'(4) defined by
g->g(z’, €) is continuous with value v at ¢=0 (where D’(4) has the weak topology).
The image of a compact set under a continuous map is compact. Therefore, {g(z’,&): 0 <e <a}
is relatively weakly compact, and hence weakly bounded, in D’(4). Since C5°(4) is barrelled,
the Banach—Steinhaus Theorem is applicable. It says a weakly convergent, weakly bounded
net in D'(A) is uniformly convergent on precompact sets in Cg°(4). By Ascoli’s Theorem
each bounded set in C'§°(4) is precompact. Therefore, a weakly convergent, weakly bounded
net in D'(A) is uniformly convergent on bounded sets in (§°(4); that is, strongly convergent.

Next we prove (b) implies (c). Suppose B is a bounded set in C5°(4 x ( —a, a)). We must
show [ g(x’, &)p(a’, £)da’ converges, uniformly for ¢ € B, to v®d(y). Since § g(x’, £) (', 0)da’
converges, uniformly for ¢ € B, to v(y(z’, 0)) =v ®d(y), it is sufficient to prove that § g(z',)
[y(x', €) —yp(x’, 0)]da’ converges, uniformly for € B, to zero. The set {g(2’, £): 0<e<a} is
weakly bounded and hence equicontinuous since C§°(4) is barrelled. Therefore, for each

compact set K< 4 there exists an integer N and a constant C such that

Ug(x', &) p(x) da' | < O| ENSHP | D2, (5.5)

for all p € C§°(4) with supp ¢ < K and for all 0 <¢ < a. Now, there exists a compact set K < 4
such that supp y< K x (—a, a) for all y € B. Therefore, | § g(’, &) (p(z’, &) —p(2’, 0))da’| <
C 2 1u<n sup | D*(y(a’, &) —yp(a’, 0)) ], for ally € B and 0 <& <a. The right-hand side converges,
uniformly for p € B, to zero.
To prove (d) we show that {y. g} is a Cauchy net in D’'(4 x (—a, a)). Suppose Bis a
bounded set in OF°(4 x (—a, a)). Then there exists a compact set K< A4 and constants C,
such that for all y€ B and —a <g<a, supp (2, £) < K and sup | D*yp(2’, )| <C,. There-
fore, by (5.5) there is a constant C such that |fg(z', &)y(2’, &)da’| <C for all y€ B and
0 <g <a. Therefore, if ¢, >¢£,>0, then

&

|(X€—:g - x;g) (1/)) | = f g(x,: xn) w(x’, xn) dx, dxn < 0(61 - 82)

for all € B. ’

Remark. A strong form of the Schwarz reflection principle can be stated as follows.
Suppose fEC®(Q+) satisfies Af=0 in Q* and lim.,¢+ f(z', e)=0 weakly in D’'(4). Let
g, z,) = —f(2', —=,). Then lim, o+ (x3 f+y,9)=F satisfies AF=0 in Q.

This can be deduced from Theorem 5.2 as follows. By Lemma 5.3, lim, o+ ()2 f + - 9)
exists in D’(Q). Obviously AF=0 in Q—A. Since D, f(z', &)= D,g(z’, —¢), it remains to
show that lim, o+ D,f(x’, &) exists in D'(4). Now DZ(yd f)=yx D2f+(D,f) e+ Dy(f6,).
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The nets y. f and {3, have limits in D’(Q). Also, since Af=0in Q+, 3" D% f= —>121 Dy f)
has a limit. Therefore (D, f)d, converges in D'(Q).

Remark. In the special case of the Cauchy-Riemann operator 0/0zZ=3{D,+1D,),
Theorem 5.2 can be improved by requiring that im, .o+ f(x +1i¢) — f(x —1e) =0 (weakly in
D' (4)), instead of requiring that the individual limits of f(x+ ) and f(x —ie) exist and are
equal. Suppose f is holomorphic on Q—A4 and lim, o+ f(z, +16) —fl&; —ie) =0 in D'(4).
Let g(x,, x4) =f(x; + t25) — f(x; —ix,). Then by the above version of the Schwarz reflection
principle g extends to a harmonic function G on Q. Therefore 8G/oz is holomorphic in Q.
Also 8GJoz=0floz in QO —A. Given an open disk D contained in Q, pick H holomorphic in
D with 6H[0z=08G[0z in D. Thus, in D~ A, both 8/¢Z(H —f)=0 and 8/oz(H —f)=0. It
follows that there exists a function F holomorphic in D with F=fin D— 4.

6. Special results for linear subspaces

The previous results (except Theorem 4.2 (b)) all address directly the problem of when
singularities are removable. The next theorem examines the more general question. Suppose
the singularities are contained in a certain set 4. What restrictions does this place on the
distribution Pf?

As before Q will denote an open set in R*. We will use the decomposition R"=
RIxR" ¢ with z=(z, y)ER", x€R? and yER" % We will let A¢ denote QN (R* x {0})
as well as {x€R®% (x, 0)€Q}. For an n multi-index o we will write &= (8, y) where § and y
are d and (n—d) multi-indices respectively. As before P(z, D) will denote a differential
operator X a,(z) D* with a,(2) €0®(Q). The normal order m of P(z, D) with respect to 4¢ is
the largest |y| such that a g ,,(z) =0 for some .

Let 6 denote the Dirac measure in R"™%. If x € D'(Q) with supp u< A%, then there exist
unique distributions u, € D’(47), with {supp u,} locally finite, such that u=2 u,® D74
{(see Schwartz [8]). Consequently, if f€D'(QQ), then Pf=0 in Q- A4? if and only if Pf=
2 u,® D76 with u, €D'(4% and {supp u,,} locally finite.

THEOREM 6.1. (a) Suppose fELL 1,,(Q) (p< o) and Pz, D)f=0 in Q— A% Then
P(z, D)f€D'(Q) has a finite decomposition D, < NUy ® D? 0 with N <(m—k)—(n—d) [p.

(b) Suppose f€ L. (Q) and f(z) = o(d(z, A)™%) uniformly for z in compact subsets of Q.
If P(z,D)f=0 in Q—A then P(z, D)f€D'(Q) has a finite decomposition as above with
N<m—(n—d)+gqg.

Remark. If f€ Ly 1,0(Q) then f€ L} 1,.(Q) for all p< oo which by part (a) implies
N <(m—k)— (r—d). On the other hand, part (b) is not a consequence of part (a).
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Proof. Pick p€C§(R""?) with supp p<{y: |y| <1} and y=1 near zero. Let y,(y) =
el(y/e) y(yle). Then D¥y,(0)=0 unless y=y,, and D"y, (0)=y,!. Suppose K is a com-
pact subset of 4% and ¢ € C5°(A4%) with supp < K. Let u =Pf. Then u{p®@y,) =y,! %, (¢) in-
dependent of £ >0. On the other hand, u{p®@y,) = (Pf,9@v,) = (f, Pl ®y,)). Now D¥p®p,) =
DfpR D7y, and || D¥y, ||, <C, e®l"". Therefore, |uy, (p)| < Ce!”"™|| Xk, f||;, where C is
a constant depending on ¢ but not on £>0.

We will give the proof of part (a) for £ =0. See section 4 for the definition of L, 146 (£2).
The proof for k an integer follows similarly (see the proof of Theorem 4.4(a) and (b)).
By Hoélder’s inequality ||y, f||; <MK ||z, fll» < C& 27| gk, fll5» Therefore |u,,(@)] <
C¢ |2 fll» with X = || — (m — (n — d)/p"). The right hand side haslimit zero as ¢ approaches
zero unless r <0. Hence Uy, = 0 unless I?’ol <m—(n—d)|p’.

To prove part (b) notice that (2.1) implies that || Xx,f ||, < Cee” % with lim,_,, C; = 0.
Hence |u, (9)| <CCce’ where r=|y|— (m— (n—d)+g). This implies u, =0 unless r <0.

Remark. The tangential order m; of P(x, D) with respect to A% is the largest || such
that ap ,(z) = 0 for some y. A careful look at the proof of Theorem 6.1 shows that we have
| @)] <Clipll el sl Henoe 1, €L7

Theorem 2.5 is not always the best possible result for elliptic operators. For example,
if f is harmonic in R?— {0} and satisfies f(z) =o(log 1/||), then f is harmonic in R2. Our
next goal is to use Theorem 6.1 to generalize this result. First, though, we need a result about
pseudo-differential operators.

Let @ be a pseudo-differential operator of class L™™(C)) where m=n --d (this is L1 §(Q)
in the notation of Hérmander [5]). Then @ =@’ +Q” where @ p(z) = (2n) " [ €' ¢ q(2, {) $({)dL
and Q" @(2) = fo E(z, w)p(w)dw for all p€CF(Q). Here E€C®(Q x Q) and g€S™™(Q). That
i8, g€C°(Q x R"), and for every compact subset K< and all multi-indices « and § there
is a constant C, g g such that

| D2 Diq(z, £)| <Oy px(L+|C]y ™ for all zE K, ZER™

In Theorem 6.2 we assume that g=g,+g¢, where ¢, €S ™" 1(Q) and ¢,€ S~ ™(Q) has the
property that g4(z, 78) =77 "gy(z, {) for T>1 and |{|>1. For such an operator @, fixed
y€R™ with |y| =1, and 1>0, we define operators R;: £'(4%—>C*®(4% by R u(z)=
QuRd)(x, Ay) for u€ £'(A%. This makes sense since Q(u®R4) is infinitely differentiable on
the set {(z, y)€ Q|y +0}. Let k(z)=(27)"" f41-19(=, 0,0, )do,.

THEOREM 6.2. Let u€ £'(4%). Then (log (1/A))™! Ryu converges in D'(A°) to ku.
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Proof. Let Rju(z)=Q (u®0)(x, Ay) and Rju(x)=Q"(u®d)(x, Ay). Assume u€CF (4%).
Clearly Rju(z) is bounded uniformly for z in compact sets and 1<1. Hence we need only
consider R;.

Let w€OFR™) satisfy [p(y)dy=1 and define y,(y) =e~"p(y/e). Then $,(n) =P(en)
and g, converges to 4 in D'(R™) as ¢~0.

We have Q (u®y) (z,y)=(2 n)_dj‘ewsw(x, y &) 4(8) d§,

where ro(@ y, &) =(2 n)‘"’fe‘”"’q(x, Y &) P(n) dn.
Hence for y,+0,

Yrery(2,y,§)=(2 ﬂ)"mJDZ"(ei”"’) 9z, y, & n)Pln) dy

= ( -D"”'fe“"" 2 (yo) D77 (=, y,&,m) Dip(n) dn.

V<%

Substitute y, for p and let ¢—~0. For y =0 the expression on the right converges to
(=1 [ Dirg(a, £, i

For 0%y <y,, the term on the right converges to zero since D} "?g€ 8™~ "~ (Q) and
D% (n) = (D7) (en). For y =1v,, the expression is bounded by

Elyn|f|Q(x> Y, &,m) DVp(en) | dn. (6.1)
First note that & {,,.,|¢D?*$|dn converges to zero. Then note that

8""f| - lg(2, v, E,n)Dy°¢(8n)|dn=8'“'"'"f |g(z, v, &, n/e) DV(n)| dy
nj=1/¢e

Inl>1

<oe | e le+lnb D] dn

which also converges to zero with s&. The remaining contribution to (6.1) is bounded by
u
1

Ce“’"f lg(z, ¥, &, 9)| dn < C's“’"'J~ ™ (1 +|&|+7r) " dr <Ol log 1/e,
1<Inl< e

which again converges to zero with e. This proves that y”r,_(z,y, £) converges uniformly
for (z,y) in compact sets to ( — 1)l f¢'¥ " Dyeq(x,y, & n)dn as ¢ approaches zero. Hence
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Riu(z) = (2 n)“’fe”"’:m (x, &) (&) dE,

where ra(x, &) =472 (2n)”’"fe”""”A,,q(x, 2y, &) dy. (6.2)

The following lemma, completes the proof of the theorem.

Lemma 6.3. 7,€8%A4%) for each A>0 and (log 1/A)~1r, converges in 8°(A% to k as A
approaches zero.

Proof. That r;€8%A49) is clear. We will show that (log (1/4))~1r,(z, £) converges to
k(x) uniformly for 2 in compact sets. The lemma then follows by differentiating under the
integral sign in (6.2) and iterating the argument.

The contribution of ¢, to (6.2) can be integrated by parts to obtain (2m)~™f ¢
¢, (%, Ay, &, ) dn. This expression is bounded uniformly for z in compact sets and A <1.
Hence its contribution to the lim (log 1/4)-1r, (z, £) is zero.

Next consider

1_2(2”)_'"[1 |>mei“”"’Anqo<y, Ay, & m)dn = <2“)-'"f, eV A, gy (2, Ay, AE, m) diy.
7=

izl

Here we make a change of variables and use the homogeneity of g,. Again this quantity is
uniformly bounded for z in compact sets and A< 1. Therefore the only contribution to
the limit of (log (1/4))~r; comes from

AI2@2m)" f M A g0 (x, Ay, €, 1) diy.
Inl<1/4

Now apply Green’s formula to this expression. The boundary terms are bounded uniformly
for z in compact sets and A<1. In addition notice that fi,<1€”?"q,(z, Ay, & 7)dy is
bounded uniformly for z in compact sets and 1<1. Hence the interesting part of r; is

va d
Cm™ gy (@, Ay, &, ) dy = (2 n)""f lf ¢ gy (x, Ay, &lr, m) doy.
1<Inl< /A 1 TJm=1
By the mean value theorem we have a constant ' such that

" €]
|90(®, Ay, &/, ) — g6 (%, Ay, O,)| < O {1+ Y
for z in compact sets, A<1 and |5|=1. Since [}*|&[r 2 (1+ |&|/r)~™ 'dr is bounded in-
dependently of £, we need only consider
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-m A d?‘ irdy -n
(2n) . " lm=1e 9y (w0, Ay, 0, ) doy.

This equals

(27)"™ log (lll)fl =1q° (x,2y,0,7)da,

)

1A eirlyqy -1
+(27z)‘"‘J ——er 9,(x, Ay,0,7) doy.
1 T Il =1

The second integral on the right is bounded uniformly for x in compact sets and 1<1
(make the change of variables p=Ar and note that the integrand is continuous at zero).
Hence (log (1/1))~'r; converges uniformly for « in compact sets to k.

For a differential operator P(z, D) =D n<m@q (2) D* in Q, let P, (2, D)= 4= n @, (z) D*
denote its principal part. Again let z=(x, y) and {=(&, ).

THEOREM 6.4. Let P(z, D) be an elliptic differential operator in Q, with the property that
f P, (x,0,0,n) 'dg, (6.3)
Inl=1

never vanishes. Suppose | satisfies P(z, D)f=0 in Q—A¢ and f(z, y)=o0(log 1/|y|) as y—0
uniformly in compact sets. Then P(z, D)f=0 in Q.

Proof. The hypothesis implies that €L, (Q) for all p < co. By Theorem 6.1 P(z, D)f=
% @0 for some w€D'(4%). Let QEL™™(Q) be a parametrix for P. If p€CF(4%), we have
Ay ®8)=@1){ +g where g€ (=(Q). Thus Q((yu)®9) (@, y)=ollog1/|y|) as y-0
uniformly on compact sets. On the other hand, by Theorem 6.2

tim (log 1/7) f Q) ®3) (z, Ay)p(a) ez = () (),

where k(z)=(2n)™™ fiy=1Pnlz, 0,0, n)~*do,. Hence ku=0. Since k is never zero, we have
u=0.

Remark. If P,(z, 0, 0,7) is real (6.3) is clearly never zero. Hence the theorem applies
to all elliptic operators with real principal part.
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