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Existence and approximation theorems for solutions of 
complex analogues of boundary problems 

By C. O. KISELMAN 

l .  Introduction 

The purpose of this note is to prove existence and approximation theorems 
for analytic solutions of a differential problem of the form 

P ( D ) u = /  in ~2, (1.1) 

Qj(D)u=gj in H N ~ ,  l~<j~<r, (1.2) 

where ~ is a convex open set in C ~, H a complex hyperplane in C n, and P(D), 
Qi(D) are constant coefficient differential operators in D =  (D 1 . . . . .  nn) where 

ok l( ) 
~z~- 2 ~xk -  i ~ x ~ k  ' (1.3) 

(the coordinates of C n = R  2n are writ ten zk=xk§ where k =  1, ..., n and 
xk, xn+~ are real). The hyperplane H is supposed to be non-characteristic with 
respect to P(D), but  no restriction is imposed on the operators QI(D) . . . . .  Qr(D). 
We call (1.1), (1.2) (by abuse of language) a 'boundary  problem in the complex 
region ~ ' .  Our main result is a geometric characterization (Theorems 3.2 and 
3.3) of those convex open sets g2cC ~ in which the problem (1.1), (1.2) can be 
solved for all choices of operators Qj(D) and all analytic funct ions/ ,  gj satisfying 
a natural  condition. The proof depends on a division algorithm for analytic 
functionals (Theorem 2.3) as well as on the theory of general (overdetermined) 
systems of differential equations with constant coefficients. 

Consider a system of differential equations in an open set ~o c R ~, 

~ Pjk uk=/s, l<<.~<~r, (1.4) 

where ~/~x = (~/~x 1 . . . . .  ~/~x~) and /j E E(w), the space of infinitely differentiable 
complex-valued functions in o~, and Pjk(8//~x) are differential operators with 
constant coefficients. A necessary condition for (1.4) to have a solution uk E~(o)) 
is tha t  
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Gj(~)Pjk(~)=O,l<~k<~m~Gj / j = 0  (1.5) 
1 1 \ / 

for all choices of polynomials  GI(~) . . . . .  Gr($). Conversely, an existence theorem 
for systems states tha t  when ~o is convex and (1.5) is fulfilled, (1.4) can be 
solved with u~EE(~o). This has been proved by  Malgrange [5] and HSrmander  
(according to personal communicat ion,  the proof will be included in a for thcoming 
monograph  based on [4]), and is also a consequence of the fundamenta l  prin- 
ciple of Ehrenpreis  [1], [2]. The same authors  have proved tha t  when ~o is 
convex, any  solution (u 1 . . . .  , urn) E E(~o) m of 

m(:X) ~ Pj~ uk=O, l<~]<~r, (1.6) 

can be approximated  in ~(e~) m by  linear combinat ions of solutions of the form 

gk(x) exp ( X 1 ~ 1 - ~ - . . .  + X s ~ s )  , 1 <k<~m, (1.7) 

where gk are polynomials  and ~j complex numbers.  
Now a general system in ~ ~ C n, 

~ Qsk(D)uk=/j, l <~]<~r, (1.8) 
1 

where D = (D 1 . . . .  , Dn) is defined by  (1.3) and /j and uk are required to be ana- 
lytic in f2, is equivalent  to a system of the type  (1.4) with s = 2 n  real inde- 
pendent  variables and r §  equations, the first r being those of (1.8), and 
the remaining the Ca uc hy -R i e m a nn  equations 

~uk l~uk+ ~uk 1 ~ S j - 2 \ ~ x j  i~xn+j/=O, l< /c~<m,  l~<) '~n .  (1.9) 

The compatibi l i ty  condition (1.5) for the system (1.8), (1 .9 ) invo lv ing  r §  
polynomials in 2n  real variables can now be replaced, as an easy calculation 
shows, by  the equivalent  conditions 

r 

Sj($) Qj~($) = O, 1 < k <~ m:~ • Sj(D) /j= 0 
1 1 

(1.10) 

for all choices of (analytic) polynomials S 1 . . . .  ,S ,  
= (~1, -.., Sn), and 

- 0 ,  l ~ j ~ r ,  l~k<~n. 

in n complex variables 

(1.11) 

Thus, if f~ is convex, (1.8) has an analytic solution in f2 if and only  if (1.10) 
and (1.11) are fulfilled. 
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When /~=0 in (1.8), an analytic solution (u v . . .  ,u~) of (1.8) can be approxi- 
mated  (in E(~) ~) by  linear combinations of solutions of (1.8), (1.9) of the form 
(1.7) where s = 2n. This means tha t  (u 1 . . . . .  urn) can be approximated uniformly 
on compact parts  of ~ by  linear combinations of solutions of (1.8) of the form 

gk(z) e x p ( z l ~ l + . . . + Z n ~ n ) ,  l~<k~<m, (1.12) 

where g~ are analytic polynomials in z. 
These existence and approximation theorems for the general system (1.8) 

combined with an existence, theorem for the Cauchy problem (Theorem 3.1) 
yield similar theorems for the problem (1.1) (1.2) (see Theorems 3.3 and 4.2), 
provided ~ satisfies a geometric condition determined by  the principal par t  
of P ( D ) .  

The subject of the present paper  was suggested to the author by  Professor 
Lars HSrmander,  the questions being originally formulated for boundary problems 
in a real linear space. I t s  scope, however, is determined by  the methods of 
proof employed. Thus Theorem 3.1 is to be regarded rather  as an application 
of the division algorithm for analytic functionals of Section 2. To t reat  the 
real case, an analogous algorithm for distributions with compact support would 
be useful. 

I wish to express here my  grati tude to Professor Lars  H6rmander  for his 
stimulating instruction and incessant interest in m y  work. 

2. Preliminaries concerning analytic functionals 

Let  A(g2) denote the Fr6chet space of all analytic functions in an open set 
c (y~ under the topology of uniform convergence on all compact parts of ~ .  

An element /~ of the dual space A ' (~ )  is called an analytic functional, and a 
compact  par t  K of g2 is called a carrier of /~ if for all neighborhoods ~o of K 
there is a constant C such that  

<c sup lit 
s 

for all /E A(~) .  By  definition any  functional E A'(g2) is carried by  some compact 
set in ~ .  

The Laplace transform /~ of #E~4' (~)  is defined by 

#($)=~(exp  (z,$}), SeC n, 

where (z, ~ ) =  ~ zj ~j. I t  follows tha t  fi is an entire function of exponential 
type, and tha t  /2 determines # uniquely if ~ is a Runge domain. 

We choose Re (z, ~) = log I exp (z, $) I as the bilinear form taking into duality 
two copies of C n regarded as real linear spaces. Consequently, the supporting 
function ~ of a non-empty par t  M of (~ is defined by 

~($) = sup Re (z, ~), ~ e C n. 
z e M  
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I t  is clear that  ~ is convex and positively homogeneous: 

q~(o) = o, q~(~ + tO) < q~($) + tq(o), ~, 0 ~ C", t >1 o, 

and has values in ( -  ~ ,  + ~ ] .  As is well known, 

{zEC"; V~EC": Re <z,~><~v(~)} 

is the closed convex hull of M. We note also that  M is contained in a real 
linear subspace V of C ~ if and only if ~ ( ~ + 0 ) = ~ ( ~ )  for all S EC ~ and all 0 in 

V x = {0 E Cn; Vz E V: Re <z, 0> = 0}. 

In  particular M lies in the complex hyperplane <z,N>=O if and only if 
~v(~ + ~N) = q(~) for all ~ E C ~ and all ~ E C x. 

I t  is clear tha t  if ~t E~4'(~) is carried by a compact set K whose supporting 
function is q, we have with F =f i  

(2.1) 

for ~(~) + ~ [~1 is the supporting function of the neighborhood (z E Cn; 3 w E K: 
] w - z  I <~} of K. (Here [~l 2= ~ I~j]2.) The converse of this s ta tement  (when g 
is convex) is an important  theorem. 

Theorem 2.1. (Martineau-Ehrenpreis-H6rmander) Suppose that (2.1) is valid, 
where F E.,4(C ~) and q) is the supporting /unction o/ a convex compact set K. 
Then /or any Runge domain ~ D K, there is a unique analytic/unctional # E .d'(~) 
such that ft = F, and this /unctional is carried by K. 

Proofs have been given by  three different methods, see Martineau [6], Ehren- 
preis [2], and H6rmander  [4]. When K is a poiycylinder, the theorem follows 
from the P61ya representation of analytic functionals in one variable, but  this 
ease is insufficient for our purposes, cf. Remark  2.4. 

In  the sequel we shall differentiate analytic funetionals according to the 
formula 

(P(D),u) (/) = #(P( - D)/),  / E.,4(~), ,u e .,4'(~), 

where P ( D ) = P ( D  1 . . . . .  D~) is an arbi t rary differential operator with constant 
coefficients, and Dk is defined by  (1.3). By the Cauchy integral formula, 
P(D)/u E A ' (~ )  if /~ E A ' (~) .  We also note tha t  the Laplace transform of P(D)/u 
is P ( - ~ ) p ( ~ ) ,  and tha t  /~(Q(z)exp <z,~})=Q(D~)fi(~) if Q(z) is a polynomial. 

We can now formulate a division algorithm for analytic functionals. Given 
# E A ' (~ )  and a differential operator P(D) with constant coefficients, we t ry  to 
find v, ~EA'(g2) such that  / ~ = P ( - D ) v + ~  and ~) is orthogonal to all functions 
in A(~)  having vanishing Cauchy data of order < m  in the complex hyper- 
plane <z, N} = O, where m is the order of P(D). When ~ is a Runge domain, 
the Laplace transformation reduces this to a division algorithm for entire func- 
tions, /2(~)=P(~)v(~)+~($).  The condition on ~ is reformulated in terms of ~ by  
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the following lemma. We say tha t  an entire function H is of degree < m in 
the direction N if, for any  ~ E C n, the function C 1 ~ r  H(~ + r E C 1 is a poly- 
nomial of degree < m in one variable. 

Lemma 2.2. Suppose f~ is a Runge domain and ~ EA'(f2). Then ~ is o~ degree 
<m in the direction N + O  i/ and only i/ Q is orthogonal to all/unctions u E A ( ~ )  
having zero Cauchy data o/ all orders < m in the hyperplane (z, N ) =  O. 

When N = (0, ..., 0, 1), the latter condition means that  Q(u)=0 if 

D~u(z 1 . . . . .  Z n _ l ,  0) = 0 when (z 1 . . . . .  Z n _ i ,  O) E g2, 0 <~ k < m. (2.2) 

Proo/. We may  suppose that  N =  (0 . . . .  ,0, 1). I f  Q is orthogonal to the so- 
lutions of (2.2) we can in particular choose u(z)= z m exp (z, ~} and get 

~m 
0 =  e(z .  ~ exp (z, ~))= ~b($)  

ogn 
(2.3) 

which proves tha t  ~ is a polynomial in ~n of degree less than m. 
Conversely, suppose ~ has degree less than m in the direction (0, ..., 0, 1). 

Then (2.3) follows, and also ~(z m v )=  0 for any v E~4(f2) since linear combina- 
tions of the exponential functions are dense in ~4(f2). :But any  solution u E A(~)  
of (2.2) is of the form u(z)=zmv(z) for some v EA(f2) (also if (2.2) is empty) 
so this completes the proof of the lemma. 

We are thus led to s tudy representations 

F(~) = P($) G(~) § U(~) (2.4) 

of an entire function F of exponential type, where P is a given polynomial of 
degree m, and G, H are required to be entire, H being of degree less than m 
in a direction N ~ 0. We also want G and H to be Laplace transforms of ana- 
lytic functionals in A'(Cn), i.e. G, H shall be of exponential type, and this is 
possible for arbi trary F only when 

p(N) * 0, (2.5) 

where p is the homogeneous par t  of P of degree m. We assume tha t  (2.5) is 
satisfied in all what follows. 

The representation (2.4) is always unique. In  fact, (2.4) is equivalent to 

G(~ + TN)_  F(~ + TN) H(~ + TN) (2.6) 
TP(~ + 7:N) zP(~ + zN) ' 

where zEC 1, ~EC ~. For an arbi t rary fixed ~EC ", the zeros of ~---~zP(~+zN) 
lie inside some circle F, and if H is of degree < m in the direction N we get 
from (2.6) 

G(#)= L frF(# +~N)d~ (2.7) 
~P(~ + vN) 

provided only (2.5) is fulfilled. This determines G and hence H uniquely. 
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On the other  hand, (2.7) defines indeed an entire function, and if we p u t  
H = F -  PG we have 

H(~) = 2~iil f r  F(~ + ~N) rP(~(P(~ ++ rN)~N)- P(~)) dr (2.8) 

We now use the ident i ty  

P(~ + rN) -  P(~ + aN)_ 
Z (O'--  r l )  " '"  ((Y-- Tk-1)  ( r - - r k + l )  " '"  ( T - -  rm) ,  (~ - a)p(N) 

where T 1 . . . . .  T m are the zeros of T--~P(~+TN) for a f ixed ~, and obtain 

1 f r  F(~+rN)dr H ( ~ + a N ) = ~ ( a - r l ) l  "'" ( a - r k  ~ ) ~  @ _ ~ x )  :.. (~--_~:k) 

af ter  a change of variable in the line integral (2.8). This proves tha t  H is of 
degree < m in the direction N,  and so the existence of a representat ion (2.4) 
is established. 

I t  remains to est imate the growth of G and H. Suppose F satisfies 

(2.9) 

for some continuous and posit ively homogeneous funct ion ~. If  H happens to 
be zero we can apply  the inequal i ty  

{p(N)G(~) < s u p  [P(~+rN)G(~+rN)]=sup ] F ( ~ + z N ) ]  (2.10) 

(see e.g. [3, Lemma 3.1.2]) to prove tha t  G=Y/P satisfies (2.9) with the same 
funct ion q. In  the general case we choose coordinates so tha t  N =  (0, ..., 0, 1) 
and write ~=  (~', ~=), ~ ' =  (~1 . . . . .  ~ -1 ) .  Now (2.8) takes the form 

1 fr_F(r r)S(C, r) & (2.11) 
H(~) = 2 z i  P(~',  r) ' 

where S(~, T)=  (P(~', r ) - P ( ~ ) ) / ( r - ~ n )  is a polynomial  in n +  1 variables of de- 
gree m - 1  and F is any  sufficiently large circle. Le t  0' 1 . . . . .  o" m be the zeros of 
a-->p(~',a) for some a rb i t ra ry  ~'E@ ~-1, and let y be the boundary  of the union 
of the disks with centers a t  a 1 .... , am and radii equal to (~ [~'], where (~ E (0, 1] 
is specified later. In  view of (2.5) there  is a constant  A such t ha t  p(~', a)=0 
implies [~[ ~<A [ ~'[, and hence r E y implies [ r [ ~< (A § 1) [ ~'[. We conclude tha t  

rey , lp ($ , , r )_p(~ , , r ) l<B( l  +l~,lm 1) 

for some constant  B independent  of ~' and (~. Hence we obtain if r E y 

t I P ( ~ ,  v) l ~ I P(~', r)  l - B(1 § IF' I m-l) >~ I P(N) I ((~ I~'1) m - B(1 + I~' I~-1), 
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for p(~', T)=p(N)1~  n @-ak)  where each factor in the product has absolute value 
not less than ~ I~'l. Hence, for some constant a~ depending only on P and ~, 
I~'I>a~ implies that  the zeros of a -+P(~ ' , a )  lie inside ~,, and that  Ip(~',~)I>~l 
when ~E 7. Using (2.9) and (2.11) with F replaced by the cycle ~ we now ob- 
tain for ~>0  

sup I&t exp 

lf l~ a~. Since ~ is positively homogeneous and uniformly continuous in 
{0; 0[~<2}, we can to each ~>0  choose ~E(O, 1] such that  ~ , -0  ~<~ 0 implies 

" ~ �9 . # t [~v(~)-~v(0)[ --~s[O[, in partmular ]~v(~, ~ ) -  ~0(~, ~g)[ ~<~(A + 1) ~" for some k when 
~ ~, and hence 

[H(~)I ~<~ sup I~1 ~ exp (~(~',gg)+e(2A +3)[~'[) 
k 

when I~'I > ao. This, together with the fact that  H is a polynomial in ~n of 
degree less than m, gives 

Ve>O3CV~ECn: !H(~)I~<C exp (2.12) 

where y/ is positively homogeneous and continuous, 

~'(~) =sup (q(~', 0); p(~', 0)=0).  (2.13) 

Putting yJ(~) = sup (~(~), yJ(~)) (2.14) 

we get the same estimate for F - - H  with y/ replaced by ~p and hence from 
(2.10) also for ( F - H ) / P = G ,  

V >03OV  cn: exp (2.15) 

The estimates (2.9), (2.12), and (2.15) can now be interpreted in terms of 
analytic functionals by means of Theorem 2.1. 

Theorem 2.3. Suppose P(D) is a di//erential operator o/ order m with constant 
coe//icients satis/ying 

p(0 . . . . .  0, 1)#0,  (2.16) 

where p is the homogeneous part o/ P o~ order m. Let ~ be a convex open set 
in C ~ (hence a Runge domain) such that ~ ' =  {zE~; z~=0} is non-empty, and 
suppose that the supporting /unction (I) o/ ~ satis/ies 

O(~) = O'(~) i/ p(~) = 0, (2.17) 

where ~ '  is the supporting /unction o/ ~' .  Then /or any # E A ' ( ~ ) t h e r e  exist 
uniquely determined analytic /unctionals v, ~E.,4'(~) such that 

# = P( - D) v + ~ (2.18) 
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and ~ is orthogonal to all/unctions u ~ A(~) satis/ying 

D~u(z)=O when z ~ ' ,  O~k<m. 

Proof. We write F=ft  and define v, g E A ' ( C  ~) by  ~=G,~=H where G,H are 
found by  (2.7) and  (2.8) respectively. According to (2.12) and  Theorem 2.1, 
is carried by  any  convex compact  set L '  in the plane Zn = 0 whose support ing 
funct ion ~ '  satisfies 

~v'(~) ~> ~(~) if p(~) = 0, (2.19) 

where ~v is the support ing funct ion of some carrier K of /~ contained in 
(note t ha t  y/ is independent  of ~n).  Let  ~v~ be the support ing functions of 
convex compact  sets L~ such tha t  Lj~L/+I and L I L ~ = ~ ' .  We claim tha t  for 
some ], (2.19) is valid with ~0' =~v~. Otherwise all the compact  sets 

{~een; W~(r <~($),  p ( g ) = 0 , 1 $ l =  1} 

are non-empty,  hence their intersection contains some point  ~ e C ~, i.e. I~l = l ,  
p($) = 0, and 

dp'(~) = dp(~) = lim ~v~ (~) < ~(~). 

I f  q)(~) happens to be infinite, this inequali ty is impossible, and if (I)(~) < + oc 
we can take z E K  such tha t  

Re <z, $> = ~(~) >~ r  

This means in part icular  tha t  z lies on the boundary  of ~ ,  also a contradic- 
tion. Thus ~ is carried by  some compact  pa r t  L '  of f~', and hence v is carried 
by  the convex hull of K U L '  which is a compact  par t  of f~. I n  particular,  
v and ~ can be extended to A(f~), and this proves the theorem since Lemma 
2.2 shows tha t  ~ has the desired properties. 

Remark 2.4. For  a ny  convex set ~'~I relatively open in the plane z= = 0 there 
exist open sets ~ c ( P  satisfying (2.17) such tha t  ~ ' = ~ 1 "  I n  fact, we m a y  
wi thout  restriction suppose tha t  0 E ~  1 and then define ~ as the convex hull 
of ~ l U { ( 0 ,  zn)e(~ ;  [znl<a}, where a is specified below. Then ~ ' = ~ 1  and if 
we denote the support ing funct ion of ~1 by  qb 1, the support ing funct ion of 
becomes 

r = sup (r (~), a l~=l), 

and (2.17) is satisfied as soon as 

a I =1 < O1 (~) when p($) = 0. (2.20) 

Since 0 ~  1 w e  have e ~'I~<dPl(~) for some e>O,  and since p(O . . . . .  0,1) 4 0 ,  
we have alr162 when p (~ )=O for some a > O .  Hence (2.20) is valid when 
a is small enough. On the other  hand, no bounded polycylinder f~ satisfies 
(2.17) (unless n =  1 or p is constant),  and this shows also tha t  one is not  al- 
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lowed to restrict attention to polycylinder carriers of the functionals occurring 
in (2.18). Indeed, let f ] = ~ ' •  where ~ ' c I 3  ~-1 is bounded and ~nc(~  1. 
Then O(~)=r if O, (I)', and (P~ are the supporting functions in C n, 
Cn 1, and (31 of f], ~ ' ,  and f~n respectively. (2.17) now implies that  r 
when p(~) = 0, and hence (if m > 0) that  On = 0, ~ = O. 

3. Existence of solutions of boundary problems in convex complex regions 

We first investigate in which convex open sets in Cn a  non-characteristic 
Cauchy problem (3.3), (3.4) has a solution for arbitrary analytic right-hand side 
and data. 

Theorem 3.1. Let ~ be a convex open set in C n such that ~ ' =  {z E g2; zn = 0} is 
non-empty and suppose that the supporting functions @ and r o / ~  and ~ '  satisfy 

O(~) = O'(~) when p(~) = 0 (3.1) 

/or some homogeneous polynomial p o/ degree m such that 

p(0 . . . .  ,0, 1) =~ 0. (3.2) 

Further, let P(D) be a differential operator with constant coefficients whose prin- 
cipal part is p(D) (where D =  (D 1 . . . . .  D~) is defined by (1.3)). Then the Cauchy 
problem 

P(D) u = f in ~ ,  (3.3) 

D~ u(z', O)=gk(z') in ~ ' ,  O~<k<m, (3.4) 

has a unique solution u E A ( ~ )  /or every f E A ( ~ )  and every g = (go . . . . .  g,~-l) E A ( ~ ' )  m. 
Here z = (z', z~), z '=  (z 1 . . . . .  Z~-l). The solution depends continuously on / and g, 
i.e. /or every compact part K of ~ there exist compact sets L c ~ and L' c ~ '  and 
a constant C such that 

m - 1  

sup [u[ < C(sup [P(D) u [ + sup ~. ]D~ ul) 
K L L '  0 

(3.5) 

/or all u E I4(~). 

Proof. We define an operator T from the Frdchet space :~ = A ( ~ ) •  m to 
A(~) by T F = T ( f ,  go . . . .  ,gm-1)=u if u is a solution of (3.3), (3.4). According 
to the Cauchy-Kovalevsky theorem (see the proof of Theorem 5.1.1 in H6r- 
mander [3]), the Cauchy problem has a solution u E A(C n) when / and gk are 
entire, i.e. when F E 51 = A(C ~) • A(C~-I) m c 5. Thus T is densely defined in :~, 
and T is obviously closed. We are going to prove that  T is continuous in :~1 
(with respect to the topology induced by :~). This is only possible when T is 
everywhere defined in 9:, and hence T is continuous, i.e. (3.5) is valid. 

Now for an arbitrary compact set K c f ] ,  let Bt: be the Banach space 
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~ K = { # e A ' ( ~ ) ;  II#ll = sup ( I t ; (~) l / snp I~(~)1)< + ~ } ,  
u e A(g2) z ~ K 

and  let Uj, j =  1, 2 . . . .  , be a fundamen ta l  sys tem of neighborhoods of 0 in :~1" 
We set if FE:~I ,  

MF={~EBK; ]/~(TF)] ~<1}. 

This is a closed convex symmet r i c  set in BK. Thus  the same is t rue  of the 
intersection 

Mj = [1 (M~; F e Uj). 

I f  # E B K  we have  b y  Theorem 2.3 

/~(u) = v(P(D) u) + ~(u), 

where v, ~ E A'(t ' l )  and  ~ is zero on all entire functions u such tha t  D~ u(z', O) = O, 
0 ~< k < m. Defining ~ E A'(~I ' )  by  ~)k(v) = ~(v(z') z~/k !) we can write 

m 1 
e(u) = ~ ~ ' ~(Dnu(z , O)), uEA(C~), 

0 

which follows f rom the Taylor  expansion of u. Hence  

m - 1  

/~(TF) = v ( / ) +  ~ e~(gk) 
0 

which proves  t ha t  for some sufficiently large i, t/~(TF) I ~< 1 as soon as F e Uj. 
We  have  proved  tha t  ( J ~  Mj=BK. 

Since B~ is a complete  metr ic  space, the Baire  ca thegory  theorem shows t h a t  
0 is in the interior  of some Mj, i.e. for some constant  C, I I / ~ ] ] < I / C  implies 
t ha t  ] /~(TF)]<  1 for all F E  Uj. This means  t ha t  

for all # E B K  and all F E U j .  For  some compac t  sets L c g l  and  L ' c g l '  and  
some cons tant  B we now have  

m - 1  

supL + supL, 0 Ig l < e u, ,  

and this implies t ha t  for all # G BK, F E :~1 

r n - 1  

I~(TF)I~BCI]#I[ (sup I / l+ sup  Ig l). 
L L" 0 

Applying  this es t imate  to the Dirac  measures  # ( u ) = u ( z )  where z E K, we have  
I]~ II ~< 1, and  hence 
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m 1 

sup ITFI ~<BC(sup I/I +sup Ig [) 
K L L" 0 

for all F E :~1 which proves that  T is continuous in :~1- The proof is complete. 
The following theorem is a converse of Theorem 3.1. 

Theorem 3.2. Let ~ be a convex open set in ~n such that ~ ' = { z  Eg2; z~=O} 
is non-empty. Suppose that a non-characteristic Cauchy problem 

P(D) u = O in ~, (3.6) 

D~u(z ' ,O)=gk(z ' )  in ~ ' ,  O ~ k < m ,  (3.7) 

where P(D) is a constant coe//icient di//erential operator o/ order m, always has a 
solution u E A ( ~ )  when gk E A(~ ' ) .  Then (3.1) is valid /or the supporting /unc- 
tions ~ and ~ '  o/ ~ and ~ '  i/ p(D) denotes the principal part o/ P(D). 

Proo/. The mapping 

{u E A(~); P(D) u = 0} 9 u--> (u(z', O) . . . . .  D~ -1 u(z', O)) e A (~ ' )  m 

is continuous, defined in a Fr~chet space, and according to the Cauchy-Kova- 
levsky theorem it is one-to-one. The hypothesis in the theorem means that  its 
range is all of A(~ ' )  m, a Fr~chet space. From an application of Banach's theo- 
rem it follows that  the inverse mapping is also continuous, i.e. for any com- 
pact part  K of ~ there exist a compact set L'  c ~ '  and a constant C such that  

sup lu]<C sup sup {D~ul (3.8) 
K O ~ k < m  L" 

for all u E A ( ~ )  satisfying (3.6). Now let ~EC =, I 1:1, be given with p(~)=O. 
We can choose a sequence (0 (j)) of points in C = such that  P(0(J))=0, 0(J>/[0(J>[-~, 
and 10(r § ~ as ?'--> + c~. Applying (3.8) to the solution u (z )=exp  <z, 0 (j)} 
of (3.6) and K = { z } c ~ ,  we obtain 

Re <z, 0(J)> ~<log C+  sup k log Io )l 
O ~ k < m  

if yJ' is the supporting function of L ' c  s Dividing this inequality by ]0(J) I and 
letting y" tend to infinity gives 

Re (z, $> < ~'(~) < O'(~). 

Since z E ~ was arbitrary we have proved that  

O(~) ~< (I)'(~) if p(~) = 0, 

which together with the obvious inequality (I)'~<gp gives (3.1). The proof is 
complete. 
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We now turn  to the case when (3.4) are replaced by  more general conditions 
in the hyperplane z~ = 0. 

Theorem 3.3. Let s s and P(D) satis/y the hypotheses made in Theorem 3.1, 
and let Q1 (D) . . . . .  Q~ (D) be arbitrary di//erential operators with constant coe//icients. 
Then the 'boundary problem' 

P(D)u=/  in ~ ,  (3.9) 

Qj(D)u=gj in s 1 <~j<~r, (3.10) 

where /EA(~) ,g l ( z ' )  . . . . .  g~(z') E.,4(s ha8 a solution u E A(s i~ and only i/ the 
compatibility condition 

r T 

So(~)p(~)+ ~ S,(~')Q,(~)=O:~So(D)/+ ~ Sj(D')gj=O in s 
1 1 

(3.11) 

is satisfied/or all choices o/polynomials S o (~), S 1 (~') . . . . .  S~ (~'). Here ~' = (~1 . . . . .  ~-1)  
and D '  = (D 1 . . . . .  D~ 1). 

Proo/. The condition is obviously necessary, and we are going to prove its 
sufficiency using the theory  of general systems of differential equations with 
constant  coefficients ment ioned in the introduction. I n  view of (3.2) we can 
find polynomials  R s such tha t  Q j -  R i P has degree < m in ~ .  We then replace 
Qj by Q j - R j P  and gj by  g s - R j ( D ) /  to  obtain a problem equivalent  to (3.9), 
(3.10) where the new conditions in the hyperplane z~ ~ 0 involve only differentia- 
tions of order less than  m in zn. We m a y  suppose in the sequel t ha t  this sub- 
st i tut ion has a l ready been achieved. I n  this si tuation the condition (3.11) is 
equivalent  to 

~ S j ( ~ ' ) Q j ( ~ ) = O ~ S s ( n ' ) g s = O  in ~ '  (3.12) 
1 1 

for all polynomials S 1 . . . . .  ST in n - - 1  variables. The conditions (3.10) can now 
be rewrit ten as a system with n - 1  independent  variables 

m - 1  

Qjk(D')uk(z')=gi(z' ) in s 1 <~j<~r, (3.13) 
0 

where Qj(D) = ~ - 1  k D~Qj~(D) and uk(z')=D~u(z',O). In t roduc ing  Qj~ in (3.12) 
we obtain 

~ S ~ Q s ~ = O , O ~ k < m : ~ S j ( D ' ) g j = O  in g2' (3.14) 
1 1 

for all polynomials S 1 . . . . .  Sr in n -  1 variables. This is the compat ibi l i ty  condi- 
t ion (1.10) for the system (3.13), so by  the existence theorem for general sys- 
tems we can find a solution (w 0 . . . . .  win-l) E A(s m of (3.13). Now Theorem 3.1 
shows tha t  the Cauchy problem 
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P(D) u = /  in ~ ,  

D~nu=w~ in ~ ' ,  O<~k<m, 

has a solution u E A(~).  This completes the proof since u obviously satisfies 
(3.10). 

4. Approximation of solutions of  homogeneous boundary problems in convex 
complex regions 

Using Theorem 3.1 we derive from the approximation theorem for general 
systems of differential equations a corresponding result for boundary problems 
in a convex open set in C n. 

Lemma 4.1. Let P(D) be a di//erential operator with constant coe//icients o] 
order m such that the plane zn = 0 is non-characteristic, and/o . . . . .  /m-1 polynomials 
in n -  1 variables. Then the solution u o/ the Cauchy problem in C n 

P(D) u = 0, (4.1) 

D~u(z',O)=/~(z') exp <z',O'}, O<~k<m, (4.2) 

rn 
has the /orm u(z) = exp @', 0'> ~gj(z) exp (z,~vj), (4.3) 

1 

where gj are polynomials and -cj complex numbers. (z= (z',Zn), z '= (z 1 . . . . .  zn-1).) 

Proo/. We define 

1 ~" Pk($',~) exp <z, (~',T)>dv 
E k ( z ; ~ ' ) = ~ . j r  , 0 < k < m ,  P(~', ~) 

where F is a circle in C 1 surrounding the zeros of z -+P(~ ' , z )  and 

Pk(~t, T ) :  ~ T } k-l  aj(~t) 
k + l  

if aj are defined by P(~', T) = ~ TJaj(~'). 
0 

Arguing as in the proof of Lemma 5.7.4 in [3], we get 

P(D) Ek = O, 

D~Ek(z',0; ~ ' )=0  if O<~}<k or k < j < m ,  

and Dn k Ek (z', 0; ~') = exp @', ~'>. 
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I t  is easy to see tha t  Ez are entire functions of (z; ~') E C 2n-~ and of form (4.3) 
for a fixed ~ ' = 0 ' .  The same is true of 

which is the solution of the Cauchy problem (4.1), (4.2). 

Theorem 4.2. Let ~,  ~' ,  and P(D) be as in Theorem 3.1, and let QI(D) . . . . .  Qr(D) 
be arbitrary di//erential operators with constant coe//icients. Then the linear com- 
binations o/ solutions o/ type (4.3) o] the boundary problem 

P(D) u = 0 in ~ ,  (4.4) 

Qj(D) u=O in ~' ,  l <~]~r, (4.5) 

are dense (under the topology induced by A(~) )  in the set o/all  solutions in ,,~(~) 
o/ the same problem. 

Pros/. As in the proof of Theorem 3.3 we m a y  a s s u m e  tha t  QI(~) . . . . .  Qr(~) 
are all of degree less than  m in ~ .  We also write (4.5) as a homogeneous 
sys tem 

m - 1  

Qjk(D')uk=O in ~ ' ,  l ~ < ] ~ r ,  (4.6) 
0 

using the nota t ion of (3.13). Now the approximat ion  theorem for general sys- 
tems of the type  (4.6) (see Section 1) shows tha t  to any  given solution 

(% . . . .  , urn- l )  c A ( ~ ' )  m 

of (4.6) there exist solutions of (4.6) of the form 

t 
(Wosj . . . . .  Win-l. s.~) = exp <z', 0~j> (/0~j . . . . .  /m 1. s.~), 

where ]ksj are polynomials  in n - 1  variables (cf. (1.12)) such tha t  

Ns 

Wk~= ~ Wk,~, O < k < m, s= l,  2 . . . . .  
1 = 1  

tend to uk in A ( ~ ' )  when s--> + ~ .  The unique funct ion v~j C A ( ~ )  satisfying 

P(D) Vsj = O, 

k ! ! Dnv~j(z,O)=wk~s(z ), 0 ~ < k < m ,  

is according to Lemma 4.1 of type  (4.3), and  is also a solution of (4.4), (4.5). 
Now set 

Ns 

vs= ~ vs s, 8 = 1 , 2  . . . . .  
Yffil 
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T h e  C a u c h y  d a t a  of  vs of o r d e r  < m t e n d  to  t h o s e  of  u ( in t h e  t o p o l o g y  o f  
A(g2 ' )  m) w h e n  s - *  + ~ ,  a n d  b y  T h e o r e m  3.1 we c o n c l u d e  t h a t  vs-->u i n  A(g2).  
T h e  t h e o r e m  is p r o v e d .  

Department o] Mathematics, University o] Stockholm. 

R E F E R E N C E S  

I. EHRE~PREIS, L., A fundamenta l  principle for systems of linear differential equations wi th  
constant  coefficients, and  some of its applications. Proc. In te rna t .  Sympos. Linear  
Spaces, 161-174. Jerusalem 1961. 

2. , The structure of solutions of systems of part ial  differential equations. Stanford 
Universi ty  1961. 

3. H6RMA~DER, L., Linear part ial  differential operators. Springer 1963. 
4. - - ,  Lectures on functions of several complex variables. Stanford Universi ty  1964. 
5. MALGRANGE, B., Sur les syst~mes diff~rentiels ~ coefficients constants.  Colloques interna-  

t ionaux du C.N.R.S. no. 117. Les Squations aux d6riv~es partielles, 113-122. 
Paris 1963. 

6. MARTINEAU, A., Sur les fonctionelles analytiques et la t ransformat ion de Fourier-Borel.  
J .  Analyse Math. 11 (1963), 1 164. 

Tryckt  den 28 juli 1965 

Uppsala 1965. Ahnqvist & Wiksells Boktryckeri AB 

2 0 7  


