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Existence and approximation theorems for solutions of

complex analogues of boundary problems

By C. O. KiseLmMAN

1. Introduction

The purpose of this note is to prove existence and approximation theorems
for analytic solutions of a differential problem of the form

PD)u=f in Q, (1.1)
QD)yu=g; in HNQ, 1<j<r, (1.2)
where () is a convex open set in C*, H a complex hyperplane in C*, and P(D),
Q;(D) are constant coefficient differential operators in D={(D,, ..., D;) where
o 1{¢ 0
==y — 1.3
. 3zk 2 (6xk ¢ 6xn+k) ’ ( )

(the coordinates of C"=R?" are written z,=a,+ iy, where k=1,...,7 and
Xy, ¥y are real). The hyperplane H is supposed to be non-characteristic with
respect to P(D), but no restriction is imposed on the operators @, (D), ..., @, (D).
We call (1.1), (1.2) (by abuse of language) a ‘boundary problem in the complex
region ()’. Our main result is a geometric characterization (Theorems 3.2 and
3.3) of those convex open sets Q< C™ in which the problem (1.1), (1.2) can be
solved for all choices of operators @;(D) and all analytic functions f, g, satisfying
a natural condition. The proof depends on a division algorithm for analytic
functionals (Theorem 2.3) as well as on the theory of general (overdetermined)
systems of differential equations with constant coefficients.
Consider a system of differential equations in an open set o <R’

z 1Y .
> Py (('7.’)3) w,=f; 1<j§<r, (1.4)
1

where 9/0x=(8/0x,, ...,8/0x;) and f,€E(w), the space of infinitely differentiable
complex-valued functions in w, and P;(d/dx) are differential operators with
constant coefficients. A necessary condition for (1.4) to have a solution u; € €(w)
is that
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C. 0. KISELMAN, Solutions of complex analogues of boundary problems
T T 8
ZGj(S)ij(§)=O,l<k<m$ZGj(a—x)fj=0 (1.5)
1 1

for all choices of polynomials G (§), ..., G (§). Conversely, an existence theorem
for systems states that when w is convex and (1.5) is fulfilled, (1.4) can be
solved with %, € E(w). This has been proved by Malgrange [5] and Hérmander
{according to personal communication, the proof will be included in a forthcoming
monograph based on [4]), and is also a consequence of the fundamental prin-
ciple of Ehrenpreis [1], [2]. The same authors have proved that when w is
convex, any solution (u,,...,u%,)€&E(w)™ of

Zij(aix)uk:O, 1<j<r, (1.6)
1

can be approximated in &(w)™ by linear combinations of solutions of the form
gr(x) exp (2, + ... ta; ), 1<k<m, (1.7)

where g, are polynomials and {; complex numbers.
Now a general system in Q< (",

ngk(D)uszj, 1<y<r, (1.8)

where D= (D,,...,D,) is defined by (1.3) and f; and u, are required to be ana-
lytic in Q, is equivalent to a system of the type (1.4) with s=2n real inde-
pendent variables and r+mn equations, the first r being those of (1.8), and
the remaining the Cauchy-Riemann equations

auk_l(auk"‘i 37146):0’ 1<k<m, 1<j<n. (1.9)

%_2 Ev; 3xn+;

The compatibility condition (1.5) for the system (1.8), (1.9) involving r+mn
polynomials in 27 real variables can now be replaced, as an easy calculation
shows, by the equivalent conditions

;sj(z)gﬂc(g)zo,1<k<m:,gsj(p)f,.:o (1.10)
for all choices of (analytic) polynomials S,...,S, in = complex variables
é‘ = (Cp s Cn); a’nd

%=0, 1<j<r, 1<k<n. (1.11)
2y

Thus, if Q is convex, (1.8) has an analytic solution in Q if and only if (1.10)
and (1.11) are fulfilled.
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When f;=0 in (1.8), an analytic solution (u,, ... ,u,) of (1.8) can be approxi-
mated (in £(Q)™) by linear combinations of solutions of (1.8), (1.9) of the form
(1.7) where s=2%. This means that (u,,...,%,) can be approximated uniformly
on compact parts of Q by linear combinations of solutions of (1.8) of the form

g (z) exp (2, {+ ... t2,80), 1<k<m, (1.12)

where g, are analytic polynomials in z.

These existence and approximation theorems for the general system (1.8)
combined with an existence - theorem for the Cauchy problem (Theorem 3.1)
yield similar theorems for the problem (1.1) (1.2) (see Theorems 3.3 and 4.2),
provided € satisfies a geometric condition determined by the principal part
of P(D).

The subject of the present paper was suggested to the author by Professor
Lars Hérmander, the questions being originally formulated for boundary problems
in a real linear space. Its scope, however, is determined by the methods of
proof employed. Thus Theorem 3.1 is to be regarded rather as an application
of the division algorithm for analytic functionals of Section 2. To treat the

real case, an analogous algorithm for distributions with compact support would
be useful.

I wish to express here my gratitude to Professor Lars Hormander for his
stimulating instruction and incessant interest in my work.

2. Preliminaries concerning analytic functionals

Let A(Q)) denote the Fréchet space of all analytic functions in an open set
Q<€ under the topology of uniform convergence on all compact parts of €.
An element y of the dual space A'(Q) is called an analytic functional, and a
compact part K of € is called a carrier of u if for all neighborhoods w of K
there is a constant ¢ such that

()| < C sup ||

for all {€4(Q). By definition any functional € 4’(Q) is carried by some compact
set in Q.

The Laplace transform g of u€A4'(Q) is defined by

&) = plexp (z,0>), [€C,

where (z,(>=2>1z;{; It follows that 4 is an entire function of exponential
type, and that g determines u uniquely if Q is a Runge domain.

We choose Re <{z,{> =log |exp <z,£)>| as the bilinear form taking into duality
two copies of C" regarded as real linear spaces. Consequently, the supporting
function ¢ of a non-empty part M of € is defined by

p(l) =sup Re (z, 05, (€C”
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C. 0. KISELMAN, Solutions of complex analogues of boundary problems
It is clear that ¢ is convex and positively homogeneous:
P(0)=0, @(l+10)<e(l)tip(d), (,0€C",t>0,
and has values in (— oo, + o0]. As is well known,
{z€0" VZEC": Re <z, 0 <g(l)}

is the closed convex hull of M. We note also that M is contained in a real
linear subspace V' of C" if and only if ¢({+0)=¢({) for all {€C" and all 6 in

Vi={0eC"; Vz€V: Re <(z,06)=0}.

In particular M lies in the complex hyperplane <z, N>=0 if and only if
@l +TN)=g¢({) for all €C" and all 7€C.

It is clear that if u€4'(Q) is carried by a compact set K whose supporting
function is ¢, we have with F=j

Ve>03C0VZeC™ |F()|<C exp () +ell]), (2.1)

for @({)+&|¢| is the supporting function of the neighborhood {2€C"; Jw€K:
|w—z|<e} of K. (Here [(]*=2|7,]>.) The converse of this statement (when K
is convex) is an important theorem.

Theorem 2.1. (Martineau—Ehrenpreis—Hormander) Suppose that (2.1) is valid,
where F€A4(C") and ¢ is the supporiing function of a convexr compact set K.
Then for any Runge domain Q> K, there is a unique analytic functional p € A (Q)
such that g=_F, and this functional is carried by K.

Proofs have been given by three different methods, see Martineau [6], Ehren-
preis [2], and Hoérmander [4]. When K is a poiycylinder, the theorem follows
from the Pélya representation of analytic functionals in one variable, but this
case is insufficient for our purposes, of. Remark 2.4.

In the sequel we shall differentiate analytic functionals according to the
formula

(P(DYyp) ()= u(P(— D) f), fE€AQ), ne€A(Q),

where P(D)=P(D,,...,D,) is an arbitrary differential operator with constant
coefficients, and D, is defined by (1.3). By the Cauchy integral formula,
PDyueA'(Q) if ueA(Q). We also note that the Laplace transform of P(D) u
is P(—0)p(L), and that u(Q(z) exp <z, {>)=Q(D;) () if Q(z) is a polynomial.

We can now formulate a division algorithm for analytic functionals. Given
u€A(Q) and a differential operator P(D) with constant coefficients, we try to
find », € A'(Q) such that y=P(—D)y+p and g is orthogonal to all functions
in A(Q) having vanishing Cauchy data of order <m in the complex hyper-
plane <z, N>=0, where m is the order of P(D). When Q is a Runge domain,
the Laplace transformation reduces this to a division algorithm for entire func-
tions, a(l)=P({)v(l)+o(Z). The condition on g is reformulated in terms of ¢ by
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the following lemma. We say that an entire function H is of degree <m in
the direction N if, for any €C", the function C'37—>H({+ TN )EC is a poly-
nomial of degree <m in one variable.

Lemma 2.2. Suppose Q is a Runge domain and g€ A'(Q). Then ¢ is of degree
<m in the direction N0 if and only if o is orthogonal to all functions u € A(Q)
having zero Cauchy data of all orders <m in the hyperplane {z, N»=0.

When N=(0,...,0,1), the latter condition means that g(u)=0 if
Diuzy, ..., 22-1,0)=0 when (2, ...,2,-1,0)€Q, 0<k<m. (2.2)

Proof. We may suppose that N=(0,...,0,1). If g is orthogonal to the so-
lutions of (2.2) we can in particular choose u(z) =2} exp <{2,{> and get

1

olw

0= (7 exp <z, {)= = 0(0) (2.3)

which proves that ¢ is a polynomial in {, of degree less than m.

Conversely, suppose ¢ has degree less than m in the direction (0, ...,0,1).
Then (2.3) follows, and also g(z; v)=0 for any v€ 4(Q) since linear combina-
tions of the exponential functions are dense in 4(Q). But any solution u € A(Q)
of (2.2) is of the form wu(z)=zTv(z) for some v€ A4(Q) (also if (2.2) is empty)
so this completes the proof of the lemma.

We are thus led to study representations

F(O)=P()G(0) + H(C) (24)

of an entire function F of exponential type, where P is a given polynomial of
degree m, and &, H are required to be entire, H being of degree less than m
in a direction N+0. We also want G and H to be Laplace transforms of ana-
lytic functionals in A4'(C"), i.e. ¢, H shall be of exponential type, and this is
possible for arbitrary F only when

PN)*0, (2.5)

where p is the homogeneous part of P of degree m. We assume that (2.5) is
satisfied in all what follows.
The representation (2.4) is always unique. In fact, (2.4) is equivalent to

GC+N)_ F(+1N)  H(+N)

T tP(+zN) TP +IN) (2:6)

where 7€C', £€C". For an arbitrary fixed {€C", the zeros of v—>1P(+1N)
lie inside some circle T', and if H is of degree <m in the direction N we get

from (2.6)
G(C)ZLJ' F(+N)dr

27 ) TP(C+7TN) (27)

provided only (2.5) is fulfilled. This determines G' and hence H uniquely.
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On the other hand, (2.7) defines indeed an entire function, and if we put
H=F—PG we have

_ 1 [ F{+N)(P(C+zN)— P(())d
HO=4 5 f - TP(C 1 TN) : (2.8)
We now use the identity
P(l+*N)-P(l+oN) T B - _
(T— o) p(N) = ; (6—1) - (0= To-1) (T~ Tpa1) -« (T— ),
where 7, ..., T, are the zeros of v—P({+1N) for a fixed {, and obtain
NG S B | (o Lo
H(CJFGN)_;(G T (o Tkl)?m'J‘p (T—1) . (T— )

after a change of variable in the line integral (2.8). This proves that H is of
degree <m in the direction N, and so the existence of a representation (2.4)
is established.

It remains to estimate the growth of G and H. Suppose F satisfies
Ye>030VieC: |F(Z)|<O exp (p(&)+e|L]) (2.9)

for some continuous and positively homogeneous function ¢. If H happens to
be zero we can apply the inequality

PN 6Q) [ <sup |PC+eN) G +7N) | =sup [FC+eM)|  (210)

(see e.g. [3, Lemma 3.1.2]) to prove that G = F/P satisfies (2.9) with the same
function ¢. In the general case we choose coordinates so that N=(0,...,0,1)
and write =1({', (), &'=({,, ..., Cn-1). Now (2.8) takes the form

1 f F(E, 18, 7 de

HE) =5 P T

(2.11)

where S(C,7)=(P({',7)—P())/(r— ) is a polynomial in n+1 variables of de-
gree m—1 and I’ is any sufficiently large circle. Let oy, ..., 0, be the zeros of
o—>p(l’, o) for some arbitrary {'€C"?, and let y be the boundary of the union
of the disks with centers at o,,...,0, and radii equal to 5|C'|, where 6 € (0,1]
is specified later. In view of (2.5) there is a constant A4 such that p({’,0)=0
implies |o|<A|{’|, and hence 7 €y implies |7|<(4+1)|{|. We conclude that

TE€y=|PC,7)~p(l T [<BAH|C|")
for some constant B independent of {’ and 4. Hence we obtain if 7€y

| P D=1, 0] - BA+| " Y= @) G = BA |,
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for p(Z',7)=p(N)[ [ (z — o) where each factor in the product has absolute value
not less than 6|’|. Hence, for some constant a; depending only on P and 4,
|¢'|>as implies that the zeros of o— P({’,¢) lie inside p, and that |[P((’,7)|>1
when 7€y. Using (2.9) and (2.11) with I" replaced by the cycle y we now ob-
tain for £>0

[HE)| <0 sup |2} exp (p(Z"7) +e] ()

if |{'|>as. Since ¢ is positively homogeneous and uniformly continuous in
{6;|6] <2}, we can to each £>0 choose 6 €(0,1] such that |n—60|<4|6| implies
l@(n) — @(0)| <&|6], in particular |@(l’, ) — ¢(¢’, 0v)| <e(4 +1) || for some k when
7€y, and hence

|HQ)|<C, sup |Z]™ exp (p(Z', 0x) +e(2 4 +3)[7])

when ]§’|>a,;. This, together with the fact that H is a polynomial in [, of
degree less than m, gives

Ve>030VieC™: |H()|<Cexp (v'(C)+ell]), (2.12)
where ' is positively homogeneous and continuous,

()= sup (p(l',0); p(L'0)=0). (2.13)

Putting p(&)=sup (p(0), v'(0)) (2.14)

we get the same estimate for F~—H with ¢’ replaced by w and hence from
(2.10) also for (F—H)/P=@,

Ve>030VIeC™: |HD)| <O exp (p()+ell]). (2.15)

The estimates (2.9), (2.12), and (2.15) can now be interpreted in terms of
analytic functionals by means of Theorem 2.1.

Theorem 2.3. Suppose P(D) is a differential operator of order m with constant
coefficients satisfying

(0, ...,0,1)=*0, (2.16)

where p is the homogeneous part of P of order m. Let Q be a convex open set

in C* (hence a Runge domain) such that Q' ={z€Q; 2,=0} is non-empty, and
suppose that the supporting function @ of Q sabisfies

D) =D'(¢) if p()=0, (2.17)

where @' is the supporting function of Q'. Then for any u€ A'(Q) there exist
uniquely determined analytic functionals v, 0€ A'(Q) such that

w=P(—D)y+p (2.18)
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C. 0. KISELMAN, Solutions of complex analogues of boundary problems
and p is orthogonal to all functions u € A(Q) satisfying
DEu(z)=0 when 2z€Q’, 0<k<m.

Proof. We write F=g4 and define v, 0 € A4'(C") by »=G,9=H where G, H are
found by (2.7) and (2.8) respectively. According to {2.12) and Theorem 2.1, p
is carried by any convex compact set L’ in the plane z,=0 whose supporting
function v’ satisfies

Y (0)=e(0) if p(0)=0, (2.19)

where ¢ is the supporting function of some carrier K of u contained in Q
(note that ¢’ is independent of (,). Let w; be the supporting functions of
convex compact sets L; such that L;cL;; and UL/ =Q’. We claim that for
some j, (2.19) is valid with ¢’ =1v,. Otherwise all the compact sets

{2€C™ v () <g(d), p(8)=0,||=1}

are non-empty, hence their intersection contains some point ( €C", ie. |{|=1,
p({)=0, and
O'(8)=0(%) = lim y; ({) S ({)-

If ©(l) happens to be infinite, this inequality is impossible, and if ®(f) < + oc
we can take z€K such that

Re <z, 5= g(0) = @(0).

This means in particular that z lies on the boundary of Q. also a contradic-
tion. Thus g is carried by some compact part L' of Q', and hence v is carried
by the convex hull of KU L' which is a compact part of Q. In particular,
v and ¢ can be extended to A4(Q), and this proves the theorem since Lemma
2.2 shows that ¢ has the desired properties.

Remark 2.4. For any convex set (, relatively open in the plane z,=0 there
exist open sets Q<C" satisfying (2.17) such that Q'=Q,. In fact, we may
without restriction suppose that 0€(), and then define Q as the convex hull
of Q,U{(0,2,) €C"; |z,|<a}, where a is specified below. Then Q' =Q, and if
we denote the supporting function of Q, by ®@,, the supporting function of €

becomes
(&) =sup (D,(2), a|a]),
and (2.17) is satisfied as soon as
@|a| <®, (L) when p(£)=0. (2.20)

Since 0€Q, we have ¢|{’|<®,(l) for some £>0, and since p(0,...,0,1) +0,
we have a|l,|<e|l'| when p(l)=0 for some a>0. Hence (2.20) is valid when
a is small enough. On the other hand, no bounded polycylinder Q satisfies
(2.17) (unless n=1 or p is constant), and this shows also that one is not al-
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lowed to restrict attention to polycylinder carriers of the functionals occurring
in (2.18). Indeed, let Q=Q'xQ,, where Q'=C"! is bounded and Q,<C.
Then O()='(L')+D,(¢,) if O, D', and P, are the supporting functions in C",
"', and C' of Q, Q', and Q, respectively. (2.17) now implies that ®,(Z,)=0
when p(l)=0, and hence (if m>0) that ®,=0, Q,=0.

3. Existence of solutions of boundary problems in convex complex regions

We first investigate in which convex open sets in €* a non-characteristic
Cauchy problem (3.3), (3.4) has a solution for arbitrary analytic right-hand side
and data.

Theorem 3.1. Let Q be a convex open set in C" such that Q' ={z€Q; z, =0} is
non-emply and suppose that the supporting funclions ® and ©' of Q and Q' satisfy

D) =D'(f) when p(£)=0 (3.1)
for some homogeneous polynomial p of degree m such that
»(0, ...,0,1)=0. (3.2)

Further, let P(D) be a differential operator with constant coefficients whose prin-
cipal part is p(D) (where D= (Dy, ..., D,) is defined by (1.3)). Then the Cauchy
problem

PDyu=f in Q, (3.3)

DEu(z',0)=g,(z) in Q', 0<k<m, (3.4)

has a unique solution u € A(Q) for every f € AQ) and every g=(gy, .-, gm-1) € AQ)™.
Here z=(2', 2,), 2’ = (24, ..., 2n-1). The solution depends continuously on f and g,
v.e. for every compact part K of Q there exist compact sets L= Q and L' Q' and
a constant C such that

m—1
sup |u|<C(sup |P(D)u|+sup > | Dk ul) (3.5)
K L L’ 0
for oll uwe AQ).

Proof. We define an operator T' from the Fréchet space F = A4(Q)x A(Q')" to
AQ) by TF=T(f, 9y ---sgm-1)=u if u is a solution of (3.3), (3.4). According
to the Cauchy-Kovalevsky theorem (see the proof of Theorem 5.1.1 in Hér-
mander {3]), the Cauchy problem has a solution u € 4(C") when f and g, are
entire, i.e. when F€J, = A4(C)x A(C* )" F. Thus T is densely defined in F,
and T is obviously closed. We are going to prove that 7' is continuous in F,
(with respect to the topology induced by F). This is only possible when 7T is
everywhere defined in F, and hence 7 is continuous, i.e. (3.5) is valid.

Now for an arbitrary compact set K <, let Bx be the Banach space
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Bx—{ue€ A Q) llull = sup ([pw)|/sup |u(z)])< + oo},
u € AQ) 2€K

and let U;,j=1,2,..., be a fundamental system of neighborhoods of 0 in F,.
We set if FEF,,
Mp={u€By; |WTF)|<1}.

This is a closed convex symmetric set in Bg. Thus the same is true of the
intersection

M;=N(Mp FeU,).
If 4 €Bx we have by Theorem 2.3
p(w) =»(P(D)w) + o(u),

where »,0 € A'(Q) and g is zero on all entire functions « such that D} u(z’, 0)=0,
0<k<m. Defining o, € A' (') by ox(v)=0(»(z')2zs/k!) We can write

m—1
o(u)= EO:QIC(D;CL’“(Z” 0)), u€A(C,
which follows from the Taylor expansion of #. Hence
m-1
HTF)=v(N)+ 2 0c(gi)

which proves that for some sufficiently large j, |w(TF)|<1 as soon as F€U,.
We have proved that U M;=Bg.

Since By is a complete metric space, the Baire cathegory theorem shows that
0 is in the interior of some M, i.e. for some constant C, ||u|<1/C implies
that |u(TF)|<1 for all FEU,. This means that

TF)|=C l—L(TF)|<0 I

for all u€Bg and all FEU, For some compact sets L=Q and L'<Q’ and
some constant B we now have

m-1
sup |f|+ sup > |ge|<1/B=FeU,
L L’ (V]
and this implies that for all u €Bg, FE€JF,
m—1
u@m) <50l up 1+ ),

Applying this estimate to the Dirac measures u(u)=wu(z) where z € K, we have
l#]| <1, and hence
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m—1
sup |TF|<BC(sup |f]+sup > |gx|)
K L L 0

for all F'€F, which proves that 7T is continuous in J,. The proof is complete.
The following theorem is a converse of Theorem 3.1.

Theorem 3.2. Let Q be a convex open set in C" such that Q' =1{z€Q; 2, =0}
is non-empty. Suppose that a non-characteristic Cauchy problem

P(D)u=0 in Q, (3.6)
DEu', 0)=g.(2') n Q', 0<k<m, (3.7

where P(D) is a constant coefficient differential operator of order m, always has a
solution u € A(Q) when g, € AQ'). Then (3.1) s valid for the supporting func-
tions @ and O’ of Q and Q' if p(D) denotes the principal part of P(D).

Proof. The mapping
{u € AQ); P(D)u=0}3u—>(u(z,0), ..., Dy tu(z’, 0)) € AQ)"

is continuous, defined in a Fréchet space, and according to the Cauchy-Kova-
levsky theorem it is one-to-one. The hypothesis in the theorem means that its
range is all of A4(Q')", a Fréchet space. From an application of Banach’s theo-
rem it follows that the inverse mapping is also continuous, i.e. for any com-
pact part K of ) there exist a compact set L'<)’ and a constant C such that

sup |u|<C sup sup |Df u| (3.8)
K 0<k<m L’

for all u € 4(Q) satisfying (3.6). Now let {€C", |{|=1, be given with p({)=0.
We can choose a sequence (§) of points in €" such that P(69)=0, 6/]69|—¢,
and |0?]— + co as j— + oco. Applying (3.8) to the solution u(z)=exp <z,6")
of (3.6) and K={z} <Q, we obtain
Re (z, 09y <log C+ sup k log |0%|+v'(6)
0<k<m

if ¢’ is the supporting function of L'<(’. Dividing this inequality by |0?| and
letting j tend to infinity gives

Re (z, £ <y'({) <@'(D).
Since z € Q was arbitrary we have proved that
Q) <D(0) if p(l)=0,

which together with the obvious inequality ®' <® gives (3.1). The proof is
complete.

203



C. 0. KISELMAN, Solutions of complex analogues of boundary problems

We now turn to the case when (3.4) are replaced by more general conditions
in the hyperplane z,=0.

Theorem 3.3. Let Q, Q’, and P(D) satisfy the hypotheses made in Theorem 3.1,
and let Q,(D), ..., Q,(D) be arbitrary differential operators with constant coefficients.
Then the ‘boundary problem’

P(Dyu="f in Q, (3.9)
Q,(D)yu=g, in Q', 1<j<r, (3.10)

where € A(Q), g,(Z), ..., 9. (2) € AQ') has a solution u € A(Q) if and only if the
compatibility condition

S0 PO+ 38,1 Q0 =0=5,(D) [ +38,(D)g,=0 in @, B11)

is satisfied for all choices of polynomials Sy(C), Sy ("), .... Sy (L'). Here &' = ({4, +--, En-1)
and D'=(D,, ..., Dn_y).

Proof. The condition is obviously necessary, and we are going to prove its
sufficiency using the theory of general systems of differential equations with
constant coefficients mentioned in the introduction. In view of (3.2) we can
find polynomials R, such that @,— R; P has degree < m in {,. We then replace
Q; by @,—R;P and g, by g,— RB;(D)f to obtain a problem equivalent to (3.9),
(3.10) where the new conditions in the hyperplane z, =0 involve only differentia-
tions of order less than m in z,. We may suppose in the sequel that this sub-
stitution has already been achieved. In this situation the condition (3.11) is
equivalent to

8,E) Q) =03 8D g=0 in & (312)

for all polynomials S, ..., S, in n—1 variables. The conditions (3.10) can now
be rewritten as a system with #»—1 independent variables

m-—1
% Qi(DYup(z')=g;(z) in Q,1<j<r, (3.13)
where @;(D)=>7"1DkQ, (D) and u,(z')= Dy u(z',0). Introducing @z in (3.12)
we obtain
7 r
>8;Q=0,0<k<m=>8,(D')g;=0 in Q' (3.14)
i I
for all polynomials 8,,...,8, in n—1 variables. This is the compatibility condi-
tion (1.10) for the system (3.13), so by the existence theorem for general sys-

tems we can find a solution (wy, ..., wn-1) € A(Q")" of (3.13). Now Theorem 3.1
shows that the Cauchy problem
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PD)u=f in Q,
Diu=w, in Q', 0<k<m,

has a solution u € A4(Q). This completes the proof since u obviously satisfies
(3.10).

4. Approximation of solutions of homogeneous boundary problems in convex
complex regions

Using Theorem 3.1 we derive from the approximation theorem for general
systems of differential equations a corresponding result for boundary problems
in a convex open set in C".

Lemma 4.1. Let P(D) be a differential operator with constant coefficients of
order m such that the plane z,=0 is non-characteristic, and f,, ..., fm--1 polynomials
in n—1 variables. Then the solution w of the Cauchy problem in C"

P(D)u=0, (4.1)

Diuz',0)=f. (') exp <2, 6>, 0<k<m, 4.2)

has the form u(z) =exp <z, 0> %gj(z) exp (2, 1), (4.3)
where g; are polynomials and 71, complex numbers. (z=(2',2,), 2’ = (2, ..., Zn-1).)

Proof. We define

on_ L Pl 7) exp e, (7)) dr
Ek(z’C)~2niva ) , 0<k<m,

where T' is a cirele in €' surrounding the zeros of v— P({’,7) and
Pyl 1) =271 a,()
k+1
if a; are defined by P, 1)=%1"a]-(§’).
Arguing as in the proof of Lemma 5.7.4 in [3], we get
PD)YE,=0,

DLE(,0;,0)=0if 0<j<k or k<j<m,

and DEB(, 0; ') =exp <z, .
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It is easy to see that E, are entire functions of (z; {') € C*" ' and of form (4.3)
for a fixed {'=0'. The same is true of

17

Z fe (ag T

)Ek(z ')

g 4
which is the solution of the Cauchy problem (4.1), (4.2).

Theorem 4.2. Let Q, Q', and P(D) be as in Theorem 3.1, and let Q,(D), ..., Q,(D)
be arbitrary differential operators with constant coefficients. Then the linear com-
binations of solutions of type (4.3) of the boundary problem

P(D)u=0 in Q, (4.4)
QD)u=0 i Q, 1<j<r, (4.5)

are dense (under the topology induced by A(Q)) in the set of all solutions in A()
of the same problem.

Proof. As in the proof of Theorem 3.3 we may assume that Q,({), ..., & (0)
are all of degree less than m in (,. We also write (4.5) as a homogeneous
system

m-1
%Q,k(D')uk:O in Q, 1<j<r, (4.6)

using the notation of (3.13). Now the approximation theorem for general sys-
tems of the type (4.6) (see Section 1) shows that to any given solution

(u()a LR um-l) € A(Q,)m
f (4.6) there exist solutions of (4.6) of the form
(Wosis ooy Wm—1,5,7) = exp <z,: 6;f> (fOsj} veey fmfl.s,f)’
where f,;; are polynomials in »—1 variables (cf. (1.12)) such that
wks=2‘wks}, o0<k<m, s=1,2,...,
=1
tend to u, in A(Q') when s— -+ oo, The unique function v, € 4(Q) satisfying
P(D)v,;=0,
Div, (2, 0)=w; ('), 0<k<m,

is according to Lemma 4.1 of type (4.3), and is also a solution of (4.4), (4.5).
Now set

Ny
vs=jzlvs,, s=1,2,....
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The Cauchy data of v, of order < m tend to those of # (in the topology of
A(Q')") when s— + oo, and by Theorem 3.1 we conclude that v,—u in A(Q).
The theorem is proved.

Department of Mathematics, University of Stockholm.
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