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Multi-dimensional integral limit theorems for large deviations

By BeNcT voN BamR

1. Introduction

The problem of large deviations in the central limit theorem was first treated by
Khintchine [3] in a special case and later by Cramér [2] in a more general one-dimen-
sional case. His results were slightly improved by Petrov [4], who studied the distri-
bution of sums of independent but not necessarily identically distributed random
variables. Richter has proved local central limit theorems in the one-dimensional
case [5] and in the multi-dimensional case [6], when the distribution of the sum is
either absolutely continuous or of lattice type. He has also stated theorems of
integral type [7], but, as he pointed out, he was obliged to restrict himself to the
above-mentioned special cases, mainly because the ordinary integral limit theorems
were lacking,

Here I want to use the results obtained in [1] to generalize Richter’s results in
{7] and one of Cramér’s results [2] to the multi-dimensional case. I shall only treat
the case of a sum of independent and identically distributed random vectors (r.v.’s),
the generalization to non-identically distributed r.v.’s being straightforward but
somewhat cumbersome.

2. Statement of the problem

Let X=(X,,..,X;) be a r.v. in R, k>1, with the distribution function (d.f.)
F(x), z=(x,, ..., ), with zero mean and non-singular covariance matrix M. Further-
more let, for some k>0, the moment generating function (m.g.f.) of X,

R(t)=f et IR (x), (¢, x)= Zk o,
B j=1

exist for all ¢=(i,, ..., ;) with |¢| = (OF., ) <h,

If X, .., X™ is a sequence of independent r.v.’s with the same d.f.’s as X, and
Y,=(1/Vn)Zr., X%, the problem is to estimate the probability P(¥,€ B), where B
is a Borel set of a type specified in section 4. In Theorem 1, B is contained in a sphere
with its center in the origin and of radius R <go/n, and in Theorem 2, B is contained
in the complement of such a sphere. In Theorems 3 and 4, I give applications to the
d.f’s of |Y,| and ¥, respectively.
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B. VON BAHR, Integral limit theorems for large deviations

3. Transformation of the distribution function

Following Cramér, we introduce for a fixed A€ R,, |h| <hy, the df. F(z, k) de-
fined by
_e™qF(x)
Let X(h)=(X,(h), ..., X;(h)) be a r.v. with the d.f. F(z, &), with the mean m =m(h)
and the non-singular covariance matrix M(k). X(h)Y, ..., X(h)™ is a sequence of
independent r.v.’s with the same d.f. as X (k) and Y, (A)=(1/ Vn) (21 X (B —nm)
is its normed sum. The m.gf. of X(h) is

R(t + k)

R(t, h) = E;(“,:)

and that of X7 ; X(#)® is

R,(t+h)

R, (t, h) = (B, k)" = “R.()

1)

where R, (t)=(R(t))" is the m.g.f. of D7 ; X®. If G,(x) and G,(x, k) are the d.f.’s
of >0 1 X® and >}, X(h)* respectively, then according to (1)

_ e 9dQ, (x)
dGn (x, h) = —Rn(h)—
This relation can be written
dF,(x) = R"(k)e~V""-DdF , ( —mV/n, h) @)

where F,(x) and F,(x, h) are the d.f.’s of ¥, and Y ,(k) respectively. We shall use
(2) to estimate the probability that ¥, will fall into a set in the neighbourhood of

the point mVn. Now, m=m(h) is, for |h|<hq, given by

J‘ze"" DdF(x)

where Mh is a vector, the ith component of which is £f.1 M ;h,. The Jacobian of the
transformation A->m(h) is | M(h)|=det (M(k))>0 and thus the transformation is
invertible, and we obtain

h=h(m)=Am+O(|m?) (3)

where A =M-! (the inverse matrix of M). Consequently, there exists an g,>0 such
that, for every xz€ R, with |z|/ Vn <&, b can be chosen so that m=x/ Va.

According to the central limit theorem [1], F,(z, k) is approximatively a normal
df., and therefore we shall approximate dF,(x) by dW (x)=w,(x)dx, where dx is
the volume element of B, and

wy(x) = (2n)~k/2|MI_*R"(h(x/V;L))e_ﬂ(”(’/ﬁ)-”
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We put d(v) = (h(v), v) —log R(k(v)) for |v|<e,, and thus obtain
wn(z) = (2m) | M| "¥emmacVm.

The function d(v) is analytic for |v|<e,, and a simple calculation of the MacLaurin
expansion gives
o0

d@) =}, Av) =2 @, (v) (4)

=3

where @,(v) are homogeneous polynomials of degree v, the coefficients of which are
functions of the semi-invariants of F(x) of order not greater than ».

4. A class of Borel sets

The central limit theorem in R, is proved for a class B, of Borel sets [1], and it is
probable that the following estimations may be carried out with the appropriate
modifications in this class. However, I shall confine myself to the class D of logical
differences between convex Borel sets, that is, D€D if D=4,N A, where A4, and
4, are convex Borel sets. Without loss of generality, we can assume that 4, is the
convex hull of D and 4,= 4,, and thus we write D=4, —A4,. We define for every
4>0 the exterior parallel set B of a Borel set B by Bs= U jy<1(B +0du), where B +du
is the translate of B by du, and the union is taken over all u € R, with |u|<1. We
denote by V(B) the k-dimensional volume of the set B, and by S(B) the (k—1)-
dimensional area of the boundary points of the set B, both being defined for BEC =
the class of all convex Borel sets. '

3. Two lemmas

We first prove the following lemma, which gives an estimate of F,(D) for a small
set DED belonging to the sphere {x:|z| <80V7_1,}, where g,>0 is independent of »
and sufficiently small.

Notations. C and c are unspecified positive finite constants, 0 satisfies |0|<C,
and O(z) stands for a function satisfying |O(z)| <Oz for z>0.

Lemma 1. If D=A4,— A,€D and D is a subset of both the spheres {z:|x| <R} and
{@:|z—a|<1/RB} for some a€R, and 1 <R <gyVn, then

F,(D)=W,(D)(1+O(R/Vn))+(0/ Vn)em@lVmS((41)yy7)-

Proof. Putting k= h(a/Vn) we get mVn =a, and thus form (2)

F,(D)=R"(h(a/Vn)) f e Vi helVmgF (5 — a, h(aVn)) =e—4@Vm],
D

where 1 =f e—Voa.mdF, (x, h)
D-a
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According to the central limit theorem [1],
F,(z, h)=O(z, )+ H,(, k) (3)
where ®(z, k) is the normal d.f. with zero mean and convariance matrix M(k), and
C

H A,h = =
[Ha(d, B < =

{V(deym) + 8(Aeya)} (6)
for every A€C.
From (5) we get I=1,+I,, where

I,= (2n)—kl2|M(h)|—;- f e—ﬂ(z. m— 3@ AD Jg

-a

— (2n)—k/2 IMI—;f e_ﬁ(z. h—3(z, Az)dx(]_ + O(Ihl))

D-a

for the components of A(k) are A, (h)=A,;+O(|k]), and || <1 when 2€D —a.
We shall compare this expression for I, with

Wn (D) — (2n)-kl2|M|—}e—nd(a/Vﬁ)J‘ e—n[d((a+z)/l/7t)—d(a/l/;z)]dx'

From (4) we obtain if, |u|+|v|<g, and &, is sufficiently small
d(v +u) — d(v) = }(u, Au)+ (u, Av)+O(|u| - |v[?)
and thus, because of (3),
nld((@+x)/Vn)—d(a/Vn] =}, Az)+ Vn(z, k) + O(|z| |a]?/Vn).
Since || |a[2/Vn=0(R/Vn) and |k| = O(R/Vn), we get
W, (D) = e—"¢@V®] (1+ O(R/Vn)).

It now remains to estimate I,. We put

Iz=f =f _f =Ty ~Ip.
D-a Ai—a Az—a

For v=1 and 2 respectively, we put
A4,() =4, —a)N{znh, )<z} and Q,(2) = H,(4,(2), h).

Now, A4,(z) is convex, and thus the inequality (6) holds for @,(z) with 4 =4,(z) but
since V(A4)<¢,R,8(4), A€C, where R, is the radius of the sphere circumscribed 4,
we get, with a new value of C,

C
Q.0 <= S((An)gys) < 1= Sy,

Vn V
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If a,= inf Va(h, x)
a:eA,,—a
and p,= sup V’;L(h, x)
z€d,—a
By
then |Is,| = f e ?dQ, 2)| <2 supﬁlQ, ()]
o, %y SRy
and since «, =O0(Vn|h|-|2|) = 0Q1), we get
| Zo) <Ly | + | ge| < V—S A )eyn).

The lemma is proved.
Lemma 2. There exists a positive consant { such that
P(|Y,| > eV/n)<Ce .

Proof. It suffices to prove that for every 5, 1 <j<k the component Y, ; of Y,
satisfies

P(Y,,|>eVn/k) <e .
Since R(h) =1+ }(h, Mh)+ O(| B ") <et !
for |4 sufficiently small, we have
E(/ %) = (R(0, ..., ky..., 0)* <™

and thus from Chebyshev’s inequality

cnh;
Go hin/ Vi

—&n

IYnfl>80Vn/k)\ =e

if h; is sufficiently small.

6. Main theorems

The following two theorems are the fundamental limit theorems for large devia-
tions in R, and can now easily be proved by summing estimates of the probabilities
of small sets obtained in Lemma 1.

Theorem 1. If DED is a subset of the sphere {a:|x| <R}, where 1 <R <g,Vn, then

F.(Dy=W, (D)+9 Wy (Dgr)-

7
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Proof. We divide D into a disjoint union of sets D K,, where K, are congruent
half-open cubes with the edges parallel to the coordinate axes and with the edge
length d =2/(RVE).

Now DNK,€D and DNK,<{x:|x—a,|<1/R}, if a, is the centre of K,, and we
thus obtain from Lemma 1:

Fy(D)= W, (D) (1+ O(R/Vn)) + % S e i@V (K,), )
n v
We shall compare the terms in the sum with W, (K,). We have

W, (K,) = (Qn)—mlMl—ge_ndmy/Vﬁ) f V@ m—3 (. ADda(1+ O(R/ Wz))

Ky—ay

in the same way as in the proof of Lemma 1 (b, =k(a,/ V/n)). Because the exponent
in the above integrand is bounded, we get

W, (K,)> OR*e=nd@/m
and thus because
S((K.)yys) < OB+
the sum is
R N
sz W, (K)<0V— w(Dair).

The theorem is proved.

Remark. As mentioned in Section 1, Richter [7] has studied the same problem
when F(x) is a lattice d.f. and when F, () is absolutely continuous, some m > 1.
He considers sets B of the type

B={z:t,<|z|<t,, /|x|€Q}

where 0<t, <t,=o(V/n) and Q is a subset of the surface Q, = {x: |2|=1} with positive
Lebesque measure. His proposition is

F,(B)=W,(B) (1+0(ty/Vn)).

This is obviously not correct if F(x) is a lattice d.f.
For, let Q=0Q,UQ,, where Q, has positive Lebesque measure, and £, is the
denumerable set of points /x| (x==0) corresponding to all points z€R,, with
({x}) >0 for some m >1. Then

W,.(B)= J' w, (x)dx
z/|z| €Qy
ti<|zi<ta

but F,(B) = P(t, <|Y,| <t,), independently of Q,.
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Theorem 2. If DED and D < {a:R<|z|<el/n}, then

P (D) =W (D)Jif o]0, (2) o
V’n Dyr

Proof. As in the proof of the preceding theorem, we divide D into a union of sets
DN K, where K, are cubes with the edges parallel to the coordinate axes, but here
the edge length of K, must depend on the distance to the origin. Consider a rec-
tangular grid in R, with the edge length d=1/(RVIc), and take out those cubes
which lie in the sphere {x:|x|<2R}. Divide each of the remaining cubes into 2*
congruent cubes with the edge length d/2 and take out those which lie in the sphere
{x:|x| <4 R}, and so on. In this way, we obtain a finite number of cubes K, inter-
secting D, and we can apply Lemma 1 for each D K,. If a, is the centre and d,
the edge-length of K, then 1 <|a,,| d,,l/lc<2, and thus

F.(D)-=W,(D)+ |a,,|W DnK)_;_V_Ze—nd(rw/Vn)d K+l

l/;»

The theorem follows after simple calculations.

The magnitude of the remainder terms, in proportion to the main terms in Theo-
rem 1 and Theorem 2 depends on the relative difference in size (volume) between
D and D, ;. If this is negligible, as is the case if the dimensions of D are very large
compared with 1/R, we obtain the relation

Fo(D)=W,(D)(1+O(R[Vn))

in both theorems.
We shall obtain results of this type in the following sections.

7. Applications to the distribution of | Y, |

The following theorem was stated in a slightly different form by Richter [7] in
the two special cases mentioned earlier. His proof is, however, not satisfactory.

Theorem 3. There exists a constont 6,>0 such that, if 1 <1<, Va, then

PUY,>0 =@y 20l [ exp (o 3 0/VnrQ.m) d

zeQ
* f e AWYIEYE T dy(1 + O(t)/ V)
t
where dS is the surface element of Qq= {u:|u|=1}.
Proof. Putting D = {a:t<|z| < eol/?_z}, we immediately obtain from Theorem 2

0
F,(D)=W,(D)+—
D) ()+V1_1,fD1u

|| w, (x)dz. (7)

95



B. VON BAHR, Integral limit theorems for large deviations

We have

W, (D)= (27:)""2]M|‘*f ds

uefdo
e}/ o
< [exp (- Awg2en S 0/ iy, ®
and we shall show that

W, (D)= (2m)*| M|} f

e

exp (n % Vﬁ)’@(u))
v=3
Enﬂ
% f o Au)y'/2yk‘1 dy(l + O(t/l/;»)). 9

For that purpose, we form the absolute value of the difference between (8) and the
main part of (9). It is at most equal to

Il=(2n)_k’2|M|"*J exp (n % (t/V;L)"Q,,(u)) as

eol/n
xf" (. Awy/2

¢

yidy.  (10)

exp (n E (v — t”)n"’/2Q,,(u)) -1

v=3

We denote the inner integral by I,, and obtain after simple estimations of the
exponent, if g, is sufficiently small,

12 < f%l/r—t o~ Awyti2 (ecyﬂ(y—t)/l/ﬁ _ l)yk—ldy
¢

nv(eo—v)

— — . _ 23
=g~ Au)t’/Ztk ZJ' e (u, Au) @+2%/2nv%) (1 + z/m;2)" 1 (6cvz(1+z/nv S L l)dz
0

where we have put y =i +2/t and t—vl/n.
It is elementary to show that this integral is O(v) for 1/ Vn<v<ég,, that is

: bopeln o
1, < Otf gt Awt /2/]/;,,<0__f8 o~ AR k1,

nJt

This result, introduced into (10}, proves (9).

The second term of (7) is treated in a similar way and the result is that F, (D) is
given by exactly the same formula (9) as W, (D). Clearly, we can also change the
upper limit SOV;L to + oo in the second integral of (11), without breaking down the
equality.

It remains to show that F,({z:|x|>z)/n}) is negligible compared with F,(D),
but since F, (D)~ e ", this follows from Lemma 2, if t<60V;z and §, is sufficiently
small. The proof is concluded.
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By simple calculations, we obtain from Theorem 3 the following results, also stated
by Richter [7] in slightly different forms:

P(|Y,|>t+g/t)= t"‘zf eI AV, (tu) (u, Au) " dS

ueQy
x (1+0((1+ g?)/82) + O((1 +g)¢/Vn))
and if M = E,, (unit matrix of order k x k).

Pi<|Y,|<t+g/t)
P(|Y,|>1)

=1—e 7+ 0((1 +¢%)/8) + O((1 +g)t/Vn)

for t>1, 0<g<#?/2 and t +¢/t <8,/n.

The last relation shows that the dlstrlbutlon of |Y,| asymptotically satisfies the
same functional equation as the distribution of a one-dimensional Gaussian random
variable with unit standard deviation. This is a generalization of a result obtained
by Khintchine [3] and Cramér [2] in the one-dimensional case.

8. Application to the distribution function of Y,

We now return to the relation (2) and shall use it to estimate P(Y,;>a;, 1 <j<k),

where 1 <a;=0(V/n), when the components of X are uncorrelated. With no loss of
generality, we may thus assume that M = E,. The result is a direct generalization of
one obtained by Cramér [2] in the one-dimensional case.

Theorem 4. If 1 <a,=o0( V;z) and a;Zala|, 1<j<k, for some positive constant &
then, if M =E,,

P(Yn>a, 1 <7'<’“>/}f£ (1 — d(a;)) =exp (n 23 Qv(a/V;z)) (1 +0 (Iynl))

where O(z), z€ R,, is the normalized normal d.f.

Remark. The theorem cannot be true in an equivalent form for every covariance
matrix M + E,. For, according to Theorem 2 and Lemma 2 the probability concerned
is approximated by

(2n) %2 | M|} f exp ((— =, Az)/2+n § Q,(x/l/r_b))dx
v=3

all zj> aj

|1 <sol/;t

and this cannot for all ¢ be almost equal to

exp (n 020: Q.(a/ V;l)) (2m) "2 M| ¥ f o=@ ADI2 gy
v=3

all zj>aj

unless the maximum of e~® 497 in {2:all 2,> a,} is attained in the point z=a.
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Proof. Putting h=h(a/Vn) in (2), we obtain

P(Y,;>a;, 1 <j<k)=e"4a/m f e V/rn DGR (2, h)

all ;>0

We denote the integral by I, and divide it according to (5) into I, + I,, where

I,= (2n)”"2|M(h)|‘* f e—V/rhD—@ AD(2 I,

all z;=>0

From (3) we get
a,/Vn=h;+ O(h[*)

but @, > «|a| implies |k| = O(|%;|), and thus we have
hVn=a,1+0(al/Vn)=>c

By using methods similar to those used to obtain (9) out of (8), we get

I, = (2m)*" f e““'”""”2(1+O(lh|))=e"’"’2ﬁ(1-‘1)(%-)) (1+0(|ﬂ))- (11)
-1 Vn
all i 0

In order to estimate

I,— f e VD4l (x, h)

all zj>0

we form for every z > 0 the polyhedron

P(z) = {x: Vn(h, ) <z, all &;>0}
and put

We then get
I,= f e *dK(z)= f e ?K(z)dz.
) 0

Since P(z) is convex, K(z) satisfies an inequality of the type (6). Simple calcula-
tions give

C k -1/ k —
|2, < —= (H (th")) (Z th"")~
Vn \i=i j-1
From (11) we get
koo\-1
I,>C (H a,)
=1
and thus 1,/I, = O(|h|). The theorem follows.
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