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The intrinsic divisors of
Lehmer numbers in the case of negative discriminant

By ANDRZEJ SCHINZEL

A prime p is called an intrinsic divisor of the Lehmer number

P = {(“n ~p"/(x—p), n odd,
" @ —=B")/(F =%, meven,

where (¢+p)? and «f are integers, if p divides P, but does not divide P, for
O<k<n (cf. [10]). M. Ward [10] and L. K. Durst [4] proved that if o, § are
real ((¢+p)2 «fB)=1 and n=+6, 12 then P, has an intrinsic divisor. According
to [10] nothing appears to be known about the intrinsic divisors of Lehmer num-
bers when « and f are complex, except that there may be many indices # such
that P, has no intrinsic divisor.

The aim of this paper is to. prove the following

()

Theorem. If « and B are complex and B/a is not a root of unity, then, for
n>ng {a, §), P, has an intrinsic divisor. Number ng (x, B) can be effectively computed.

This theorem is an easy consequence of some deep theorem of Gelfond ([5]
p- 174), which we quote below with small changes in the notation.

The inequality

|2, log @+, log b|<e " |2, | + |2, | =2>0,

where a and b are algebraic numbers, log a/log b is irrational, n>0 is an arbitrary
fixed number, does not have a solution in rational integers x;, x, with

x>z, (a, b, log a/log b, ),
where x, is an effectively computable constant.

Lemma. If o and § are complex and B/ is not a root of unity, then for every >0
and n>N (a, 3, €)

| Pa) > | oios" 0, @)
[@:1=] TT (x—e*""B)|>]a lw(ﬂ)—Z"(") 10g2t8n 3)
Uk ’

where @ (n) denotes the Euler function, v (n) the number of prime factors of n. N (e, §, &)
can be effectively computed.
Proof. Let us put in the theorem quoted above a=pg/a, b=1, log b=2mxi.
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Since B/« is not a root of unity all the assumptions are fulfilled and for rational
integers x;, x, where z, >, (8/a, 1, (log B/a)/274,1)>0 we get

|z, log —§+ xy+ 2| > exp( —log? " cay), 4)
where C=M+2.
) 2x

Now |¢—2nk|>d (for all integral k) implies as can be easily seen
lcos g +isingp—1|>1d (preal, 3>d>0).

Inequality (4) gives therefore for positive z; >z,

(g)z‘—- 1 t >} exp(—log®*cx,). (5)

On the other hand, by (1)
(-
3

]

le"—p"|_ el
> =
IP'!I |a2—ﬂ2| laz—ﬂ2|

By a suitable choice of  which can be done in a completely effective man-
ner we get (2) from (5) and (6) for n >N, («, 8, £). Since (x —f)2=(x+p):—4af
is an integer =0, we have also

n__ n
& -f_ 2lal

le—p] ~la—p]

Now since Q,=[1P5™%, it follows from (2) and (7), that
am

. (6)

|, <! <2|al" )

lin S p lald—log2+ed/ ‘]1.—/1 2 I ald.

n .
un/dy=1, d>N, umnjdy=—1

Since B/a is mot a root of unity, it follows by enumeration of cases that
af+1, hence |a|>V2. We then get

IOgIQ"|>Z,u(§)d—Zd~ S logd-2 3 1
dajin

IOg I“i a<nN, y(n/dcé)";»—l y(n/dté)n;—l
> (p (n) _ No (N20 + 1) _ 2v(n)—1 10g2+5n —yp (n).

Taking N > N, so large that log2 N >[N, (N,+1)/2]+1 we get for n >N =N (a, §, &)

log IQn|
log |a|

hence inequality (3) holds.

> (n)—2"™ log®**n
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Proof of the theorem. As can be easily seen (cf. [4a]) the assumption ((x+ §)?,
«f)=1 leads to no loss of generality. Under this assumption a sufficient condition
that P,(n+6) have an intrinsic divisor is that | ,|>n. This was proved by Ward
([10] Lemma 3.4) in connection with real «, § but his proof applies to our case
also. The necessary condition n+6 was pointed out by Durst [4].

In view of (3) which we apply for e=1, and since | «| >V/2 it remains to find
an ny>N («, §, 1) such that for n>n,

2 log »n

— 9™ 1og3
@ (n) —2"" log?® n> Tog 2 °

Now, ¢(n)>n/log n for n>2-10% ([10] Lemma 4.1), 2" < 2/n (obviously) and
the inequality

n — 2logn
— log3 n >
log = 2Vn g log 2

holds certainly for n>10%. Taking n,=max (N, 102%) we complete the proof.
An open and interesting question is whether the number n,(x, 8) which occurs

in the theorem can be taken independent of «, 8 provided ((«-+p)2, af)=1.
By the way of example let us take a sequence P, for a=(l +V:7)/2, p=

=(1 —V—7)/2. This sequence was considered by several authors, inter alia by
T. Nagell [6], [7], J. Browkin, A. Schinzel [1], W. Sierpinski [8], T. Skolem,
S. Chowla, M. Dunton, D. J. Lewis [3], [9], P. Chowla [2] (who considered
Py./Py), often in connection with the diophantine equation 2* +7 =2". Principal
results were as follows:

1. The equation P,= +1 has exactly five solutions n=1, 2, 3, 5, 13 (first
proved by Nagell {6], also [1], [3], [7], [9]),

2. The equation P,=c has at most three solutions ([9]),

3. The equation P;,/P, =P,.1/P,; has the only solution » =2°, the equation

Py./P,=c has at most two solutions,

and the question was left open ([9] p. 668) how to determine a number n,(c) such
that P,=c for n>mn,(c). '

It follows from the theorem proved in this paper that for c+ £ P, (¢=1, 2, ...,
g («, B)) the equation P,= +c¢ has at most one solution, also if ¢+ + Py/P;
(=12, ..., ny(a, B)) the equation Pp,/P,= +c has at most one solution. Lemma,
1 in which N(a, B) is effectively computable gives an implicit answer to the
question mentioned above. However an explicit answer can be obtained directly
from statements 1—~2 and from known divisibility properties of Lehmer numbers
(cf. [4] § 2). In fact, suppose that P,=c. For each 8|n we must have Psc, in
particular for each prime g|n, P,|c. Thus either P,= +1 or P, is divisible by
some prime p|c. In the first case ¢=2, 3, 5 or 13 by 1, in the second by the
so called law of apparition for Lehmer numbers ([2] Theorems 2.0 and 2.1)

()

all prime factors of n are <|c|+12. (8

hence ¢<p+1<|c|+1. Thus
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On the other hand by 2, the equation p;=d has for each d|c at most three
solutions. This gives the condition

d(n)<6d(|c|), ©

where d (k) denotes as usual, the number of positive divisors of k.
It follows from (8) and (9) that if n> (|c|+12)*!°P, then P,+ ¢, which is just
an answer to the question posed.

Note added in proof. There is some discordance in definitions of intrinsic divisors. According to
D. H. Lehmer, a prime p is called an intrinsic divisor of P, if p divides P, but does not divide
either (o¢—f)2 (x+p)? or P, for 0<k<mn. It can be easily seen that the theorem proved in the
paper holds also for intrinsic divisors defined in this manner.
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