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A theorem on duality mappings in Banach spaces

By ArNE BEUrLING and A. E. LIVINGSTON

1. Introduction

The problem considered in this paper originates in the theory of Fourier
series of functions belonging to a Lebesgue space L?, where L” denotes the
space of measurable functions with period 2z and with norm

2n
Il = {of | (@) [P da) 2.

For the Fourier coefficients of f, we shall use the notation

2n
en {f) = %f e x)da.
0

A classical theorem asserts that if {a,}%, is a given sequence of numbers
such that

-
Z |anl2< 00,
n— 00

then there is a unique element feL*® with the property that

n (f)=0n
for n=0, +1, +2, ....
The above theorem admits the following extension. Let S, 0<a< oo,
denote the operator taking the complex number z into |z]*"'2z. We have

SaSﬂ-:SﬁSd:Saﬂ,

so that the collection {S,} forms a group. Furthermore, S, performs a one-
to-one mapping of the finite complex plane onto itself. Applied to a space L”,
we see that S,f will take L? onto L**, 0<a«<p. In particular, §,_; f will map
L? onto its dual space L% ¢=p/(p—1). We then have

Theorem 1. Let the inlegers be partitioned into two disjoint sets A and A’,
neither of which is empty. Let p be a given exponent such that 1 <p< co. Lel
{a.;ned} and {by; ne A’} be given sets of numbers such that, for some h e L*
and for some ke L, g=p/(p—1), we have
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cp(h)=a,, ned,
cn (k)=b,, ne A,

Then there is a unique element f€ L? such that

en(f)=an, ned,
1)
cn (Sp_1f)=bn, ned’.

For p=2, the above statement reduces to the cited classical result, since, in
this case, S,_;f=].

The proof of the uniqueness is quite easy. If there were two solutions f,
and f, of (1), then the difference F=f, ~f, would be an element of L* and
would have Fourier coefficients vanishing on 4. Similarly, @=8,_1f,—8,_1f.
would be in L° and have Fourier coefficients zero on 4’. Consequently, the
Fourier coefficients of the continuous function

2n
1 _
ﬂj F(x+t)G () dt,
o
which are given by c, (F)é, (@), are zero for each n. Therefore,
2n 2n
0=fF(t)6(t)dt=f(fl—fg)(ﬂ—'—’?f)dt. (2)
; J ok

Setting f,=|f,|€%, fy=|f,|¢'® we find that the real part of the integrand in
@) is

PP +15P - (Al AP +1LP D cos 6.~ 002 (A]-1HD AL = AP =0,

The vanishing of (2) therefore requires that almost everywhere |f,|=|f,| and
cos (6, —0,)=1, and the uniqueness follows.

The above proof of the uniqueness is satisfactory, but it gives no indication
of the nature of the problem. In particular, the role played by the operator
Sp,_1 is not at all clear. We shall see in the next section that the operator
8,1 is only one of a large class of operators on L? to LP®~" which arise quite
naturally from a consideration of what we call duality maps of a Banach space
onto its first conjugate space.

2. Duality mappings

We will be dealing with a complex (or real) Banach space B and its conju-
gate space B*. The null element of B will be denoted by 6, of B* by 6*. The
norm of an element z€ B is ||z||=]||%||s, of weB* is ||u| =|l%||s». The unit-
spheres in B and B* will be denoted by S and S§*, respectively.

Let (2, u) be the bilinear functional defined for x € B and u € B* and having
the properties:
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(a) If 4 is a complex (or real) number, then

Az, u)=(z, Au) =4 (x, u);

(b) (xl + g5 u) = (Zl, u) + (IE2, u):

(z, uy +up) = (z, uy) + (%, uz);
() ]l 5+ = sup.es| (2, ).

Two elements z €S and z* € 8* are said to be conjugate if (x, *)=1. The sets
{Az; 0<A<oo} and {u2*; 0<u< o} will then be called conjugate rays.
Under the assumption that each element on S (or §*) has a unique con-
jugate on 8* (or §), we will consider duality maps of B onto B* characterized
by the following properties: 7' is one-to-one and takes each ray in B onto the
conjugate ray in B* and each sphere ||z||=r in B onto a sphere ||u]|=¢ in B*
in such a way that r, <r, implies o, <p,. From this definition, it follows that

T(Az)=¢ (A)a*, 120,

x# and z* being conjugate elements on the respective unit spheres and ¢ (1) a

continuous function that is strictly increasing from 0 to oo with 1. (A special

type of duality map has previously been considered by E. R. Lorca [4].)
With regard to such mappings, we have

Lemma 4. Let there exist a duality map of B onto B*. If xz, y€ B, then the
relation

(#—y, Tx—Ty)=0 @)
tmplies that x =y.

To prove this, we observe that z€ B and u € B* will belong to conjugate
rays if and only if (2, u)=|z||||«]l. Consequently, the assumption z#1y,
A>0, will imply that

Re(w, Ty)<|z|||| Tyll,
Re(y, T)<|ly|| || T=]|,

so that upon taking the real part of (3), we will have

0> (=l -llglb A T=l-lTylh=0.

Therefore x=1y, and A=1.

We want next to find conditions on the space B in order that a duality
map shall exist. For this purpose, we need to recall certain definitions,

The space B is said to be uniformly convex [1] if there corresponds to each ¢,
0<e<]1, a positive number 6 (¢) tending to zero with ¢ and such that

zty

l=ll<1L, llyli<1, z1-¢
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imply that

Y
3 “56 (&).

In uniformly convex Banach spaces, each closed convex subset possesses a unique
element of minimal norm, ' '

We shall say that B is differentiable if for any x€ B, x#0, and any y€ B
there is a finite complex (or real) number D= D (y, «) such that

llz+tyll Izl =RBe{tD}+o(t]) @

as the complex (or real) number ¢ tends to zero. It is known [3] that for
differentiable spaces D(y, z) is a linear functional in y of norm unity. We
observe that (4) implies

|D @ D) =|yll; D@ 2)=|l=l|;
D(y,Az)=D(y, ), 0<A< oo.

An important consequence of uniform convexity and differentiability in a
Banach space is the, in principle, known

Lemma 2. If B is a uniformly convex and differentiable Banach space, then
each element on S (or 8*) has a unigue conjugate element on S* (or S).

Assume first that xeS is given., We are to show the existence and the
uniqueness of a linear functional L (y)=(y, 2*) of norm unity and for which
L(z)=1. The existence of L(y) is clear, for we may take L(y)=D(y, ). As
for the uniqueness, we observe that for any y € B and for any complex (or real)
scalar £, we have

0<||z+ty|| - Re{L (z+ty)} =|lz+tyl|—[l=l| - Be{t L ()}.
Combining this relation with (4) yields
0<Re{t(D(y, &)~ L)} +o(t)

from which it follows that L (y)=D (y, z).

On the other hand, if z*€8* is given, its conjugate 2 €S can be characterized
as the element of minimal norm in the closed and convex set {y; (y, z*)=1}< B.
Therefore, = exists and is unique.

(We point out that z* € 8* can be shown to have a unique conjugate z €S
if we assume only that B is strictly convex and that the set {y; ye€B,
fyll<1} is weakly compact. These two conditions are known to be weaker
than the requirement that B be uniformly convex.)

In the sequel, we will use the following definitions and notations: If 4 is a
closed linear subset of B, then its orthogonal complement in B* is the set 4+
of weB* for which (z, u)=0 for every x€ 4. If y is an element and C a set
of elements, then C+y will denote the set {z; z=y+z for z€C}.

We are now ready to prove
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Theorem 2. Let B be a uniformly convex and differentiable Banach space and
T o duality map of B onio its conjugate B*. Let C be a closed, linear, and proper
subset of B and C* its orthogonal complement in B*. If He B and K € B* are
given elements, then the sets C*+ K and T (C+ H) have one and only one element
tn common.

(Note that, by virtue of Lemma 2, duality maps of B onto B* do indeed
exist.)

Recall that the duality map T defines a continuous function ¢ (4), 0< A< oo,
which is strictly increasing from ¢ to oo with A. Set

¢(l)=j¢(u)du,
and consider the functional
F@)=9 (||~ Re{(x, K)
for x€C+H. For ||z||=r, we have
F@)2®(r)~ 7| K||sn

The right-hand member of this inequality is a strictly convex function of r,
tends to infinity as r-> oo, and is bounded from bhelow for r>0. Hence,

M=inf {F (z); xeC+H}

is a finite number. Furthermore, F (z)<m+1 implies that ||z||<7y< co.

Let {2.}<C+ H be a minimizing sequence of F (z). Without loss of generality,
we may assume that |lz,|| tends to some finite limit a. (Actually, we need
not make this assumption, for the strict convexity of @ (1), 0< 1< co, guaran-
tees that ||z,| tends to a finite limit.) Since C+ H is a convex set, we have

Ty + 2,
—~ "} >
F( 3 )_M.

Since @ (r), r>0, is convex, we obtain

0S4(0 (lanl) + & 2. )} -

X+ Ty

2

)

i

HEF @)+ F (@)~ F (255 = e

where £,,—>0 as m, n—>co. Therefore

Xy + 2,
2

lim (D(

m->0
n-—>oc

)-9@.
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from which we deduce that

Zm+ Zn

lim
m—>00
n—>»oc

But in a uniformly convex space, this implies that {x,} is a Cauchy sequence.
Since C+ H is a closed subset of B, there is an z, € C+ H such that ||z, —z,||—0
and F (x;)=M. Consequently,

F(zg+tx)—F () =0

for z€C and ¢t a complex (or real) scalar.
Since @ is a differentiable function,

D (|| +txll) — D (|| zol)) = @’ (||x0||)Re{tD(x, o)} +o ()

=¢ (” x0||) Re{tD (z, xo)} to (Itl)
Thus

Re{ts (l2ol)) D (z, z) — (z, K)]}+o(t])=0,
from which we conclude that
¢ (1 zol)) D (2, zo) ~ (z, K)=0 (5)

for zeC. Since ¢ (|||} D (x, z,) is a linear functional in x of norm ¢ (|| %)),
it may be written in the form (x, u,), where u, is an element on the sphere
ll||se = ¢ (||zol]). Setting z ==, gives

(Zor %0) = (|20 [1) D (o, %o) = l| ol & (|| zo1)»
from which it follows that w,=Tax, Consequently, (5) may be written as
(x, Txy— K)=0 (6)

for z€C, which implies that Tz,€C, + K.

We have therefore shown that T(C+ H) and C'+ K have at least one ele-
ment in common.

If xeC+H and Txz€e(C,+ K, then (6) implies that

(®g—2, Tzy—T2x)=0.

An application of Lemma 1 shows that z=uz, and, hence, that T (C+ H) and
C*+ K have at most one element in common.

The proof of the theorem is now complete.

We wish to point out that the conclusion of Theorem 2 remains valid if we
again assume only that B is strictly convex and that {y; y€B, ||y||<1} is
weakly compact.

In order to deduce Theorem 1 from Theorem 2, we set B=L?, B*=L¢% and
let C be the set of functions in L? with Fourier coefficients vanishing for
ned. If
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2n

@ w)= [ z@)u()dt
0

for wel”, ueL? the orthogonal complement C* of C consists of those u g L?
for which % has Fourier coefficients zero on A’.

It is known that L?, 1< p< oo, is uniformly convex [1] and differentiable [2],
and it is clear that T'z=8, ;&=|z|’/z is a duality map of L” onto L°. The
desired result now follows from Theorem 2 if we set H=% and K=F.
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