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Extremal representation of stationary stochastic processes

By Enpers A. RoBiNsoN

1. We let the real variables ¢ and  represent time and angular frequency
respectively. A time-function b () may be considered to be the tmpulse yesponsc
function of a time-invariant linear system. If b(f) is one-sided (i.e. if & (f) =0
for t<0 so that no response occurs prior to its stimulus) then the system is
said to be realizable. The transfer function of a system with impulse response
b(t) is defined to be the formal Laplace transform

B(P)Zf b(tye ™dt, p=c+io (0,0 real).

— o0

Letting 0 =0 we obtain the formal Fourier transform

‘B (i(,()) = IB (i (D)Ieil’(iw):fw b(t)e _‘;wtdt,

where |B (iw)| is called the gain, and P (i) the phase-shift, of the system. The
group-delay of the system is defined to be

o= _dP(iw)
i do

Input f() and output g (t) of the system are related by the convolution:
f(t*b (t)=g (t). The Laplace transforms F (p) and G(p) of input and output
respectively are related by the multiplication: F (p) B (p)={ (p)-

We shall call a function w () a wavelet if it is one-sided (i.e. w(f)=0 for

t<0) and L? (i.e. f, |w(t)[*dt<o0). The function space of all wavelets w (f)
(with measure d¢) will be denoted by L?(0, o).

2. A purely non-deterministic, second-order, stationary stochastic process @ (f)
(for continuous time parameter ¢{) has a one-sided moving-average representation

t
x(t)=f w(t—s)dy(s) I
where w (f) is a wavelet and y(s) is a process with orthogonal increments for
which E {|dy (5)|*} =ds. The corresponding spectral representation |[Cramér, 1] is
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x(t)=if ¢ W (i w) dY (i o), @)
27 Jom-w
where W (i ») is the L’-Fourier transform of w(f) and the formal derivative
dY (iw)/dw is the formal Fourier transform of the formal derivative dy (s)/ds.
The Y (i w) process has orthogonal increments for which

E{dY (o)} =2ndw.

For any given stationary stochastic process z(f) there are infinitely many
such representations; more precisely, there is a one-sided moving average repre-
sentation, and a corresponding spectral representation, for every wavelet w (t)
that satisfies _f:’ w(t+ s)w(s)ds=d¢ (t), where ¢ (t) is the autocovariance of the

process. In this paper, we shall give necessary and sufficient conditions that a
representation possess extremal properties.

3. A constant 4, of modulus 1 is called a trivial all-pass transfer function.
The function

HPk—P | — 1| [pe+ 1]

A = 3
1(P) K Prtp Pe—1 Pl

where {p,} is a non-empty set satisfying Re p,>0 and

Re p,
—_—t e
%1""%'2 =

is called a Type 1 all-pass transfer function. The function
4, (p)=€¢"" (x>0)

is called a Type 2 all-pass transfer function. The function

1> 1~42
A,m-ep |1 [" 22 Papa),

where f(A) is a non-decreasing function whose derivative vanishes almost every-
where and 0 < (c0)—f(— o)< oo is called a Type 3 all-pass transfer function.

The function
A (p)=A4, A, (p) 4, (p) 45 (p)

(where any or several of the factors on the right may be absent) is called an
all-pass transfer function. If all the factors except A, are absent, then A4 (p) is
called trivial; otherwise A (p) is called non-trivial.

4. I M(w)>0,

o . ® log M (i w)
f_wlM(zw)Izdw<oo, J‘_wmgl_l_—wz——dw>—oo,
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" 1 [ 1—idplog M(id
then Wo(p)=exp[5—rf_ 'pjilp 0g1+)$: )dl]

is called the minimum-delay transfer function for the gain M (: 1). The wavelet
w, (£) whose Laplace fransform is W, (p) is called the minimum-delay wavelet
for the gain M (2 4).

Krylov [4] and Karhunen [3] have established the following canonical repre-
sentation for the transfer function of a system whose mpulse response is a
wavelet.

Lemma 1. W (p) s the L*-Laplace transform of a wavelet if and only if, in
the right half p-plane (i.e. Re p>0),

W (p) =4 (p) W, (p),

where A (p) is an all-pass transfer function and W,y (p) is the minimum-delay
transfer function with the same gain as W (p). This representation of W (p) ts unique.

In addition Karhunen [3] has established the following result.

Lemma 2. Let w(t) and v (t) be wavelets and let

f w(t—r)v()dt=0 for r>0.

0

Then v (£)=0 if and only if
w (8) = Ag w, (t)

where [Ay|=1 and w, (t) is the minimum-delay wavelet with the same gain as w (t).

5. From the canonical representation (Lemma 1) it can be shown that a
system A (p) is realizable and has gain |4 ({w)|=1 for almost all frequencies w
if and only if the system is an all-pass system. Moreover it is seen that in the
right half p-plane (i.e. Re p>0) an all-pass transfer function 4 (p) is analytic
and has zeros {p,} (where the set {p,} may be empty).

The following three lemmas can be established directly from the definition of
the all-pass transfer function.

Lemma 3. The group-delay 7, of an all-pass transfer function is positive (resp.
zero) for — oo << oo if and only if the all-pass transfer function is non-trivial
(resp. trivial).

Lemma 4. The modulus | A (p)| of an all-pass transfer function satisfies | A (p)| <1
(resp. |A(p)|=1) in the right half p-plane if and only if the all-pass transfer
function is non-trivial (resp. trivial).
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It follows from the canonical representation (Lemma 1) that if a wavelet
w(t) is the input to an all-pass system A (p), then the output v (#) is also a
wavelet. Because {4 (i w)[=1, we have

iV (w)|=|4Go)W (o)|=|W (o)

so the output wavelet v (f) has the same gain as the input wavelet w (). Con-
sequently, from Bessel’s equality (for quadratic integrals of L*-Fourier trans-
forms) it follows that

fm|w(t)|2dt=fm|v(t)|2dt
0 0

which says that input and output wavelets have the same tofal energy. The
following lemma, however, tells us that the partial energy of the output wavelet
is delayed with respect to the partial energy of the input wavelet.

Lemma 5. Let a wavelet w(t) be the input to an all-pass system A (p) and let
the wavelet v (t) be the resulting output. If the all-pass system is non-trivial, the
partial energy of the input exceeds the partial energy of the outpul for some o> 0:

falw(t)|2dt>fu|v(t)|2dt.
0 [}

If the all-pass system is trivial, the partial emergy of the input equals the partial
energy of the output for all x> 0.

6. We now have the minimum-delay wavelet theorem.

Theorem 1. Let w(f) be a wavelet in the class of all wavelets with gain M (i w).
Then each of the following conditions is necessary and sufficient that

w (t) = Agw, (B),
where wq (8) s the minimum-delay wavelet with gain M (i w) and |A,|=1:

(@) The set {w(t—r), r>0} is closed in L?(0, o).
(b) The group-delay of w (t) is a minimum for — oo < << 00,
(¢) The modulus |W (p)| is @ maximum in the right half p-plane.

(d) The partial energy f |w@®)Pdt is a maximum for all a> 0.
0

(e) For a purely non-deterministic, stationary stochastic process x (t) with spectral
density O (i w) = M? (i w) and with moving-average representation (1), the least-
squares linear prediction z (t) of x (t +a), e >0, from the whole past x (s), s<1, is

¢
z(t)=J w(t+a—s)dy(s),

—~o0

the minimum prediction error is
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t+o
x(t+<x)—z(t)=f w(t+a—s)dy(s)
t
and the minimum mean-square prediction error is given by the partial energy

E’{|x(t-l—oz)—z(t)|2}=f:+u|w(t+oz—s)|2ds=falw(r)|2dr.
0

(f) For a purely non-deterministic, stationary stochastic process x () with spectral
density ® (i w)=M? (i w) and with moving-average representation (1), the closed
linear manifold spanned by x (s), s<¢, is the same as the closed linear manifold
spanned by y (s), s<t, for all ¢.

(9) The function I’ (¢ w) of the form

N
IFCw)=Lim. > cye iemwi
Nooo Jj=1
(where cy; are complex constants and ry; > 0) that is determined by the method of
least squares to approximate % (o > 0) with respect to measure M: (i w)dw/2 7
18

. 1 0 :
F(w))=W(iw)f0 w(x+t) et dt

and the minimum mean-square error is given by the partial energy

1 |e‘““—F(iw)|2M2(iw)dw=j |w (z)*d z.
2w ) 0

Proof. Condition (a) follows immediately from Lemma 2 by noting that a
set in Hilbert space is closed if and only if any element orthogonal to each
member of the set identically vanishes. Conditions (b), (c), and (d) follow from
Lemmas 3, 4, and 5, respectively, and from the canonical representation (Lemma 1).
Conditions (¢} and (f) follow from the work on prediction theory by Hanner
[2], Karhunen [3], and Wiener [6]. Condition (g) follows from condition (e) by
utilizing the isomorphism of the closed linear manifold spanned by x (s), s<?
(probability measure) and the closed linear manifold spanned by e'®°, s<¢
(measure M?(t w)d w/2 ) such that z (t) and €'’ (— oo <t < oo} are corresponding
elements (see, e.g., Robinson [5], p. 83). Q.E.D.

7. SBumming up, the spectral density ® (4w) of a purely non-deterministic
stationary stochastic process being given, we see that there exists a class of
different spectral representations (2), such that the transfer function W (p)
satisfies W (i w)=A (0) VD (i w), where 4 (p) is an arbitrary all-pass transfer
function. Alternatively, the autocovariance function ¢ (¢) (which is the L'
Fourier transform of @ (i w)) being given, there exists a corresponding class of
moving-average representations (1), such that the wavelet w (f) (which is the L

Fourier transform of W (¢ w)) satisfies f;o w(t+s)w(s) ds=¢ (t). Among these
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representations there is one called the predictive (or Woldian) decomposition
given by

t 0
x(t)=A0f wo(tﬁs)d?/o(s)=ﬂf L €W (iw) d Y, (fw)

s=-o00 27 Joi-w

(where |4y|=1, and w,— W, is minimum-delay for the gain J/® (i w)) which has
extremal properties as given by Theorem 1.

The realizable system with input « () and output z(f) where z (f) is the least-
squares linear prediction of z (f+«), >0, has transfer function

N 1 20
IN'fw)=lim. > ¢ e‘“‘”Nf=~—,J wy (@ +t)e 't dt
(rw) N-soo j=1 ~ Wy (tw) Jo o )

(where cy; are complex constants and ry;>0). The minimum mean-square pre-
diction error has the decomposition

E{lx(t+a)—z<t)|2}=%f ¢ W (Gw)-T (o)W (Go)ffdo

0 N
=f [w (@ +a)—lim. X ey;w(t—ry) [P dt
1

-0 N—soo j=

(1] oo N
:f |w(t+a)|zdt+f |w(t+a)—Llim. 3 eyyw(t—ry)|d .
1

—-a 0 N—soo j=

We note that the first term is the partial energy of the wavelet w(t), and the
second term vanishes for arbitrary « if and only if the set {w(t—r), r>0} is
closed, i.e. if and only if w(t)=4,w, (?).

Uppsala, January, 1961.
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