Communicated 24 May 1961 by O. FROSTMAN

Quadratic set-valued functions

By DAGMAR RENATE HENNEY

A real-valued function L(x) which is defined on a real linear space R will be called in accordance with S. Kurepa [2] a quadratic functional if

$$L(x+y) + L(x-y) = 2L(x) + 2L(y)$$

holds true for every pair x, y in R.

The main objective of this note will be to investigate cases in which for set-valued functionals the relation M(t+s) + M(t-s) = 2 M(t) + 2 M(s) will be equivalent to $M(t) = t^2 M(1)$ where t, s are any real numbers.

Let E^n denote an *n*-dimensional linear space, A, B, C, M ... are subsets of E^n . By A+B we denote the sumset of A and B, i.e. the set of all vectors a+b with a in A and b in B. By tM we denote the set of all tm where m is in M.

We will now proceed to prove a theorem which is related to results obtained by H. Rådström [1]. The notion of continuity for set-valued functions will be used in the sense defined in that paper.

Theorem. Let M(t) be a function which to each real number assigns a compact set in E^n in such a way that

$$M(t+s) + M(t-s) = 2 M(t) + 2 M(s).$$
 (1)

If M(t) is a continuous function of t, then the function M(t) has the form $M(t) = t^2 M(1)$.

If M(t) in addition is assumed to be convex the converse is also true.

Proof. The sufficient condition will be proven by use of induction.

Let s = t = 0 in M(t + s) + M(t - s) = 2 M(t) + 2 M(s). It follows that M(0) + M(0) = 2 [M(0) + M(0)] which shows that M(0) + M(0), being bounded, is equal to $\{0\}$. Hence $M(0) = \{0\}$.

Next let s = 0. Then M(t) + M(t) = 2 M(t) which shows that M(t) is convex since it is closed.

The relation $M(nt) = n^2 M(t)$ is therefore true for n = 0 and is trivially true for n = 1. Assume now that $M(nt) = n^2 M(t)$ holds for all $n \le m$. We will show that the relation holds also for n = m + 1. We make use of the fact that if M is any convex set in a linear space R and α , β are non-negative real numbers then

$$(\alpha + \beta) M = \alpha M + \beta M.$$

11. B. HENNEY, Quadratic set-valued functions

Let $t=s\,m$ in (1): then $M[(m+1)\,s]+M[(m-1)\,s]=2\,M\,(m\,s)+2\,M\,(s)$. This gives $M[(m-1)\,s]+[2\,m^2+2-(m-1)^2]\,M\,(s)=(m+1)^2\,M\,(s)$. Therefore $M\,(n\,t)=n^2\,M\,(t)$ for every natural number n. Replacing t by $t\nmid n$ in $M\,(n\,t)=n^2\,M\,(t)$ so obtain $M\,(t)=n^2\,M\,(t/n)$. Thus

$$M[(n/m)t] = n^2 M(t/m) = (n-m)^2 M(t).$$

Since, as we shall see below, M(t) = M(-t) it follows that for every real number t and for every rational number r

$$M(rt) = r^2 M(t)$$
.

Also $M(y) = y^2 M(1)$ for any real number y. Since M(t) is a continuous function by hypotheses then $r_n \rightarrow y$ and

$$M(y) = \lim_{n \to \infty} M(r_n) = \lim_{n \to \infty} r_n^2 M(1) = y^2 M(1).$$

We prove M(s) = M(-s) by putting t = 0 in (1). Then M(s) + M(-s) = 2 M(s). Here the left member does not change if s is replaced by -s. Therefore the sufficiency of the theorem is proven.

For the converse, assume $\dot{M}(t) = t^2 M$ where M is convex. Then

$$\begin{split} M\left(t-s\right) + M\left(t-s\right) &= (t+s)^2 M + (t-s)^2 M \\ &= \left[(t+s)^2 + (t-s)^2 \right] M \\ &= \left(2 \ t^2 + 2 \ s^2 \right) M + 2 \ M\left(t\right) + 2 \ M\left(s\right), \quad \text{Q.E.D.} \end{split}$$

REFERENCES

- 1. H. Râdström, One-parameter semigroups of subsets of a real linear space.
- 2. S. Kurepa, On the functional equation f(x+y) f(x) f(y) g(x) g(y).

Tryckt den 13 juni 1962