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A generalization of a theorem of Nagell

By GoOsta BERGMAN

1. As is well known, the coordinates of the curve
y¥=x*—Ax—B (443 —27 B2 0) 1)
can be represented by Weierstrass’s p-function with the invariants 4 4 and 4 B:
z=gp(u; 44, 4B)
{y =1p'(u; 44, 4B).

If u is commensurable with a period, the point (z, ) is called exceptional.
In this case there is a natural number n, which makes nwu a period, while n’u
is not a period, if 0 <n’<<nm. This number » is called the order of the point
(x, y). The point of order 1, corresponding to u = 0, is the infinite point of in-
flexion on the curve.

If 4 and B belong to a field £ and if (z, ) is a point on (1), whose coor-
dinates belong to 2, we shall say that (z, y) is a point wn Q.

In 1935 T. Nacerr ([3], p. 8—15) proved the following theorem:

Theorem 1. — If 4 and B are integers in k(1) and if (z, y) 15 a finite ex-
ceptional point in k(1) on the curve (1), then x and y are integers. If y # 0, then
y? dwides 4 A3 — 27 B2,

According to G. BiLring ([1], p. 120) this theorem remains true, if k(1) is
replaced by a quadratic or cubic field, but BrLuing’s proof is incomplete, since
his lemmas do not say anything, if the order of the point (x, ) is a prime.
Biirineg’s theorem is, however, contained in a generalization of theorem 1, which
will be given in this paper.

2. We begin with a lemma on the function
z=p(u; 44, 4B).

It is known that if » is a natural number >1 and if nu is a period but »
18 not, then

Yo (u) =0,
where
_ o(nu)
O o
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For the function ¥, (u) we have the following expression:
. P, [w ()] if n 13 odd,
Y’n(u)=:[ [p ()] o

| p' (u)@nlp ()] if n is even.
Here P, and @, denote polynomials, whose coefficients are polynomials in 4
and B with integral rational coefficients. For n = 3 we have

P,(z) =32t —6A4A2>—12Bx — A2
If we write

23 2_gy-1
Po(@) = on o™ P+ op 12tV 4 oy ey,

1t 1s known that «no=n and ay ;= 0.
Now we shall prove that the polynomials «, » have the following property:

Lemma. — If p is a prime >5, every coefficient of the polynomial ap n s
divisible by p for m=2,3, ..., %(p—3).
Proof. —— If u is absolutely smaller than the shortest period, the function

9 (u) can be expanded in the following series:
1
pu) = (1 +cut +ogus +- + ent®™ 4 --0),

1
where ¢, = BA, Cy = ;B and

3
(m—3)(2m + 1)

Cm = (CaCm-2 + €3Cm-3 + - + Cm_263),

if m>3. (See, for example, GRAESER [2], p. 25). Thus ¢, is a polynomial in
A and B with rational coefficients, and if p is a prime and m = é(z) — 3), the

coefficients of ¢, do not contain p in their denominators.
In the usual way we get

1 1
C(u)———(lczu3+lcau5+---+ c,,,uz""l-I—-»-)

w3 5 2m—1
and 1 )
G(u) _ ue— (:%403““'5%6Cauu+"'+m'(_§ﬁfl)cm“2m+~-~) _
=u(1—-%Au‘1+d3u°+~~~+dmu“,'+.H)_ (2)

Here d. is a polynomial in 4 and B with rational coefficients, which do not

. . . . . 1
contain p in their denominators, if m = é(p—3).
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We put z = p(u) in the polynomial
‘ Pp(x)=pw”+a,,,sz‘2+i~--+oc,,,N,

where N = %(pz—l), and find
WYP,[pw)] = p(l + caut + cau + ) + apput(L+cpud + )V 2+ -+
1
toap (Lt ut+ )+ g = +(ocp,z +id pN)u4 + - (3)

If we remember the identity

Pylp ()} [o ()] = o (pu),
we get by (2) and (3)

1 1 1
2 Nt + - APyt t+=p—— AUt + - 4
[p+v(ap.2+5Ap )u_ + ][1 5o Ap°ut + ] P60 4put + 4)

By this identity we get

1
%2 = —eodp(*—1) (0* +6),

and thus the lemma holds for m = 2.

Now suppose that the lemma is true for «,2, ®p3, ..., Opm-1, Where

m = %(p-—fi). Then the coefficient of #*™ in the left member of (4) may be
written
Cdpm T PP

Here ¢ is.a polynomial in 4 and B, where p does not appear in t.he denom-
inator of any coefficient. If we compare the coefficients of 4™ in the two
members of (4), we get -

%,m = D0 dn— @) =Dy,

where the coefficients of ¢; do not contain p in their denominators. It follows
that they are integral, since «, i has integral coefficients, and the lemma is
proved.

3. Now we suppose that 4 and B are integers in 29} algebraic number field Q.
If nu 1s not a period, it is known that

Y’n+1 Tn~1 n? + -
pnu)=pu)— [lgi)(u)]z ) = nz:;"‘—l 4.

’ ()

where both the numerator and the denominator of the last mem!:)er havg inte-
gral coefficients. Thus if p(nw) is an integer in some algebraic field, x is also
an integer. ‘
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First let the order of the point (z, y) be even and equal to 2n. Then the
number p(nwu) satisfies the equation

lp(nu)P—Ap(nu)—B=0.

Thus p(nwu) is integral, and consequently x is integral.
Next let the order of (z, y) be divisible by the odd prime p and equal to pn.
Then the number p(nu) satisfies the equation

P,lp(nu)]=0.

Thus pyp (nu) is integral, and by (5) we see that the same is true of pz.

If the order of (z, ) is divisible by the two odd primes p and ¢, px and
gz are integral, and consequently z is integral.

There remains the case where the order of the point (z, ) is a power of an
odd prime.

First let (z, y) be a point in 2 of order 3. We may suppose x < 0. Then 3z
and, by (1), 9y are integral, and if we put

3z=§, 9y=1,
the equation (1) takes the form
n?=3(8—94¢5—27B). (6)
The number £ also satisfies the equation

3

27P3(§)=54—18A$2—108B§—27A2=0. (7)

Let p be a prime ideal which divides 3, and suppose that 3 is divisible by p”
but not by p"*' and that & is divisible by p* but not by p**.
Suppose k < h < 8. Then (6) shows that ’

k=h (mod 2),

and consequently 2 2 2 and £ =k —2. In (7) the first term is not divisible by
p***1 while the other terms are divisible by

p2h+2k p3h+k and p3h
respectively. But

2h+2k>4k, 3h+k>4k and 3k >4k,

because we have supposed k¥ <h—2 = 5. Since this is impossible, we have
kzh, if h<<8. It follows that if 3 is not divisible by the eighth power of any
prime ideal in £, then z and y are integral, if (z, y) is a point in £ of order
3. If (z, y) has the order 3, »>1, we put » = 3""! in (5) and conclude that
is integral in this case too, since © (3’ 'u) is integral.

Next let (z,y) be a point in £ of order p, where p is a prime >3, and
suppose z # 0. If we put pz = & and p?y = %, the equation (1) takes the form
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n® = p(&— A p*t— Bpd). (8)

The number £ also satisfies the equation

p" P, (i) = EV b o pEV Py " TIEY T oy, v =0, 9)

where N = (p —1). Let p be a prime ideal which divides p, and let p and &

be divisible by p" and p* respectively, but not by p**! and pF+i.
Suppose k <h <p-—1. By (8) we conclude

E=h (mod 2),
and consequently & = 2 and % < 5 —2. The number

xp, . lfN " (10)

pk Nt+(h-K)ym—h

is divisible by

and a fortiori by
pk N+2m—-h

1
If m>%(p~3), the last exponent is >kt N. But if m = é(p—3), our lemma
shows that «, , is divisible by p”, and thus (10) is divisible by

pk N+2m

and a fortiori by
pk N+4

Since the first term of (9) is not divisible by

k N+1
per,

we have reached a contradiction. Thus k2 = %, if 2 <<p — 1. As in the case p = 3
we find that a point (z,y) in 2 of order p*, » = 1, has mtegral coordinates,
if p is not divisible by the (p — 1):th ‘power of any prime ideal in Q.

Finally we shall use the identity

—~27B*= (6 A2*—9 Bz—4 4% (32— 4)—9 (2 42—3 B) (2*— Aa—B). (11)

Suppose y 0. In the right member of (11) 4 and B can be eliminated, if
we put

32— 4 p
2y
and use the equation (1). Then (11) is transformed into
443 —21B2 = y2[36x2( —3x) + 108zyt— 32y — 2747, (12)
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Since

32— A\
2x+p(2u)=( 7y )>
the number ¢ is integral, if z and p(2u) are integral. But then (12) shows that
y® divides 4 4% — 27 B2,

We have proved the following theorem:

Theorem 2. — Let A and B be integers in the algebraic number freld Q, and
let (x, y) be an exceptional point in Q2 of order n>1 on the curve

y*=a*— Az —B. (4 43 — 27 B2 < 0)

Then x and y are integers in the following cases:

1. If n is not a power of an odd prime.

2. If n is a power of 3 and the number 3 is not divisible by the erghth power
of any prime ideal n L. .

3. If n is a power of a prime p>3 and p is not divisible by the (p — 1):th
power of any prime ideal in £.

If n is a power of the odd prime p, the number px 13 always iniegral.

If n>2 and the two numbers p (u) = x and @ (2u) are integral, then y is an in-
teger #~ 0, and y® divides 4 A3—27 B2,

It is not possible to substitute “p:th” for “(p —1):th” in the case 3. above,
as is shown by the following examples: '

4 .
Example 1. — In Q = k(V5) the curve

y? = 2% — 27-269z + b4 - 9481V5

has the following points{of order 5:

PSS
soweel LOVE ey

6
Example 2. — In Q = k(V7) the curve

3
¥t = 28— 27-967V7z + 27- 165086

has the following points of order 7:

. 5. 256 Brp 4,24 . 3.96
_~3371’ lL2 73 ’ 3373, i‘2 73 ’ 3 %,45’ i2 ‘3 .
vio Y llve VT vi M
In the case p = 3 NaGELL gives an example ([4], p. 12), where £ has the de-
gree 8.
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