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On the ideal structure of  group algebras 

B y  HENRY HwLSON 

Let G be a locally compact abelian group with dual group G, and denote 
by ~ the group algebra of G, consisting of the functions summable on G for 
Haar measure dx. The maximal regular ideals of ~ are in correspondence with 
the points of G; the functions belonging to such an ideal are exactly those 
whose Fourier transforms vanish at the given point. Now let ~ be any closed 
ideal in 6. The Tauberian theorem states that  the Fourier transforms of the 
functions of ~ have at least one common zero. Differently stated, ~ is contained 
in at least one regular maximal ideal. The central problem about the ideal 
structure of ~ is to determine under what conditions ~ is the intersection of 
the regular maximal ideals which contain it; and this is the same as to decide 
whether ~ necessarily contains all functions whose transforms vanish on the set 
of zeros of the transforms of ~. 

L. Schwartz [4] has given an example in the three-dimensional Euclidean 
group of a closed ideal which is actually smaller than the intersection of the 
maximal regular ideals containing it. Positive results can be given by restricting 
the ideals considered. We refer to [2] for these results and to references to 
the literature (the problem is there discussed in ~ from the dual point of 
view). But our present point of departure is the fact that  there are groups where 
distinct ideals determine the same set of zeros. We shall show in such a case 
that  infinitely many ideals determine that  set of zeros, and we can exhibit a 
few of them. The crucial tool is a theorem of Godement on unitary representa- 
tions of abelian groups. 

The reader should be familiar with the theory of Fourier transforms on abelian 
groups, in particular with the content of [1]. The theorem of Godement referred 
to is also proved in this paper. 

For a closed set E in G, let ~ (E) be the closed ideal of summable functions 
on G whose transforms vanish on E. Let  ~0 (8) be the closure of the ideal of 
summable functions whose transforms vanish on some open set containing 
(depending on the function). Then any closed ideal whose set of zeros is 
lies between ~o and 5. We assume that ~0 and ~ are distinct, and we are 
going to show that  there are indeed a great many ideals between. 

If 1t and !~ are closed ideals such that  
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(equality is not excluded), we can form the Banach algebra ~/11 with norm 

II/11 = inf tt g II ( / - g  ~ u). 
g 

Translation by a group element leaves 1I and ~ invariant, and so defines an 
operator in the quotient algebra which is evidently unitary. Together these 
translation operators are a unitary representation of G in ~/1I. We have to 
show that this representation is reducible. 

Recall that the closed ideals in ~ are characterized as the closed subspaces 
invariant under translation. Presumably a closed ideal in the quotient algebra 
need not be invariant under translation. We are interested in the closed invariant 
subspaces lying between 3o and 3. I t  is easy to see that  these are the same 
as the subspaces of 3/30,  invariant with respect to the induced translation 
operators, and closed in the quotient norm. So we shall speak of invariant 
subspaces instead of ideals in quotient algebras, and we know that  we can 
restrict attention to the quotient norm in discussing the closure of subspaces. 

For any function / on G, let ]a be defined by the formula 

/a (X) = / ( a - '  X) 

for all x. The first lemma states that the natural representation of G in ~ /1 I  
cannot be one-dimensional. 

Lemma.  Suppose 1I and ~ are closed invariant subspaces of ~ with 

3 o C l l a ~ 3 .  

If / a -  9 (a) ] belongs to 11 for every a E G, / E ~,  and some 9 E G, then 1I = ~ .  
Take any summable function h with Fourier transform h. For almost all a, 

h(a)/~-- 9 (a)h (a)] is a function in 11; integrating this vector-valued function 
of a gives h * / -  h (9)/, which must belong to 11 since 11 is closed. This holds 
for all h E s  and ] E ~ .  I t  follows that  h* /E11  if and only if h ( 9 ) = 0  (unless 
11= ~). 

Suppose the fixed point 9 does not belong to E. For any summable h we 
can find a function g E3o such that  h (9 )=  g (9) (where ~ is the Fourier trans- 
form of g), since E is a closed set not containing 9. By what has been shown~ 
(h--g) * ] E 11 for each / E !8. Now g * ] E 3o a 11, so h * ] E 1I for each / E !8. Hence 
h (9 ) =  0, which is absurd, since h was arbitrary. So 9 E F]. 

To finish the proof we have to find a directed system of functions h r such 
that  )~r (9 )=  0 for each y, and hr * /  converges to /, for arbitrary ] E !~. Then 
it follows that  ] E 11, since 11 is closed, and .hence 11 = !~ after all. 

The existence of such a system is implied by a theorem of Kaplansky on 
primary ideals [3]. Without loss of generality assume that  9 is the identity 
of G. I t  is known that  we can find a system lea} of summable functions of 
norm one with ~ (()) = 1 for each a, such that  e, * / converges to zero for any  
summable^ ] whose transforIn vanishes at () (and hence for all functions of !~, 
since 9 E E) ([2], w 3). Let  (g~) be an approximate identity for ~ with ~ (5) = 1 
for each ft. Then (g~--g~ * e~) is the required system (h r ) .  
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We shall need to know the form of the linear functionals on quotient algebras 
of the form ~/3o .  They are the functionals on ~ which vanish on 30. A func- 
tional on ~ can be extended to all of ~, and so can be represented by a function 
~o of ~.o, whose value for / e  9-3 is 

~ ,  / (0). 
Of course, two bounded functions may determine the same functional in ~.  
The condition that  the functional ~ vanish on 30 is exactly the requirement 
that  the spectral set A~ of 9 lie in E. So the linear functionals on ~ / 3 o  are 
the functions of ~,o whose spectral sets are contained in E, with certain iden- 
tifications allowed depending on ~.  

Godement [1] has shown that  if a unitary representation of a locally compact 
abelian group in a Banach space is not one-dimensional, then i~ cannot be ir- 
reducible; and in fact there must be non-trivial invariant subspaces of a special 
type which he calls spectral varieties. We are given a natural unitary representa- 
tion of G in ~ /3o ,  and by the lemma it cannot be one-dimensional unless 
11 = ~.  To obtain our theorem we only have to interpret the notion of spectral 
variety in this case. 

Let  F be a closed subset of F~. The spectral variety ~ in ~ /3 0  is the set 
of functions ] e ~ (more precisely, cosets of functions) such that  the spectral 
set A ~ . !  is contained in F ~ for every q0E~ ~ whose spectral set is contained 
in /~. (Such ~0 are the linear funetionals on ~3/3o, and this is the purl~ose for 
which we determined them.) 

Theorem.  Suppose ~ is a closed invariant subspace of 3, distinct from and 
containing 30. There is a closed subset E of/~ such that  ~ contains the spectral 
variety ~ ,  and ~;~ is distinct from ~ and from 3o. 

Applying the theorem to the case ~ = ~, the existence of a non-trivial in- 
variant subspace between ~ and 30 is shown. Evidently an infinite descending 
chain of invariant subspaces can be so obtained, and there is no minimal in- 
variant subspace containing 30. 

The characterization of the linear functionals on ~ /3 0  was only used to find 
the form of the spectral varieties. Applying the lemma and Godement's theorem 
to the spaces 3/1I (where 11 is assumed to be different from 3 and to contain 
3o) shows that  no closed subspace is maximal, but  the spectral varieties are 
less easy to describe. The same reasoning shows that  there are invariant closed 
subspaces between any pair U, ~.  

I t  is an open question whether ~ is characterized by the ~ which it  
contains. There is no positive evidence and experience with the problem recom- 
mends pessimism. One would hke to use the notion of spectral variety to define 
a notion of zero of higher order for transforms of functions of 3- For q e s  
with spectral set contained in E, we know tha t  no point of A,  survives in the 
spectral set of q * /  if / e  30. Now if ~8 contains a spectral variety ~ ,  then 

contains all the functions which annihilate spectral points lying outside F. If 
a maximal such set F could be defined in some way, presumably its complement 
in B Could be used in place of /~ in a more exact discussion of ~8, and so 
through finitely or infinitely many stages. As yet the idea has had no success, 
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