ARKIV FOR MATEMATIK Band 1 nr 30

Communicated 11 October 1950 by F. Carrson and J. MALMQUIST

Some theorems on absolute neighborhood retracts

By Ovror HANNER

1. In this paper we shall study ANR’s (absolute neighborhood retracts). The
general problem will be as follows. Suppose we have proved that all ANR’s
have a certain property. Then we may ask, if this property is characteristic
for ANR’s, or in other words if it is true that a separable metric space having
this property necessarily is an ANR. Thus we shall study necessary conditions
for a space to be an ANR, and we shall find that some of these conditions
are also suificient.

Using Kuratowskr’s modification ([7] p. 270) of Borsuk’s original definition
([1} p. 222), we mean by an ANR a separable metric space X such that, when-
ever X is imbedded as a closed subset of another separable metric space Z, it
is a retract of some neighborhood in Z.

First, we take up the study of local properties of ANR’s. It is known that
an ANR is locally contractible (cf. [4] p. 273) and Borsuk proved that local
contractability is sufficient for a finite dimensional compact space to be an
ANR (1] p. 240). In a recent paper, however, he has given an example of a
locally contractible infinite dimensional space, which is not an ANR [3]. So
the question then arises, if the property of a space to be an ANR is a local
property. That the answer is affirmative is shown by theorem 3.3. In the case
of a compact space this has already been proved by Yasmma {10].

Thereafter we prove some theorems on homotopy of mappings into an ANR.
Briefly the result can be stated by saying that two mappings of the same
'space into an ANR which are “near” enough to each other, are homotopic, and
that if the homotopy is already given on a closed subset and is “small”” enough,
then this homotopy is extendable. For a compact ANR we can give an exact
meaning to the words near and small in terms of some metric. But the uni-
formity . structure implied by a metric does not seem to be a suitable tool for
handling non-compact ANR’s. Instead of a metric we therefore use open cover-
ings of the space.

Borsuk proved [2] that any compact ANR X is dominated by a finite poly-
hedron P. This means that there exists two mappings ¢:X — P and y: P > X
such that p@:X —~ X is homotopic to the identity mapping ¢: X — X. We
now prove that the polyhedron P and the mappings ¢ and ¢ can be chosen
so that this homotopy between yo and ¢ is arbitrarly small, and we show
that in this way we get a sufficient condition. This result is generalized
in a natural way to non-compact spaces by using infinite locally finite poly-
hedra. Since these poly%edra are ANR’s (see corollary 3.5) we thus see that
any ANR is dominated by a locally compact ANR.
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0. HANNER, Some theorems on absolute neighborhood retracts

Finally we study a theorem by J. H. C. WuirEneanp. By a new proof we
are able to generalize it slightly.

2. Let us develop in this section some notations and well-known results,
which we nced in the sequel.

All spaces 1n this paper will be separable metric (or rather separable me-
trizable, since we often consider different metrics for the same space).

By a pair (Y, B) we mean a space Y and a closed subset Bof Y. If (Y, B)
is a pair and F:Y - X and f: B — X are two mappings into a space X such
that F(y) = f(y) for ye€ B, we call F an extension of f to ¥ and f the re-
striction of F to B, denoted f= F|B. If F is only defined on some neigh-
borhood of B in Y, F is called a neighborhood extension of f/ in Y.

Suppose X is a subset of Z. Then we distinguish between two mappings
f:B—>X and g : B~ Z for which f(b) = ¢g(b) for all b€ B. This distinction is
of importance, when we speak about extensions. That f is extendable to Y2 B
implies that g is extendable, but the converse is not in general true. An exten-
sion of g will also be called an extension of f reiative to Z, and an extension
of f will be called an extension of ¢ relative to X.

If f(y,t): Y X I—>X denotes a homotopy, I being the interval 0 £¢ = 1,
we shall also use the notation f,: Y — X, where f, for each ¢ is the mapping
determined by fi(¥) =/ (y,¢). When the notation f;(y) is used this will impli-
citely mean that the function is continuous in both variables ¥ and &

By an open covering « = {U,} of a spate X we mean a family of open sub-
sets U; of X, the union of the Uys being X. An open covering § = {V,} is
said to be a refinement of « = {U,;}, if for each u there is a 4 such that
V.cU, A covering a={U,;} is called star-finite, if for each 4 we have
UinU, # ¢ (= the void set) for only a finite number of u. By a countable
covering « = {U;} we mean a covering for which the index set {1} is countable.
A countable covering can be written o« = {U,}, n =1, 2, ... with the set of
natural numbers as the index set. S. Karraw ([6] p. 249) has proved that
every open covering of a separable metric space X has a countable star-finite
refinement. A slightly different proof of this.theorem will be derived from the
method in the proof of theorem 3.3 (see remark 3.4).

By a locally finite polyhedron we mean a simplicial polyhedron with a count-
able number of simplices each meeting only a finite number of simplices. The
polyhedron is topologized in the natural way by taking as open sets all sets
that intersect any simplex in an open subset of that simplex. This topology
makes a locally finite polyhedron into a locally compact separable metnc space.
We shall later see that it is an ANR.

A locally finite polyhedron can be topologically imbedded in a Hilbert space
as follows. Let {p,} be the vertices of the polyhedron and {e.} the unite points
of the countable number of coordinate axises of the Hilbert space. Define the
topological mapping ¢ by setting @ (pa) = e, and extending the mapping linearly
for every simplex of the polyhedron.

For every covering of a space the nerve of the covermg 18 the abstract
simplicial complex whose vertices are the sets of the covering and in which

{Un, Us,, ..., Uy} is a simplex if and only if n Uj; is non-void. The poly-

hedron corresponding to this complex is called the geometmcal realization of the
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nerve of the covering. The geometrical realization is locally finite if and only
if the covering is countable and star-finite.

For countable, star-finite coverings of a space X we consider the barycentric
mapping of X into the geometrical realization of the nerve of the covering. If
the geometrical realization is imbedded in the Hilbert space in the way described
above, this mapping is defined by letting the image-point of a point z€ X be
the point {a,(z)}, where

an(x) = }g,,(w’ X:_A,b’i)__.
S‘ d(:l}, X - Uz)
i=1

It has been proved that a space X is an ANR if and only if for any pair
(Y, B) and any mapping f: B — X there exists a neighborhood extension of f (cf.
Fox {4]). This result will be used in this paper without any further reference.

Let X be a closed subset of an ANR Z. Then X is an ANR if and only
if X is a neighborhood retract of Z. To be able to apply this when deter-
mining if a space X is an ANR, we want to imbed X as a closed set in an
ANR Z. This is always possible. In fact, we can choose Z to be an AR
(absolute retract). If X is compact, we simply imbed X in the Hilbert cube I.,.
For I, is an AR. For a non-compact space this method fails to work, because
X will not be closed in I,. WospysLawskr [9] has proved, however, that any
space X can be imbedded as a closed set in a space 7 which is a convex
subset of a Banach space and which is therefore an AR.

Some use has been made within the theory of compact ANR’s of the fact
that the Hilbert cube I, is convex. To be able to prove the corresponding
theorems in the non-compact case we shall use the space 7 just mentioned.

3. Lemma 3.1. "4ny open subset of an ANR is an ANR.

Proof. Let O be an open subset of the ANR X. Suppose there is given a
pair (Y, B) and a mapping f: B — 0. We shall show that f has a neighborhood
extension.

Since X is an ANR, / has a neighborhood extension relative to X, say
g:U —~ X, where U is a neighborhood of B. The set O is open so that
V = ¢~1(0) is open in U, and because BcV, V is a neighborhood of Bin Y.
Define F:V - O by

Fy)=g(y) dor yeV.

Then F is an extension of f to the neighborhood V of B in Y.
This proves lemma 3.1.
Lemma 3.1 suggests the following concept.

Definition. A space X is called a local ANR if every point € X has a
neighborhood which is an ANR.

If a point z has a neighborhood which is an ANR, it follows from lemma
3.1 that given any neighborhood U of z, there is an open neighborhood of z
contained in U which is an ANR. This justifies the name local ANR.

It is clear that an ANR is a local ANR. The converse is also true.
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Theorem 3.2. The two concepts ANR and local ANR are equivalent.
Theorem 3.3. A space which is the union of open ANR’s s an ANR.

Proofs. To prove theorem 3.2 we have to show that a local ANR is an
ANR. Since every point of a local ANR has an open neighborhood which is
an ANR, theorem 3.2 follows from theorem 3.3.

To prove theorem 3.3 let us consider two special cases and from them deduce
the general case. :

a) X 18 the union of two open ANR’s: X =0,u00,. Let f:B— X be a
given mapping of a closed subset B of a space Y. We have to show that f
has a neighborhood extension.

The two sets

Fy=B—[71(0,), Foa=B—f"1(0)

are disjoint sets, closed in B and therefore also closed in Y. By the normality
of Y take two disjoint open sets Y, and Y, in Y such that

Y, oF, Y,oF,.

Then Yo=Y —(Y,uY,) is a closed set in Y. Set Bi=Y;nB, +=0,1, 2.
We have

(1) {(Boy) € 010 Oy,
f(B1) € 01, [(By) c Os.

By is a closed subset of Y, and O;n0, is an ANR. Therefore (1) shows
that there exists an extension of f|B, relative to O;n O, to an open neigh-
borhood U, of By in Y,. This extension defined on U, and the original map-
ping f defined on B agree on B, = Uyn B, so they together define a mapping
g:UguB— X. Since

Up=(UguB)n Y,

U, is closed in Ugu B. B, being closed in Y, is also closed in Uyu B. There-
fore g is continuous.

We have
(2) g(UguBy) € 01, ¢(UguBy) c O,
(3) Yo — U, is closed in Y.

The set Uyu By is closed in Uyu Y;. For
(Upu Yy) —(UpuBy) =Y, — B, =Y, — B
is open in Y. Since O, is an ANR, we therefore in view of (2) have an exten-
sion ¢;:U; > 0y of g|Uyu B, relative to O; to an open neighborhood U, of
UguB; in UyuY,. Because of (3) UsuY,, is open in Y,uY,, so that
(4) U, is open in YyuY;.
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Similarly let g,: U, = O, be an extension of g|Uyu B, relative to O, to an
open neighborhood U, of UguB, in Uyu Y, Because of (3) Uyu Y, is open
m YyuY, so that

(5) U, ig open in YouY,.
Set U= U,uU, and define F:U - X by

Fu)=¢,(u) for uelUy,
F(u)=gy(uw) for uelU,.

For ueUy = U,n U, we have gy (u) = gy (u) = ¢ (). Hence F is uniquely deter-
mined. We have
U]_:U_Yg, UzIU’_‘}’D

so that U, and U, are closed in their union U. Thus F is continuous. F is
an extension of /. Therefore we only have to prove that U is a neighborhood
of Bin Y.

In fact, U is open in Y, For

Y—U=[(YouYy)—UjJu[(YouY,)— Uy

is closed because of (4) and (5).
This proof is essentially the same as Borsuk’s proof ([1] p. 226) in the case
of the union of two closed ANR’s whose intersection is an ANR.

b) X is the countable union of disjoint open ANR’s: X = U O,. Suppose X

n=1

is imbedded as a closed subset of a space Z. Choose some metric for Z. Each
O,, being the complement of an open subset of X, is closed in X and so also
in Z. Define a collection of disjoint open sets {G,} in Z such that G, con-
tains O,. This can be done for instance by letting G, be the set of all points
of Z whose distance to O, is less than to X — O,. Since O, is an ANR and
is a closed subset of G, it is a retract of some open set Hy © Gy Denote the
retraction by 7,:H,— On.. These retractions together define a retraction

0
r: UH,— X by

n=1

r{z) = rp(2) for z€H,.

o
Since U H, is an open subset of Z containing X, this proves the theorem in
n=1
case b).
¢) Now to prove the theorem in the general case, note that by LINDELOF’s
o0

covering theorem X is a countable union of open ANR’s: X = U O,. From
n=1
the sequence O, we construct some other sequences of open sets.
First, define U, by .
Un =

i

0.

s

1
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Up is open in X, and by successive use of a) we see that U, is an ANR.
Furthermore

X~ uU,,

n=1

Un [omy Un+].

Secondly, define V,c U, to be set of all points of X having a distance
>}z to X — U, (in some metric on X). V, is open in X, Vaoc Uy, so Vy is
an ANR. We have
(6) X= UV,

(7) Vn c Vn+1.
Finally, define W, by
Wl = Vl, Wz = Vz,
(8) Wn = Vn - Vn—-2 fOI' n 2 3.

Each W, is open in X, W,c V., so W, is an ANR. From (7) and (8) we
obtain

Wn 2 Vn - Vn—l:
so that (6) implies

X =

n

Wa U Wap-1U U Wan.

1 n=1 n=1

<8

But U W2n 1 and U Wg,, are unions of disjoint open ANR’s. Thus they are

themselves ANR’s by b). X, now being a union of two open ANR’s, is an
ANR. This proves theorem 3.3 and so also theorem 3.2.

Remark 3.4. The method of this proof can be used to demonstrate S. Kap-
LAN’s theorem that an arbitrary open covering of a separable metric space has
a countable star-finite refinement. For take from a given covering in the same
way as above.a countable refinement {0,} and construct W,. Then W, is an

n
open subset of U O;. Hence the covering
i=1

{Wnanj}, n=1) 2,-"57'.21" #,
is a refinement of the given covering and is clearly countable and star-finite.
Corollary 3.5. A locally finite polyhedron s an ANR.

Proof. It is known that a finite polyhedron is an ANR. Hence a locally
finite polyhedron is a local ANR and so an ANR by theorem 3.2.

4. Let f,g: Y > X be two mappings of a space Y into a space X. Let
d (z1, 25) be a metric for the space X.
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Definition. If X is covered by « = {U;}, f and ¢ are called a-near if for
each y€Y there is a U, such that f(y)€ U, g(y) €U, If >0 is given, f
and g are called e-near if d(f(y), g(y)) < e for each y€Y.

Let f;: Y - X be a homotopy.

Definition. If X is covered by a = {U;}, f; is called an a-homotopy if for eac}l
y€Y there is a U; such that f(#)€U, for 0S¢t < 1. If e >0 is given, f; is
called an e-komotopy if for each y the set of the points f¢(y), 0 <¢ =<1, has a
diameter less than e.

Theorem 4.1. Let X be an ANR and o a given open covering. Then there
exists an open covering B, which is a refinement of «, such that given any pair
(Y, B), any two f-near mappings Fo, F,: Y — X, and any B-homotopy f;: B—~ X
between fo = Fo|B and f, = Fy|B then there ewists an extension of this homotopy
to all of Y, the extension being an a-homotopy between Fy and F;.

Note the special case when B is void. Any two p-near mappings are
a-homotopic.

That the converse of theorem 4.1 is true, is shown by theorem 4.2.

Proof. As in section 2 we consider X as a subset of the space 7. X being
an ANR, there exists a retraction r: U — X of an open set U, X c U cT.

From the given covering « = {U;} we construct § as follows. Obviously
' = {r~1(U,)} is an open covering of U. Let §’ = {V,} be a refinement of o'
such that each V, is convex. Put

B=1{V.nX}.

Then g is a refinement of «. We shall prove that S has the property stated
in the theorem.

Let (Y,B) be a pair, F,, F; two B-near mappings, and /; a S-homotopy
between fy = Fo|B and f; = F,|B. Since T is convex, the two points Fy (¥)
and Fy(y) can be joined in T by the straight line segment (using vector
notation in 7

Ge(y) = (L—1) Fo () + tF1(y),

described by ¢ going from 0 to 1. As we shall show below G¢(y)€U. Hence
7Gi(y): Y - X is defined and is a homotopy between F,(y) and F;(y). But
it is in general not an extension of f,. We therefore want to replace rG:(y)

by fi(y) for y€ B. To save the continuity we proceed as follows.
Define

By, ): Y X {0JuY x {1}uBXI—>X
by
h(y}0)=F0(y) fOI‘yEY,
k{y,1)=Fy(y) for ye¥,

h(y,t) = fi (v) for y€B, t€l.

Since X is an ANR and I is compact there exists an extension H (y,t) of
h(y,t) to aset ¥ X {0}uY X {1}uV X I, where V is an open neighborhood
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of B. By taking V small enough the homotopy H|V:V — X wil be a
p-homotopy like f. ’ .

Let W be an open set in Y such that Bc W e W c V, and define a func-
tion e(y): Y — I such that

e(y)=0 for ye Y —W,

e(y)=1 for y€B.

Set
Gi(y) =(1—ey)G(y) + e(y) Hi(y) for yeV,

G (y) = Gi(y) for ye Y — V.
Then G’ (y, t) is continuous. We have

Go(y) = Foly), Gily)=F:i(y)
Let us show that

(1) ’ Gi(y) €U
and that for each y there is a U;€a such that
@) rGi(y) €U, for t€l.

From (2) it will follow that rGi(y): ¥ — X is an a-homotopy. Being an ex-
tension of f;(y), r G¢(y) is therefore the sought-for homotopy between F, (y) and

Fi ().
We have to prove (1) and (2). They will follow if we show that for each
y €Y the curve

() Gi(y) €V,

for some V,€p. There are two cases.

a) e(y) =0. Then Gi(y) = G¢(y), the straight line segment between F(y)
and F,(y). Since F, and F, are f-near, and since all V,’s are convex, this
line segment lies in some V,€8.

b) e(y) > 0. Then y€W. H(y) is a f-homotopy. Hence

(4) Hi(y) €V,
for some V,€p’. In particular
Ho(y) =Fo(y) =Go() €V, Hily)=Fi1(y)=G1(y) €V,
Since V, is convex we therefore deduce
) - Gilw) €T,
and (3) follows from (4) and (5).
This completes the proof of theorem 4.1.

That ANR’s are locally contractible is an immediate corollary of theorem 4.1. ’
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Theorem 4.2. A wnecessary and sufficient condition for a space X to be an
ANR s that there exists an open covering o of X with the following property. If
(Y,B) 1s a pair, Fo, F1: Y > X are two a-near mappings, and fi: B — X is an
a-homotypy between f, = Fo|B and f, = Fy|B, then there exists a homotopy
F;: Y — X between Fy and Fy which is an extension of fi.

Proof. The necessity follows from theorem 4.1. To prove the sufficiency let
z€X be an arbitrary point and let U be an element of the covering o con-
taining z. Define Fo:U > X, F1:U ~ X, and fi:z > X by

Fo(u) =2z for uel,
Fi(w)=u for uel,
fi(xy =2 for tel

Then obviously Fo and F; are «-near, and f; is an a-homotopy, so we have
an extension F;: U - X of f.

Since F'(x X I)=x€lU we can by the compactness of I take an open
neighborhood V of z such that

F(VXI)eT.

We assert that V is an ANR.
For let (Y, B) be any pair and f: B — V any mapping. Definc Fy: Y — X,
F{:Y—> X, and f{ : B~ X by

Fo(y)=Fi(y) == for ye Y,
fi (w) = Fac(fw) for y€B, 0 =¢
1{ () = Fe2:i(f ) for y€B, 1 St =

IIA

1
2
1.

We see that Fy and Fi are trivially a-near and that f is an «-homotopy.
Then there exists an extension Fi : Y — X of f{. Denote by W the-open set
Fy=2(V) and define F: W — V by

Fy)=F{(y) foryeW.

Then F is a neighborhood extension of f, showing that V is an ANR.
"Thus every point x€X has a neighborhood ¥V which is an ANR, so X is
an ANR by theorem 3.2. This proves theorem 4.2.

5. Definition. The homotopy extension theorem is said to hold for a space X,
if for any homotopy f;: B - X between two mappings f,, f/; : B~ X, where B
is a closed subset of a space Y, the fact that f, is extendable to a mapping
Fy: Y - X implies that f; is extendable to a homotopy F;: Y — X between F
and an extension F; of f;. :

In particular let f5, f,:B— X be two homotopic mappings. Then if 7, is
extendable to Y, f, is also extendable to Y.

It is known that the homotopy extension theorem holds for any ANR (cf.
[5] p. 86).
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Theorem 5.1. A space X 1is an ANR if and only if for each point x€ X
there exists a mneighborhood V of x such that for any pair (Y, B) any mapping
f:B—V has an extension F:Y — X relative to X.

Proof. The necessity is contained in a proof by Kurarowskr ([7] p. 275).
An alternative proof is the following. (Cf. alse [10] p. 59.)

Let © be a point in the ANR X. X is locally contractible. Take V a
neighborhood of z which in X is contractible to 2. Any mapping f: B— V is
then homotopic to the constant mapping ¢: B — V, which maps all B into z.
Since ¢ is extendable to Y, f is extendable to Y relative to X by the homo-
topy extension theorem for X,

To prove the sufficiency we may assume V to be open, otherwise replacing
V by any open neighborhood of z contained in V. We assert that V is an
ANR. For let (Y, B) be a pair. A mapping f: B — V has then an extension
F:Y — Xrelative to X. W = F~1(V)isopenin Y. Then ' : W — ¥ defined by

f(y)=F(y) for yeW

18 a nelghborhood extension of f. Hence V is an ANR, so that X 18 a local
ANR and therefore also an ANR.

Remark 5.2. We may also prove that if U is a given neighborhood of z,
we can choose V in theorem 5.1 so that we can require F(Y) ¢ U (cf. Yasma
[10]). For we may assume U open. Then U is an ANR by lemma 3.1, and
we can apply theorem 5.1 on U instead of on X.

Theorem 5.3. If the homotopy extension theorem holds for a locally contractible
space X, then X s an ANR.

Proof. Let X be such a space. Theorem 5.1 gives a necessary and sufficient
condition for a space to be an ANR. When proving the necessity of that
condition, we only used the facts that an ANR is locally contractible and that
for an ANR the homotopy extension theorem holds. Thus our space X satis-
fies that condition. Sinee the condition is also sufficient, X is an ANR.

The previously mentioned example by Borsuk [3] shows that there are lo-
cally contractible spaces which are not ANR’s. As an example of a space for
which the homotopy extension theorem holds but which is not an ANR, we
can take the set of rationals on the real line,

6. In section 3 we proved that a locally finite polyhedron is an ANR. We
are now going to show that any ANR is dominated by a locally finite poly-
hedron (see theorem 6.1). Later we shall prove that the converse of theorem
6.1 is true (see theorem 7.2).

Definition. The space Z is said to dominate the space X if there exist two
mappings ¢: X —~Z and y:Z — X such that pyp™>¢: X — X, where ¢ denotes
the identity mapping. If the homotopy is an a-homotopy, o being a covering
of X, Z is said to a-dominate X. If the homotopy is an s-homotopy, £ being
a p0s1t1ve number, Z is said to e-dominate X.
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Theorem 6.1. If X is an ANR, tken for any open covering o there exists
a locally f@mte polyhedron oc~dommatmg X!

Proof. As in section 2 we consider X as a subset of the space 7. X being
an ANR, there exists a retraction #:U — X of an open set U, X cU < 7.

Let o= {U;} be the given covering. Consider &' = {r~1(U,)}, which is an
open covering of U. For each w€U we determine a number % = 7 (u) > 0
such that the convex #-neighborhood S(u,#) of u in T, ie. the set of all
points of T with a distance to w less than 7, satisfies

(1) S(w, n) e r1(U3)

for some U;€a. Set
B= {s (u g) nX}-

Then g is a refinement of «. Let y = {V,}, n=1,2, ..., be a countable star-
finite refinement of . That y is a refinement of B means that for each V,
we can select a point u, and the corresponding number 7, such that

VncS(un, %") n X.

Let now P be the geometrical realization of the nerve of y. Denote the
vertex corresponding to V, by p,. We are going to show that P a-dominates X.

We define ¢ : X — P to be the barycentric mapping and set ¢ =rg: P~ X,
where ¢g: P -~ U is the mapping defined by setting g (pn) = ua for every vertex
and extending the mapping linearly on every simplex of P. We have to verify
that g(P) c U.

For an arbitrary point z€X denote by Va,, . . ., Vn, the finite number of
elements of y containing z. Then 7, . . ., x, are the corresponding #-numbers,
and we may assume that the notation is chosen so that (+ = 1,...,7)

- Ny 2 Nng -
From
Ty
€ Vy < S\ un, 5 nX

we obtain

Mni Ty

Az, un) < —2- < ~2—
. 80 that

2 . d (Uny, Un)) < .
The point z is mapped by ¢ into the simplex of P spanned by pn, . . ., Dnys

and this simplex is mapped by ¢ onto the simplex in T spanned by the points
Un;. From (2) we see that

11 have been informed that C. H. Dowker has independently proved this theorem and
_its converse.

399



O. HANNER, Some theorems on absolute neighborhood retracts

(3) Un; €8 (Uny, Mny)-
Hence
(4) g (x) € S (unv 77”1)'
Now to prove that ¢(P)c U let o= (pm, ..., Pn) be a simplex of P.

q
Let x in the arguments above be a point in N Up;. Then the pm].’s are
i=1

among the p,’s, and (3) yields

9 (Pm;) €8 (tny, Mny)-
Hence
g (G) < S(’Unl, "7"1) c U’

showing ¢g(P)c U.

Thus y =rg is defined. Let us show that p¢:X — X is x-homotopic to
the identity mapping :: X — X. An arbitrary point z € X and the corresponding
point g¢ (x) can be joined in 7 by a straight line segment. This gives a homo-
topy in T between gg and i. For each z, (4) and the trivial fact

(5) €S (u"v 77”1)

show that this homotopy is in U. Applying # to the homotopy we have a
homotopy in X between w¢ and ¢ (1), (4), and (5) imply that this is an
a-homotopy.

Corollary 6.2. Any ANR is dominated by a locally compact ANR.
Proof. For a locally finite polyhedron is locally compact.

Theorem 6.3. If X 4s a compact ANR with a given metric, then for any
number & > 0 there exists a finite polykedron e-dominating X.

Proof. Let « in the proof of theorem 6.1 be a covering by open sets with
diameter less than & Proceed as in that proof, but choose y to be a finite
covering. This we can do, since X is compact. The geometrical realization of
the nerve of y is a finite polyhedron e-dominating X.

7. The purpose of this section is to prove the converse of theorem 6.1
(proved by theorem 7.2).

Let X be a space. We consider deformations of X, i.e. homotopies b, : X — X
such that ky = ¢:X — X, the identity mapping. The mapping %, is a mapping
into X. Thus if X is an ANR, there exists for any space Z in which X is
imbedded as a closed subset, a neighborhood extension of %, in Z. Conversely,
however, suppose that we know of a space X that there exists a deformation
h:: X — X such that whenever X is a closed subset of a space Z, %, is always
extendable to some neighborhood of X. Then X is not necessarily an ANR.
For any contractible space satisfies this condition, and there are contractible
spaces which are not ANR’s. However, if % can be chosen arbitrarily small,
1t turns out that X must be an ANR.
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Definition. Let X be a space. A sequence of deformations 2?: X — X, A% ="
=1:X—>X, n=1,2,... is said to converge to the identity mapping i, if for
any point xy€X and any neighborhood V of z, there is another neigborhood
W of x, and an integer N such that z€W and » = N imply A*(z, t)eV
for all ¢

Theorem 7.1. Each of the following three conditions 1s a sufficient condition
for @ space X to be an ANR. Let Z be a space in which X 15 tmbedded as a
closed subset. ‘

(a) For each covering « of X there exists an o-deformation hy: X — X such
that for any Z, hy s extendable to a neighborhood of X in Z.

(b) For some metric on X there exists for each € > 0 an e-deformation he: X - X
such that for any Z, hy 1s extendable to a neighborhood of X in Z.

(c) There exists a sequence of deformations by : X — X converging to the identity

mapping such that for any Z, h% is extendable to a neighborhood of X in Z.

Proof. It is clear that of these conditions (a) implies (b) and (b) implies (c).
Hence we have to prove that (c) is a sufficient condition. Note that when X
is compact (a), (b), and (c) are directly seen to be equivalent. .

Let A': X —> X be as in (c). If (Y, B) is any pair and f: B~ X is any
mapping, then h*f is extendable to a neighborhood of B in Y. For, as in
section 2, imbed X in 7. Let n be fixed. The mapping A*: X — X has a
neighborhood extension H : U - X, U open in T, and f: B — X has an extension
F:Y —T relative to 7. The set ¥V = F~1(U) is then a neighborhood of B
in Y, and ¢g:V - X defined by g(y) = HF (y) for y€V is a neighborhood
extension of A% f in Y.

We want to prove that (c) implies that X is an ANR. Then it is enough
to show that X is a neighborhood retract of 7. We notice that il: X - X
has an extension Hy:U - X, U being a neighborhood of X in 7. Let us show
that X is a retract of U.

For that purpose we define a mapping H (u,t): U X [0, 1) — X, where [0, 1)
denotes the half-open interval 0 < ¢#<<1. Set

1

sm=l—g, n=12...

Starting with H,, = Hy,:U - X alréady defined as an extension of Aj, we
successively define H on the sets U X [s,, sn+1] by an induction on n. This
will be done in such a way that H, |X = i

Assume H; defined for s; < ¢ < s,. Take the space U X I and consider the
closed subset C = U X {0} uX X I. Since H,,|X = h?%, we can map C into X

by g:C - X defined by
g(u, 0) = Hy, (u) for ueU,
g(u,t) = hy_,(u) for ueX, tel.

'The mapping h"tlg:C — X is then, as we have proved, extendable to some
neighborhood of Cin U X I. Applying DowkERr’s method (cf. [5] p. 86), we
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get an extension G :U X I — X of h?*+lg defined on all of U X I. Now define
H (u, t) for t€[sn, snt+1] by '

H(u,(1 —s'sp + 8 sat1) = B Hy, (u) for 0=5s <=

(S

H@u,1—58s,+ s su41) =G(uw,2s—1) for £ =5

IIA
et

This extends the definition of H to U X [sn, sn+1]. We easily verify that H is
uniquely determined for ¢ =s, and ¢ =} (sa + sn41). For ¢ = 5,41 and z€X
we have

H (x, sy+1) = G (z, 1) = "l g(z, 1) = AP+ (),

which means that
Hs, ., | X = antt.

Therefore the induction works. In this way H will be defined for all of
U X [0,1). H is clearly continuous.

Our next step will be to extend the mapping K; = H;| X : X — X defined
on X X [0,1) to all of X X I by setting K(z,1) = 2. Then K (x,t) is a con-
tinuous function. This is already proved for 0 ¢ <1, and is proved for ¢t =1
as follows. Let x, be any point in X and V any neighborhood of z, in X.
We want to find a neighborhood W X [T, 1] of zo X {1} such that

(1) KW X [T, 1) c V.

For t€[sn, sni1] K: takes the values (£ =(1 — 8)sp + § sny1):

K (x) = h31 % () for 0 £ s 21,
Ki(x)=Hmt1hy ., (®) for §=s=1,

ie. values of the form AZ*!4% (z). Since the sequence of mappings ki1 con-

verges to the identity mapping, we can find a neighborhood W, of z, and an
integer N, such that

(2) ketl(x)eV  for x€W,, n 2 N;.

Again, since A converges to the identity mapping, we can take a neighborhood
W of xz, and an integer N = N; such that

(3) B (x)€W, for x€W, n2 N.

Hence setting T = sy we have for (z,8)€ W X [T, 1] that

4) K(z,t)cV.

For, if T=<t<<1, t€[sn, snr1] for some n = N, and (2) and (3) imply (4).
Since We W, eV and K (z,1) =z, (4) is also true when ¢ = 1. This proves
(1) and shows the continuity of K (z,t) for ¢ = 1.
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The two functions H:U X [0,1) > X and K :X X I — X, which are both
continuous, agree on X X [0,1). However, they do not in general define a
continuous function on U X [0,1)uX X {1}, since for a sequence u, €U — X
for which u, ~x€X, and a sequence t,—~>1, we do not necessarily have
H (un, tn) — K (z, 1) = . Therefore, when we finally define the retraction
r: U — X by setting

r{u) =H(u,ew) foruelU—X,

(5)
r(u) =u for ue X,
where 0 £ e(u)<<1 is a function tending to 1, when u approaches to X, we
have to be careful when choosing e(u), so that r is continuous.
Let d(uy, us) be a metric on U and take the metric

dy ((ug, ty), (ug, 1) = d (g, up) + |t — o

for U X [0,1). In U X [0,1) consider the open neighborhood V, of X X [0, 1)
defined as follows. A point (u,¢) belongs to V, if and only if there is a point
(z,t')€X X [0,1) such that

(6) dy (u, 0), @, 1)) <1 —1¢,
(7) d(Hw, 0, Ha,t) <1—t.

That V, is open is clear from the fact that the same point (z,#) can be used
for a neighborhood of (u, ¢).

Since for each n =1, 2, ... [sn, 8n+1] 18 compact, X X [su, su+1] is contained
in a subset of V, of the form U, X [sn, sn+1], Un being an open subset of U.
We may assume U, > U,,;. Take a mapping e,: U -> I such that

en(u) =0 for uelU— U,,

en(u)=1 for u€Unsa.
Set

oo

e(u) =D

) len (u).
n=1

27L

This function e(u) has the following properties.

(8) e(u):U—1 is continuous,
(9) e(w) =1 for ueX,

(10) e(w) =0 for uelU — U,,
(11) (w,ew)€V, for uel, —X.

Properties (8), (9), and (10) follow directly from the definition of e(u). To
prove (11) we observe that (6) implies
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n Un:X,
1

==

so that if uelU; — X, we have u€ U; — U;y1 for some 7. Then

en(u)=1 for n <4,

en(u)=0 for n >4,
so that

1 1 1
e(u)=§+ +§1:i =+ '2'1-(’4‘(1//)
11

=1 — *21*_*1 + 2} €; (u)

Therefore
e (u) € [si, 8541,

and

(u,euw) €U; X [s1, si+1] € V.

With this function e(u) define 7: U — X by (5). Obviously r is a retraction.
It only remains to be proved that r is continuous. All we have to show is
that if we have a sequence u, €U, — X, n=1,2, ..., then u, > x€X implies
7 (Un) = 7 () = x.

The point (ua, eu,)) belongs to Vg, so there is a point (xa, t,) €X X [0, 1)
such that (ua, e(wn) and (x,, %) satisly (6) and (7). From u, >z we obtain
e{un) > e(z) = 1, so that ,

(12) (un, €un)) = (2, 1),

and (6) and (7) yield

(13) o dy ((un, €un)), @n, t) = 0,
(14) d (H (un, €ur), H (xn, tw) > 0.

From (12) and (13)
(@n, t) = (2, 1).
Hence

(15) K (zn, ty) > K (z,1) = a.
Since, however, K (g, tn) = H (s, tn), we obtain from (14) and (15)

7 (Un) = H (Un, € (up) —> ,

showing the continuity of r.
This completes the proof of theorem 7.1.

Theorem 7.2. Each of the following three conditions 16 a sufficient condition
fm: a space X to be an ANR.
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(a) For each covering o of X there exists an ANR a-dominating X.

(b) For some metric on X there exists for each € >0 an ANR e-dominating X.

(¢c) There emists a sequence of ANR’s Z, dominating X such that the corres-
ponding sequence of homotopies yn@a>v:X - X is a sequence of deformations
converging to the identity mapping.

Proof. Let X be imbedded in Z as a closed subset, and let Z’ be an ANR
dominating X, ¢: X —>2Z', p:Z'> X, yp~>i:X - X. The theorem will be
an immediate consequence of theorem 7.1, if we can show that y¢ has an
extension to some neighborhood of X in Z.

But (Z, X) is a pair and ¢: X — Z’ is a mapping into an ANR, so there is
an extension @ :U — Z', U being a neighborhood of X in Z. Thenp@:U -~ X
is a neighborhood extension of . This proves theorem 7.2.

In particular theorem 7.2 contains the converse of theorem 6.1. That the
sufficient conditions given in theorem 7.1 and theorem 7.2 for a space X to be
an ANR also are necessary, is trivial.

8. In this final section we shall use theorem 7.1 to give a new proof of a
theorem by J. H. C. WHITEHEAD [8]. At the same time we shall be able to
slightly generalize the theorem, in that we do not require all spaces to be
compact.

Lemma 8.1. Let (Xy, 4,) be a pair such that Xy and A, are ANR’s. Then
if o s a covering of Xy, there exists an a-deformation ky: Xy — X, satisfying
(1) k(x,0) =z for z€Xy,

(2) kE(w,t) =2 for x€Ay, t€l,
(3) there exists an open set V, A, ¢ V € Xy, for which ki (V) = 4,.

Proof. Since A4, is an ANR we can find a retraction r: U — 4,, where U
is a closed neighborhood of 4, in X;. In the space X; X I we consider the

closed subset
D=X, X{0}uvU X {1lvd, X I

and the mapping ¢: D — X, defined by

g(z,0)==c for z€ X,
g, 1) =r(x) forzel,
gz, i) =z for x€4,, tel.

X, is an ANR. Hence there is a neighborhood extension of g to a function
G:E — X,. E contains a set of the form U’ X I, where U’ is an open set in
X; containing A4,. We may choose U’ so that U’ c¢ U and so that G¢|U’ is
an «-homotopy. _

Now, let ¥V be an open set in X; such that 4, c V « ¥V e U’. Take a
funotion e: X; -+ I such that

e(z)=0 for z€X,— U’,
e(r) =1 for z€V.
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Set
k(z,t) =Gz te) for z€X,, t€l,

Then % (x, ¢) is immediately seen to be an «-deformation satisfying (1) and (2).
(3) follows from

ki, 1) =G, 1)=¢g@x 1)=r(x)€4; for z€V.

This proves lemma 8.1.

Let X; and X, be two ANR’s, and let there be given a mapping ¢ : 4, — X,,
where A4, € X; is a compact ANR. Observe that we do not require X; and
X, to be compact.

We will introduce a new space X which we shall prove to be an ANR. We
may assume that X; and X, are disjoint open subsets of a 8pace Z = X; U X,.
Identify in Z each point a € 4, with ¢ (a)€X,. The identification space thus
obtained from Z is called X.

Theorem 8.2. X is an ANR (cf. [8]).

Proof. First we notice that X is a separable metric space. This is proved
by elementary arguments, using the fact that 4, is compact. We leave the
details to the reader.

Denote the natural mapping of Z onto X by w:Z - X. A set O in X is
open if and only if »~1(0) is open in Z.

In order to show that X is an ANR we want to apply theorem 7.1, condi-
tion (a).

Let o= {U;} be an open covering of X. We consider the covering
p1(a) = {1 (U;)} of Z. Making use of lemma 8.1, we can define a ¢~ (a)-
deformation k;:Z - Z such that

(4) k(z,0)=2 for z€Z,

(5) k{(z, t) =2 for z€4,, tel,

(6) k(z,t) =2 for z€X,, tel,

(7 k(z, )eX, for z€X,, t€l,

(8) there is an open set V in Z, 4, ¢ V € X,, for which %, (V) ="4,.

Define
h=vphky1: XX

Because of (5) and (6) k; is single-valued. As in [8] we prove that h(,?) is
continuous. Thus % is a deformation and clearly an a-deformation. It remains
to be proved that %, : X — X has the property in condition (a) of theorem 7.1.
This we prove in the following formulation. Let (Y, B) be any pair and
f:B - X any mapping. Then %,f: B — X has a neighborhood extension. The
proof will be rather similar to the proof of theorem 3.3, case a).
" The two set$ ‘
Fi=yp(X,— V), F2 = y(Xy)

are disjoint closed subsets of X. Hence
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Fy =72 (F1), Fy= 71 (F2)
are two disjoint closed subsets of Y. Take two disjoint open sets ¥; and Y,
in Y such that
Yl DFl? Yz :Fz.

Then Yy =Y — (Y, UY,)is a closed subset of ¥. Set B;=BnY; :=0,1,2.
We have

9 1(By) € p(V—4y),
(10) H(By) € p(Xy — 4y), [(Bs) € p(VuXy)

From (9) and (10) we obtain:

(11) y~1/| By is single-valued, k9~ 1f(B,) © 43,
(12) v~ 17| B, is single-valued, %, v 1f(By) € Xy,
(13) hyf(Bg) = whky ' f(Bs) @y (A U X,) = 9 (Xp).

We now study the mapping k,y~1f|B,, maklng use of (11). Since A, is
an ANR, and B, is a closed subset of Y, there is a neighborhood extension
go: UO-—>A] of kyy~1f| B, relative to 4, to an open set U, in Y,.

Consider the set Uyu B;, which is a closed subset of Uyu Y,. Because of
(11) and (12) %k u~ 1/|B00B1 is single-valued and takes values in X;. Since
kyyp™'f|Bou B, and go: U, -~ A, agree on the intersection B(, (Bou By)nU,,
they define a function !: Uyu B; — Xy, which is continuous, since U, and Byu B,
are closed in Uyu B;. Since X; is an ANR, there is an extension ¢} : U; — X;
of l to an open neighborhood U, of UyuB; in Uyu Y.

Thereafter, consider the closed set UyuB, in Uyu Y, Using (13) we can
define a mapping m : Uyu B, - v (X,) by

m(y) = ygoly) for yeU,
m(y) =h f(y) for y€ByuB,.
Since for y € B, we have
| voo(y) = vy ' f () = laf (W),

m(y) is uniquely determined, and since U, and B,u B, are closed in Uyu B,
m 1s continuous. The space y (X;) is homeomorphic to X, and is therefore an
ANR. Hence there is an extension g,: U, — ¢ (X,) of m to an open neighbor-
hood U, of UyuBy, in Uyu Y,

Finally, put U = U, u U, and define g: U -~ X by

(@) =ypgi(u) for uel,,
g (u) = g5 (u) for u € U,.
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On Uy=U,nU, , ,
w1 (u) = pgo(u) = m(u) = g5 (u).

Hence ¢(u) is uniquely determined. As in the proof of theorem 3.3, case a)
we see firstly that U, and U, are closed in U, showing that g is continuous,
and secondly that U is open. Since g|B =%/, g is therefore a neighborhood
extension of %, f.

We can now apply theorem 7.1. For we have shown that X satisfies the
condition (a) of theorem 7.1. Hence X is an ANR. This proves theorem 8.2.

Remark 8.3. The assumption that 4, is compact is used in this proof
only when showing that X is separable metric. When A4, is non-compact, X
is not necessarily metrizable. This is shown by taking X; to be the real line,
A; the set of integers, and X, a single point.
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