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On the coefficients in the power series expansion of a ra-
tional function with an application on analytic continuation

By CurisTeEr LEcH

The coefficients of the power series
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have the property that the denominators f, tend to infinity exponentially with

2 . .
the index n. Let the function 5 T be replaced by another rational function
2 —ux

and the coefficients — (on, Bt = 1)* be altered accordingly. Might it then

fn*

oceur that simultaneously lim 8, = o0 and B, = O (n*)? We shall give an answer

H=co
in the negative in proving the following theorem:
Let r(x) be a rational function, which in the neighbourhood of x = 0 is repre-

. . . .. Xn
sented by a power series with rational coefficients, whose reduced forms are ﬁ )
n

r(x)=%—3+%ix+-~+

n
ﬂn

O, fn integers, (on, fn) =1 n=1223...

n
x4+

pn =1, when o, = 0.
h
Then, either the sequence |fn| (n =1,2,3,...) is bounded or lim V|f,|> 1.%*
H=w
The proof is given in the sections 1 and 2 below. In section 3 there is an
application on analytic continuation in connection with a paper! by Professor
F. CarisoN. The results of this note were also suggested by him.

* (a, b) means the highest common divisor of ¢ and b.
** We put f,=1, when o, = 0, for the sake of brevity. In reality, only those values

of n are considered for which o, = 0. A remark of this kind is relevant sometimes also in

the sequel.
t CarwsoN, Uber Potenzreihen mit ganzzahligen Koeffizienten, Math. Z., 9 (1921), p. 1-13.
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C. LECH, On the coefficients in the power series expansion
1. We begin with the case where r(z) is of the form

_ *bo
bo -+ b1w++ bmxm

=aytamr++ana”to,

(1)

in which the numbers b, are rational integers, not all with a common factor.
Apparently ay = 1. Multiplying (1) by by + by + -~ + bpa™ and equating the
coefficients for #* in both members, we get a recursion formula for a.:

bl b2 bm
2 n =73 Q-1"7 Gp-2 — "7 37 Gn-m =1
(2) a boa 1 boam 2 boa n

(@, = 0 for v < 0).

From this formula it appears that all the a, are rational numbers and, if
by =+ 1, integers. Next we assume that b, is a power of a prime p. If

n m
an = %’” (o, Bn) = 1, we shall show that lim V[B,|= V2. In this case, th
formula (2) may be written

¢ c
(3) an = 55;(1”_1 + ;9—52 An_o + -+

Lm Gn—m n=1,

pim

where ¢, and u, are integers, (c., p) = 1 and, for one v at least, u, > 0. If
¢, == 0 for certain values of », we also put the corresponding u, = 0.

v r
Let the greatest of the numbers ’l:, y=12 ... m be o where ¢ > 0,

(r,q) =1 and consequently » >0, 1 < ¢ < m. We introduce » as a ¢:th root
of p, thus »? = p, and make the substitution

’
An
an = —

wn

We obtain ag = 1 and a recursion formula:
3y an =kyan—1+ kyan2+ -+ kntnom n=1.

Denote by S the class of numbers which can be written in the form
4) H 2,

where H is an Integer and s a non-negative integer. Since p = xf, we may
assume that in (4) H is not divisible by p. A number in S is then said to
be divisible by x, if and only if s> 0. Evidently, for a rational integer,
divisibility by » is equivalent to divisibility by .

The numbers %, and ), in the formula (3)' belong to S, and when these
numbers are written in the forra (4), the exponents of » become congruent to
7-v to modulus ¢; at least one of the k is not divisible by ». This is seen
directly for the %,, and by induction for the a..
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We assert that if one @, is an integer, not divisible by p, then there is
another such number with higher index. Since ap = 1, it follows then that
there is an infinity of such numbers.

Let k, be the last of the %, which is not divisible by x». Suppose that »
does not divide ap but all the following a@; (n > n’). In particular » would
divide the numbers an'i1, any2, . . ., Gn'+y—1. But then the formula (3)" with
n =n' + v implies that a4+, is not divisible by x, and the statement follows.

’ 7 14 14 ’ 4
An'+v" = kl [ R o T p' 1+ kvaw + kvaran 1+ Emapis—m

» divides every a, » divides every £k,

It is seen that @, 4, is equal to a sum of integers (the exponent of x in every
term being congruent to zero to modulus g¢), which are all except one divis-
ible by p.

If an infinity of the a, are integers, not divisible by p, it follows that in-
’ n n

finitely many a, = —,. have a reduced denominator f, = »"" = »" = p™ = 2™,
®

that is

lim V|B.| = V2.

, When by + 1 1 is not a power of a prime, we may write by = bo- by, where
by is a power of a prime, and (by, bo) = 1. Substituting

5 n = if:i,
(5) @ = By

we get from (2) a.recursion formula for a, of the same kind as the formula
(3) for ay:
b] 1 b2 bg ’” _%bg)m_l 14

37 On—1"" 37 Op—-2 — " ~ An—m-
bo bo bo

”
n =

” L n_o__ 7”7
When a, = g,lf, (an, fn) =1, we have just proved lim V|g.|=V2. With
. HPn ’ n=00
On "

B (on, Bn) = 1 it also follows from (5) that lim V|f.| = V2. Thus the

proof is completed in the case where 7(x) is of the form ().

Ay =

2. In the more general case, when we have

g(x) and f(x) being polynomials whose coefficients are rational integers, we may
assume, without loss of generality, that the coefficients b, in the polynomial

b

f(®) =bp + by + -+ bpa™
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C. LECH, On the coefficients in the power series expansion

have no common factors. This amounts to a possible multiplication of r(x) by
an Integer, which is of no importance for what is to be proved. If b, = £ 1
we have seen before that the coefficients in the power series for the function

1 are Integers, and this must obviously hold also for the function g(x)’ If
f(x) /(@)
be++ 1, 1t 1s true for the function f,(lw) that, with the notations used,
lim V|B.| > 1. We shall now prove the corresponding inequality for ;] E:z under

the non-restrictive assumption that (f.z, gix’) = 1.

For the sake of brevity we introduce the notation S.{F (x)} as follows.
F(r) is to be an arbitrary function which can be expanded about the origin
in a power series with rational coefficients,

oto
+—:r+ ,x+

B B A
on, Bn integers, (an, fn) = n=1213 ...
Bn =1, when o, = 0.

F(x) =

Then, by definition, 8, {F(z)} =|pn|- Our statement will be:

If f(x) and g{z) are polynomzals whose coefficients are rational integers, and
(fa,gx) =1, then

n

(6) lim ]/ b {f-(lg)} > 1 implies 7lt1;m ] / ﬁn 'g"z )1

n=o0

By means of Euclid’s algorithm it is possible to find polynomials p,(x) and
Py (x) whose coefficients are rational integers, and a rational integer K, so that

p1(@) () + pa(2)g(2) =

or
K
@ i~ B )+ ma)
We put
7(1;) =cgt+eagrt -+ A+,
j{»% =dytdyx+ - tdga+ o,
py(T) = ey + ey + - + epak.

Then, according to (7), for large values of =,
Kcn = eodn + el(ln—-l R elcdn—k,
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from which follows

Thus

Vo=l /g

of which (6) is an immediate consequence.

Our theorem is now completely proved by the following lemma?, which we
shall not demonstrate here:

If, in the power series expamsion of a rational function about the origin, all
the coefficients are rational numbers, then the function can be written as the quotient
of two polynomials with integral coeffzczents

3. Suppose that f(z) is an analytic function, regular and one-valued inside the
unit crcle, except for a fzmte number of singularities, and that, in the neighbour-
hood of tke origin, it 18 represented by a power series with mtwnal coefficients,

f@)=ay+az+- -+ ana" + -

on
an = 5~

Bn
on, fn indegers, (on, fu) = 1 n=1213...
Bn =1, when o, = 0.

Then, +f

(8) fim | o] = oo, Tim P* =0,

f{x) cannot be continued across the unit circle.

The proof of this theorem depends wholly upon CARLSOVs work, mentioned
in the introduction, which states a necessary condition for us to be able to
continue f(zr) across the unit circle: with the notation

ap, Ap+15 - + o5 Bpiq-1
A@ = | @+l Opy2s - - Gptg
»
Ap+q—1, Ap+q; - « s Ap+2q-2
the inequality
- 71
9) lim | AP [* <1
p=00

must hold for ¢ = p, » T 1.

! HeIvg, Kugelfunktionen I, in the second edition p. 52— 53 The lemma is stated there
more generally, for algebraic functions.
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C. LECH, On the coefficients in the power series expansion

As we have shown previously, the relations (8) involve that f(z) cannot be
a rational function. It follows, according to Boren' and PéLya? that there
exists no number p, such that p > p, implies that AP = AP+ = 0. Thus,
either A% = 0 for infinitely many p or Ag’“) =4 0 for infinitely many p.

We write
(10) max [f.| =N = po(»).

PEv=3p

Then, by the second of the relations (8),
(11) lim ¢ (p) = 0.
Pp=o0

Let Dy, D2, - . ., Da(xy be the primes < N, z (z) the prime number function. If
we multiply every column in the determinant A% by *

[ log N

log Ig] log & _]
P logp,(nyl < Nﬂ(N)’

(12) T - Pl[i@‘ 2 il BN 20

all the elements in the new determinant become integers. Thus, if A;”) =+ 0,

(13) 7| AP | = 1.
N . .
By the prime number theorem, nr(Z!)hl?og_ is a bounded function of N.

Hence, on account of (10), (11) and (12)

S U 16.0) 2. S
(14) lim 77 <lime ¥ -

p=00 p=0o0

If AP 4 0 for an infinity of p, it follows from (13) and (14) that

1.

1
lim | AP [ =1.
p=cc

In a similar way, it may be shown that, if A®*D = 0 for an infinity of p,

1
lim | A®+D " = 1.
p=oc P

The inequality (9) is therefore contradicted either for ¢ =p or ¢ = p + 1,
which proves the theorem.

! Borur, Sur une application d’un théoréme de M. Hadamard. Bull. Sciences Math.. (2),
XVIIT (1894), p. 22-25.

2 PéLya, Uber Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann., 4 (1919), p.
497-313. See also Carlson’s paper.

* [x] is the integral part of .
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