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On null-sets for continuous analytic functions

By LenNArRT CARLESON

1. TLet E be a compact set with a connected complement Q. If ["is the
class of functions f(z) which are analytic in £ and have a certain property P,
then a set E is sald to be a “null-set” with respect to I, if this class consists
entirely of constants. An investigation of these null-sets for certain properties
P has recently been published by Amrrors and Brurnine [1]. For example
they consider the PainpevE problem where P is boundedness. In this paper [
Is a continuity property, and our aim is to give metrical conditions on the
corresponding null-sets.

We denote by L.(E) and C, (F) Hausporrr measure and capacity of order
a, 0 << a <2; for their definitions we refer to [2] A function f(z) (not neces-
sarily single valued) is said to belong to Lipa, 0 < a << 1, if for every circular
arc y of length |y| <1 and for every branch of f(2),

l.{f’(z)dzl =< ]Lll)}'u’
where M is a constant independent of 7.

2. OQOur first theorem is concerned with multiple valued functions f(z).

Theorem: Let I be the class of functions belonging to Lip a and having singl:
valued real part. Then E is a null-set of and only if

L.(E) = 0.

If L,(E)>0, then there exists a real, completely additive set function
vanishing outside E such that

(a) p(E) =0,
(b) fl(z,ltl =1,

() |p(C)| < M= for every circle C of radius r.

The function

f@) = [log (¢ — 1) du(?)
E
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is non-constant and belongs to I'; the continuity of Re f(2) is proved in [2],
page 16, and the continuity of I'm f(z) can be proved similarly.

If, on the other hand, L,(E) = 0, suppose that f(z) = u(z) + 2v(z) belongs
to I. We cover E by a family of disjoint circles {C.} with radii {r,} such that

Zr“Se.
v

This is always possible since L.(E) =0 and a<1. Let » by any closed,
smooth curve, not meeting any circle C,. Then

fﬂd %—gés=2'!dv=20(fi),

v

where the summation runs over those » which correspond to circles interior
to . Hence, letting & -~ 0, we obtain

"Ou
a—dS = 0.

7

f(z) is thus single valued and bounded whence (see [1], page 121)

1 (2) = constant,
and the theorem is proved.

3. If we suppose furthermore that the imaginary part of f(z) is single valued,
the dimension of the null-sets is increased by 1.

Theorem: Let I, be the class of single valued functions belonging to Lip a.
Then E 4s a null-set if Lijo(E) = 0. If Cipu(E) >0, E is no null-set.

The second part of the theorem is proved in [2]. We suppose that Ly (E) =0
and f(z)€ Lip a. Let {R,} as in the sequel denote a covering of E by a finite
number of squares with sides {6,} such that R, and R,, v # u, have parallel
sides and no interior points in common. We also suppose that the set on the
boundary of R, which belongs to £ has measure zero. We here suppose that

Saese

It
€ | G
=ct+ 2,
o) =+ 2+
it is sufficient to prove that
(1) 01 = 0,

as the argument then can be repeated on the functlon z(f(z) —¢) etc. By
CavucHY’s formula we have
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1~
G =ﬁ2,ff(z)dz
R,
\A
Let z,€R,. Then
1
o] =5 2 /]f(z —f2)]ldz] = 2 08t

R

V.

Thus (1) holds and the theorem is established.

4. The limit case a = 1 is particularly interesting and gives rise to functions
with bounded derivatives. In order to characterize the null-sets of this class
from a metrical point of view, we need to devide the family of sets with positive
Lebesgue measure into classes of null-sets. It is remarkable that the generalized
capacities can also serve for this purpose. We shall for the sake of simplicity
only consider sets E interior to the closed unit circle w.

We define the classes N,, 0 < a < 2, of null-sets: E belongs to N, if

Co(w — E) = Co(w), 0<a<?2,
mE =0, a =2,

where C, denotes the logarithmic capacity.! Every set E belongs to N, since
the mass of the equilibrium distribution is situated on the boundary of .
Furthermore, every set in N, belongs to N., a <2. We shall actually prove
that the set N, increases as a decreases:

@) N. < Ng, if a> 8.
Every set E thus "defines a cut o in the sense that EeN,if a<<da, but
E¢N,if a>a'.

To prove (2), let E€N, and O, be an open set consisting of n circles O}
with radii < §;, such that w > 0, > E, hm O, =E, and put F, = w — O,.

Let un and u be the equilibrium dlstnbutlons corresponding to F, and o and
the kernel r—<. If » is the distribution corresponding to w and r~5, we define
the completely additive set functions », as follows:

) - G

Ya (e) = Ium(on)
v (e), ¢ outside all C7}.

e<Cl, ©=1,2,...m,

Since )
Jim pom (0) = . (e),

we can choose m > n so that

V(C?)SK/‘M(C?)a 1'=1’ 2)°"; n,

! A condition of this kind is given in [1].
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where K is a constant independent of n. Furthermore we have
(0w — E) = 1.
If u, and v are the S-potentials generated by v, and », and & > 0, we find

_ v (@) dm() d(v—m)
uw;ﬂﬂ@7-[{V—d3 V—H&+ e

2~ = 2=t > ¢

whence

|u(z) —un(2)] < 6(e) + K e 3] Ii/ﬁil“ e F— (e + 8,)7F,

where 6(e) > 0 as ¢ - 0. We conclude

lim sup |u (z) —un(2)] = 0

and

Cs(w — B) = Cs (o),

|
which was our assertion.

5. We shall now prove that the cut defined by the null-sets for the class I
of functions with bounded derivatives is o’ = 2. More precisely we have the
following

Theorem: A sufficient condition that E 1s a null-set for the class Iy 1is that
E€N,. A necessary condition s that E€ N, for every p << 2.

Suppose that mE =0 and let {R,} be a covering as above. We have,
2, €ER,,

ff(Zdz———-fz—z1 (z)ydz = O (83).

Thus

¢ =2ilf7”.2ff(z)dz= 20(53)
R’V

for all coverings of this kind, whence
6 = O:

and the first part of the theorem follows as above.

Suppose, on the other hand, that Cp(w — E) < Cp(w), 1 <p < 2. Let F be
a closed subset of w — E, bounded by a finite number of circles. Let u be
the corresponding equilibrium distribution such that

V—u@=V~- flz:—tlf'= on I
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We define
@ 10~ [ [T Dacan,  c-crin

f(z) is holomorphic outside w — ¥, and we shall prove that

4) lim [2/(z)| = 6> 0
and o
(5) fal=M

where 0 and M are independent of F.
To prove (4), let » be the equilibrium distribution for w and the kernel 2.
We obtain

dv (¢ 1 1 ..
Jo vt g [amof 20 - gl w0

according to our hypothesis. As furthermore ¥V —w ()= 0 and » has a con-
tinuous density, (4) follows.

As to (b), we suppose for the sake of simplicity that the origin belongs to
F and consider f'(0). Setting £ = r¢'f%, we obtain

ff d“"‘[‘“‘ /‘W"f”mz) It—cl"}

We devide the last integral into three parts where the integration is taken
. t t
over the intervals ( \ I——I) (I l 2It]) and (2]¢], 1) respectively. Denoting by

A certain absolute constants we obtain the following estimations of the integrals:

1tl
2

rdr
|| <4 [dy ItlpH A[mp— 4« (0).

2md 2 26 2[t|d .
< er < [ [JL rp;_*gA 0
|| fdw)_ S S A [ e = v
E21 F il
2 2
1
d
]13]§Afdy(t) f;%sAu(O)
F 2(¢]
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We thus find
[1(0)| = 4 u(0),

and since the argument works for all points on F and /' (2) is evidently bounded
outside w, (5) is proved.
We now choose a sequence of sets F, such that

ImF,=w—EFE;

n= o0
the corresponding functions f,(z) then satisfy (4) and (5). We can choose a
subsequence n; such that

lim fo, (2) = / (2

=00

exists, where f(z) is holomorphic outside E and satisfies (4) and (5). From (4)
it follows that f(z) = 0, and the theorem is proved.

1f we suppose that f'(z) is uniformly continuous outside E, the picture is
completely changed as shown by the following theorem.

Theorem: A mnecessary and sufficient condition that E ts a null-set for the class
of functions with a uniformly continuous dertwative outside E, is that E has no
mner points.

The necessity is evident. Suppose that E has no interior point and let {R,} -
be a covering. We find

[te)d z——f (@) — ' (20) (e — 2.) d 2.

. @1(9) = sup, sup |/ (z + ) — ' (2)|
we get

| [12)dz| < 48w, (8)),

1\!}
whence

2 2
lea| = 2 Sy (8)
But this last sum is as small as we please and so

Cl = 0-
The theorem follows as before.
6. The linear sets are particularly simple for the PAINLEVE problem. For
the class I'y certain product sets of a simple kind have a similar position. If

E, and E, are two sets on the z- resp. y-axis, the set E of points z=z + ¢y
with € E; and y€ E, is denoted by

E=E, X E,y.
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Theorem: If E, is the anterval (0, 1), then E = E, X E, is a null-set for the
class I'y if and only «f E€N,.!

We suppose E ¢ N,. Then m E, > 0, and there exists a function ¢ (z) which
is bounded and holomorphic outside E,. The function

[@)=[pe—8dE
0

i3 non-constant and has a bounded derivative, for

/' (2) =b{¢'<z—s>ds =@ —e@E—1).

These product sets E also give us imformation about the properties of the
null-sets of the class Iy of functions which are holomorphic and uniformly
continuous outside E. A necessary condition on the null-sets is C; (¥) = 0.
This condition is not sufficient and there is no equivalent condition which is
expressible in purely metrical terms as shown by the following

Theorem: E = E, X Ey,, mE, > 0, is a null-set for I'y if end only if By s
countable.

Suppose that E, is countable and that f(z)€ Iy. The modulus of continuity

 (8) = Sup sup (@ + k) —f(2)]

then tends to zero. If {R,} is a covering of E, we obtain as before
2
ley] < - 2 &y w (d,).

It is easily seen that, under our assumptions, this last sum can be made as.
small as we please, whence

01=0

and f(z) = constant, which was our assertion.

On the other hand, if E, is not countable, there is a distribution u of the
unit mass on E; which is continuous. If ¢(z) is bounded and holomorphic
outside Ey,

1@ = [o—8du@)
FI
i1s an example of the desired kind.

! See DEnsov [3].
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To <ee that the condition €y () = 0 is not sufficient, we need only choose
a =et L which = not countable but has logarithmic capacity zero, for, as is
eaxtlv ~hown, o neecessary and sufficient condition that Cy (E) = 0 is that E,
has vandshing fogarithmie capacity.
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