Communicated 26 April 1950 by MARCEL RIESZ and ARNE BEUBLING

On null-sets for continuous analytic functions

By LENNART CARLESON

1. Let E be a compact set with a connected complement Ω . If Γ is the class of functions f(z) which are analytic in Ω and have a certain property P, then a set E is said to be a "null-set" with respect to Γ , if this class consists entirely of constants. An investigation of these null-sets for certain properties P has recently been published by Ahlfors and Beurling [1]. For example they consider the Painlevé problem where P is boundedness. In this paper P is a continuity property, and our aim is to give metrical conditions on the corresponding null-sets.

We denote by $L_{\alpha}(E)$ and $C_{\alpha}(E)$ Hausdorff measure and capacity of order α , $0 < \alpha < 2$; for their definitions we refer to [2]. A function f(z) (not necessarily single valued) is said to belong to Lip α , $0 < \alpha < 1$, if for every circular are γ of length $|\gamma| < 1$ and for every branch of f(z),

$$\left|\int_{\gamma} f'(z) dz\right| \leq M |\gamma|^{\alpha},$$

where M is a constant independent of γ .

2. Our first theorem is concerned with multiple valued functions f(z).

Theorem: Let Γ be the class of functions belonging to Lip a and having single valued real part. Then E is a null-set if and only if

$$L_{\alpha}(E)=0.$$

If $L_{\alpha}(E) > 0$, then there exists a real, completely additive set function μ vanishing outside E such that

- (a) $\mu(E) = 0$,
- (b) $\int_{E} |d\mu| = 1$,
- (c) $|\mu(C)| \le M r^{\alpha}$ for every circle C of radius r.

The function

$$f(z) = \int_{E} \log (z - \zeta) d\mu(\zeta)$$

is non-constant and belongs to Γ ; the continuity of Ref(z) is proved in [2], page 16, and the continuity of Imf(z) can be proved similarly.

If, on the other hand, $L_{\alpha}(E) = 0$, suppose that f(z) = u(z) + iv(z) belongs to Γ . We cover E by a family of disjoint circles $\{C_r\}$ with radii $\{r_r\}$ such that

$$\sum r_{\nu}^{\alpha} \leq \varepsilon.$$

This is always possible since $L_{\alpha}(E) = 0$ and $\alpha < 1$. Let γ by any closed, smooth curve, not meeting any circle C_{τ} . Then

$$\int_{\gamma} \frac{\partial u}{\partial n} ds = \sum_{C_{v}} \int_{\sigma} \frac{\partial u}{\partial n} ds = \sum_{C_{v}} \int_{\sigma} dv = \sum_{\sigma} O(r_{r}^{\alpha}),$$

where the summation runs over those ν which correspond to circles interior to γ . Hence, letting $\varepsilon \to 0$, we obtain

$$\int_{\gamma} \frac{\partial u}{\partial n} ds = 0.$$

f(z) is thus single valued and bounded whence (see [1], page 121)

$$f(z) \equiv \text{constant},$$

and the theorem is proved.

3. If we suppose furthermore that the imaginary part of f(z) is single valued, the dimension of the null-sets is increased by 1.

Theorem: Let Γ_{α} be the class of single valued functions belonging to Lip α . Then E is a null-set if $L_{1+\alpha}(E) = 0$. If $C_{1+\alpha}(E) > 0$, E is no null-set.

The second part of the theorem is proved in [2]. We suppose that $L_{1+\alpha}(E) = 0$ and $f(z) \in \text{Lip } \alpha$. Let $\{R_v\}$ as in the sequel denote a covering of E by a finite number of squares with sides $\{\delta_v\}$ such that R_v and R_μ , $\nu \neq \mu$, have parallel sides and no interior points in common. We also suppose that the set on the boundary of R_v which belongs to E has measure zero. We here suppose that

$$\sum_{i} \delta_{x}^{1+\alpha} \leq \varepsilon.$$

If

$$f(z) = c_0 + \frac{c_1}{z} + \frac{c_2}{z^2} + \cdots,$$

it is sufficient to prove that

$$c_1=0,$$

as the argument then can be repeated on the function $z\left(f\left(z\right)-c_{0}\right)$ etc. By Cauchy's formula we have

$$c_1 = \frac{1}{2\pi i} \sum_{\substack{R_v \\ \searrow J}} f(z) dz.$$

Let $z_v \in R_v$. Then

$$|c_1| \leq \frac{1}{2\pi} \sum_{R_{\nu}} \int_{\Gamma} |f(z) - f(z_{\nu})| |dz| = \sum_{\Gamma} O\left(\delta_{\nu}^{1+\alpha}\right).$$

Thus (1) holds and the theorem is established.

4. The limit case a=1 is particularly interesting and gives rise to functions with bounded derivatives. In order to characterize the null-sets of this class from a metrical point of view, we need to devide the family of sets with *positive* Lebesgue measure into classes of null-sets. It is remarkable that the generalized capacities can also serve for this purpose. We shall for the sake of simplicity only consider sets E interior to the closed unit circle ω .

We define the classes N_{α} , $0 \le \alpha \le 2$, of null-sets: E belongs to N_{α} if

$$C_{\alpha}(\omega - E) = C_{\alpha}(\omega),$$
 $0 \le \alpha < 2,$ $mE = 0.$ $\alpha = 2.$

where C_0 denotes the logarithmic capacity. Every set E belongs to N_0 , since the mass of the equilibrium distribution is situated on the boundary of ω . Furthermore, every set in N_2 belongs to N_α , $\alpha < 2$. We shall actually prove that the set N_α increases as α decreases:

(2)
$$N_{\alpha} < N_{\beta}$$
, if $\alpha > \beta$.

Every set E thus defines a cut a' in the sense that $E \in N_a$ if a < a', but $E \notin N_a$ if a > a'.

To prove (2), let $E \in N_{\alpha}$ and O_n be an open set consisting of n circles C_i^n with radii $\leq \delta_n$, such that $\omega > O_n > E$, $\lim_{n \to \infty} O_n = E$, and put $F_n = \omega - O_n$.

Let μ_n and μ be the equilibrium distributions corresponding to F_n and ω and the kernel $r^{-\alpha}$. If ν is the distribution corresponding to ω and $r^{-\beta}$, we define the completely additive set functions ν_n as follows:

$$u_n(e) = \begin{cases} \mu_m(e) \cdot \frac{\nu\left(C_i^n\right)}{\mu_m\left(C_i^m\right)}, & e < C_i^m, \quad i = 1, 2, \dots n, \\ \nu\left(e\right), & e \text{ outside all } C_i^n. \end{cases}$$

Since

$$\lim_{m=\infty}\mu_m(e)=\mu(e),$$

we can choose m > n so that

$$\nu\left(C_{i}^{n}\right) \leq K \mu_{m}\left(C_{i}^{n}\right), \qquad i = 1, 2, \ldots, n,$$

¹ A condition of this kind is given in [1].

where K is a constant independent of n. Furthermore we have

$$v_n(\omega - E) = 1.$$

If u_n and u are the β -potentials generated by v_n and v, and $\varepsilon > 0$, we find

$$u(z) - u_n(z) = \int_{|z-\zeta| \le \varepsilon} \left\{ \frac{d v(\zeta)}{|z-\zeta|^{\beta}} - \frac{d v_n(\zeta)}{|z-\zeta|^{\beta}} \right\} + \int_{|z-\zeta| \ge \varepsilon} \frac{d (v-v_n)}{|z-\zeta|^{\beta}},$$

whence

$$|u(z) - u_n(z)| \le \delta(\varepsilon) + K \varepsilon^{\alpha-\beta} \int_{\omega} \frac{d \mu_n(\zeta)}{|z - \zeta|^{\alpha}} + \varepsilon^{-\beta} - (\varepsilon + \delta_n)^{-\beta},$$

where $\delta(\varepsilon) \to 0$ as $\varepsilon \to 0$. We conclude

$$\lim_{n=\infty} \sup_{z} |u(z) - u_n(z)| = 0$$

and

$$C_{\beta}(\omega - E) = C_{\beta}(\omega),$$

which was our assertion.

5. We shall now prove that the cut defined by the null-sets for the class Γ_1 of functions with bounded derivatives is $\alpha'=2$. More precisely we have the following

Theorem: A sufficient condition that E is a null-set for the class Γ_1 is that $E \in \mathbb{N}_2$. A necessary condition is that $E \in \mathbb{N}_p$ for every p < 2.

Suppose that mE = 0 and let $\{R_r\}$ be a covering as above. We have, $z_r \in R_r$,

$$\int_{R_{\nu}} f(z) dz = -\int_{R_{\nu}} (z - z_{\nu}) f'(z) dz = O(\delta_{\nu}^{2}).$$

Thus

$$c_{1} = \frac{1}{2\pi i} \sum_{\substack{R_{r} \\ \searrow}} f(z) dz = \sum_{i} O(\delta_{r}^{2})$$

for all coverings of this kind, whence

$$c_1 = 0$$
,

and the first part of the theorem follows as above.

Suppose, on the other hand, that $C_p(\omega - E) < C_p(\omega)$, 1 . Let <math>F be a closed subset of $\omega - E$, bounded by a finite number of circles. Let μ be the corresponding equilibrium distribution such that

$$V-u(\zeta) = V - \int_{F} \frac{d\mu(t)}{|\zeta-t|^p} = 0$$
 on F .

We define

(3)
$$f(z) = \int_{\mathbb{R}} \int \frac{V - u(\zeta)}{\zeta - z} d\xi d\eta, \qquad \zeta = \xi + i\eta.$$

f(z) is holomorphic outside $\omega - F$, and we shall prove that

$$\lim_{z \to \infty} |zf(z)| \ge \delta > 0$$

and

$$|f'(z)| \leq M,$$

where δ and M are independent of F.

To prove (4), let ν be the equilibrium distribution for ω and the kernel r^{-p} . We obtain

$$\int_{\omega} \left[V - u(\zeta) \right] dv(\zeta) = \frac{1}{C_{p}(F)} - \int_{F} d\mu(t) \int_{\omega} \frac{dv(\zeta)}{\left| \zeta - t \right|^{p}} = \frac{1}{C_{p}(F)} - \frac{1}{C_{p}(\omega)} \ge \delta' > 0$$

according to our hypothesis. As furthermore $V-u(\zeta)\geq 0$ and ν has a continuous density, (4) follows.

As to (5), we suppose for the sake of simplicity that the origin belongs to F and consider f'(0). Setting $\zeta = re^{i\theta}$, we obtain

$$f'(0) = \int_{\omega} \int \frac{u(0) - u(\zeta)}{\zeta^2} d\xi d\eta = \int_{F} d\mu(t) \int_{0}^{2\pi} e^{-2i\theta} d\theta \int_{0}^{1} \frac{dr}{r} \left\{ \frac{1}{|t|^p} - \frac{1}{|t - \zeta|^p} \right\}.$$

We devide the last integral into three parts where the integration is taken over the intervals $\left(0, \frac{|t|}{2}\right)$, $\left(\frac{|t|}{2}, 2|t|\right)$ and (2|t|, 1) respectively. Denoting by A certain absolute constants we obtain the following estimations of the integrals:

$$\begin{split} |I_{1}| & \leq A \int_{F} d \, \mu \, (t) \, \frac{1}{|t|^{p+1}} \int_{0}^{\frac{|t|}{2}} \frac{r \, d \, r}{r} = A \int_{F} \frac{d \, \mu \, (t)}{|t|^{p}} = A \, u \, (0). \\ |I_{2}| & \leq \int_{F} d \, \mu \, (t) \int_{\frac{|t|}{2}}^{2|t|} \frac{d \, r}{r} \int_{0}^{2\pi} \frac{d \, \theta}{|t-\zeta|^{p}} \leq A \int_{F} d \, \mu \, (t) \int_{\frac{|t|}{2}}^{2|t|} \frac{d \, r}{r} \, \frac{1}{|t|^{p}} \, \frac{r^{p-1}}{|r-|t||^{p-1}} \leq A \, u \, (0). \end{split}$$

$$|I_3| \le A \int_F d\mu (t) \int_{2|t|}^1 \frac{dr}{r^{1+p}} \le A u (0).$$

We thus find

$$|f'(0)| \leq A u(0),$$

and since the argument works for all points on F and f'(z) is evidently bounded outside ω , (5) is proved.

We now choose a sequence of sets F_n such that

$$\lim_{n=\infty} F_n = \omega - E;$$

the corresponding functions $f_n(z)$ then satisfy (4) and (5). We can choose a subsequence n_i such that

$$\lim_{i=\infty} f_{n_i}(z) = f(z)$$

exists, where f(z) is holomorphic outside E and satisfies (4) and (5). From (4) it follows that $f(z) \not\equiv 0$, and the theorem is proved.

If we suppose that f'(z) is uniformly continuous outside E, the picture is completely changed as shown by the following theorem.

Theorem: A necessary and sufficient condition that E is a null-set for the class of functions with a uniformly continuous derivative outside E, is that E has no inner points.

The necessity is evident. Suppose that E has no interior point and let $\{R_r\}$ be a covering. We find

$$\int_{R_{\nu}} f(z) dz = - \int_{R_{\nu}} (f'(z) - f'(z_{r})) (z - z_{r}) dz.$$

If

$$\omega_1(\delta) = \sup_{\|h\| \le \delta} \sup_{z} |f'(z+h) - f'(z)|$$

we get

$$\Big|\int\limits_{R_{\nu}} f(z) dz\Big| \leq 4 \delta_{\nu}^{2} \omega_{1}(\delta_{\nu}),$$

whence

$$|c_1| \leq \frac{2}{\pi} \sum \delta_{\nu}^2 \omega_1(\delta_{\nu}).$$

But this last sum is as small as we please and so

$$c_1 = 0.$$

The theorem follows as before.

6. The linear sets are particularly simple for the Painlevé problem. For the class Γ_1 certain product sets of a simple kind have a similar position. If E_x and E_y are two sets on the x- resp. y-axis, the set E of points z = x + iy with $x \in E_x$ and $y \in E_y$ is denoted by

$$E = E_x \times E_y$$

Theorem: If E_x is the interval (0, 1), then $E = E_x \times E_y$ is a null-set for the class Γ_1 if and only if $E \in \mathbb{N}_2$.

We suppose $E \notin N_2$. Then $mE_y > 0$, and there exists a function $\varphi(z)$ which is bounded and holomorphic outside E_y . The function

$$f(z) = \int_{0}^{1} \varphi(z - \xi) d\xi$$

is non-constant and has a bounded derivative, for

$$f'(z) = \int_0^1 \varphi'(z-\xi) d\xi = \varphi(z) - \varphi(z-1).$$

These product sets E also give us imformation about the properties of the null-sets of the class Γ_0 of functions which are holomorphic and uniformly continuous outside E. A necessary condition on the null-sets is $C_1(E) = 0$. This condition is not sufficient and there is no equivalent condition which is expressible in purely metrical terms as shown by the following

Theorem: $E = E_x \times E_y$, $mE_y > 0$, is a null-set for Γ_0 if and only if E_x is countable.

Suppose that E_x is countable and that $f(z) \in \Gamma_0$. The modulus of continuity

$$\omega (\delta) = \sup_{|h| \le \delta} \sup_{z} |f(z+h) - f(z)|$$

then tends to zero. If $\{R_r\}$ is a covering of E, we obtain as before

$$|c_1| \leq \frac{2}{\pi} \sum \delta_r \, \omega(\delta_r).$$

It is easily seen that, under our assumptions, this last sum can be made as small as we please, whence

$$c_1 = 0$$

and $f(z) \equiv \text{constant}$, which was our assertion.

On the other hand, if E_x is not countable, there is a distribution μ of the unit mass on E_x which is continuous. If $\varphi(z)$ is bounded and holomorphic outside E_y ,

$$f(z) = \int_{E_x} \varphi(z - \xi) d\mu(\xi)$$

is an example of the desired kind.

¹ See DENJOY [3].

To see that the condition $C_1(E) = 0$ is not sufficient, we need only choose a set E_ε which is not countable but has logarithmic capacity zero, for, as is easily shown, a necessary and sufficient condition that $C_1(E) = 0$ is that E_x has vanishing logarithmic capacity.

REFERENCES. [1] Ahlfors, L. and Beurling, A., Conformal invariants and function-theoretic pull-sets. Acta Math. 83 (1950). — [2] Carleson, L., On a class of meromorphic functions and its associated exceptional sets. Uppsala 1950. — [3] Denjoy, A., Sur less singularity discontinues des fonctions analytiques uniformes. Comptes rendus 149 (1909).

Tryckt den 25 juli 1950