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Spectral synthesis o f  bounded functions 1 

B y  HENRY HELSON 

This paper is intended as a sequel to the elegant paper of GODEMENT [4] 2 
on harmonic analysis. The fundamental  problem, first posed by BEURLING, is 
this: when is a bounded measurable function ~0 defined on a locally compact 
abelian group G the weak limit of linear combinations of characters belonging 
to the spectral set A~ of ~07 In  the dual language of L 1, the problem is to 
determine when a closed ideal of the group algebra is the intersection of reg- 
ular maximal ideals. 

SCHWARTZ [8] has given an example showing that  the spectral approximation 
is not possible for all functions in Euclidean space of three dimensions. On the 
other hand the approximation is known to be possible if G is the real line 
and if Av is assumed to have denumerable (or reducible) boundary. Proofs 
of this theorem have been published by DITKIN [2], SEGAL [9], and MA~CDEL- 
BROJT and AOMON [6]. By using Segal's method and the structure theory of 
groups, KAPLANSKY [5] extended the theorem to a wide class of groups; and 
actually to arbitrary G if A+ contains only one point. 

This theorem of KAPLANSKY states that  if A+ consists of a single point, 
then ~0 is itself a multiple of a character. A proof based on the theory of 
distributions was found independently by JEAN RISS [7]. Our first objective 
is to give a new proof of this theorem using only simple analysis on the group 
itself. This seems desirable for aesthetic reasons, but more important,  the 
structure theory is evidently not always enough to extend results from the 
real line to arbi trary groups. 

Second, we extend an unpublished proof of BEURLING to obtain for arbitrary 
groups the theorem quoted above for the real line, thus accomplishing what 
KAPLANSKY set out to do by structure theory. 

Finally, we modify a theorem of yon Neumann and Dixmier about operators 
on Hilbert  space to show tha t  if the spectral approximation of ~ is possible 
in the weak topology, then it is also possible in certain stronger topologies. 

w 1. Introduction 

We begin with some definitions and theorems from GODEMENT [4] which 
will be used without reference hereafter. 

1 The content of w 2 and part of Theorem 2 appeared in my thesis. I wish to thank 
Professor LYN~r LooMIs most cordially for his direction. The other parts have roots in 
conversations with Professor ARNE BEURLING. 

2 Numbers in brackets refer to references at the end of the paper. 
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If / is summable on a group G (always assumed locally compact abelian), 
its Fourier transform / is a continuous bounded function on the dual group G, 
given by the formula 

= f 1 d x. 

If ~ is summable on G, its transform is defined similarly but the bar over 
the character is omitted. For later convenience we shall study a function 

e L ~ (G). If f is summable, ~ * 1 is bounded and continuous. The spectral 
set zl~ of ~ is the set of p e G such that  for all summable /, ~ * / ~  0 implies 
/(p) = 0, where ] is the transform of ]. (Hereafter we shall use the same 
letter to denote a function and its transform without mentioning the relation.) 
Then A~ is a closed subset of G, and the Wiener Tauberian theorem asserts 
that  A~ is not empty unless ~ vanishes almost everywhere. 

If U is any open set in G containing A~, then ~ is the weak limit of 
trigonometric polynomials /tom U, which is to say functions of the form 

n 

i = 1  

with each xie U. The problem is to prove the same fact replacing U by 
A~ itself. The same theorem can be given this form: if ] is summable and 
/ vanishes on U, then ~ * / -  0. Here the problem is to prove the convolu- 
tion vanishes assuming only that  / vanishes on A~. 

Summable functions are dense in L 2 (G), and so the Fourier transform is 
defined on a dense subset of L ~ (G). The Plancherel theorem asserts that  this 
transform can be extended to all L 2(G) so as to be an isometry onto L 2 (G). 

w 2. Kaplansky's theorem 

Let ~ be essentially bounded and measurable on G. If ~ is summable or 
square:summable, the same is true of the product ~.  ~; so multiplication by 

defines operators in L 1 (G) and in L 2 (G) which are evidently continuous 
with bound I[~1]~. Denote by F the ring of functions ] which are trans- 
forms of summable functions ] on G, and introduce a norm in F by setting 
HI][ = [[][[1. If 9 belongs to F or to L 2 (G) (which we shall write simply L2), 
let T g be the transform of ~ - ~ .  Using the Plancherel theorem, T is defined 
and has bound ]1 ~ I]~ in F and in L 2. I t  is easy to verify that  T commutes 
with translation. I t  is true conversely that  every bounded operator in L 2 which 
commutes with translation is obtained from some function ~, but  we shall not 
use this fact. 

L e m m a  1. If a directed system of functions ~ e L ~ (G) converges weakly 
to ~, and if each ~ determines the operator T~ in F, then T/(x)= lira TJ(x) 
for any / e F  and any fixed x. 
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The hypothesis tha t  ~ converges weakly to ~ means that  

for any summable /. This implies 

f +~ (5) ] (~) (x, ~) d ~ -+ f ~o (~) ] (~) (x, ~) d ~, 

which says exactly that  T~] (x )~  T/(x). 

L e m m a  2. Suppose A~ = {p}. Given a neighborhood V(0) (where 0 is the 
identity of G) there is a neighborhood U(p) such that  if ] e F  vanishes in 
V (0), then T /  vanishes in U (p). 

Take any symmetric neighborhood U (0) such that  U 2 ( 0 ) ~  V (0). Let  ~ be 
a directed system of trigonometric polynomials from U (p) converging weakly 
to ~0, and let T~ be the associated operators in F.  Then T~ is the transform 

n 

of a function of the form ~,ci(xi, x)/(x,), and so is a sum of translates of / :  
i = l  , 

~, ci / (x:~ l x). Since each xi e U (p), if x e U (~) we have x~-l x e U2 (O) < V (O). 
But / vanishes on V (0) by hypothesis and so each term of the sum is zero. 
Hence T~/ vanishes on U(p) for each ~, and by the first lemma T /  also 
vanishes on U (p). 

Since T commutes with translation, this lemma can be restated immediately 
to say that  if / vanishes in a neighborhood V(q) of any point q, then T /  
vanishes in U (p q). Suppose / is constant in V (q) but  not necessarily zero. 
Then for any fixed point re V(O) , / (x ) - - / ( rx )  vanishes as a function of x in 
a neighborhood of q. By the lemma as just modified, T/ (x ) - -T / ( rx )van i shes  
in some neighborhood of ~ q and in particular at  the point ~ q itself, so tha t  
T] (pq)= T/(rpq).  Since r was arbitrary in V (0), we have shown tha t  T / i s  
constant on V (pq) assuming that  / is constant on V (q). 

L e m m a  3. Let  V be an open set with compact closure and g its charac- 
teristic function (belonging to L2). Let  T be the operator in F and in L 2 
associated with ~0, where A~ = (~}. Then T g is a constant k times the char- 
acteristic function of the set p V, and k depends only on T. 

For every integer n choose an open set Un whose closure is' contained in V 
such that  ~ ( V - - U n ) <  1/n, where # is Haar  measure on G. The construction 
can be made so U , , < U ~  for m < n .  We can find / ~ e F  equal to one on U~, 

vanish ing  outside V, and never exceeding one in absolute value. Evidently g 
is the limit of the /~ in the norm of L 2. 

By what has been proved, T /n  is constant on the set p U~ for each n. If 
m < n, ' ] n -  ]m vanishes on Um and T ( / n -  Ira) vanishes on p U~, so the con- 
s tant  k does not depend on n. A similar argument shows tha t  the constant 
does not depend on V, and so depends only on T. Since T is continuous, 
T g  = lim T/~;  it follows that  T g  is constant on U~=lp U n, or almost every- 
where on p V. I t  remains to show that  T g vanishes almost everywhere out- 
side p V. 
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Suppose a point s has a neighborhood M(s) disjoint from V. Then each/,~ 
vanishes in M(s),  and each T/,~ vanishes in M (ps). I t  follows that  T 9  van- 
ishes in the same neighborhood, and so T g vanishes outside the closure of p V. 
If the boundary of p V is of measure zero there is nothing more to prove. 
Otherwise apply the preceding argument t o  the characteristic functions g,~ 
of U,. Every 7'g,~ vanishes outside p V, since the closure of U, is contained 
in V. I t  follows that  T g also vanishes almost everywhere outside p V, as we 
had to show. 

Now Kaplansky's  theorem follows easily. 

T h e o r e m  1. Suppose ~ s L  ~(G) and  A~ r ~ = ~pj. Then ~ ( ~ ) = k ( p , J ~ )  for 
some constant k and almost all &. 

By the last lemma there is a constant k depending only on ~v such that  
Tg (x )  = k g ( p - l x )  for almost all x, if g is the characteristic function of an 
open set having compact closure. The finite livear combinations of such func- 
tions are dense in L 2, and so the same fornmla holds for any gsL 2. That is 
to say that  T g  is the Fourier transform of k(p, x)~(x), and it follows tha t  
~(~) = k (p, x) almost everywhere)  

w 3. Boundary of ./1~ is reducible 

L e m m a .  There is a directed system of summable functions ]~,j each of norm 
one such that  

h.  (0) = 1, 

t~, * ] -~ 0 if ] is summable and /(0) = 0. 

To prove the lemma we need Kaplansky's  theorem in this form: if ] is 
summable and /(0) = 0, then ] = lira/n where each /n vanishes in a neighbor- 
hood of 0. Indeed, if ~ e L  ~ is orthogonal to every ~ whose transform van- 
ishes in a neighborhood of 0, then Ar contains at. most the point 0. Hence 
every such ~ is a multiple of the constant character,  and it follows tha t  the 
closure of the set of e considered contains every function orthogonal to a 
constant. These are just the functions whose transforms vanish at  0, proving 
the assertion. 

Now let V, be a fundamental system of neighborhoods of 0 each having 
compact closure, directed by inclusion. Let  g, be tile characteristic function 

�9 / 2 * of V~ and set h~ = g~. g~ [I g~ [[2, where g, (x) = g~ (x-l). I t  can be verified tha t  
h,j(0) = 1 and ;~, vanishes off the set V V~ 1. Furthermore h is positive de-  
finite and belongs to F, and so has norm equal to hn(0)^= 1. Now if / is 
summable and / ( 0 ) =  0, find a sequence ]~ converging to ] such tha t  every 
/n vanishes in a neighborhood of 0. Then for every ~ and some n 

II L, ] -  L, L II, II ] -  I11 < e. 

i I a m  i n d e b t e d  t o  P r o f e s s o r  GODEMENT f o r  s h o w i n g  t h a t  t h i s  p r o o f  c a n  b e  c a r r i e d  
t h r o u g h  in  L 2, t h u s  a v o i d i n g  t h e  s p a c e  F a n d  s i m p l i f y i n g  s o m e  of  t h e  l e m m a s .  
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But we can choose ~ so high that  h,~/n vanishes, so II ,,flll<  for all suf- 
ficiently high ~1- Since s was arbitrary, the lemma is proved. 

T h e o r e m  2. If  ~ e L  ~ (G) and A~ has reducible boundary, then c}> is the 
weak limit of trigonometric polynomials from A~. 

Our proof is a modification of a proof of BEURLING for the same theorem on 
the real line, given in a course of lectures at Harvard  in 1949. 

I t  suffices to prove that  ~ , ] ~ - 0  if i is summable and / vanishes on Ar 
Anyway ~v - ~ , [  is a bounded continuous function. We assert that  A,~ has 
no isolated points. 

Suppose p is isolated in A~. After multiplication by a character we can 
assume p -  0. Let ~ be a function whose transform is one in a neighborhood 
of 0 and vanishes on an open set containing A~ r ~ - ~0~. Then the spectral set 
of ~ ,  ~} contains at  most the point 0 and so ~ ,  ~ is constant by Kaplansky's  
theorem. Since ]~,~(0)= 1, ~ ,~ ) ,1 , ,  is the same constant for every ~. But 
/ (0) = 0 and so h,~, / -~ 0, showing the constant was zero. Since ~ ,  ~ -=- 0 and 
g(0) 7 z 0, p does not belong to A~,. 

Now A~ is closed without isolated points, and so is perfect. Furthermore 
it is contained in the boundary of As, and must  be empty by hypothesis. 
This proves the theorem. 

The theorem applies in particular if the boundary of Ar is dcnumerable. 

w 4. Bounded  funct ions  as operators 

Regarding L ~ (G) as a space of operators on L 2 (G) by multiplication, it is 
immediate that  the weak topology in L ~ as the conjugate space of L 1 is the 
same as the weak operator topology. DIXMIER [3] showed tha t  a strongly 
closed manifold of "operators in Hilbert space is weakly closed, removing von 
Neumann's  condition that  the manifold be a ring. This theorem can be trans-  
lated into a theorem about spectral synthesis, and in this context the proof 
applies to any L p space as well as to Hilbert space. Say that  a directed system 
of functions ~vaeL ~ converges to ~v in the strong p-topology (1 ~< p < oo) just 
if ~va./ converges to ~v. /  in norm for every / e L  p. 

T h e o r e m  5. A linear manifold in L ~ is weakly closed if it is closed in any 
strong p-topology. 

Now if ~ admits a spectral approximation in the weak topology, it must  
have a spectral approximation in each strong p-topology. That  is, given any 
s, p, and summable ], there is a trigonometric polynomial ~ '  such that  

This result was known to BEURLING at least for p = 1 and 2. If  the spectral 
synthesis is possible for every function of L ~ on some group G, then every 
summable function is a regular weight function in BEUI~LING'S language [l] ;  
this follows from the last formula with p = 1. 
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