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Minimization problems for the functional
sup, F(x, f(x),f (x))

By GUNNAR ARONSSON

1. Introduction

Let F(z,y,2) be a given function, defined for z, <z <z, and all values of ¥ and z.
Let further F be a class of functions f(x), all of which are defined on z; <<z, and
are sufficiently regular. For every f€ F, we define the functional

H(f)= sup F(x,f(x),[ ()).
<<
We are interested in the problem to minimize H(f) over F. For example, we will try
to answer these questions: Does there exist a minimizing function? Is it unique?
Has it any special properties? What is the value of inf,.; H(f)? For reasons of brevity,
many of the results are not given in the most general form. We shall only consider
real functions and real variables.
If g(x) is continuous and non-negative on z, <x <x,, then

max g(x)= hm (J‘ 2(g(as))”d:v)”"
LISTET, Z1

This suggests that we should approximate the functional H(f) with the sequence of

functionals
(J [F(z ))]”dx) , n=1,2,3,....

The Euler equation corresponding to H,(f) = min is

d

dx( L F (e, y,y)"])—~[F(x ¥, 4')"1=0,

which can be written as

dF 1 dF,
dx Fy +n—1 F der n-— 1 ]

n(n—1)F*~ 2[

Let us put the expression in brackets equal to zero and then let = tend to infinity.
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G. ARONSSON, Minimization problems

Then we get (fOIIIlally) a new equation
F(x ’ F ' 0
dx( ( ’y’y)) y'(x:%y) . ( )

We want to study the connection (if there is any) between this differential equation
and the minimization problem.

It might be expected that functions f(z), such that F(x, f(x), f (x)) = constant,
should be important for the problem. This is true, as we shall see in sections 2 and 3.

In section 4, we shall introduce a class of functions which minimize the functional
“on every interval” and prove that such a function must satisfy the equation (*)
in a certain sense.

A similar problem has been studied in [1].

2. The special case F=F(y,y’)

We shall start with a study of the case where F is independent of #, since this case
is simpler than the general and since we are interested in the interaction between y
and y'.

2 A. The minimization problem
Lemma 1: Suppose that:

1) f(x) is continuous for a <z <b,
f'(x) is continuous for a <z <b,
2) f(x)>0 for a<ax<b,
3) g(z) ts absolutely continuous on a <z <b,
1) g(a) <f(a), g(b) >{(b) and f%g.

Then there exist numbers t,, t, on the open interval (a, b) such that

1) f(t)) =g(t5),
1I) ¢'(¢,) exists and f'(t;) <g'(t5).

Proof: Clearly, we may assume that g(a) =f(a), g(b) =f(b) and f(a) <g(x) <f(b) for
a<x<b. For, if this is not the case, we define

p=max {z|g(z)<f(a)},
q=min {z|x>p, g(x) =)},

and, instead of g(z), we consider g,(x)=g(p+(q—p) (x—a)[b—a] ™). (If g, =/, then
the result is trivial; if ¢, %, then the proof below applies to g;, and then the result for
g follows.) Now y =/(x) has a continuous inverse z=a(y) for fa)<y<f(b). «'(y) is
continuous and positive for f(a) <y <f(b). Hence «(y) is absolutely continuous on
f(@) <y <j().

Form the function ¢(x)=af(g(x)). It is absolutely continuous on e<x<b and
@' (x)=a'(g(x)) ¢’ (x) a.e. By assumption, there exists a number z,, a<z,<b, such
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that f(xo)=Fg(x,); say f(x,) <g(z,) (the other case is treated similarly). Then we have
() >y and

f o(p'(%) dx = @(x,) — @(a) = @(x)) —a >z, —a.

a

So there must exist a number & such that: a <& <z, ¢'(£), ¢'(£) exist and ¢'(§)>1.

Thus «'(g(8)-g'(§)> 1.

But o« (g(&) = which gives us

1
flodg(ENT
g'(&) > fledg(£))].
Obviously, the numbers #, =a(g(£)) and £, =& will have the required properties.

Remark: If we change the conditions 2 and 4 to f'(x) <0 and g(a) = f(a), g(b) <f(b),
respectively, and the assertion IT to ¢'(t;) <f'(f,), then we get another form of the
lemma which follows from the preceding by the substitution { = —u.

Now let us consider a function F = F(y,z) and let us impose a few conditions upon it:

1) F is defined and continuous for all  and =.

oOF oF >0 if z2>0
2) ™ exists for all ¥ and z and P is =0 if 2=0
<0 if z<0.

Let [z,,%,] be the interval mentioned in the introduction and let y;,y, be any two
numbers. From now on, the class F of admissible functions is defined as follows:
F is the class of all absolutely continuous functions on #; <x <x,, which satisfy the
boundary conditions f(z,) =y, and f(x,;) =y,. Let f(z)€F and let E be the set where
f'(x) exists. It should be noticed that 2, and z, belong to £ if the one-sided derivatives
in question exist.

Now H(f)=sup.ez F(f(2), f'(x)) is well-defined and obviously
H(f) > max (F(y,0), F(y,0))-

Therefore inf;; H(f) is finite, and the questions mentioned in the introduction are
meaningful.
With the use of Lemma 1, we can easily prove the following simple theorem:

Theorem 1:. Suppose that F(y,z) satisfies the conditions 1 and 2 stated above. Suppose
further that f(x) is an admissible function such that

a) f'(x) s continuous for x, <x <w,,
b) f'(x)==0 for x, <z <x,,
c) F(f(x), f'(x)) =M for x,<ax <z, (M is any constant).

Then |(x) is a unique minimizing function in F. Le.: if g(x) is a different element of
F, then H(g)>H(f).
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G. ARONSSON, Minimization problems

Proof: Consider the case f'(z)>0. According to Lemma 1 there exist ¢;, ¢, such
that f(t,) =g(t,), 0<f'(t;) <g¢'(ty). This gives

H(g)= F(g(t2), g'(t2)) > F(f(t), f'(t,)) =M =H(f).
Hence H(g)> H(f).

The other case is treated analogously (see the remark to Lemma 1). This theorem
should be compared with the theorems of section 3.

In order to give a more systematic treatment of the case F'=F(y,z), we introduce
another condition on F:
3) lim F(y,z)= + oo for all y.

{2]>0c

As is easily seen (using the conditions 1 and 2 also), this implies that the limits

lim F(y,z)= + oo, lim F(y,z)= + o

2—>+ 0o 2>—00

are uniform for bounded .

In the rest of section 2, we shall always assume that F(y,z) satisfies the conditions
1, 2 and 3 given above.

We now introduce two auxiliary functions:

Definition: If F(y,0)<M, then we set ®y(y)=the positive number z such that
Fly,2)=M, Y, (y) =the negative number z such that F(y,z)=M, and if F(y,0)=M
then we set Oy(y) =Y, (y)=0. (If F(y,0)>M, then the equation F(y,z)=2M has no
solution z.)

Lemma 2: @, (y) and W, {y) are continuous functions of y and M on the set where
they are defined.

The proof is simple and we omit it.

We will now try to give a complete solution of the minimization problem under
the assumptions 1, 2 and 3 about F(y,z). We shall pay most attention to the case
Y, <%, and the corresponding results for the case y; >y, will be given later without
proofs, since the reasoning is very similar in both cases. Finally, we shall consider
the case y; =ys,.

A) Let us now suppose y, <y,

Y2

¢
v, Pue(t)
the integral above well-defined if and only if ®y(t)>0 a.e. on y, <t<y,. Then

turn out to be very useful. Let us agree to call

Integrals of the type J

is non-negative, measurable and finite a.e. Let us use the notation

Yt
f B SO

Thus L(M)>0 always and the possibility £(M)= + oo is not excluded.

1
Dyy(t)
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Lemma 3: Assume that M,—~M, M1>M2>M3\>... and that, for all v, C(M,) is
well-defined and L(M,) <C (C independent of v). Then L(M) is also well-defined and
L(M) =lim, ... L(M,).

Proof: If Yy, <y <y, then, clearly, F(y,0)<M, for all » and F(y,0)<M. This
means that ®y(y) is defined for y, <y<y,. If ®,(y)>0, then, according to
Lemma 2,

1 N 1
D (y) ~ Duly)’
and if @®,(y)=0, then 1 —>00
M ’ (DMv(y)
For every y we have < 1 1 <
) . Du(y)  Our(y)  Oan(y)
. Y dy
But it is also true that —— < (.
Y1 q)Mv(y)
It follows from Beppo-Levis theorem that lim ﬁ—h(y) exists finite a.e. on
P—>00 o \Y
Y, Sy<y, and that
f h(y)dy =lim Q) = lim C(M,).
Y—>00 M,, y—>00

From the preceding we see that h(y)= a.e., which completes the proof.

1
Dy (y)

Theorem 2: If there exists an admissible function f(x) such that sup, F(f(z), f'(x)) <
then L(M) vs well-defined and L(M)<z,—x,.

Proof: 1f M,=M +1Jv for v=1, 2, 3, ..., then H(f)<M,. Hence, if y,<y<ys,,
F(y,0)<M, and ®y,(y)>0.

We may assume that y, <f(x) <y, Take an arbitrary ». From the inequality
F(f(z), f'(x)) <M, it follows that f'(x) <®u,(f(z)) (a.e.). Therefore

_f@

1
B (@) ™ M)

voodt
N N
oW ¢ly) f . B3 0)

Thus W(x) = ¢(f(x)) is absolutely continuous on z, <z <z,. It follows from (1) that
Y(x)<1 a.e.

So Wi(x,) V() <y —y.

is a continuously differentiable function of y for y, <y <y,.
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But ¥(x,) =¢(y;) =0 and ¥(x,) =¢(y,) = L(M,). This gives
L(M,)<zy—2,.

Now the assertion follows from the preceding lemma.

Theorem 3: If (M) is well-defined and finite, then there is a function f(x) with
these properties:

1) f(x) is defined and stricily increasing for 0 <z < L(M),
2) 1(0) =y, (L(M)) =Y,
3) f'(x) is continuous for 0 <ax < L(M),
4) F(f@), f@)=M for 0<a<LM) (ie. [ (@)=Dylf(x)])

Proof Form the function @(y) = 7, dt/®,,(t). Clearly, it is continuous and strictly
increasing for ¥, <y <y,. Further @(y,) =0 and @(y,) = L(M). If we define f(x) as the
inverse function of ¢(y), then it follows at once that f(x) satisfies 1 and 2. In order
to study f'(x), take an x, on the interval 0 <z, < L(M) and let {£,}i° be a sequence
such that & —x, and &,=Fz, for all v. Set f(£,) =n, and f(x,) =y, (1, =¥, but 7,4=y,).
Then we have

f(Ev) _f(xo)z M~ Yo 1 — 1

E—xy  gm)—oy) em)—eW) 1 f dt
M= Yo Mo v, Pu(t)

It follows from the continuity of ®,,(¢) that if @, (y,) >0, then

o) —plye) 1 1
N~ Yo D (y,) Dy (f(zo))’

but if @y(y,)=0, then ‘B(ﬁ_v)“_‘??(?/_o)_)oo

N~ Yo
Hence f(iz — ;ixo) @ (f(,))

in both cases, and we have

1'(x9) = Dulf(2o))-
But then it follows that f'(x) is continuous and
F(f(x), f(x))=M for O<x<L(M).

This completes the proof.
The solution of the minimization problem is given in the following

Theorem 4:

a) Given M, a necessary and sufficient condition for the existence of a function f€F
such that H(fy=M, is that L(M)<x,—2,;

b) there is a number My such that C(M)<x,—xz, if and only if M =M,

¢) My=infse; H(f);
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d) there exists a minimizing function f, (which can be chosen continuously differentiable);

e) the minimizing function is unique if and only if C(M,)=x,—a,;

f) of the minimizing function is not unique, then M,=max, <y<y, F(y,0), but the con-
verse 1s not true.

Proof: a) This is seen from Theorems 2 and 3. In general, the function in Theorem 3
must be translated in the z-direction and continued as a constant to give the function
mentioned above.

b) It follows from the properties of F(y,z) and the definition of @, (y) that @,(y)
is an increasing function of M and hence L(M) is decreasing. Let E be the set of all
numbers M such that C(M)<x,—z,. It is clear that E is bounded from below. Let
M,=inf E. Lemma 3 implies that M € E and, since L(M) is decreasing, the assertion
follows.

c¢) and d) Consequences of a), b) and Theorem 3.

e) Suppose first that C(M,)<x,—x;. It is clear that the function in Theorem 3
can be translated in the z-direction and continued as a constant in different ways so
as to give us different minimizing functions.

Suppose then that C(M,)=x,—=x,. If f(x) is the function from Theorem 3 with
M=M,, then we assert that h(x)=f(x —=,) is the only minimizing function. Let
g(x) € F and assume for example g(&) <h(£) for some & between z, and z,. According
to our choice of k(x) we have

J‘llz dt e E
6] (DMo(t) 2 ’

If H(g)=M, then, according to Theorem 2,

J‘yz i<x __E
oo Ou®) 2 7

Ya Yo
It follows that L dt

nee Pult) e fI)f(t)

This implies that M > M, which completes the proof of assertion e).
f) First we shall prove that if the minimizing function is not unique, i.e. L(M,)<
Zy—xy, then M,=max, c,<,, F(y,0). Assume then that My >max, <, <,, F(y,0).
This means that @, (y)>0 for y, <y <y, Since F(y,z) and Dy(y) are continuous
functions, there must be a number § >0 such that 1/®,(y) is uniformly continuous
for y; <y <y, and | M — M| <4. But then there also must exist a number M, <M,
such that £(M,) <x,—x,. But this contradicts b).
Hence
M,= max F(y,0). (1)

NSYSYe

In order to show that the converse assertion is not true, we give an example where
(1) holds and the minimizing function is unique.
Choose

F(y,z)=y2+z2,x1=y120,x2=% and y,=1.
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Perhaps the easiest way to see that y=sin x is the unique minimizing function is
to apply Theorem 1. (But, of course, the same conclusion can be drawn with the aid
of e) above.)
Clearly
M,=1= max F(y,0).
0<y<1

This completes the proof of Theorem 4.

B) y,>y,.
The integral L£(M) is now replaced by

oo dt v:dt
o[-t
) =\ )L
and our conventions are corresponding to those of the former case. Thus, for example,
0<Li(M)< + o0,

The exact analogues of Lemma 3 and Theorems 2, 3 and 4 are now obtained in a
very natural manner by substituting £,(M) for L(M) and (in Theorem 3) ¥, (y) for
@, (y). In Theorem 3, we must also change the word increasing into decreasing. The
proofs are practically the same in both cases.

C) 41=¥s
Clearly, the function f(z)=y, is a minimizing function. Let us write

My=F(y,,0).

As regards the question of uniqueness, it follows from Theorem 4 and its analogue
in case B that the minimizing function is unique if and only if none of the conditions
o and f below is satisfied:

Y40 Yy +0 )
o) both integrals f dy and f A—— exist finite for some § > 0;

Y1 (DMo(y) Yr - lIPMo(y)
. * dy ¥ dy . o
3) both integrals f and f ——>——  exist finite for some § > 0.
’ ¢ 110 P, (9) PR 0)

2 B. Determination of the attainable cone

Let us now leave the minimization problem and consider another question.
Suppose there are given a point (z,,y,) and a number M = F(y,,0). Denote by #
the set of all points (x,) such that

a) x>,
b) there is an absolutely continuous function f(f), joining the points (x,,y,) and
(z,¥), such that sup, F(f(), f'(5)) <M.

Our task is to determine the set E. As a convenient name for the set £ we use
“the attainable cone”. If x =z, then clearly (x,y,)€E. If x>x, and y >y, then we
know already that (z,y)€E if and only if [¥ dt/®,(t) is well-defined and <z —x,.
Of course, there is a similar condition for the case y <y,. If (x,1;) €F and (z,y,)€ E,
then (xz,y) € K for every y between y, and y,.

40



ARKIV FOR MATEMATIK. Bd 6 nr 2

We define g(x) =inf {y: (x,y) € B} and k(x) =sup {y: (x,y) € E}. The functions g(x) and
h(x) may take on infinite values. If g(x) is finite, then (x,g(x))€E and the same is
true for A(x). This follows from the criterion above.

For the determination of K, it is thus sufficient to determine g(x) and k(z), and
we shall confine our discussion to (x). Let us use the notation g(y) =z, + ¥, dt/®y(t).
The division into various cases below and the facts about A(xz) follow easily from the
condition ¢(y) <x and the properties of p(y).

A) For every y>y,, @(y) is infinite or not defined. Then h(x) =y, for all x>x,.
B) @(y) is defined and finite for y, <y < ¥ < oo (clearly ¢(Y)=co).

h(x)=inverse of ¢(y) for all z>2,
lim A{z)=Y.

T>0

C) @(y) defined and finite for y,<y< Y < oo

B() — inverse of g(y) for x,<x<g@(Y),
v Y for z=p(Y).

D) ¢(y) defined and finite for all y>y,.

1. lim gp(y)= oo
Y—=>00
h(x) =inverse of ¢(y) for all x>z,
lim A(z)= oo.

>0

2. lim g(y)=X < oo

y—>00
inverse of ¢(y) for zy<r<X
)=
+ oo for x> X.

Clearly, h(x) is strictly increasing on every interval where it is defined as the inverse
of g(y).
Further, the relation

F(h(x), ' (x)) =M

holds at every point where h(z) is finite.

3. Some sufficient conditions for a given function to minimize the
functional in the case F=F(x,y, z)

Let us now return to the general case where F is allowed to depend on « also.
As we have seen in section 2, monotonic functions f(z), such that F(z, f(x), {'(x)) =
constant, are of great importance. Such a function minimizes H(f), as is seen from
Theorem 5. Roughly speaking, Theorem 6 shows that if f(z) is also strictly monotonic,
then f(z) is the unique minimizing function. Compare also Theorem 1.

Of course, it can be deduced from the condition F(z, f(z), f'(x)) =constant that
f(x) has a certain degree of regularity (at least for the functions F(x,y,z) that we
study). But since this is easy to do and not very important for the theorems, we
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shall omit a discussion of this and instead choose the conditions on f such as to
make the proofs simple. Perhaps we shall return to this question in a later connection.
Now let us assume that the function F(z,y,z?) satisfies the conditions:

1) F is continuous for x; <a <z, and all y and z,
2) 0F |0z exists for x; <z <z, and all y and z.
>0 if z>0,
is =0 if z=0,
<0 if =z<O.

oF

Further, =
oz

We shall use the same notations as in section 2 and the same definitions of admis-
sible functions and the functional. It follows that

H(g) > max (F(xy,1,0), F(x59,0))
for any g€ F.

Theorem 5: Suppose that F satisfies the conditions 1 and 2 above. Let f be an admis-
sible function such that:

a) f'(x) exists for x; <ax <x,,
b) f(x) is monotonic (not necessarily strictly),
c) F(z, f(x), f(x))=M for x, <z <,

Then f(x) is @ minimizing function. (f(x) need not be the only one.)

Proof: Let us choose the case where f(x) is non-decreasing. Let A be a different
element of F. Then we have, for example, (&) <f(&) for some &, z, <& <a,.
Then there must exist an x, <z, such that h(x,) = f(z,) but h(x) <f(x) for & <z <z,.

Hence lim A’ (x) = f'(%,) = 0.

T>Tg

If f'(x,) =0, then it follows at once that

lim F(z, h(z), b (@) = F(2, f(x5,), f (x)) =M. (1)

T>To

If f'(x,) >0, then we take a 6>>0 and a sequence £, —>x, such that #'(£,) > f'(z,) —6>0.
This means that

F(&, b)), B (&) > F (&, &), ['(%) —0)-
The right member tends to
F(wy, f(xo), ['(2o) —0).
If we let 6 —0, then (1) follows again. Thus
H(h) = F(wg, f(x,), f'(20)) =M = H(f).
This completes the proof.

Theorem 6: Suppose that F(x,y,z) satisfies the conditions:
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. oF oF <z<a,,
A) F, 3__’ or exist and are continuous for {xl x Ty
oy oz . Y,z arbitrary.
oF >0 if z>0,
B) N is =0 if =z=0,

<0 if =z2<0.

Suppose further that f(x) is an admissible function such that:

a) f'(x) is continuous and 0 for x, Sx <z,
b) F(z, f(x), f(x))=M for x; <z <x,.

Then f(z) is a unique minimizing function in F. (Compare Theorem 1.)

Proof: Following our habit, we will carry out the proof only for the case f'>0.
Assume now that g€ F, g%f and H(g) <M. We want to derive a contradiction from
this.

Let ¢(£) >f(§) for some &, x; <£<x, Then there must be a number z, such that
x; Sxy <& and g(x) > f(x) for zy<ax <& but g(x,) =F(,).

Hence lim g'(x) = [ (2,).
T>Zo+0
But since F(x,9,9') <M and f'(z,) >0 it follows with the use of B) that

lim ¢'(2) </'(z,).

Consequently lim ¢'(x) = f'(x)-
Form p(x) =g(x) —f(x).

If g'(x) exists, then we apply the mean value theorem to the function
V() =Fz, f(x) +ip), [ (z) +ig'())
between =0 and ¢ =1. This gives
P(@) Fy(x, f(x) +0p(@), f'(x) +0¢' () +¢'(x) F...) <0,
ie. @'(@) F..)< —p@) F (...). )

Let 0 be a number >0 such that x,+6 <&, and write Js =[z,, 2, +0J]. Then ¢(z)>0
for x€J;.
Form the function

C(0) = sup ¢'(z).
zeld
Clearly 0<g(x)<6C(0) for z€Js. (2)
Put 6, =1/v and select, for every v >, 2, €J,, such that
¢'(@,) >(1=4,)C(5,) > 0.

g'(®)>f(x,) implies lim g'(z,)>f'(%)-

P> 00
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But lim g'(x) = ' (,)-
Hence lim ¢'(x,) = f'(%,)-

Put 2=z, in (1).
f@)<f(z) +0,¢"(x,) <g'(x).

We see that f () +0,¢"(x,) = f (2,) >0.
From the conditions on F it follows that
P, @) H0,0(@), /(@) 0,/ @) > >0 for »=,
and | F (..)| <K for v=w,.

Here o and K are constants independent of ».
(1) can now be written (for » =v,)

0 <(pl(xv) Fz() < 7@(%}) Fy()

l¢"@)| | FaL)] < |g@)]| [Fy(-)]-

This implies that

Left member >(1—4,)C(d,) .
Right member <4§,C(5,) K (see (2)).

Hence (1-46,)C(5,)x<6,C(6,) K
and we have (1—96,) < Ko,.

But this gives a contradiction if y—oo.
The case g(£) <f(£) can be treated analogously, and so the proof is complete.

4. Examination of functions which minimize the functional on every interval

In this section we shall examine more closely the connection between the mini-
mization problem and the differential equation

dF (x, f{(x), ['(x))

E. < Fa(z, (@), f'(x)) =0

derived in the introduction. The main results on this subject are the Theorems 8
and 9.(1)

Let us first state the conditions on F(z,y,z). We shall assume that the conditions 1
and 2, given in section 3 (before Theorem 5) hold throughout section 4, but we must
replace [r,,7,] by the interval considered in each case. Later on, we shall impose
further conditions on F.

Suppose that the function f(z) is defined on the interval I and let a<z<f be a
compact subinterval of I.

(1) See also the Theorems 5 and 6 of section 3.
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Definition: Tf it is true, for every such interval [«,f] (inclusive of I if I is compact)
that f(x) is a minimizing function for a <x<g and assigned boundary values f(x)
and f(B), then f(x) is said to minimize the functional in the absolute sense on the
interval I. The function f(z) is said to be a minimal in the absolute sense on I. This
will be abbreviated a.s. minimal in the sequel.

Lemma 4: Let I be a compact interval and suppose that f(x) is absolutely continuous
on I. Denote by E the subset of I where f'(x) ewists, including endpoints of I if the ap-
propriate one-sided derivatives exist. Then

sup F(z, f(z), f'(x)) = ess sup F(z, f(x), f'(2))

TeE zel
in the sense that if one member is finite, then so is the other and they are equal.

Proof: Let x, be a point of I such that f'(x,) exists and let I; be a subinterval of /
containing xz,. Then it is true, for every >0, that f'(z) >f'(,) —6 on a subset of I,
of positive measure. Similarly, f(x)<f'(z,)+0 holds on a subset of I, of positive
measure.

From this, and from the conditions on F(x,y,z), it follows easily that

ess sup F(z, f(x), ' () = F (2, (%) [' (%)),

zelin E

and the rest of the proof is obvious.

Remark: It follows from this lemma that our previous definition of H(f) is equi-
valent to the definition

H{(j) = ess sup F(a f(z), f ()

It also follows that, in the definition of H(f), we can exclude the endpoints of I from
E without changing the functional in any way. Therefore, the conditions a) and c)
in Theorem 1 may be weakened into

a’) f'(x) is continuous for x; <x <z,
and
¢) F(f(x), f())=M for z,<x<w,.

Let us now consider the minimization problem on the interval z; <z <z, with
the boundary values y, and y,, respectively. Let us use the notation

My, 25 115 o) = inf H{f).
We shall need the following estimates:

Lemma 5: Let L be the straight line between (1, y;) and (24, ¥s)-

Put =L Y1 I
Ta™ T
Then min F(x,y,t) < M2y, o34y, Yp) < max F(z,y,t).
(x,v)el (x,yeL
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Proof: The right inequality is obvious. Let I(x) be the admissible linear function
and let m(x) be a different admissible function. Now the left inequality is proved in
the same way as Theorem 5. We only have to substitute {(x) for f(x) and m(x) for
h(z). This completes the proof.

Lemma 6: Suppose that x,—x,, &,— %y, 2,<&, for all n, y,—> Yy N> Yy and
— Y&, —x,) 2. (Of course, F(x,y,z) must be defined and satisfy its conditions
on an interval contammg all the points x,, {x,}1° and {£,}7°.) Then

7}1)!2: M(xn; En; Yns 7771) = F(x()’ Yoo 20)'

Proof: This is an immediate consequence of the preceding lemma and the continuity
of F(x,y,2).

Lemma 7: Suppose that f(x) is a minimizing function on ¥, <x<x, (Boundary
values ¥, and y,.) Suppose further that x, <o <f <x,. Then

M, B; f(), () ) SM(21,%5 Y1:Ysa)-

Proof: M(a,B; f(a), {(B) <H(f; @) < H(f; 1,25) = M(z,25; y,s). where the mean-
ing of the no’catlons is obvious.

Now we must introduce a new condition on F(z,y,z), and this condition is assumed
to hold in the rest of section 4:

3) lim,. F(2,y,2) = + oo for every fixed x and y.
As is easily seen, using the conditions 1 and 2 also, this means that
lim (inf F(x,y,2))= + o

|z]l>00 agz<f
lvl<&

for every compact interval [«, ] (where F is defined) and for every K >0.

Theorem 7: If f(x) is an a.s. minimal on an interval containing x, in s inlerior,
then f'(x,) exists.

Proof: Let I be a compact interval with x, in its interior such that f(z) is an a.s.
minimal on I. Then f(z) and F(z, f(z), f (x)) are bounded on I. But then it follows
that f'(z) is also bounded on I. Let « be the greatest and f the smallest of the four
derivates of f(x) at x=x,. Then « and § are finite. Clearly, there exist sequences {p, }
and {g,} such that

Pn <TGy §n " Pn—> 0

H{gn) — Hpn) s
Qn— Pn

and

Of course, corresponding sequences {r,}, {s,} exist for §.

Assume now that «>f and let y be any number such that o>y >p. As is easily
seen, there must exist sequences {t,}, {u,} such that f,<wx,<wu,, u,—t,—>0 and
[f(w,) —f(E)]/(u, —¢,) =y. According to Lemma 6 we have

ll_go M (P, @ns [(P), (gn)) = F (g, f(75), ),
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r{}—g}o M(rn: S f(rn)’ f(sn)) = F(xoa f(xo)s /3)?
and }LEEOM(tm U f(tn)s f(un)) = F(xo’ f(xo)r 'J/)-

Now there exist arbitrarily great numbers n,, n,y, 75 such that (f,,u%,) < (r,,,8,,) S

(Prs> Iny)-
Application of Lemma 7 now gives F(x,, f(x,), ¥) < F(xy, f(wy), f) < F(xy, f(24), &)-
But the inclusion relations can also be chosen in the opposite way, which gives

F(@y. (o), ) = F (g, [(20), p) > F (o, }(%o), @)-

Hence these three numbers are equal. But this contradicts our assumption that
a>y>f.
Consequently o =g which means that f'(z,) exists.

Remark: It f(z) is an a.s. minimal on the interval z, < <z,, then it follows (with
a few modifications in the proof) that the one-sided derivatives in question exist at
7, and x,.

Lemma 8: If f(z) is an a.s. minimal on an open interval containing xy and f'(xy) =0,
then f'(x) is continuous at x,.

Proof: Lemma 6 gives

n-—>c0

1 1 1 1
lim M{x,—= = —= “))=F 0
im (960 n’x°+n’f(x° n):f(xo'l“n)) (@0, /(%,), 0)
and, since f is an a.s. minimal, we get

Jim H(f; ro Lt %) — Py, {a),0)

n—>0
from which the assertion follows.

Remark: This result is obviously true also for an end-point of an interval.

Theorem 8: To our previous conditions on F(x,y,z) we add the following: F,, F,
and F, exist and are continuous for all x under consideration and all y, z.

Suppose now that f(x) is an a.s. minimal on an interval which contains x, in its in-
terior, and suppose f'(x,)==0.

Then

1) f(x) €C? on an open interval I containing x,
2) F(z, f(x), f'(z)) =constant on 1.

(Hence M)—’fl(x))=0 on I.)

dx
Proof: Our method of proof will be the following: We construct two solutions of
the differential equation F(z,y,y’) =constant, the first of which is equal to f(x) at
x, and at some z' >z, and the second is equal to f(z) at z, and at some 2" <x,. Then,
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using Theorem 6, we prove that f(x) and these two solutions are identical. We shall
confine the discussion to the case f'(x,) >0, since the other case is analogous.

Let us introduce the notations y, = f(x,), 2y =71 (%y), My = F(x,, 4, 2,) and
W(x,y,2, M)=F(2,y,2) — M. Then W (%,,,,20, M,) =0 and

le(xO’ ?/0720’ MO) = Fz(xm Yo zo) >0.

Hence the equation W(x, %, 2, M) =0 can be used to define z as a function
z=O(x,y, M) on the set R in xy M-space, defined by the inequalities |x—z,| <9,
|y —wo| <0 and | M ~ M| <9, for some 6>0.

We may assume that we have, for (x,y, M) € R and for some 8, >0,

0<2y—0,; <O(x,y, M) <z, +6,.

We shall also assume that f(z) is an a.s. minimal on |z —2,| <d. The function
®(x,y, M) is continuously differentiable on £, and we have

oo_ F, o F, 0D 1
ex  F) oy F, % oM F.

oD

ox

Hence

<(, and ‘@‘<02 on R.
oy

Let us consider the differential equation y' =®(z,y, M) together with the initial
value y(x,) =y, Here the parameter M is assumed to satisfy | M — M| <4.

It follows from Picard’s theorem that there exists a unique solution for |z —z,| <0,
and 4, is independent of M. Let us denote the solution by y(z, M). It is also true that
for every x;, such that |®, —a,| <J,, the solution y(x,, M) depends continuously on
M. This is proved by a standard argument. (Cf. [2], pp. 46, 65, 70.) If |z —~z,| <7<0,,
then, clearly, |y(z, M)—y,| <Kt, where K =z,+6;. If >0 is small enough, then
there is a >0 (but 7<9,) such that the inequalities |x—wu,| <7, |y—y,| <Kr,
imply that

and {(D(x,y,MO+6)>zo+ﬂ

D(x,y, My—0) <zy—p.
(For @ is continuous and #®/0M >0 on R.) This gives the inequalities
y(@, My+0) 2 yo+ (29 + ) (@ — )

and Y, My—0) <yy+ (2o — B) (2 — ),
valid for z,<x <z, +7.

Fix numbers § and 7 having the above properties and, in addition, satisfying the
condition

Yo+ (2o —P)T<flay+7)<yoT (2o +p)7.

Y@y + 7, My—0) <flag+7) <y(xy+7, My+9).

Then we have

Since y(x,+ 7, M) depends continuously on M, there is a value M* such that
y(xy +7, M*) = f(xy + 7).
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But f(z) is an a.s. minimal and now it follows from Theorem 6 that f(x) =y(x, M*)
for xy <z <z;+7.

In a similar way one can find numbers 7° and M** and prove that f(x) =y(x, M*¥)
for xy 7' <wx <xy.

Hence ]U(xo) = (D(x()’ymMo) Z(D(x()? Yo: M*) :(D(xo’ yO:M**):

which gives us M= M* = M**. Consequently ['(x) = O(z, f(z), M) for €, —1' <z <24 +7.
This means that F(z, f(z), f'(x)) = M, for the same values of «, and the rest of the
proof is obvious.

Remark: As is easily seen, the theorem continues to hold (but with obvious modi-
fications) in the case when z, is an end-point of an interval, where f(x) is an a.s.
minimal.

Theorem 9: Let F(x,y,2) satisfy the same conditions as in the previous theorem. If
f(x) is an a.s. minimal on the interval I, then:
1) fx)€Cr on 1
2) the differential equation

dF (x, {(x), ' (x ,
WLOTE. b,y ) =0
18 satisfied on I in the following sense: The second factor is well-defined on I and if
is different from zero at x,, then the first factor exists and is zero in a neighbourhood of x,.

Proof: The theorem is a consequence of Theorem 7, Lemma 8 and Theorem 8.

Remark: As is shown by Example 6 in section 5, the derivatives f"(x) and
dF(x, f(x), f'(x))/dx need not exist at points where f'(z)=0.

Corollary: Under the present conditions on F(x,y,z), suppose that f(x) is a unique
minimizing function on x, <x<xy. Then

fx)€ECr on [xy, 2] and F(x, f(x), f'(x)) =constant on [x;, T5}.

Proof: Obviously, f(z) is an a.s. minimal on [x,, ,]. Hence, by the theorem, f(x) € C*.
I it were true that F(z,, f(x,), f'(x,)) <H(f) for some z,, then we could alter f(x)
slightly in a neighbourhood of x, without increasing the value of H(f). But this con-
tradicts the uniqueness, and hence we have F(x, f(z), f (x)) =constant. (Compare
Theorem 1 and Theorem 6.) ’

In the theorems 5 and 6, the condition that f(x) is monotonic plays an important
role. If we impose a suitable extra condition on F(x,y,2), then every a.s. minimal
must be monotonie:

Theorem 10: Suppose that F(x,y,2) satisfies all the conditions in Theorem 8 together
with the extra condition that O F[ox does not change sign for x€1 and any y,z. If now
f(x) is an a.s. minimal on the interval I, then f(x) is monotonic on I. (But f(x) need
not be strictly monotonic; compare Example 3 in section 5.)

Proof: According to Theorem 9 we have f(x) ECY(I). Assume, for example, that
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there exist 2, and 2, on I such that f(x,)>0 and f'(z,)<0. Assume also z, <z,
Obviously, there exist #; and z, such that z; <azy <z, <zs, f(z,) =f(z,), f(23) >0 and
f'(x,) <0. Consider the minimization problem on z, <z <z,. If g(z)=f(z,), then g(z) is
admissible and, since ¥, does not change sign, we have H(g) =max (F(x,, f(x3), 0),
F(x,, f(x,), 0)). Assume H(g)= F(z,, f(z,), 0). But since f'(x;) >0 we have H(f) > H(g)
which is impossible, since f(z) is an a.s. minimal. Hence f'(z) does not change sign,
which completes the proof.

5. Examples

In this section, we want to show a few applications of some of the theorems already
given. We also motivate by means of examples the introduction of condition 3 and
the formulation of Theorem 9.

Example 1A: Let us use Theorem 4 to solve the minimization problem if

1
F Y= 42 2 = = =7E =—".
@y )=y ty . 2,=y;=0,2, 4 and g, V2
We have Opy)=VM—y? and
wz o g
L(M)= —
() o VM-+¢

is well-defined for M >>}. For such values of M, we have L(M)=arcsin (1/ Vﬁ).
To find M,, we must determine the smallest M >} such that

) 1 T
arcsin ——— < —.

VeM 4

This gives us M,=1. Since £(1)=zx/4, there is a unique minimizing function.
In order to find it, we use Theorem 3 and form

(y)= fﬂ —dt_ = arcsin y
v ol/1—1? '
Since 2, =0, the minimizing function is the inverse of ¢(y), namely f,(x)=sin 2.

Example 1 B: This will illustrate the case in Theorem 4 where there is no unique
minimizing function.
Choose F(y,y')y=y'*— 1642,

zn=—2,y,=-1,2,=2 and y,=1.
Write y'4 —16y%? =M which gives
4
Oyly) =V16y*+ M.
For the existence of
! dt
L= +——
Vet +M
it is clearly necessary and sufficient that M =0.
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We need not evaluate the integral L(JM), since

Ioodt
-12/]¢] *

We see that M,=0 and that there is no unique minimizing function.
Let us determine a minimizing function! Form the function

02/
{Compare Theorem 3.) We get

y
g(y)=f iliﬂ for —1<y<l.

l/g; for y=0,
9=y " —
—V]y| for y<o.
The inverse function is f(z) =x|x|. If we define f(z) as +1forz>1and —1forz< —1,
then we get a minimizing function. The function A(z) =}xz|z| (for —2<x<2) is also

a minimizing function, but in contrast to the former one, it is continuously dif-
ferentiable.

We have M,=max, <<y, F(¥,0) in accordance with Theorem 4.
Example 2: Let us use the rules given in section 2B to determine the attainable

cone if F(y,y')=y"2—y*, 2,=0, y,=1 and M =0.
We have ®,(y) =42 and hence

et [ gl [ ]
(Py 0 yoq)M(t) 1t2 y

Since lim, ., ¢(y) =1 we see that the present case is D2 and that X =1. The inverse
of z=gp(y)=1—1/y is y=1/(1 —x). Therefore,

— <<l
he)-1—%» for 0<x<1,
4+ oo for z>21.

In order to determine g(z), we form the function

Yot dt 1
vor-at [ g [E

Clearly, this corresponds to the case B. The inverse of x=%(y)=1/y —1isy=1/(1 +=z).
Hence g(x) =1/(1 +=) for all z>0.

Example 3: Put F(y,y')=y*+y'? and define the function fy(x) as

51



G. ARONSSON, Minimization problems

. 44 7
folx)={sinz for —§<x<§,

-1 for x<—-—.

Clearly, fo(x)€C* and f,(x) is monotonic on — oo <z < oo, Further, F(f,(x), fo(z)) =1
for all . Now it follows from Theorem 5 that fy(z) is an a.s. minimal on — oo <z <<oco,
Observe that f, () does not exist at = + /2. Compare Example 5.

Example 4: This example shows that the condition 3 cannot be omitted in Theorem
7. It will also give an idea of the case where F is independent of y. Let

4
N — 2 y
F(xryﬁy) x’t‘y,4+1-

The conditions 1 and 2 are satisfied, but not condition 3.

Put Flz,y,y')=1.
4
2
This gives y' =+ l/l r.
=)

Form the primitive function
4
B x Vl _ t2
o Vt]

It is easy to see that f(x) is a unique minimizing function between (—1, f(—1)) and
(1, f(1)). Hence, f(x) is an a.s. minimal. But f'(0) is not finite.

dt for —1<z<l.

f(@)

Example 5: This is a continuation of Example 3. We now want to determine all
a.s. minimals for F(y,y")=y2+y'2.

Assume that f(z) is an a.s. minimal on an open interval I. It follows from the
theorems 9 and 10 that f(z) €CY(I) and that f(x} is monotonic.

Clearly f(z)=constant is possible. But assume now that we have f'(x;)==0 for
some z,€1.

Let I; be the largest open interval containing x, where f'(x)==0. Then f(z)€ C?(1,)
and f(x)?+f(x)2=constant on I,. Differentiation gives f’(x)+f(x)=0. Hence there
exist A and B such that f(x)=4 sin (¢ + B) on I,. Since f(x) is monotonic, it follows
that I, is bounded, say I, =(x,f). Now we assert that f'(x)=0 on I—1, (if it is not
empty). If this were not so, then we would have a different open interval I,={y,0)
with the same properties as I,. Let us assume that § <y and that f'(x)>0 on I, U I,.

We have f'(8)=f'(y) =0. Since f(z) is a sine-function on I,, it follows that f(8)>0.
From the monotonicity we conclude that f(y)=f(f). Hence f(x)=C sin (x + D) has
the properties f(y) >0, f'(y) =0 and f'(x) >0 for y <2 <4. But this is clearly impossible.
Consequently f'(x) =0 on I —I,. This leads to the following result: There exist num-
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bers p and ¢ such that f(x) =pf,(x +q) for all €1, where fy(x) is the function intro-
duced in Example 3.

Hence we have found that the class of a.s. minimals for F(y,y') =y®+y'? is the class
of functions of the form pfy(x +q) where p and q are arbitrary real numbers, and constant
functions (which cannot be written as pfy(x +¢) if I is the entire real axis).

Example 6: This example shows that the derivatives d F(, f(x), f'(x))/dx and f"(x)
in Theorem 9 need not exist for all .
Choose F(z,y,y’)=y'?2—x and consider the function

i) 0 for z<0,
2) =
22°2 for x>0.
- for <0
Then F (x)) = 2] ’
@, /(z), 1 (x)) {0 for 2>0.

We assert that f(z) is an a.s. minimal on — oo <g < co. To prove that, consider the
minimization problem on x, <z <z, If z;>0 then it follows from Theorem 5 that
f(x) is a minimizing function.

If », <0, then we have H(f)=|z,| and since every admissible function must pass
through the point (x,,0), it follows that inf, H(g) > F(2,,0,0)=|z,|. Hence f(x) is
an a.s. minimal. But the derivatives dF(...)/dx and f"(z) do not exist at x=0.

Therefore, in Theorem 9, we can nmot assert that the differential equation
dF(..)|dz- F..)=0 is satisfied in the classical sense.
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