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The remainder in Tauberian theorems

By SonjA LYTTKENS

1. Introduction

In his paper “Tauberian Theorems™ of 1932, N. Wiener stated a Tauberian
theorem which was sufficiently general to include many of the various earlier

Tauberian theorems. In a form convenient for our purposes this theorem may
be stated as follows (cf. Prrr [2]).

Wiener’s general Tauberian theorem
K (z) and ®* (x) are functions of the real variable x, and we suppose
@* (z) real and bounded
D* (x -+ h)— O (z) = w(h), w (k)0 when h—> +0.

K(z)eL, k(t fK(u ¢ dur40 for t real.

Then
lim [ O (@ —u) K (u)du= AfKu)du
implies e
lim &*(z)=A.
Let

=7¢* (x—u) K (w)du.

Then a Tauberian theorem yields an asymptotic estimation of the function
@* (z), if we know the asymptotic behaviour of the function ¥*(x). The ques-
tion arises whether it is possible to estimate the “remainder” @(z)= @ (z)— 4
when we know the behaviour of the analoguous “‘remainder” ¥ (z)=%"(x)—

-4 f K (x)dz. Wiener’s Tauberian theorem merely changes the imposed condi-

~0oQ
tion @ (z)=0(1) to @ (x)=0(1), z—>00. Wiener himself considered, in the paper
quoted, that it is impossible to reach better results with his methods.

Since then, however, theorems have appeared which prove that under more
restricted conditions on the kernel K (z), it is actually possible to estimate the
remainder P (x). (See BEURLING [1] page 22.) The present paper is confined to
Tauberian relations for which such an estimation of the remainder is possible.

The author is indebted to Professor ARNE BrurLING and to Doctor LENNART
Carreson for helpful suggestions.
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S. LYTTKENS, The remuinder in Tauberian theorems

2. The class of Tauberian relations considered

Let V denote the class of functions of bounded variation, and let £ be the
class of functions @(z) defined as follows.
Definition

D(z)eE of DP(z) is real and bounded and D {(x)+ " is non-decreasing for every
e>0 and >z,

Let F(z) and @ (z) be functions of the real variable z.
Consider a Tauberian relation of the form

lim j?q)(m—u)dF(u)=O,

T—>00

where F(z)cV, @(x)eE. Let all functions F (z) € V be divided into two classes:

— o0

Definition

F (x) belongs to class I if two numbers 0>0 and a>0 can be found, such that
for every @(x)ekl the relation

o0

| ®@—uwdF (@)=0("")

with 0<y<a implies
®(2)=0(c"),

where 0 and « are constants depending only on F(x).
F (x) belongs to class II if no such positive numbers 0 and o can be found.

If F(x) belongs to class I it is possible to estimate the remainder @(z). It
is this case which will be studied here.

Class II yields a pure Tauberian problem, which is of no interest in connec-
tion with the remainder problem studied here.

3. Some sufficiency theorems
The following theorems are modifications of a theorem of BEvRLING (see loc. cit.).

Theorem 1

o0

Let P(u)eE, F(u)eV, f(x)= fe'”dF(u), and suppose that %[) can be ana-

lytically continued into the strip —a<J(t)<b containing the real axis,

1o

<const. (1+[t])’ n —a<J()<b.

(51)

Then the relation

oo

| P@—wdF(w)=0(")

—oQ
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implies _ ves o
G (2)=0 (%) ¢=min {y, a}

for every 0<2p+3.

Let n be an integer >p+1 and r a real number. Introduce the function
(1 _ e—irt)n
)" 1)

Throughout the paper w(t)=w,,,(t) will denote a function of this type.
w(t) is analytic in —a<{ () <b, and |w ()] <const. (1+]¢[)"" ® in the same
region. Introduce its Fourier transform

w{l) =1, ()=

IV(U) = Wn,r(u)=217 f W(t)eiutdt.

We can change the line of integration into any line J(1)=8, —a< B=b, thus
obtaining w(z+¢p) and e #* W (u) as Fourier transforms. Since w(x+18)€L?,
—a<f<b, we have

" Wu)eL® and e °“W(u)eL

Hence

W (u) € L.
Let

Y@= [ D@—u)dF(u),

and introduce the notation

T+7 uy+r Up_ptT

(@, 2)=dn: (D, 2)= [duy [duy... [ Dw)du.

z Uy Yp-1
We shall now prove the fundamental formula
(1) J(®,2)= [ ¥(@—u)W(w)du
It is easy to see that o

[ Wy—udF (u)
is Fourier transform to
(1 . e—irt)n )

(e)"

Hence
J(@,2)= [ Dla—y)dy [ Wy—wdF @),

the y-integral being in reality taken between finite limits, since
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f W(y—u)dF(u) is zero outside {—nr, 0).

— 00

Since W(u)c L, inversion is justified by absolute convergence and yields (1).
Hence (1) is proved.
Let us consider J (@, ) when z—co and r=r(z)—~>0. (1) gives

0

@) |J(D,x)|< Tl&”(z»~u)W(u)|du=0{e"” [ e W@)|du+

+er* fle(’"“’" |e*™ W () |du+}?e’“ |e** W (u)ldu}.
® i
Using the notation . )
M1y ={ [ 1@ daj?, M ATy =0 {1,
Schwarz’s inequality gives
(3) J (P, 2)=0 (xt e " [ M, {e*** W ()} + M, {e"* W (u)}]), ¢=min {y, a}.

Let us study this expression for small r. Since M, {¢** W («)} and M,{e** W (u)}
may be treated in exactly the same way, it is enough to consider M, {e** W (u)}.
Parseval’s relation gives

Vor M, {e** W (u)} = My{w(x—ia)}.

For the sake of brevity, let
1

v(it) =
“=; i)
This notation will be used throughout the present paper. For small
TwE—ia)=1—e"TT Y y(@—da)= 2 0" %) (l—e "V v(z—1a).
g=0
Minkowski’s inequality gives

() Mo -ia) = 306" My{(l=e ") oz ia)}

It follows from condition (s,) that
|v(x—ta)| <comst. (1-+|z|)~" ™.
Using this relation it is easy to verify that

O+ 77}, g#=n—p—3%

5) MZ{(I“’M)Q”(””‘"“)}={0 t“(ogr),  q=n-p—i

Inserting in {4) we find
(6) My{w(z—1a)}=0(""7""}).
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Similarly, we obtain

wfole-)-ov-e

Using Parseval’s relation and substituting in (3) we have proved
(M) In,r (D, 2) =0 (gt e T " 771, c=min {y, a}

for every integer n>p+1.

Formula (7) was derived with the single assumption about @ () that it is
bounded. Using the condition @(z)€ E, we may now proceed to prove the
theorem. If for every >0

2czx
(8) |®@)|<e 205, a>a,

then the theorem is a trivial result.
If this is not the case, then for arbitrarily large values of z and some fixed

number o< 3 ji 3 either

(9a) D(z)>e "

or

(9b) D(z)< —e ",

By the definition of E we have for every £>0, if 20, z>z,
D(z+h)>D(z)—e” (" —1).
Choose an £>0, and suppose >, to be a point where (9a) holds. Then
D{x+h)>3e "
if
O<h< % log (1 +3e @9%) =h(x).
h(x)

Let 4f=r(:c)=—n— where % 18 an integer >p+1. Then

z4+7 uy+r Uy _1+T

rMie < fdu1 f du, . .. Du)du=J, (D, x).
z U up_q

Using (7) we get
,’.ll+ke—a120(w§e—cr)

or, inserting 7,

—ar 1 1 ,-ate)r IJ+}— 3 ,-cr
e 810g(1+§e ) =0(xte ).

Letting z-—+>0c0 we find
2¢ 2p+1

o> -
“2p+3 2p+3

+ &

Since & may be taken arbitrarily small, (9a) is impossible.
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S. LYTTKENS, The remuinder in Tauberian theorems

In the same way, considering an interval to the left of x, we prove that
(9b) is impossible.
Hence (8) must hold, i.e. theorem 1 is proved.

The following three theorems are similar to theorem 1. We only replace the

condition (s;) for by other similar conditions, still sufficient for F(u) to

1
1)
belong to the class I.

In theorem 1 the condition (s;) was imposed because of its simplicity. It

can be generalised as follows.

Theorem 2

Replace the condition (s,) in theorem 1 by

(s2)

f}fﬂm—tﬂ)[z T |2p+1<const. —a<f<b.
Then theorem 1 thus modified will still hold.

Introduce w (t) as on page 577. Condition (s,) gives w(z) € L*. Hence its Fourier
transform W (u) certainly exists in the IL?-sense.
The conditions further imply that

w(t) is analytic in the strip —e<J(¢)<b, and
f]w(ac+iﬂ)l2dx<const. ~a<f<b.

Then it 1s a well-known conclusion that
w(z+1f)—~0 when z—>o0, —a<f<b.

We may therefore move the line of integration in
T
_L . —iut
W (u)= 5. l.Tl_.g. w(tye " dt
in the same way as before. Hence W (u)€ L, and formula (1) still holds. (3)
and (4) may be obtained as before.
For the function

condition (s,} implies

v(z—ta)eL* and f|v(:c—ia)|2dx=0(T1‘2(”“’)).

z]>T

Using these relations, it is easy to derive (5). In the same way as in theorem 1
this yields

(6) My{w(@—ia)}=0("""}),

and the proof may be completed in the same way as in theorem 1.
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In the following two theorems % is required to be analytic in the strip

—a<3()<0 only. Tt seems likely that this would also be sufficient in theorems
1—2 It may be shown that it is sufficient with the additional condition

[ |l |dF (u)|< oo,

Theorem 3
Let D(u)eE, Flu)eV, f(x f ¢ *d F (u), and suppose that
1 g ! .
7 are limiting values of a function ——, analytic in —a<JF(t) <0, a>0,
i@ g of a functio T el ()
(s3) 41 <const. (1+]|z[)"? —a<f=<0.
: dz [ (z+1p) ' ’ e

If p>0, then the relation

/w Oz —u)dF (u)=0(")

implies )
D(x)=0(e%"), ec=min {y, a}

+1

Condition (ss) implies condition (s;) in the strip —a<J(f)<0. We may there-
fore introduce the function w(¢) and its Fourier transform W () as in theorem 1,
and obtain

Ww)eL?, " W(u)el?

in the same way as before.
(ss) and its consequence (s;) also give us

w’' (2)=0 (")
Hence w'(x) € L?, and Parseval’s relation yields for its Fourier transform 7u W (u)

u W (u)eL?.
Hence
W (u) € L.

It should be observed that in the proof of theorem 1 the function ¢ ®* W (u)
was merely used to prove W (u)€L so as to derive (1). The rest of the proof

was Independent of the conditions on Flt) in the strip 0 <J(¢) <b. Hence, having
proved W (u) €L, we can.now derive the main formula (1) and formula (6) by
the same argument as in theorem 1.

From (1) we find, using the estimation (2) on page 578,

(10)  J(D, 2)=0(e " [M{e"™ W (u)} + M {** W (u)}]), c¢=min {y, a}.
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Using Parseval’s relation and (6) on page 578 we find
M{** W (u)}=0(@""7"1).

Schwarz’s inequality gives

T

(11) [ | W (u)|du=0 (rt My {e** W ()}) =0 (")
For the rest of the interval, if

s>0, §'>0, 1Jrl,=1,
s s

Holder’s inequality gives
1

 du)s L
(12) fe”IW(u)ldus{2 [%1‘} My {ue® W W)} =00 My {ue™ W(w)}).
14>y F_
According to (s;) and its consequence (s,),
|w' (x—1a)| <comst. (1+]|z|)""".

Hence w' (x—ia) € L* for every s>1, since n>p +1. Plancherel’s theorem yields
for its Fourier transform iue®* W (u)

. 1
if 1<s<?2, }+~,=l,
s s

M, {ue** W(u)}<Cs Ms{w' (x—1a)}.
Let us consider this expression when r—0. By definition (p. 578)

Tw(—-ta)=(1—e Y v(x—1a).
Hence

Pt (@ —ia)= —irne (1 — T gy (p—da) + (L— e ) (@ —ta) =

= "él O(TH_Q) (1 _e—irz)qv (2) _,,;a) 4+ % O(/'.’n—Q) (1 _e—irz)q v (w—ia).

a=0

Minkowski’s inequality gives us
r-1 X X

{13} M {w' (—ia)}= 3 0@ )M {(1-e " *Fv(z—ia)} +
e=0

+ 300 MAQ - @ ia))

According to condition (s;), we have
|v(z—ia)| < const. (L+]|x[)~"®, |v' (x—1ia)| <const. (1+]z|)~ "%,
Applying these relations it is easy to derive
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n-p-t 1
O(¢q+7~ 7 s), q#n_p—g:
(14) M, {(1 _ e—irr)q v(r— 1',(1,)} = L )
0(74(10g7)§), q:n_])—g,
and
n+1~pv1 1
0(/,.G+7. s), q747’b+1—p_§a
(15) M AQ-e ") (z—1da)}= . X
0 (r* (log r)s), q=n+1~p—;-
Substituting in (13) we obtain
n+l-ps 1
(16) M, {w' (@ =ia)}=0(")+ 00" 77),  —#l-p,

. 1
1.e., we have proved that for 1<s<2, ;;él——p,

n+1—p—§)

Mo{ue®* W)} =00")+0(r

Substituting in (12) and using (11), we obtain

1
M{* W)} =00"""5)+00u"?).

From this we conclude that

M{e** W (u)}=0(""7?),

1 .. .

since we have assumed p >0 and can choose ;> 1—~9. Similarly, we obtain

MW (w)}=0(@F""7).
Hence (10) gives us

Inr (D, ) =0 (e “r"*?), c¢=min {y, a}.

From this we derive the result stated in exactly the same way as in theorem 1.

Theorem 3 may be generalized in an analogous way to theorem 2 from theorem
1, ie., we replace our O-condition for -——— by an integrability condition. We may

1@

state this in the following form

Theorem 4
Replace condition (3;) tn theorem 3 by

o°

(5, |

fl_ 1
dz f(x+1f)

2 dz
(1 +]z])

55—f < const. —a<f=<0.

Then theorem 3 thus modified will stll hold.
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Condition (s,) implies condition (s,) in the relevant strip —a < <0 according
to a known inequality (Harpy-LiTTLEWOOD-POLYA: Inequalities, p. 245). We may
therefore introduce the function w(t) and its Fourier transform W (u) as in
theorem 2, and obtain

W (u) e L%, W (u) € L?

in the same way as belore. According to condition (s,) and its consequence
(%,), we have w’(t) € L:. Hence

uW@)eL* and W@)eL

Observing that i theorem 2 we merely used the conditions on f—(—) in the

strip 0<J(f)<b in order to prove that W (u)€ L, we may now derive the main
formula (1) and formula (6) in the same way as in theorem 2.

The proof then follows the same lines as in theorem 3. We use formula (10)
for the estimation of J(®, ). From (6) we obtain (11) as on page 582. For
the estimation of M;{w’(z—7a)}, however, we have to use condition (s,) instead
of (s;), in order to obtain (14) and (15) on page 583. Let us show that this is
possible. By definition,

1
==
"O=F
Hence
Voot (L L ) A
{zx—ia)" \dx Hz—1a) {@—ia)flz—1a)) (x—12a)"
where
k (z) 2
ol s €5
according to (s,) and its consequence (s,). Let
l<s<2.
Hélder’s inequality yields
k@) Fda2 | [ = .
| (z—ta)[’ dm<I f | (zlz)zla 12? 2f s(2n 2p+1) =0 (1),
|zi>T II{/ T X

Using this and ¢ (z—1a) € L’, it is easy to derive (15). Similarly we obtain

[v(x—ia) dz=0(T"°*""™).

lz|>T
Using this and v(z—7a) € L’ it is easy to prove (14). Inserting in (13), we obtain
(16), and the proof may be completed in the same way as in theorem 3.
Let us now study the case where we assume a knowledge of the zeros or of

the poles of in the strip —a<{(t)<0. The following two theorems deal

1
1o

with this case.
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Theorem 5
Impose on F(u) the conditions from any of the theovems 1-4. Furthermore, let
) have a zero of order 4, at t,, —a<3J(t,)<0, v=1,2 ... N.
Then the assumption
fo(D(x—u)(lF(u)=0(e_”)
can be replaced by -
f@(x—u)dﬁ'(u)= éle‘“v’” P,(x)+0(e7%),

where P,(x) denoles an arbitrary polynominal of degree <RA,, and the result of the
theorem n question will still hold.

Introduce i (¢) and its Fourier transform W (u) as before. Let

V(x)= f@(x~u)dlf’(u),
¥y ()= A%e”””’Py(x)-

v=1

Formula (1) can be derived in the same way as in the previous theorems.
As before, we have

W(u)e L2, ** W (u) e L2
If ~a<J (<0, then

fu'"W(u)e”“du=(—i)"’w‘"”(t), m=0,1,2...,,

since the Integral converges absolutely in this region. Now

a1

7 }‘(t)=0 at t=t,, m<4,.
This implies
w(m)(t,,)=0, m<}~v’
and
fu"‘W(u)e”vudu=(—i)"'w"’"(tv)=0, m<2,.
Let -
4,-1
P, (z)= 2 Cpma™
m=0
Then
% N A1 0o
f‘{’o(x—u) W (w)du= Zl ZO Cyome 7 f et (x—u)" W (u)ydu=0,
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and (1) may be written
J(D,2)= [ {¥@—u)—Pee—u)}W@duy,
where -
Y(x)~¥y(x)=0(e77), T—> 0o,
by assumption, and

Y (x)—Wolx)=0 (), L—> — oo, max |J ()| <x<a.
Hence
oo 0
|J (D, z)] g’f (@~u)| |W(uw)|du= Oe"’fle"“W Y du+

+e«yr { e(y—a)u!eauW(u)|du+e—nzf e—(a n)ulea.uW ]du)
0

x

From this expression it is clear, that we can estimate J (@, z) and with it
@ (x) in the same way and obtain the same result as in the previous theorems.

For the sake of simplicity the following theorem is stated as a generalisation
of theorem 1. It is obvious how similar generalisations of theorems 2-4 may
be obtained.

Theorem 6
Let Fu)eV, ®w)€E, fx)= [ ¢**dF (u).

Suppose that
1

18 meromorphic in the strip —a<J(t)<b containing the real axis, and has in

)
this strip poles only at t,, v=1,2 ... N, of order A, resp., —a<3 (%) <0,

1

—=0(1+|z|), T | oo, —a<pB<b.
aroatelr, el b
Then the relation
[ @@—u)dF (u)=0("")
smplies -
Dx)= > TP, (2)+0(e ), c=min {y, a}

~8c<J (t,)<0

for every
0< 2
2p+3

where P,(x) is a polynominal of degree <2,.
Introduce w(t) and its Fourier transform W (u) as before. Formula (1) still

. . 1. ..
holds, by the same argument as in theorem 1, since Rt-) is analytic in
—e<J()<b, some £>0.
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L
1®

2()= 3 0.0

Denote the principal part of at 4, by ¢, (¢), and let

It is easy to see that g¢(t) is Fourier transform to

N
[ S e B Prw),  u>0,

Q(u)= y=1
l 0 %<0,
where P} (u) is a polynominal of degree <4,.
Let
_ (1 __e—irt)n
and call its Fourier transform G (u).
Then
g(t)
t = ——
“O= 10
and
Ww=-L [wgeta= 1 f (z){i— (z)} Lt
2x 4, e T
1 o0
+5m [g@Wa@e ™ dt=W,y(u)+ W, (u).
(1) gives o
(17) I (D, 2)= [ ¥(@—wu)W,(w)du-t [ ¥ @—u)W,(u)du.

The function e q(t) satisfies the same conditions in the strip —a<J () <b

as f(¢) did in theorem 1. Hence we can use the same argument as in theorem 1
to prove

flﬁ”(x—u) Wy (){du=0(xte °Z¢" 71, c¢=min {y, a}.

Since Q(u) € L?, G(u) € L?, Parseval’s relation gives

oo

Wz(u>=2—1,;fg(t)q<t)e‘“‘dt= fG(u—v)Q(v)dv.

Hence

(18) fw‘P(z—u)Wz(u)du= fG(x—u)duT?’(u~v)Q(v)dv,

the inversion being justified by absolute convergence, since G (u) is zero outside
a finite interval.

587



S. LYTTKENS, The remainder in Tauberian theorems

Let
fm‘l’(u“v fm

fw S et Py (v)dv=H (u) + Ry (u) + R, (u),

—a<8{zv}sfc

Yw—v){ 3 '’ Prw}dv+

—c<Jit,}<0

8%0

where R,(u)=0 if a<y. Then it is easy to verify that
Ry (u)=0(""), U= oo,

Ry(u)=0(u*e ™), u—>oo, A=max 1,,
and
(19) Huw= 3 e'"P,(u),
—c<J{t,)<0

where P,(u) is a polynominal of degree <A1,, whose coefficients depend on f ()
and ¥ (u). Substituting in (18), and applying the definition of G (u), we obtain

f‘I’x wy W, (u)du= fo uw){H (u)+ B, () (w)du=

—J(H+R1+R2, :I))=J(H z)+0(xte T r").
Thus (17) gives
J(D—H,2)=0(xte " r" P )+ 0(z*e " r"),

where H (u) is given by (19).

. d . .
Since — H (u) is bounded if >0, we can argue as on page 8 to show that

du
this implies

J{H@)}=0("*%), ®@)-R{H@)}=0(@")

for every 0<-2p+3-

Hence .
e—ztvz Pv (CI))
~fe<J{t,}<0
is real, and

Dir)— 3 TP, (x)=0(")

—-0c<Jt,1<0
for every
2
< >
2p+3
which proves theorem 6.
REFERENCES

[1] A. BEURLING, Sur les intégrales de Fourier absolument convergentes et leur application
& une transformation fonctionelle, Neumeme congrés des mathématiciens scandinaves,
Helsingfors, 1938.

[2] H. R. PrrT, General Tauberian Theorems, Proc. Lond. Math. Soc. (2) 44 (1938) 243-288.

[3] N. WieNER, Tauberian Theorems, Annals of Mathematics, 33 (1932) 1-100.

Tryckt den 18 januari 1954.

Uppsala 1054, Almqgvist & Wiksells Bokiryckeri AB



