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The remainder in Tauberian theorems 

By SOI~JA L Y T T K E N S  

| .  Introduction 

In his paper "Tauberian Theorems" of 1932, N. WIENER stated a Tauberian 
theorem which was sufficiently general to include many of the various earlier 
Tauberian theorems. In a form convenient for our purposes this theorem may 
be stated as follows (cf. PITT [2]). 

Wiener's general Tauberian theorem 

K (x) and qS* (x) are /unctions o~ the real variable x, and we suppose 

4"  (x) real and bounded 

r 1 6 2  w(h)-~O when h-~ +O. 

K (x) E L, k (t) = f K (u) e" ~ d u # 0 /or t r~al. 

Then - ~ 
~ ; 

lim ]" ~ * ( x - u ) K ( u ) d u = A  K ( u ) d u  

implies - o~ 
lim ~* (x) =A.  

Let 
oQ 

~* (x) = f 4"  ( x -  u) K (u) d u. 

Then a Tauberian theorem yields an asymptotic estimation of the function 
~b* (x), if we know the asymptotic behiviour of the function W* (x). The ques- 
tion arises whether it is possible to estimate the "remainder" ~ (x)= ~b* (x) -  A 
when we know the behaviour of the analoguous "remainder" ~ ( x ) =  ~* (x) -  

- A f K ( x ) d x .  Wiener's Tauberian theorem merely changes the imposed condi- 

tion ~5(x)=O(]) to ~5(x)=o(1), x ~ c ~ .  Wiener himself considered, in the paper 
quoted, that  it is impossible to reach better results with his methods. 

Since then, however, theorems have appeared which prove that under more 
restricted conditions on the kernel K(x),  it is actually possible to estimate the 
remainder ~b(x). (See BEURLING [1] page 22.) The present paper is confined to 
Tauberian relations for which such an estimation of the remainder is possible. 

The author is indebted to Professor ARNE BEURLING and to Doctor LENNART 
CARLESO~ for helpful suggestions. 
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s. LYTTKEN$, The remainder in Tauberian theorems 

2. The class of  Tauberian re la t ions  considered 

Let V denote the class of functions of bounded variation, and let E be the 
class of functions q)(x) defined as follows. 

Definition 

r  E E i] qS(x) is real and bounded and qb(x)+c ~ is non-decreasing/or every 
e > 0  and x>x~. 

Let F (x) and ~ (x) be functions of the real variable x. 
Consider a Tauberian relation of the form 

lim j r (x - u) d F (u) = 0, 
X --}o r  _ ~  

where F (x) C V, ~b (x) E E. Let  all functions F (x) e V be divided into two classes: 

Definition 

F (x) belongs to class I i /  two numbers 0 > 0 and ~ > 0 can be /ound, such that 
/or every qD(x)EE the relation 

T ~ (z - u) dF (u) = 0 (e -~)  
- - r 1 6 2  

with 0 < ~ < ~ implies 
q5 (x) = 0 (e-~ 

where 0 and r162 are constants depending only on F (x). 
F (x) belongs to class I I  i/ no such positive numbers 0 and ~ can be [ound. 

If F (x) belongs to class I it is possible to estimate the remainder g)(x). I t  
is this case which will he studied here. 

Class I I  yields a pure Tauberian problem, which is of no interest in connec- 
tion with the remainder problem studied here. 

(sl) 

Then the relatign 

3. Some sufficiency theorems 

The following theorems are modifications of a theorem of BEURLINO (see loc. cit.). 

Theorem 1 
1 

Let q5 (u) C E, F (u) E V, / (x) = f e '~" d F (u), and suppose that ] ~  can be ana- 
- - o 0  

lyrically continued into the strip - a  <_ ~(t)<_ b containing the real axis, 

] ~  const. ( l+[ t [F  in -a<~(t)<_b. 

f g ) ( x - u ) d F ( u ) = O ( e - y ~ )  
- - r 1 6 2  
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implies 

2 
]or every 0 < - - .  

2 p + 3  

(x) = O (e -~  c = min {~,, a} 

Let  n be an integer > p + l  and r a real number .  In t roduce  the function 

(1 - e - ' ~ ) "  

Throughout  the paper  w(t)= w~.~ (t) will denote a function of this type.  
w (t) is analyt ic  in - a _  ~5 (t) _< b, and I w (t)] < const. (1 + It [)-(~-') in the same 

region. In t roduce its Fourier  t ransform 

W(u) = W~.~ (u) = ~ w(t)e~tdt. 

We can change the line of integrat ion into any  line ~ ( t ) = f l ,  -a<_fl<_b, thus  
obtaining w (x + ifl) and e - ~  W (u) as Fourier  t ransforms.  Since w (x + ifl) eL 2, 
-a<_fl<_b, we have  

eaUW(u) EL 2 and e-~UW(u) EL 2. 
Hence 

W(u) EL. 
Let  

~ ( x ) =  f r  
- o o  

and introduce the nota t ion  

z(r .fl f a,, . . .  f 
x u I u n _  t 

We shall now prove the fundamenta l  formula 

(1) 

I t  is easy to see t ha t  

is Fourier  t ransform to 

Hence 

J(r x)= f ~'(x-u) W(u)du. 
~ o o  

W(y-u)dF(u) 

(1 - e-it  t) n " 

(it)" 

oo  

J(~b, x ) =  r  f W(y -u )dF(u ) ,  
- o o  - c ~  

the y-integral being in real i ty t aken  between finite limits, since 
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f w  ( y -  u) d F (u) is zero outside ( - n r, 0). 
- o o  

Since W(u)E L, inversion is justified by absolute convergence and yields (1). 
Hence (1) is proved. 

Let us consider J(q), x) when x-+oo and r=r(x)-+O. (1) gives 

(2) 
0 

t+(+,:)r-< f f 
- o ~  - o a  

+e -yz f e(v-a)u[eau w (u)[du + / e -au [e au W (u ) ldu  }. 
O x 

Using the notation 
r162 1 

i F { l }  ={ f I /(x)l  p dx}  ~, i {/}= M~ {/}, 

Schwarz's inequality gives 

(3) g ( q ) , x ) = O ( x � 8 9 1 8 9  c= min {y, a}. 

Let us study this expression for small r. Since M2 {e ~ ~ W (u)} and M~ {e �89 ~ ~ W (u)} 
may be treated in exactly the same way, it is enough to consider M s {e ~ W (u)}. 
Parseval's relation gives 

V'2% M s {e ~ ~ W (u)} = i ~  {w (x - ia)}. 

For the sake of brevity, let 
1 

v (t) = t ~ / (t)" 

This notation will be used throughout the present paper. For small r 

n 

i n w (z - ia) = (1 - e-' . . . . .  )~ v (x - ia)  = ~ 0 (r n-q) (1 - e-irx) q v (x - ia). 
q=O 

Minkowski's inequality gives 

(4) M s {w (x - ia)} = ~ 0 (r ~-q) Ms {(1 - e-~rx) q v (x - ia)}. 
q ~ O  

I t  follows from condition (sl) that  

] v ( x - i a ) l < c o n s t .  (1 + Ix[) -('-~). 

Using this relation it is easy to verify that  

(5) M s { ( 1 - e - ~ ' ~ ) q v ( x - i a ) } = t  O(rq +r~-p-~)'  
( 0  (r q (log r)t), 

Inserting in (4) we find 

(6) M, {w (x - i a)} = 0 (r ~- ' -  �89 

q # n - p - � 8 9  

q = n - - P - � 8 9  
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number  ~ < - -  

(9a) 
o r  

(9b)  

Similarly, we obtain  

Using Parseva l ' s  relation and subst i tut ing in (3) we have proved 

(7) J~.~(O, x)=O(x�89189 c = m i n  {~,, a} 

for every integer n > p + 1. 
Formula  (7) was derived with the single assumpt ion  about  ~ ( x )  tha t  it is 

bounded. Using the condition ~ ( x ) E E ,  we m a y  now proceed to prove the 
theorem. I f  for every ~ > 0 

2 c x  

(8) { ~b (x) { < e-2,+-3 +nx, x:>x,, 

then  the theorem is a t r ivial  result. 
If  this is not  the case, then  for arbi t rar i ly  large values of x and  some fixed 

2c  
either 

2 p + 3  

~ ( x ) > e  - ~  

r  - e - ~ L  

By  the definition of E we have for every  s > 0, if h > 0, x > x~ 

qb(x + h) > f~(x)-e'X (e ~h --1).  

Choose an e > 0, and suppose x > x ,  to be a point  where (9 a) holds. Then 

~(x+h)> �89 - ~  
if 

0 < h <  -1 log (l+�89 

Let  r = r ( x ) = h ( x )  where n is an integer > p + ] .  Then 
~b 

x + r  u l T r  U n _ l + r  

rn�89 f d u l f  du2. . ,  f qb(u)du=Jn.r(qb, x) �9 
x u 1 U n _  1 

Using (7) we get 
r ~+�89 e -~x = 0 (x�89 e -c~) 

or, inserting r, 
_ax(1 

e ~ log (l+�89189189 

Let t ing x-> c~ we find 
2 c  2 p + l  

- 2 p + 3  2 p §  e. 

Since e m a y  be taken  arbi t rar i ly  small, (9 a) is impossible. 
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In  the same way, considering an interval to the left of x, we prove that  
(9 b) is impossible. 

Hence (8) must hold, i.e. theorem 1 is proved. 

The following three theorems are similar to theorem 1. We only replace the 
1 

condition ( s l ) fo r  ] ~  by other similar conditions, still sufficient for F ( u ) t o  

belong to the class I. 
In  theorem 1 the condition (s~) was imposed because of its simplicity. I t  

can be generalised as follows. 

Theorem 2 

Replace the condition (st) in theorem 1 by 
oo 

fi dx (s=) l (x + i~) l=O + ixl ) .+~ < const. - a< f l_<b .  

Then theorem 1 thus modified rviU still hold. 
Introduce w(t) as on page 577. Condition (s~) gives w (x) E L 2. Hence its Fourier 

transform W(u) certainly exists in the L~-sense. 
The conditions further imply that  

w (t) is analytic in the strip - a_< ~ (t) _< b, and 

]w(x+ifl)l~dx<const. -a<~fl<_ b. 
- o o  

Then it is a well-known conclusion that  

w(x+ifl)-+O when x-->oo, - a < f l < b ,  

We may therefore move the line of integration in 
T 

1 1.i.m. fw(t)e-~'~tdt W(u) = ~ T+~ _~ 

in the same way as before. Hence W(u)6L,  and formula (1) still holds. (3) 
and (4) may  be obtained as before. 

For the function 
1 

v (t) = ? / (t) 

condition (s2) implies 

v ( x - i a )  EL 2 and f Iv(x-ia)12dx=O(Tt-~'(n-')). 
I x I > T  

Using these relations, i t  is easy to derive (5). In  the same way as in theorem 1 
this yields 
(6) i 2 {w ( x -  ia)} = 0 (m-P-�89 

and the proof may  be completed in the same way as in theorem 1. 
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1 
In the following two theorems ] ~  is required to be analytic in the strip 

- a  < ~ (t)< 0 onty. I t  seems likely that  this would also be sufficient in theorems 
1-2. I t  may be shown that it is sufficient with the additional condition 

f lul~ldF(u)l< oo 
- - r 1 6 2  

Theorem 3 

Let qS(u) CE, F(u) E V, / (x)= f e i ~ ~dF(u), and suppose that 

1 I 
/ (x) are limiting values o~ a /unclion -/(t)' analytic in, -- a ~ ~ (t) < O, a > O, 

J (/ 1 I<eonst.  (lq-lxl)P-1 , - - a < ~ < O .  (s~) d .  1 ( .  + i fl) 

I /  p > O, then the relation 

.t" ~(x-u)~l~(u)= 0(e -'~) 
- -  o o  

implies 

1 
/or every 0<- . . . .  

p + 1 

r176 c = m i n  {~, a} 

Condition (sa) implies condition (sl) in the strip - a < ~ (t) _< O. We may there- 
fore introduce the function w(t) and its Fourier transform W(u) as in theorem l, 
and obtain 

W (u) C L ~, e ~ ~' W (u) E L 2 

in the same way as before. 
(Sa) and its consequence (sl) also give us 

w' (x) = 0 (x-'~-~)). 

Hence w' (x) E L 2, and Parseval's relation yields for its Fourier transform iu  W (u) 

u W (u) E L 2. 
Hence 

W(u) eL.  

I t  should be observed that  in the proof of theorem 1 the function e -bu W(u) 
was merely used to prove W(u) c L  so as to derive (1). The rest of the proof 

1 
was independent of the conditions on }7/) in the strip 0 < ~ (t)< b. Hence, having 

proved W ( u ) e L ,  we can now derive the main formula (1) and formula (6)by  
the same argument as in theorem 1. 

From (1) we find, using the estimation (2) on page 578, 

(10) J(qD, x)=O(e-C~[M{eC~W(u)}+M{e~UW(u)}]), c = m i n  {~, a}. 
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Using Parseval 's  relation and (6) on page 578 we find 

M~{e ~u W (u)} = 0 (r~-p-�89 

Schwarz's inequality gives 

(11) 
r 

f e a u I W (u) ld u = 0 (r* i u  (c a u W (u)}) = 0 (9"n-P). 

For the rest of the interval, if 
1 1 

s > 0 ,  s ' > 0 ,  - + ~ = 1 ,  
s 

HSlder's inequality gives 
1 

d u  au 
(12) e ~ l W ( u ) l d u <  2 -~- M r { u e  W ( u ) ) = O ( r ~ -  M r { u e  ~ 

l u / > r  r 

w (~)}). 

According to (s3) and its consequence (sl), 

I w' (x - ia)[ < const. (1 + Ix I) -(€ 

Hence w" ( x -  ia) E L ~ for every s > 1, since n > p + 1. 1)lancherel's theorem yields 
for its Fourier t ransform i ueaUW(u)  

1 1 
if l < s < 2 ,  - + ~ = 1 ,  

8 

M~,{ue au W (u)}<C~Ms{w'  ( x - i a ) } .  

Let  us consider this expression when r-+0.  By  definition (p. 578) 

in w (X -- i a ) =  (1 -- e -i . . . . .  )n V (X -- ia).  
H e n c e  

i n w' (x - ia) = - i r n e  -'rx-" ~ (1 - e -i . . . . .  )n 1 v (x - ia) + (1 - e -it x-r a ) n  V' (~C - -  ia) = 
n-1 

= ~ O ( r ' ~ - ~ ) ( 1 - e - ' r ~ ) q v ( x - i a ) +  ~ O ( r n - q ) ( 1 - e - ~ r Z ) q v ' ( x - i a ) .  
q=O qffiO 

Minkowski's inequality gives us 

(13) M ~ { w ' ( x - i a ) } =  ~ O ( r ' ~ - ~ ) M ~ { ( 1 - e - ' ~ X ) q v ( x - i a ) ) +  
q=O 

+ ~ O ( r ~ - q ) M s ( ( 1 - e - ~ r x ) q v ' ( x - i a ) ) .  
q=O 

According to condition (s3) , we have 

Iv (x - ia) l < const. (1 + Ix I) -(n-p), Iv' (x - ia) l < const. (1 +Ix [) -(n+l-'). 

Applying these relations it is easy to derive 
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1 1 
O(rq +r~-P-s), q ~ n - p -  s ,  

(14) M~{(1 -e -*~)qv (x - ia ) }  = 1 
[O(r~  (log ~);), q = n ~ ~, 

and 

O(rq +r ~+~ ~-S), q / n +  l - p - - ,  
(15) M~ {(1 - e -~ ~)Q v' (x - ia)} = s 

1 
[O(rq(logr)~), q = n + l - p -  s" 

Substituting in (13) we obtain 
1 1 

(16) M~{w'(x-ia)}=O(r~)+O(r~+l-P-~),  - ~ l - p ,  
8 

i.e., we have proved that  for l < s ~ 2 ,  l r  
8 

1 
Ms,{ue au ] ~ ( u ) }  = O(r n) + o(rn+l-v-; ). 

Substituting in (12) and using (11), we obtain 
1 

M{e ~u W(u)} = 0 (r n-I +~) + 0 (r"- ' ) .  

From this we conclude that  

M {e ~  W (u)} = O (r ~ ~), 

1 
since we have assumed p > 0 and can choose - >  1 - p .  Similarly, we obtain 

8 

M {e c u W (u)} = 0 (r ~-'). 
Hence (10) gives us 

J~.r ( r  x)=O(e-C~r~-P), c = m i n  {y, a}. 

From this we derive the result stated in exactly the same way as in theorem 1. 

Theorem 3 may be generalized in an analogous way to theorem 2 from theorem 
1 

1, i.e., we replace our O-condition for ] ~  by an integrability condition. We may 

state this in the following form 

Theorem 4 

Replace condition (%) in theorem 3 by 

l i d  1 ~ dx (s4) dx ](x+ifl)  ( l + l x l )  2p- '<c~ -a<fl<_O. 

Then theorem 3 thus modi/ied will still hold. 
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Condition (s4) implies condition (s2) in the relevant  strip - a < fl < 0 according 
to a known inequality (HA•DY-LITTLEWOOD -P6LYA: Inequalities, p. 245). We m a y  
therefore introduce the function w(t) and its Fourier  t ransform W(u)as in 
theorem 2, and  obtain 

W (u) E L 2, e ~ ~ W (u) E L 2 

in the same way as before. According to condition (s~) and its consequence 
(s~), we have w ' ( t ) E L  2. Hence 

u W ( u )  EL  2 and W(u) EL. 
] 

Observing tha t  in theorem 2 we merely used the conditions o n ~  in the 

strip 0 < ~ (t) < b in order to prove tha t  W (u) E L, we m a y  now derive the main  
formula (1) and formula (6) in the same way  as in theorem 2. 

The proof then follows the same lines as in theorem 3. We use formula (10) 
for the est imation of J(rP,  x). F rom (6) we obtain (11) as on page 582. For  
the  est imation of Ms {w'(x- in)}, however, we have to use condition (s4) instead 
of (sa) , in order to obtain (14) and  (15) on page 583. Let  us show tha t  this is 
possible. By  definition, 

1 
v (t) t n ! (t) 

Hence 
1 (d 1 n ) k(x) 

v ' (x - ia) - (x - ia)"  ,dx /(x-ia)  ( x - ia~(x - ia )  (x-in) ~'' 
where 

k (x) 
(l§ eLa, 

according to (s4) and its consequence (s2). Let  

l < s < 2 .  
HSlder 's  inequali ty yields 

S oO 2 - 8  

f ]v,(x_ia)l~dx< I]c(x)12dxl212 ( dx i _ O (Tl-s(n+l-m) 

I x ] > T  i x i > T  T X 2 - s  

Using tSis and v'(x-ia) EL s, it is easy to derive (15). Similarly we obtain 

f !v(x-ia)lSdx=O(T1-8(n-~)). 
[ x I > T  

Using this and v(x-ia) EL ~ it is easy to prove (14). Inser t ing in (13), we obtain 
(16), and the proof m a y  be completed in the same way as in theorem 3. 

Let  us now s tudy the case where we assume a knowledge of the zeros or of 
1 

the poles o f / ~  in the strip - a_< ~ (t) < 0. The following two theorems deal 

with this case. 
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T h e o r e m  5 

Impose on F(uj  the conditions /rom any o/ the tl~eorems 1-'t. 
l 

/(t~ have a zero o/ order 2~ at t~, - a < ~ ( t , , ) < 0 ,  v = l ,  2 . . . N .  

Then the assumption 

can be replaced by 

Furlhermore, let 

f r o  (x - u) d F (u) = 0 (e - '~ )  
- o o  

r162 N 

f q b ( x - u ) d F ( u ) =  E e-*t~xp~(x)+O(e-~Z), 
- o o  v = 1  

where P~ (x) denotes an arbitrary polynominal o] degree < ~ ,  and the result o] the 
theorem in question will still hold. 

Introduce w(t) and its Fourier t ransform W(u) as before. Let  

~ ( ~ )  = .i" ~ (~ - u) d ~'(~),  

N 

~0 (x) = E e-"~ ~ P~ (~). 
v = l  

Formula  (1) can be derived in the same way as in the previous theorems. 
As before, we have 

W (u) e L 2, c ~ ~ W (u) e L 2. 

I f  - a < ~ (t) < O, then 

oo 

f u m W ( u )  eitUdu=(-i)mw<m)(t), m = 0 ,  1, 2 . . . .  

since the integral converges absolutely in this region. Now 

d ~ 1 
d t ~ ( t )  at t=t~, m<2~.  

This implies 
w (m) (t~) = O, m < ~ ,  

and 

Let  

Then 

oo 

f u ~ W (u) d to ~ d u = ( - i) m w(~) (t,) = 0, 
- o o  

7/~ < t ~  v . 

I v -- 1 

P~ ( x ) =  ~ C~. m X ~. 
t o = 0  

00 N 1 ~ - 1  0o 

/~o(~-u) W(u)du= ~ E C~.~e-", ~ ( e",~(~-u)"W(u)du=O, 
- o o  v = l  m = O  -*00 
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and (1) may be written 

J(qS, x )=  ~ { T ( X - U ) - T o ( x - u ) } W ( u ) d u ,  
- o o  

where 
T (x) - T o  (x) = 0 ( e - ~ ) ,  x - ~  ~ ,  

by assumption, and 

~[J(x)-~So(x)=O(e-"x), x ~  - ~ ,  max I~(t~)l< ~ < a .  
Hence 

0 

IJ(~,  x)l_< ;IT(x-u)-To(x-u)[ IW(u)ldu=O(e -~'~ f le:'UW(u)ldu+ 
oV 

q - e - r X . ;  e (y -a)u  [e au W (u)ldu+e-~X f e - ( a - ~ ) u  I eau W ( u ) l  du). 
0 x 

From this expression it is clear, that  we can estimate J ( r  x ) a n d  with it  
qs(x) in the same way and obtain the same result as in the previous theorems. 

For the sake of simplicity the following theorem is stated as a generalisation 
of theorem 1. I t  is obvious how similar generalisations of theorems 2-4 may 
be obtained. 

Theorem 6 

Let F(u) E V, qb(u) EE, /(x)= ; e' ~udF(u). 
- o o  

Suppose that 
1 

/ (t~ is meromorphic in the strip - a <_ ~ (t) <_ b containing the real axis, and has in 

this strip poles only at t,, v = l ,  2 . . .  N, o/ order ~ resp., - a < ~ ( t , ) < 0 ,  

1 

l(x +ifi) 
Then the relation 

implies 

/or every 

0(1 +lx[) , Ixl  , -a<_fl<_b. 

oo 

f ~ ( x - u )  dF(u)=O(e-r~) 
- oo 

~5(x)= ~ e-it,~p,(x)+O(e-~ 
- O c < ~  (tv)<0 

2 
0 < 2 p + 3  

c = rain {7, a} 

where P, (x) is a polynominal o/ degree < 2,. 
Introduce w(t) and its Fourier transform W(u) as before. Formula (1) still 

1 
holds, by the same argument as in theorem 1, since ] ~  is analytic in 

- e < ~ ( t ) < b ,  some e>0 .  
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1 
Denote the principal part  of ]~-) at t. by q, (t), and let 

N 

q (t) = ~ q~ (t). 

I t  is easy to see that  q(t) is Fourier transform to 

e , r ; ( u ) ,  u > 0 ,  
q(u) . . . .  , 

0 u < 0 ,  

where P* (u) is a polynominal of degree <2 , .  
Let  

(1 - e - ' t ) "  
g (t) ( i t )  ~ , 

and call its Fourier transform G(u). 
Then 

w( t )  = g (t) 

and 

W(u)= -+f w ( t ) e - ' : t d t  = -:~ g(t) ]-~-)-q(t) e - ' " t d t +  

1 + - -  f:r g (t) q (t) e-' u t d t = W 1 (u) + W 2 (u). 2 
(1) gives 

(17) J ( @ x ) =  ; T ( x - u ) W l ( u ) d u +  f T (x -u )W2(u ldu .  

1 
The f u n c t i o n / ~  - q (t) satisfies the same conditions in the strip - a < ~ (t) _< b 

as /(t) did in theorem 1. Hence we can use the same argument as in theorem 1 
to prove 

flT-t(x-u)W~(u)Idu=O(x�89176 c = m i n  {r, a}. 

Since Q (u) E L ~, G (u) E L 2, Parseval's relation gives 

Hence 

(18) 

1 Utdt W2 (u) = ~-~ g(t)q(t)e -i = G(u-v)Q(v)dv.  
- o o  _ ~ 

f ~P(x-u) W~(u)du= G(x -u )du  f ~ (u-v )Q(v)dv ,  

the inversion being justified by absolute convergence, since G (u) is zero outside 
a finite interval. 
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Let 

- o o  - o o  - o o  -c<~t~}<0 

+f y e-~t~'P*(v)}dv=H(u)+R~(u)+R2(u), 
0 -a<~{tv} ~-c 

where R 2 (u )=0  if a < ?. Then it is easy to verify that  

R~ (u) = 0 (e-~U), u ~  ~ ,  

R2(u)=O(u~e-~) ,  u ~ ,  ~ = m a x  ),~, 
and 

(19) 
-c<~{tv]<O 

where P~ (u) is a polynominal of degree < 2~, whose coefficients depend on ](t) 
and T (u). Substituting in (18), and applying the definition of G (u), we obtain 

= J (H + RI + R2, x) = J (H, x) + O (x~ e-~ ~ r~). 
Thus (17) gives 

J (qS -H ,  x) =O(x�89 e -~  r ~-p-�89 + O(x~ e-~X r"), 

where H(u)  is given by (19). 

d H SinCedu (u) is bounded if u > 0 ,  we can argue as on page 8 to show tha t  

this implies 
{H (x)} = 0 (e -~ 

2 
for every 0 < -  

2 p + 3  
Hence 

is real, and 

for every 

~b (x) -- ~ {H (x)} = 0 (e -~ 

-Oc<~{t~}<0 

q~@)- ~ e - ' t ,~p , (x )=O(e  -acx) 
-Oc<~(tv}<o 

2 
0 < 2 - ~ '  

which proves theorem 6. 
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