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Some growth and ramification properties of certain integrals 
on algebraic manifolds 

By NILS NILSSON 

1. Introduction and statement of results 

We are going to work in complex n-space C n with elements x = ( x  1 ..... xn), etc., 
and shall consider a certain class A(C n) of analytic functions on C n with special 
growth and ramification properties. To prepare the definition of A(C ~) we make 
the following definition. 

Definition. A path  7': x = x ( t ) =  (x1($) . . . . .  x n ( t ) )  , t 1 <~t ~<t2, in C n is said to be of class 
A if it consists of a finite number  of pieces where the components x~(t) are regular 
algebraic functions of t. I f  the number  of pieces is not greater than nx and the alge- 
braic functions all have degrees ~<n 2 (i.e. each of them may  be defined by  a poly- 
nomial of degree ~<n2), then we shall say tha t  7' has the rank (nl,n2). (I t  then also 
has the rank (n~,n2), if n 1 <~nl and n s ~<n~). 
We now define the class A(C~). 

Definition. A(C n) consists of all functions / such tha t  there exists an algebraic 
manifold V r in C n of the form p(x) = 0, where p(x) is a complex polynomial not iden- 
tically zero, such tha t  

(a) / is a regular analytic and in general many-valued function on the whole of 
(C'- V~) 

(b) all the determinations of / in the neighbourhood of any point in (C ~- Vr) 
span a linear space over C of finite dimension 

(c) there is a point x ~ E (C ~- Vr), a real number a, a complex polynomial R(x), 
R(x) ~0 when x E(C n- Vs), and for every determination /o of / at x ~ and every 
(nl, ns) a real number C such that 

for all paths 7' in C n of rank (nl, ns) starting a t  x ~ and not meeting Vf. Here/oy is 
the function on 7' obtained by  analytic continuation along 7' out f rom/0,  and Ix[ = 

Remark. I t  may  be proved tha t  the condition (c) is not changed if we only permit  
pairs (nl, n2) of the form (nx, 1). 

Instead o f / E A ( C  n) we shall also say t h a t / ( x )  is of class A in x. I f  a function / 
is defined and regular analytic in a neighbourhood of a point x ~ E C n (or on any  
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point set sufficiently dense to determine / uniquely), then saying that  / is of class A 
natural ly means tha t  the function obtained from / by  analytic continuation is of 
class A. Hence this means tha t  there is a manifold V r as above such tha t  / may  be 
continued analytically along any  pa th  in C ~ which does not meet  VI and tha t  the 
resulting analytic function on (C a _  VI) ((C n -  VI) being connected) satisfies (b) and 
(c). We may  also observe that  if /EA(Cn),  then as the point x ~ in (c) we may  choose 
any  x ~ E (C n - Vr), keeping the number  a and the polynomial R(x). 

Example. An algebraic function / on C ~ belongs to A(Cn). For let / satisfy the 
equation 

pro(x) l(x) m +... + po(X) = 0 

where the pt(x) are complex polynomials and pro(x) �9 0 and where the diseriminant 
D(x) is not identically zero. I f  we take V r as the manifold pm(x)D(x)=0,  then evi- 
dently / satisfies (a) and (b), and by  an elementary estimate for all the roots of an 
algebraic equation we have 

]/(x) [ ~ max  ([Pt (x)/pm(x)D + 1 
0 4 i ~ r n  

for all determinations o f / .  Then we easily see tha t  (c) holds, taking R(x)=pro(x). 
In  this example the number  C in (c) is independent of the pa th  of continuation ~, 

the estimate holding for all determinations of the function. A simple example where 
this is not the case is provided by  logx~, which by  later results (or by  the remark 
of the definition of A(Cn)) may  be seen to be of class A, and for which clearly no 
majoration may  be independent of the special pa th  of continuation. Another example 
of the same kind is x~ with a non-real. 

Now let us consider an algebraic manifold V ( y ) c  C '~, depending on a parameter  
y E C m, which is given by  ( n -  r) equations 

Px(Y, x) = 0 ..... Pn-~(Y, x) = 0 

where the p~(y,x) are complex polynomials in y E C "  and x E C  n. We let R(y) be the 
set of those points x E V(y) for which the gradients 

gradz Pl(Y, x) ..... gradx Pn-r (Y, x) 

are linearly independent over C. R(y) is then an analytic manifold of dimension r. 
When R(y ~ is not empty,  the same is true of R(y) when y is sufficiently close to y0. 
I f  xOER(yO), there is a subset xn =(xj,+l ..... xjn ) of the coordinates x~ in C n such tha t  

grad~- Pl(Y~ ~U0) . . . . .  gradz- P~-r (yO, xO) are linearly independent. I f  x'  = (x s ...... xjr ) con- 
sists of the remaining coordinates x~, we may  in a neighbourhood (in C =) of x ~ use x '  
as coordinates on R(y) when y lies in a neighbourhood of y0. 

I f  coy(x) is a holomorphic differential p-form on R(y), it m a y  be written locally as 

coy (x) = ~ [k,...k~, (Y, X') dxk, A ... A dx~j, (L) 
ks<...<kp 

where the k~ are among the numbers il ..... ]~. 

Definition. A holomorphic differential p-form coy(x) on R(y), defined for (y,x) in 
a neighbourhood of (y~176 x~176 is said to be of class A at  (y~176 if all the 
coefficients in a representation of coy(x) of the form (L) a t  (y~176 are of class A in 
(y,~'). 
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Remark. I f  o~y(x) is of class A at  (y~176 then the coefficients in (L) are of class A 
for any permit ted choice of x'. This will follow from Lemma 1 and the fact  tha t  two 
different sets (y,x') and (y,$') in (L) are connected by  an algebraic transformation. 

Our main result is the following theorem. 

Theorem 1. Let  7(Y) be a compact  regular t p-cycle on R(y) and my(x) a holomorphic 
closed differential p-form on R(y), where 7(Y) is defined for y in a neighbourhood of 
y0 and e%(x) for (y,x) in a neighbourhood of (yO,7(y0)). Further  suppose tha t  7(Y) 
depends continuously on y and tha t  c%(x) is of class A at  any (y~176 x ~ ET(y~ Then 
the function 

g(Y) = Jr(y) o~y (x) 

1 5  

(hereby defined in a neighbourhood of y0) is of class A. 
In  a particular case we shall show a sharper result: 

Theorem 2. I f  in Theorem 1 we have p = m = l  and if the coefficients of my(x) in 
any  representation (L) are algebraic in (y,x'), then there exists a natural  number  N 
such tha t  for [y[ sufficiently large 

T~V g(y) =g(y)+h(y) ,  TNh(y) = h(y). 

Here T denotes analytic continuation one turn in the positive sense along circles 
] y] = constant. 

Theorem 2 is related to the theory of the variat ion of cycles on a variable plane 
section of an algebraic manifold, due to Lefschetz [1] and Picard and Simart  [2]. 
In  this theory, however, there are simplifying restrictions on the manifold. 

The proof of Theorem 1 is based on lemma 2 where we prove tha t  integration of 
a function of class A with respect to a single complex variable between bounds tha t  
are algebraic functions of the remaining variables yields a function of class A. In  
the proof of Lemma 2 the analytic continuation of the integral is performed by  suc- 
cessive deformation of the pa th  of integration, and the result is obtained by  certain 
estimates for the pa th  of integration and the integrand. By a triangulation of 7(Y) 
we then write g(y) as a sum of functions, each of which has been obtained from a 
function of class A by  repeated integrations with respect to a single complex variable 
between algebraic bounds. Theorem 1 then follows from Lemma 2. Theorem 2 is a 
consequence of Lemma 4, where, in a particular case, we prove a more precise result 
than in Lemma 2. 

The author  wants to thank Professor Lars Ghrding for his kind interest and for 
m a n y  valuable suggestions. 

2. Some properties of  functions of  class A 

To prepare the proof of our theorems, we give some lemmas. 

Lemma 1. A(C n) is a ring. L e t / E A ( C ' )  and let y--->x(y) be an algebraic mapping 
from C m to C n such tha t  all i ts branches are regular analytic outside W' :q ' (y)=0,  
q'(y) ~ O, and tha t  for some y E (C m - W') all the determinations of x(y) do not :belong 
to V r. Then the function g(y)=/(x(y)) is of class A. 

I e.g. piecewise of class C 1. 
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Proo[. I t  is easy to check tha t  if [t,/~EA(C~), then/1+_/~ and [1/2 also belong to  
A(C"). We may  e.g. choose the corresponding manifold V r as VI, U Vr~ and the poly- 
nomial R(x) in (c) as Rl(x ) R2(x), if Rl(X ) and R2(x) correspond t o / 1  and ]2. Now 
let [EA(C") and y-->x(y) be a mapping as above. Then the condition 'x(y)EV I for 
some determination of x(y)' defines a manifold W" in C m of the form q"(y) =0, q"(y) �9 O, 
since for some yE(C m-  W') all the determinations of x(y) are not on V I. We then 
see tha t  g(y) has the properties (a) and (b) with respect to V o = W = W' U W". Let 
the polynomial R(x,y) and the number  k correspond to ] in (c). Then x(y) and 
1/R(x(y),y) are algebraic, with all their branches regular outside W. Hence there 
exist polynomials Rt(y ) and R2(y), not vanishing on (C ~ -  W), and real numbers k 1 
and ]r such tha t  

ix(Y)] < (I Y l + 1)k'/I R~(Y) I, (Y E (C "~ - W)), 

and I1/R(x(y),Y)I <<'(lYl § I)k~/IR2(Y)I, (YE( C '~ -  W)), 

for all determinations of x(y). Hence 

(I x(Y) l + 1)~/] R(x(y), Y) I < (] Y l + 1)~'/] Ra(y) I , (y E (O ~ - W)) 

for some polynomial Ra(y), Ra(y ) 4 0  when y E(C ~ -  W), some real number  Ica and 
all determinations of x(y). I t  then follows tha t  g(y) also satisfies (c) with respect to 
W, since it is clear tha t  if ~ is a pa th  of class A in (C m -  W), then x(~) is a pa th  in 
C ~ of class A, of a rank depending only on the rank of ~ and on the mapping y-+x(y). 

Our next  lemma roughly states tha t  integration with respect to one complex 
variable between algebraic bounds of a function of class A yields a function of 
class A. 

Lemma 2. Let  the funct ion/ (y ,x)  be of class A in (y,x), where y E C ~ and x E C, 
with Vfp(y ,x)=O.  Let ~I(Y) and ~72(Y) be algebraic functions on C ~ such tha t  
(Y,~h(Y)), (Y,~(Y))-E VI for some yEC" and all determinations of ~I(Y) and ~2(y). Then 
the function 

f 
* ~ s ( Y )  

/(y, x) dx g(Y) = a ,,(~) 

is of class A. Here we take the integral along a pa th  in the complex plane varying 
continuously with y and not passing through any point x such that  (y,x)s V I. As 
integrand we have a branch of / (y ,x)  (hence an analytic function of (y,x) along the 
path).  As Vg we m a y  take any  manifold W of the form q(y) =0,  q(y) :~0, such tha t  
outside W all the different branches of the algebraic function x =x(y), defined by  
~(y, x) = 0, are regular and non-intersecting, and such tha t  outside W all the branches 
of ~I(Y) and ~(y)  are regular and P(Y,~I(Y)) ~-0, p(y,~(y)) :~0. 

For the proof we shall need the following lemma. 

Lemma 3. Let  l be a straight line segment in the complex plane, and let the func- 
tion eo =/(z) be defined and analytic in a neighbourhood of l; assume tha t / ( z )  is a 
branch of the algebraic function defined by  P(w,z)=0.  Then there is a number  N, 
only depending of the degree of P(eo,z), such tha t  either Re(f(z))~0 on l, or the 
number  of zeros of Re(/(z)) on I is smaller than  N. 

Proo/. Without  loss of generality w e m a y  assume tha t  I is a piece of the real axis. 
Then in a neighbourhood of l, w I = [(~) is a branch of the algebraic function defined 
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by P(o)I, z) = 0. For z E 1 we have Re(/(z)) = 2-1(/(z) § and by  well-known properties 
of algebraic functions eJ2=Re(/(z)) is a branch of an algebraic function, q(oJs, z ) =0 ,  
whose degree may  be majorized by  a number  only depending on the degree of 
P(w,z). Hence no non-zero branch of the algebraic function ais(z) can have more 
zeros than the degree of q(w, z), which proves the lemma. 

We now return to the proof of Lemma 2. Consider Vr:p(y,x ) =0. I f  p(y,x) actually 
contains x, then the equation p(y ,x )=0 defines x as an algebraic function of y, 
whose different branches are regular and non-intersecting outside some algebraic 
manifold Wl:ql(y)=O, ql(y)~0.  In  any  case there is a finite (perhaps empty)  set 
of points ~I(Y) ..... ~T(y) which are all the different branches of the algebraic function 
p(y,x) =0 and which keep apar t  and depend regularly on y for y E (C n -  W1). There 
is an algebraic manifold W2: qs(Y) = 0, qs(Y) ~ O, such tha t  all the branches of lh(y ) and 
17s(y ) are regular outside W2, and also an algebraic manifold W3:qa(Y)=0, q3(Y)~ 0, 
such that  outside W 3 no branch of Ih(y ) or 172(Y ) intersects with any  of the ~i(Y). 
In fact, by  assumption, (y,171(Y)), (y,172(y)) E V x for some y and all determinations of 
~I(Y) and ~s(Y)-Put W :q(y)=--ql(y)qs(y)qa(y)=O , i.e. W =  W1 U W~ O Wa. 

We are going to show tha t  g(y) is of class A with V o = W. Let  us first make a 
few observations and introduce some new notations. 

1. For y E(C ~ -  W), let Vy be the subset of the complex plane consisting of the 
points ~I(Y) ..... ~r(Y) and ~I(Y) and ~2(Y) and their algebraic conjugates and let V~ 
consist of ~I(Y) ..... ~r (y) only. Put  

M 1 (y) = max  I x i, x E V~, 

M s ( y )  = min Ix 1 - x s [, x 1 E V~,  x s E V ~ ,  x 1 =~ x2.  

One has M 1 (y) ~< (1 + [yi)~'/[rl (y)[ (1) 

l /Ms(y) <~ (1 + lyl)~'llr~ (Y)I (2) 

where k 1 and k s are real numbers and rl(y ) and rs(y ) are polynomials not vanishing 
outside W. This follows immediately from the fact tha t  the functions to be estimated 
are the maxima of the absolute values of a finite number  of algebraic functions 
having all their branches~regular outside W. 

2. Since/(y,x) is of class A, we have, for (x~ ~ E (C ~+1- Vs), an estimate 

< c ( l +  lyl + (3) 
where ~ is a pa th  of class A from (y~176 to (y,x), [o some branch of / at  (y~176 and 
C=C(y~176 rank ~), but  k and the polynomial R(y,x) depend on [ alone. Let  r(y) 
be the coefficient of the highest power of x in R(y, x). Then 

r(y) ~0  when y E W. 

In  fact, put  U' : r (y )=0  and U " =  W U U'. Then for y E U" we may  factorize R(y,x): 

R(y, x) = r(y) I-I (x - xt (y)). (4) 
i = 1  

We see tha t  all the xt(y) are among the ~i(Y), for otherwise R(y,x) would vanish at  
a point outside Vs. Let  y0 be arbi t rary in (C n -  W). Assume tha t  r(y ~ =0.  Then we 
can make y approach y0 outside U", and since all the ~t(y) are bounded in a neigh- 
bourhood of an_y point not in W, we get R(y~ which is a contradiction. Hence 
r(y) =4=0 when y E W. 
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3. In  this section of the proof we introduce some special paths in the complex 
plane from ~I(Y) to U2(Y). 

To each ~(y) we construct a triangle Ti(y, o~) with corners 

~i (y) + ~ej, where ~ = 1, 0 < ~ ~< M2 (y)/3. (5) 

I t  is clear that  the triangles T,(y, ~) do not overlap and tha t  UI(Y) and U2(Y) and all 
their algebraic conjugates s tay outside them. Let  V~. e be the set of all the points 
(5) together with ~I(Y) and U2(Y) and their algebraic conjugates. Let  us denote 
the elements in V~.q by  $~(y,~) ..... ~,s(y,o~) in some order. For future use we notice 
that  

I~:l<.(l+lyl)~'/lr~(y)l when xE Vu.o, (6) 

and I1/R(y,x)l<(l+ly])*'/Ir.(y)l when x~:OT,(y,M.(y)/3) (7) 
i = l  

where k a and k 4 are real numbers and r3(y ) and r4(y ) polynomials, not vanishing 
outside W, and where k a and r a are independent of ~. This follows by  (1), (2), (3), 
and (4). 

I t  is clear tha t  any  pa th  in ( C -  V~) from ~I(Y) tO ~2(Y) is homologous to a pa th  
~z(y, Q), consisting of a finite number  of straight pieces with endpoints in V~, Q and 
not passing through the interior of any of the triangles Ti(y,~). We see tha t  if 
depends continuously on y,~ =Q(y), and satisfies the condition 0<Q(y)<M2(y)/3,  
then ~z(y,~(y)) (starting a t  a point yO with an arbi t rary pa th  zr0=~z(y~176 from 
Ul(y ~ to U2(y~ m a y  be made to vary  continuously with y. Obviously we can make 
the deformation so tha t  we have to introduce a new corner in 3z(y, ~(y)) a t  most  
when some of the points ~t(Y,Q(Y)) crosses the straight line connecting two others, 
i.e. at  most when 

I m  ((r - r - ck)) = 0 (8) 

for some i, j, and k, i 4= k. Let  us say tha t  rankl), =m,  if the pa th  y is of rank (m, 1), 
i.e. consists of at  most m straight line segments. Similarly, we put  rank2y =m,  if y is 
of rank (m ' ,m) for  some m',  i.e. , / :x=x( t ) ,  tl~t<<-t 2, where x(t) is piecewise regular 
algebraic of degree ~<m. We shall now prove tha t  there is a number  c such tha t  if 
~z(y,~) is any pa th  in C of the type above, then for any ~ ' , 0<~ '  <M2(y)/3, there 
exists a pa th  g(y,~') homologous to 7r(y,~) in ( C - V ~ )  such tha t  

ranklre(y, ~') ~<c- rankl~z(y, ~) (9) 

where c only depends on the number  s of elements in Vy.e (the same for all (y,6)). 
In  fact, let us move the points in Vu. e simultaneously to the corresponding points in 
V~,e., the motion being parametrized by, e.g., V(y,t) = Vy.tq, l ~ t < ~ ' / Q  (if ~<~' ) .  
Correspondingly we deform the pa th  continuously: g =~z(t)=~r(y,~(t)). Then all the 
points of V(y,t) are linear functions of t, and it follows tha t  any straight line con- 
necting two of the points of V(y,t) will be crossed by  each of the other points at  
most twice, when t goes from 1 to ~'/~. At every crossing we shall a t  most  have to 
multiply the number  of straight pieces in the pa th  by  2, and it follows tha t  
ranklre(y ' ~,) ~ 2s,(s- 1) rankx~r(y ' ~), proving (9). 

4. Let  ~,:y=y(t) be a pa th  of class ~4 outside W from y~ to yl=y(t i ) .  Con- 
sider the pa th  

~(t, o~) = ~r(y(t), ~), 0 <o~ < M2(y(t))/3 
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obtained from reo = re(Y(to), 0o) 

by continuous deformation (0 depending continuously on t). We shall see that  

ranklre(t, O) ~<c. ranklre o (I0) 

where c only depends on the rank of y (and on Vr). In fact, (9) shows that  it  is suffi- 
cient to prove this when 0 is constant along Y- We choose 

O = 3-1 m in M e (y). 
YeV 

Then the functions $t=$t(y,(t),0) are algebraic in t with degrees that  may  be majo- 
rized by  means of rankly only (and gl). During the process of deformation of the 
path new corners will be introduced at  most when (8) happens. 

Hence, by  Lemma 3, the number of new comers introduced in the process of 
deformation may be majorized by a number only depending on rank y. Since the 
introduction of a new corner means tha t  ranktre(t , 0) is multiplied by 2 at  most, (10) 
is proved. The deformation of the path induces a continuation of [(y,x), so that  start- 
ing on re(to,0) with some branch [0 of [ and continuing [0 with respect to (y,x) when 
t varies, we get a branch [~ of [ on re(t, 0)- We see that  [~ may be obtained from [o 
in two steps: 

(y( to),Tll (y( to) ) )-->(y( t ), r]1(y( t ) ) )-->(y( t ), x) ,x  ere(t, O ), 

the first along (y,x) = (y(u),~l(y(u))),t o < u ~< t, and the second along re(t, 0) with y 
constant =y(t). These two paths together make a path of class A. In virtue of (10) 
it has a rank, only depending on the rank of Y and the rank of re0 (and on Vr). We are 
now in a position to estimate gor(Y),go being some branch at  y0 of the function g of 
Lemma 2 (hence determined by  the choice of a special path re0 in C from ~}l(y ~ to 
~]2(y~ not meeting V~., and a branch 10 of / onreo). I t  is clear that  go may be continued 
analytically along any path in (C ~ -  W) since [(y, x) is analytic outside V t and since 
outside W the endpoints ~I(Y) and ~2(y) are regular analytic functions of y. The 
function obtained from go by continuation along y (as above) is given by 

got (y(t)) = f ,(~ ~)1~ (y(t), x) dx. 

For an arbitrary t taking 0 =M~(y(t))/3, we get by (3), (6), and (7) 

[]~(y(t),x)] <~c(1 -I- [y(t)[)k~ [, (xere(t,9)) (11) 

where rs(y ) q=O outside W, k 5 and r 5 only depend on the given function /, while 
c =c(/o,reo,ranky). Moreover, (9) and (10) show that  

ranklre(t, O) ~ c(Y ~ go, ranky) (12) 

and that  the maximal length of a straight piece in re(t, 0) is majorized by  
2(1 + l y(t)])k'/Irs(y(t))l. Also using (11) and (12) it follows that  

I gov(y(t))l <c(1 + ]y(t) l)k'/Ire(y(t))[ 
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where re(y ) 40  outside W, and where r e and k s only depend on the integrated func- 
tion [, while c=c(y~ ranky). This proves tha t  the function g(y) of Lemma 2 
satisfies the condition (c). 

Finally, let us verify tha t  g(y) has the proper ty  (b). To do this we observe tha t  
g(y) is a sum of functions 

f L~j(~) /(y , dx (13) gO) 

where L~j (y) is a straight line segment between two points in Vy,q. When y varies 
little, we can keep all the pieces Z~ (y) (not introducing any new corners). Since the 
integrals (13) are finite in number  and the possible determinations of / in them 
span a linear space of finite dimension, all linear combinations of them form a linear 
space of finite dimension. Hence all determinations of g span a finite dimensional 
linear space. This completes our proof of Lemma 2. 

We shall now consider a special case of Lemma 2. 

Lemma 4. If  in Lemma 2 the function/(y,x)  is algebraic, and y is a single complex 
variable, then there exists a natural  number  m such that ,  in a neighbourhood of 
infinity, one has 

Tmg(y) = g(y) + h(y), Tmh(y) = h(y). 

Here T denotes analytical continuation one round in the positive sense along circles 
]y] = constant. 

Proo[. We shall perform the deformation of the pa th  of integration in a special 
way, and we shall keep the notations of Lemma 2. All the points ~{y) are algebraic 
functions of y. Hence, in a neighbourhood of infinity, they may  be expanded into 
Puiseux series of the type 

t0 aj(yR) 

where R is a positive rational number. Let  us divide the points ~(y) into rings, so 
tha t  in the same ring we take points whose Pniseux expansions have the same 
exponent of the leading term and the same modulus of the leading coefficient. Con- 
sider such a ring, corresponding to the exponent r and modulus K of the coefficient. 
Then all the points of this ring will evidently keep in the annulus 

(K- )IYl 
for some e > 0 and for y in a neighbourhood of infinity. We see tha t  we may  choose 
these annuli corresponding to the different rings so that  for y in a ncighbourhood 
of c~ they are all disjoint. Now we divide each ring into 'groups',  each group con- 
sisting of points ~i(Y) having not only the same modulus of the leading term 
but  also the same value. These groups we divide into rings of second order, now 
according to the second coefficient in the Puiseux expansion but  otherwise in the 
same way as for the rings of first order (above called rings only). The points in a 
ring of second order will s tay in an annulus, the radii depending only on ]y], as y 
varies in a neighbourhood of 0% just as points of the rings of first order, but  now 
the centre of the annuli of second order corresponding to one and the same group is 
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not zero but  the point given by  the (common) leading term of the Puiseux expansions. 
I t  is clear tha t  all the annuli of second order of a "group" will s tay in the cor- 
responding annulus of first order, when y lies in a neighbourhood of infinity. 
Hence, if ]Yl is sufficiently large, no point not belonging to a ring of second 
order will belong to the corresponding annulus of second order. We continue in the 
same way and divide the rings of second order into groups of second order, and these, 
according to the third coefficient in the Puiseux expansion, into rings of third order, 
and so on. In  each step we get annuli analogous to those of rings of first and second 
order. Since there is only a finite number  of points ~(y), this procedure is finished 
within a finite number  of steps, and then any  two of the points ~:~(y) have fallen into 
different rings or groups of some order. 

As in Lemma 2, in a neighbourhood of a point Y0 E W, every branch of the 
function g(y) is equal to the integral of some branch of/(y,x) along some path  in the 
complex plane from ~I(Y) to ~]~(y), not passing through any of the points ~t(Y)- Let us 
first assume tha t  ~I(Y) and ~2(y) are constant, equal to 0 and 1, respectively, say. 
Further  assume tha t  Y0 is real and positive and tha t  for y real >~Y0, none of the 
points ~t(Y) will cross the real axis. Moreover, we suppose tha t  the pa th  of integra- 
tion which we star t  with at  Y0 is the straight piece [0,1]. Then, continuing g(y) 
out from Y0 along the real axis in the positive sense, we need not deform the pa th  
of integration. We choose Y0 so large tha t  for lY] >Y0/2 the points ~(y) behave as 
described above; we know that  this is the case in some neighbourhood of co. 

Now let us continue g(y) out from Y0 along the circle lyl =y0 in  the positive 
sense. We shall investigate the deformation of the pa th  of integration under this 
continuation. Let  us first consider the deformation caused by  the points ~(y) in 
one particular ring R of first order; assume that  the radii of the corresponding annu- 
lus are rl(=rl(]yl) ) and r2(=r~(ly])), (see Fig. 1). I f  the straight piece A B  does 
not divide any  of the groups of R, we may,  if necessary, deform the path  as in Fig. 2, 
keeping A B  between two groups, and in this case we have then fully treated the 
deformation necessary to avoid the points of R. If, however, A B  does divide some 
group G, this is not enough. In  this ease we let A B  follow the centre of G, i.e. the 
point corresponding to the common first term in the Puiseux expansions. ~Ve then 
move A B  as in the former case, now letting A B  pass through the centre of G. During 
this process A B  will be crossed by  the points of G but  by  no other points ~(y), 
and no point in G will cross the path  elsewhere. So we shall have to deform A B 
with respect to the points of G. We have now, however, the same situation for this 
deformation as when we started, the relevant rings now being the rings of second 
order of points in G (the path  of integration now lies on both sides of the centre, 
but  tha t  does not cause any essential complication). In  this way we go on till af ter  
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a finite number  of steps the deformation is complete so tha t  no point ~(y) crosses 
the pa th  of integration during the process of deformation. For in any  step the de- 
formations with respect to the different rings are evidently independent of each 
other, because of the choice of rings. So we may  perform them all simultaneously, 
and they will not affect each other (Fig. 3). 

Let  us by  Z denote the set of the straight pieces in all the deformations corre- 
sponding to A B  in the special one considered. When we s tar t  with y at  Y0, all the 
pieces in Z lie on the positive real axis. For every piece a in Z there is a natural  
number N ,  such tha t  when y has run through the circle l y] = Yo N~, times, then 
a has returned to its original position. Then, when y has made N' =I--L,~ N~, rounds, 
all the pieces of Z lie on their original places on the positive real axis. This is also 
the case after a n y / i N '  rounds (g integer). Now let us consider the function elements 
o f / (y ,x )  tha t  we have on the pieces of ~ .  Since there is only a finite number  of 
branches of ], it follow s tha t  for every a E Z  there is a positive integer/x,  such 
tha t  when y has made ta"N' rounds we have the same function element on a as 
when we started. Then, after N.=I-LE~(/x,N') rounds, we have on all the pieces of 

the same function element of/(y,x)  as when we started. Then we see tha t  

TN g(y) = g(y) + h(y) 

where h(y) is a sum of integrals of / (y ,x)  along circles. From the nature of the pro- 
cedure we easily see tha t  T'ZNg(y) =g(y) + 2h(y), and hence TNh(y) =h(y). 

The lemma is then proved in the special case where ~I(Y) and ~2(y) are constant, 
equal to 0,1 respectively, and the real axis is not crossed by  any  of the ~t(Y) when 
y is large and positive, and the pa th  of integration is the straight piece [0,1]. I t  is, 
however, not  difficult to bring the general case back to this special case, For, there 
is a positive number  c such tha t  for y>~c none of the points ~i(y),~s(y) crosses 
(in the strict sense) the straight line between two others. Then we m a y  introduce a 
finite number  of points Ol(y) ..... Or(y), which are algebraic functions of y, such tha t  
the sum of the straight line segments St(y)=[Oi(y),Ot+l(y)] is homologous (in 
( C -  (~(y) Ii = 1 ..... r})) to our pa th  of integration and tha t  none of the straight lines 
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t h rough  the S~ is crossed by  any  of the ~(y) for y > c. B y  a linear mapping L~ (L~(z)= 
az +fl; ~,fl depending on y) we m a y  then map  S~ on [0,1]. Then  the points  Ly (~(y)) 

a re  algebraic functions of y and do no t  cross the segment [0,1] for y > c .  Then we 
m a y  perform the deformation as in the special case considered, and applying i ~  1 
to it we get  a deformation of S~ with the properties used in the special case (since 
clearly TVL~ =Ly for some natural  number  v). Hence, arguing as above, we find tha t  
.each funct ion Ssi(y)/(Y, x )dx  satisfies the proper ty  of the lemma, and  this is then easily 
;seen to be true also of 9(Y) = ~.~=1 S , g i / ( y , x ) d x .  The lemma is proved. 

We shall also need the following lemma, obtained by  repeated use of lemma 2. 

L e m m a  5. Let  E~ be the Euclidean simplex in RV: 

x 1 ~ z  1 .... ,x~,>~z~,x 1 +.. .  +x~ <~ 1 - z  o 

where 2:0,2:1 . . . . .  zp are small. Let  / (y ,x)  be a funct ion of y E C  m and x E C  p, which is 
.analytic in a neighbourhood of (y0, E0 ) so tha t  the funct ion 

g~ (y) = f E  z/(y,  x) dx 

is defined and regular analyt ic  in (y,z) at  y = y ~  =0.  Moreover, suppose tha t  f ly,  x) 
is  of class A. Then we m a y  find a z ~ arbi trar i ly small, such tha t  gz, (Y) is of class A 
in y. 

Proo/. Let  us prove tha t  g~(y) is of class A in (y,z) at  (y~ from which the  lemma 
immedia te ly  follows. We have t h a t  g~(y) is obtained f r o m / ( y , x )  by  repeated inte- 
grat ions with respect to a single real variable: 

~ Zk+W k 

/k (Y, z0 . . . . .  zk, Z k + i  . . . . .  Xp) = /k-1 (Y, ZO . . . .  , Z k - l ,  Xk . . . . .  X p ) "  dx k 
,d z k 

where /0  = / a n d / v  =g ,  and where 

w k = 1 --z o - z  1 --... --z k -  x~+ 1 - . . .  - xp (0 ~< k <p )  

and  w~ = 1 - z o - z 1 - ... - zp. 

Assume now tha t  ~k-1 is of class A with 

V1~_ l : q~_l(y, Zo . . . . .  Z k _ l , Z  k . . . . .  Xp) = 0  

and  tha t  qk-1 is no t  divisible by  wk_ 1. P u t  

q~(y, z o .... , Zk, X~+ 1 ..... Xp) =Pk-I(Y, ZO ..... Zk-1, Xk+l ..... Xv)" qk-l(Y, ZO ..... Zk, Xk+l ..... XV)" 

q~-l(Y, Zo . . . . .  Zk_l,  Z k -~- Wk ,  Xk+ 1 . . . . .  Xp) (14) 

where Pk-1 is the p roduc t  of the leading coefficient and  the discriminant of q~,-x 
with respect to xk, and qk-1 is obtained from q~-I by  taking away  multiple factors 
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(considering qk-1 as a polynomial in xk). Then qk is not divisible by u, k. In fact, the- 
first factor of (14) cannot be divisible by w k, since it does not contain zk. If  the 
product of the two other factors in (14) were divisible by wk, it would follow that  

i.e. changing z~ to x k 

w k =0  * qk_l(y, zo ..... zk, xl,+l ..... x~) =0,  

wk_ 1 =0  * q,~_x(y, Zo ..... Zk_l,X k . . . . .  Xp) =0. 

(15) 

But this is a contradiction, since we have supposed that  qk-1 is not divisible by wk_ 1. 
In  particular, qk ~ 0, and, since the choice of qk evidently corresponds to the descrip- 
tion of Vrk in Lemma 2, it follows from Lemma 2 t ha t / k  is of class A with V1k: 
qk(y,z o .... ,Zk, Xk+ 1 ..... X~,) =0. NOW, /0 is of class A and since q0 does not depend on 
z 0, it follows that q0 is not divisible by w o. Hence we get by induction that  g~(y)= 
]~,(y,z o .... ,zv) is of class A in (y,z), proving the lemma. 

3. Proof of the main theorem 

Let us recall the situation of Theorem 1. We were given an algebraic manifold 
in C':  

V (y) :PI(Y, x) = 0 ..... p,,_,.(y, x) = 0 

depending on y E C m. By R(y) we denoted the subset of V(y) of points x such tha t  
gradxpl(y,x) ..... gradxpn_,(y,x) are linearly independent, R(y) hence becoming an 
analytic manifold in C n of dimension r. We had also, in the neighbourhood of some 
y~ m, a p-cycle ~(y) on R(y) varying continuously with y. Further e%(x) was a 
closed holomorphic differential p-form on R(y) ,  defined for (y,x) in a neighbourhood 
of (y~176 and of class A at any (y~176 ~ ET(y~ Then the function g was defined: 
g(y) = Sr(~)o~y(x). We have to prove that  it is analytic in a neighbourhood of y0 and of 
class A. First, for y in a neighbourhood of y0 we shall define a mapping T ( y , . ) :  
R(y~ For this purpose, let us at every x ~ E R(y ~ consider the manifold 

N(x~ x = x ~ + t 1 grad~ pl (y0, x 0) + . . .  + t,_, grad~ pn_T (yO, x o) 

where the t~ are complex parameters. Then, for y in a neighbourhood of y~176 , 
intersects R(y) in exactly one near-lying point ~ =~(y,x~ Putting ~ ~-T(y,x~ then 
given any compact subset K of R(y~ in a sufficiently small neighbourhood of yO 
T(y , .  ) is a bijective and bicontinuous mapping from K to T(y,  K).  Further, for any 
x~  T (y , x  ~ is a regular analytic function of y when y lies in a neighbourhood of 
y0, which may be taken the same for all x ~ G K. These statements follow from general 
theorems on implicit functions and the fact that  the gradients gradzp,(y~ ~ are 
linearly independent for every x ~ E R(y~ Since our differential form ~%(x) is closed 
and T(y , x  ~ depends continuously on (y,x~ we have 

a(Y)= f 
where 70 =7(Y~ �9 By the mapping T(y , .  ) we may then write g(y) in the form 
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g(y) = f, ,  ~o~, (x) 

where &~(x) is a closed differential form on R(y ~ which is regular analytic in y in 
one and the same neighbourhood of yO for all x ~ ,  0. I t  follows that  g(y) is regular 
analytic in a neighbourhood of yO. 

In the sequel we shall regard V(y) as a 2r-dimensional real algebraic manifold 
in R ~=, then denoting it by ll(y) and similarly writing/~(y) andS(y). Instead of T(y, x) 
we write s 8), where we now consider ~(y, ~) as an element in R 2n and where 

=(Re(x),Im(x)). We suppose that  y~  which is no essential restriction. When y 
is real, l~(y) is then given by (2n -2 r )  real equations 

ql(Y, 8) = 0 ..... q(2--2~) (y, ~) = 0. 

I t  is clear that  ~(Y,8) depends algebraically on (y,~). Let x ~  ~ be an arbitrary 
point on 70 and choose a set x'=(xr ...... x~) of local coordinates on R(y) at (y~176 
(as in (L)). If we put  8' =(Re@') , Im(x ' ) )= (~1 ..... 8~u~) we have then, in a real neigh- 
bonrhood of (y0, ~o): 

r (x) = ~,< ..~. <%/k, ...% (Y, 8') dSk, A ... A d~v, 

where k x ..... k r E {11 ..... /~r }, and analogously for r with coefficients [~,...kv. From 
our  assumption that  oJ,(x) is of class A at  every (y~176176 it follows that  the 
functions /k,...,v(y,~ ) are of class A in (y,~') at (y0,~,0). Every f,,...,v(y,~') is a sum 
of terms of the form h(y,~')/(y, ~(y,~)'), where h is algebraic, / is a coefficient of 
�9 %(x), and 8 is the point on R(y ~ with coordinates 8' in the local system, and, con- 
versely, ~(y, 8)' stands for the local coordinates of ~(y, 8) E/~(y). 

I t  is clear that  the range of the mapping (y, 8')--->(y, ~(y, 8)') contains a full neigh- 
bourhood of (yO, ~o 1 ..... ~~ ), and so it cannot be contained in VI, and it follows by 
Lemma 1 that  f,,..% is of class A. Hence we have reduced the proof to a case where 
only the differential form but not the manifold depends on y. Now it is possible to 
~ind a finite set { S , } ~  of Euclidean simplexes (e.g. with their vertices on R(y~ 
such that  projection P along the manifolds .N(x) is a bijective regular algebraic 
mapping from ~ ~, to ~ P(S,) and such that  ~ P(S~) is homologous to 70 on R(y ~ 
and lies so close to ?0 that  g(y) = ~,, &~(x) = ~ fp(s., rS~(x) for y in a neighbourhood 
of y0 and that  (Sy(x) is of class A at  every (y~ "x~ ~ P(St). Moreover, we may 
~uppose that  these properties remain valid when the vertices of the S, (each of which 
is common to at least two of the S,) vary little around their original positions. 
Denote by ~ all the coordinates of all the vertices of the simplexes S,, taken as 
points in R 2= and let ~0 correspond to the original position. We may map each of 
the simplexes S, onto the unit simplex E 0 in R ~ by an affine mapping (depending 
algebraically on ~), and this mapping is uniquely determined if we prescribe the 
order of the vertices. By the projection P and this affine mapping we may write 
g(y) as a sum: 

g(Y)=f~,(y)eOY(x)=fro~Y(X)=~f~@)~O~(X)=~fE/~(Y,~,v)dv" 
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Here the functions/i(Y, ~,v) are sums of terms h(~,v)/(y, ~'(.~,v)), where h is algebraic,. 
~' local coordinates on R(y~ it a coefficient of r in these coordinates and  

(~,v)-+~'(~,v) 

an algebraic mapping  such tha t  its range contains a full neighbourhood of a po in t  
in R ~r. Hence it  follows by  L e m m a  1 tha t  all the funct ions/~ are of class A. Then~ 
by  Lemma 5 there is a Euclidean simplex E~, (with z ~ small) such tha t  

hi (y, ~) = fE~. f (y' ~' v) dv 

is of class A. Bu t  by  the construct ion of our  mappings we see tha t  hi(y, ~) =hi(y ,  U(~)), 
where we have pu t  ht(y,~)=SE,/t(y,~,v)dv , and where U is an  algebraic mapping  
whose range contains a full neighbourhood of ~o, and so b y  Lemma 1 it follows t h a t  
hi(y, ~) is of class A. The same s ta tement  is t rue  for all the other  functions h~(y, ~)~ 
and so g(y) = ~ht(y, ~) is of class A in (y, ~) and hence also in y. This proves Theorem 1. 

Theorem 2 also follows since by  lemma 4 all the functions h~(., ~) have the prop-  
e r ty  of Theorem 2 for a ny  ~. 
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