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Limit theorems for sampling from finite populations

By BeEnceT ROSEN

Introduction and summary

Let 7 ={a,,a...,ay} be a finite population, i.e. a finite set of real numbers.
X, X,,...,X, is a sample from 7z drawn with or without replacement. In the
first case we speak of independent observations from xz and in the latter simply
of a random sample from m. A major problem in sampling theory can be for-
mulated thus: Compute, in terms of =, the probability distribution of the random
variable ¢(X,,X,,...,X,), where ¢ is a given function of n variables. It is
seldom that a mneat closed form solution of the above problem can be found.
However, one can often give an approximate solution by considering a limit
procedure.

For independent observations a natural limit procedure is obtained by letting
the number of observations tend to infinity. There is a wealth of limit results
for different functions g.

For samples drawn without replacement the above limit procedure looses
meaning as the population will be exhausted after a finite number of drawings.
A fruitful limit procedure, treated by many authors, is obtained by considering
a double sequence of random variables:

X1 Xyg ooy Xyn, is a random sample from 7,

X1, Xk2, oo, Xinp i8 & random sample from 7,

One can now consider the limiting behavior of various sample functions
@k (Xx1, ...; Xiny), when k—oo. The present paper is devoted to a study of limit
problems associated with the above scheme. The problems and the results are
in many respects analogous to those in the case of independent observations.

In what follows we give a brief summary of the contents of the paper and
we describe the problems considered by referring to analogue problems for in-
dependent observations.

Chapter 1 contains definitions and some basic elementary results concerning
sampling from finite populations.

Chapter 2 treats strong and weak laws of large numbers. There is given an
analogue of the law of the iterated logarithm.
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B. ROSEN, Limit theorems for sampling

Chapter 3 is expository and in it we have collected results about stochastic
processes, that will be used in the later chapters.

In Chapter 4 we consider central limit problems. Especially we give an ana-
logue of the so-called invariance principle (cf. Donsker [3]).

Chapter 5 is concerned with the behavior of empirical distributions and em-
pirical fractiles.

Chapter 1. Definitions and fundamentals about sampling from finite populations
1. Definitions and some elementary results

By a d-dimensional finite population m we mean a finite set of d-tuples of
real numbers.

a={a;,ay ...,ay}, a,=(@>,...,a”)

2

@)

where a’ are real numbers

i=12,...,d, »=1,2,...,,N.

We will often omit the word finite and say simply a population z. The letter
N will throughout be used to denote population size. The population mean vector
o and population covariance matriz [oy] 4,§,=1,2,...,d, are defined as follows

12 S
He =y 2, and [au]=fv— 2 (@~ pa) (@ = pin)

(‘stands for matrix transposition). For 1-dimensional populations we write o7
instead of o), for the population variance, and we also define the quantity

N
=2 (a )" = (N —1)a%. (1.1)

The population distribution is the probablhty measure on R* (d-dim. Euclidean
space) obtained by giving each element in s the mass N'. We denote the
corresponding distribution function, which we assume to be nght continuous, by
F,(x). The centered distribution function Fg(x) is defined as Fj(x)= F,(x— ua).

Next we define a random sample X,, X,, ..., X, from n. Let Qy be the set
of all permutations ®=(i;,1,, ..., ty) of the numbers 1,2, ..., N. The probability
P on Qy is defined by P(w)=(N!)"! for all ®€Qy. Let T, be the mapping
To:Qn— XL, R} (X stands for Cartesian product) given by:

for w={(i}, 7, ..., %) I8 T, (w)= (0, as, ...,a,-N).

This vector valued function 7', on Qy we call a random permutation (r.p.) of
the elements in 7 and we denote its components by T,=(X,,X,,...,Xy). Bya
random sample of size n, (n < N), from 7 we mean the random vector (X, X,. ..., X,).
In the sequel we will denote the sample space simply by Q instead of Qy. For future
reference we list some simple properties of random samples.
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Exchangeability: X,, X,,..., Xy are exchangeable, ie. their joint distribution
is invariant under permutation of the X’s. '

Duality principle: We define §3=0 and §,=X,+X,+...+X,, »=1,2,..,,N.
Let 4,,14,,...,7, be chosen among 1,2,...,N. If u,=0, then the two random
vectors (S8, S,,,...,8;,) and (—Sy-i;, —Swv_i, -.., — Sy-1,) have identical distribu-
tions.

X, X,,..., Xy are dependent and it will be essential for us to be able to
handle the dependence. When dealing with conditioning concepts, we will follow
Loéve’s notations, [14] Chapter VII. The following result is intuitively obvious
and easily proved.

Conditioning principle: The mixed conditional distribution of X, .1, Xz, ...,
Xnim, n+tm<N, given X,, X,, ..., X,, is at the point @ identical with the di-
stribution of a random sample of size m from the population #'(w) =z with the ele-
ments X, (w), ..., X, (w) removed. ,

We will use standard probability notations, particularly EX and ¢®(X) for
respectively expectation and variance of the random variable X. We will also
use standard abbreviations as r.v.=random variable, pr.=probability, d.f. =
distribution function, c.f.=characteristic function, i.d.=in distribution. Some
additional abbreviations are introduced in connection with definitions. Concerning
the notations for well-known distributions such as normal, binomial, etc. we
follow Wilks [20]. Finally, we will use [a] to denote the integral part of a,
and A’ for the complement of the set A.

The following result is well-known, see e.g. Wilks [20] p. 222.

Theorem 1.1. X, X, ..., Xy is a 7.p. of the elements in 75, which has covariance
matriz [oy]. Sp=X,+...+X,,n=12,...,N. Then

E(S,— nﬂn)l (8n— ) =n(l — n/N) [o4]- (1.2)
Particularly, when st is 1-dimensional,
0*(8:) =n(l—n/N) o2 (1.3)

We shall mainly be concerned with 1-dimensional populations, and from now
on z stands for a l-dimensional population, unless otherwise stated.

2. Limit procedures for sampling from finite populations

As stated in the introduction, we shall consider a limit procedure based on
a sequence {mJ}7 of populations. We assume once and for all that a popula-
tion sequence has the property that N, —oo when k—co. When we are dealing

with a sequence {m}i°, we will usually write u, 6%, Ny, F; ete., instead of Yoy
Onps Noy, Fa ete.

A sequence {m}{° is said to be degenerate if it contains a subsequence {m}s
for which F; (x) converges i.d. to the distribution with pr. 1 in z=0.

Let {m) be given. Then Xy, Xxs, ..., Xy, will throughout the paper stand
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for a r.p. of the elements in . Let {(p,m}, n=1,2...,N,k=1,2,... be a
double sequence of r.v.’s, where ¢, is a function of Xji, ..., Xin,i.€. @xn=
@in(Xi1, Xigy ---» Xun). We say that {gin} converges in pr. to the constant ¢ for the
sample size sequence (sss.) {n,}3 if for every & > 0 it holds that limy, P(| @yn, — ¢|>€) =0,

and we say that {@,,} converges strongly in pr. to ¢ for the sss. {m}7° if for
every ¢>0 it holds that lim, P(max, <n<n, | pxn —¢| =€) =0. Obviously, strong

convergence in pr. for the sss. {n,}{° implies convergence in pr. for the same sss.

3. Relations between sampling with and without replacement

We shall here consider two types of relations between sampling with and
without replacement, which can be roughly described as follows.

1. If the proportion sampled from z is small, then sampling with and without
replacement are almost equivalent.

2. When a sample is drawn without replacement there is a tendency that
the sample sum lies closer to its mean than it does when the sample is drawn
with replacement.

We shall give some exact formulations of these heuristic statements.

Lemma 3.1. {n){° is a population sequence for which F,,— F i.d. when k— o
and Xy, ..., Xxns 98 a 7.p. of the elements in m,. Then it holds for every fized

m that the distribution of Xy, ..., Xym converges i.d. when k—> oo to the distribu-
tion of m independent r.v.’s each having d.f. F.

Proof. Let o, <x,< ... <z, Then
P(Xkléxl, ...,Xk,,,<x,,,)

=Nka(x1).N,,Fk(x2)—l. .Nka(x,,,)—(m—l)
.Nk Nk_l o .Nk_(m_l)

> F(x) F(z,) ... F,) id. (3.1)

as according to our general assumption lim; N, =oco. Because of the exchange-
ability of the X’s (3.1) holds without the above restriction on the a,’s, and
the lemma is proved.

The following theorem due to Hoeffding [12] is a precise formulation of 2.

Theorem 3.1. X,, X,, ..., X, and X1, X5, ..., X7 are samples from n, drawn re-
spectively without and with replacement, S,=X,+...+X, and S;=X1+...+ Xn.
If v is continuous and convex it holds that Ep(S.)<Ep(Sn).

As pointed out by Hoeffding, the theorem can be used to get inequalities for
probabilities concerning sums of samples from finite populations from inequalities
concerning sums of independent r.v.’s.

Lemma 3.2. Let y(x) be positive, nondecreasing and convex for x>0. S, and 8y are
defined in Theorem 3.1. Then it holds for >0 that
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P(|8,— B8, |> a) <[p(o)] Ep(| 87~ ESr ).

The lemma is an immediate consequence of Tchebychev’s inequality and
Theorem 3.1.

Chapter 2. On laws of large numbers
4. Inequalities concerning sample sums

Let X, X,,...,Xy be a r.p. of the elements in the population n, S,=0 and
S=X,+..+X,n=1,2,...,N. We denote sample mean S,/n by X, Our
aim is to prove analogues of the strong and weak law of large numbers. We
start by deriving two estimates of P(max,..|b,S,|>¢) where by,b,, ..., by are
real numbers. The method used to obtain these estimates is similar to that
used by Hajek and Rényi in [10].

Lemma 4.1. # is a population with mean 0 and variance o, and {b,}s a se-
quence of real numbers. Then it holds for every >0 and for n=1,2,...,N

P(max [b,8,|>) <% 1—l)Nz_lb2+ 5 1—1)(1;2 (l—g)—b2)+]
ax 5,8, /.e)\82 )2 v N y—1 ” v

v>n v=n+1

where a* =max (0, a).

Proof.” We consider instead P(max,<.|c, 8,|>¢) for ¢,=by_,. Let £¢>0 be
given. We define the following r.v.’s. For v=0, 1,2,...,N, I, is the indicator
function of the event (max:, cfS;<e?) and H,=1-—1, L is the first (if any)
index » for which ¢ 82>¢2 Then

n—-1
EH,< > I,(c21851—c28%). (4.1)
»=0

To prove (4.1) we first assume that max,.,c?S><e®. Then the left-hand side
of (4.1) is 0, while the right-hand side is ¢Z 82>0, and (4.1) holds. If max,,
¢; 87 > &% the left-hand side is ¢® and the right-hand side equals c% %> ¢® and
(4.1) is proved. By integrating (4.1) over ) we obtain

n-1
& Pmax 282> %)= EH, < > f (211 82,1 —c? S?) P(dw). (4.2)
y<n »=0 J (v=1)

Let for v=0,1,2,..., N B, be the algebra of subsets of Q induced by S,, S, ..., S,.
From the conditioning principle (p. 385) it readily follows that E® X,,, = — 8,/
(N —~»). Using this result, and some well-known computational rules for con-
ditioning (see e.g. Loéve [14]) we get

E¥ 82 =F SE+2E% 8, X, +E» X%,
=82+28,(—8,/(N—v)+E* X2,,=82(1—2/(N—»)+E>X2,,. (4.3)
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From (4.2), (4.3) and the obvious inclusion (I,=1)€B, we get

n-1 ~

&P (max 282> )< S J EP (c2,1 8%, — 2 8%) P (dw)
(Iy==1)

<N v=0

n-1 n-1
23 (@ (i) ) pawr s da [ mxn
»=0 J (r=1) N-» v=0 (Iv=1)
The above inequality is only unsharpened if we first change
0,=(c2r1 (1 —2/(N —v))—¢c;) into o,

and then enlarge the domain of integration to Q in the integrals in both sums.
This observation together with Lemma 1.1 yields

n-1 2 + n-1
&? P(max ¢2 82> %)< 5 ES? (cfﬂ (l ——;) - cf) + > 2L EXE,

r<n v=0 N- v=0

S (RS A IR

The inequality in Lemma 2.1 now follows from (4.4) and the formula

P(max |b,8,]|>¢)=P(max |by_,S,|>¢), (4.5)
yv=n y<N-n

which is an immediate consequence of the duality principle. Thus the lemma
is completely proved. The following result is a special case.

Lemma 4.2. 7 is a population with mean O and variance o®. Then it holds for
every ¢>0 and for n=1,2,...,N.

- 2 | R | 21 1
P(max|X,,|>£)<6—2(l ——l—v) > —é=a—2(7—b—ﬁ) C(n, N)

20 &€

where C(n, N)<1+n"",
Proof. The inequality follows readily from Lemma 4.1 by putting b,=v"1
It is easily checked that (b2_,(1—2» ')—b%)* =0 for b,=»". The upper bound

for O(n,N) can be derived thus. When =N we can put C(n, N)=0. For
n=1,2,..., N—1 we have

Cn, Ny=n(N—1)(N—n)"? Ng v 2 (4.6)
Now ilv—k 1/n%+ N_iz 1/v(v+1)=1/n*+1/n~1/(N—1).
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We insert the last estimate into (4.6) and get C(n, N)<S(N—n—1)/(N—n)+
(N=1)/m(N~-n)<1+n! and Lemma 4.2 is proved.
Next we give an estimate of P(max,..|b,8,|>¢) in terms of E|S,|.

Lemma 4.3. 7 is a population with mean 0 and {b,}) is a sequence of non-
negative numbers such that {¥b,}) ' is non-increasing. Then it holds for every
>0 and for n=1,2,...,N

P(max [b,8,|>e)<e b, E}8,|. 4.7
i 2103

Proof. The proof will run almost parallel to that of Lemma 4.1 and again
we first prove the dual result. Let ¢,=by-,. Thus ¢, (¥ —) is non-decreasing
for v=1,2,..., N—1. For fixed ¢>0 we define the following r.v.’s. For »=0,
1,...,N, I, is the indicator of the event (max:;,¢,S,<¢) and H,=1—1I,. Lis
the first (if any) index » for which ¢,8,>e. Then the following inequality,
where ¢~ =min (0,a), holds

n-1
8Hﬂ.< —Cp S; + Z Iv(cv+1 Sv+1_cv Sv) (48)
r=0

If max,cnc,8,<e the left-hand side in (4.8) is 0, while the right-hand side is
— ¢, 87 +¢,8,20. If max,.,c, S,>¢ the left-hand side is £ and the right-hand
side —cn8; +¢,8.>¢. Thus (4.8) is proved. Let, as before, B, be the algebra
of events which are determined by conditions on 8y, 845 ..., 8,. Then (I,=1)€B,.
By integrating (4.8) over Q we get

n-1
eP(max ¢, 8,>¢)=¢EH,< —c, ES; + > (41811 —¢, S,) P(dw)
r<n y=0 J(Iv=1)
n-1
= —c, BES; + 5 (¢y+1 E®S,;1—¢, S,) P (dw)
»=0 J (Ir=1)

fl

n-1 —
—nBSi+ S (cm N-p+l) c,,) f 8, P(dw). (4.9)
v=0 N—v (v=1)

In the last step we used the formula E® S,.,={(N — (v+ 1))/(N —¥)]-8,, which
follows from the conditioning principle. From the assumption that ¢, (N —v) is
non-decreasing, it follows that c¢,., [(N — (v+1))/(N—»)]—¢,>0. If we show that
the integrals in the last sum in (4.9) are non-positive we can cancel the sum
and end up with the inequality

P(max,cnc, 8,2c)<e 'ca BS7 =(26) ', E|8,]. (4.10)
The equality in (4.10) is a consequence of the assumption that z has mean 0.
For fixed ¢>0 we define for £=0,1,2,..., N the events 4, as follows: A,=

(S:>¢ and S,<e for r<t). Then it holds that A,€ B, and further
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(I,=0)= U A, where 4, and 4, are disjoint for t+s (4.11)
t=0 v

Remembering that z is assumed to have mean 0, we get from (4.11)

—f 8, P(dw) = f 8, Pdw)= 3. | 8, Pldw)= z I 5, Pldo)
(=1) (Iv=0) t=0

> N—y ' N—vy
gN tJ‘ 8, Pldw)>¢ goN——t P(A4)=0
and (4.10) is completely proved. By considering —8,,— 8, ..., — Sy, we obtain
from (4.10)
P(min ¢, 8,< —&)<(26) ' e, B | S| (4.12)

N
Addition of (4.10) and (4.12) yields

P(max |¢,8,|>e)<e 'c, B| S, (4.18)
y<n

By use of the duality principle we get from (4.13)
P(max |b,8,|>¢)=P(max |b,8y-,|>¢)
v=2n rn

=P(max |ey_,8,|>e) <& b, E|Sy-n|=6"" 0. E| S|

r<N-n

and the proof of Lemma 4.3 is concluded. When applying the lemma we will
need an estimate of E|S,|. The next lemma gives such an estimate.

Lemma 4.4. A(x) is an even function such that for x>0 is A(x)/x positive and
non-decreasing, while A(x)/x® is non-increasing. For a population with mean 0 it
then holds that

3
E|8,] <17 (n) [(—~—— EAX 1)+<E1(X1))2) +EA<X1)],

where A7 (y) is the inverse of A(x) for z>0.

Proof We fix n and define for »=1,2,...,N, X, =X, if |X, |<Z. (n) and
X, =0 otherwise, ¥,=X,— X, and 8, = X1+ +X Ev1dently X1, X5, ..., Xy is
a r.p. of the elements in the population n’, which is obtained from 7z by re-
placing all elements in & with absolute value >A"!(n) by zeros. From Schwarz’s
inequality we get

E|S,|<E|8.|+E| > Y,|<VES: +nE|Y,|. (4.14)
v=1

390



ARKIV FOR MATEMATIK. Bd 5 nr 28

Now
ES7Z=0(87) + (ES»)?=n(1—n/N) 1+ 1/(N — 1)) (EX:*— (EX1))

+n? (BX1) =n(N—n) (N~ 1) EX2+aNn—1)(N—-1)" (EX;)® (4.15)
As A(z)/«® is non-increasing for x>0 we have

, 2 l—l (n)z
EXi= f 2. Aw)dF, (x) <
! [z)<A () Ax) (@) (=) n

EA(X,). (4.16)

From p,=0 and the assumption that A(x)/x is non-decreasing for x>0 it
follows that

| EX1|=|EY,|=

x A Y(n)

— Ax)dF, (x)| < EL(X,). (4.17)

wﬁz[>l—1(n) l(x) ( ) ( ) n !

We now obtain the desired. inequality by inserting the estimates (4.16) and
(4.17) into (4.15) and (4.14). Thus the lemma is proved.

5. Convergence of sample means

Thus prepared we shall prove some results about convergence of sample means.
We shall consider population sequences {m;}7=;. As usual we denote a r.p. of
the elements in m by X1, Xy, -+s Xyn,- Furthermore, we will use the nota-

tions SP=X4+ ...+ Xpn,n=01,2,..., N, 8§ =0 and X" =89/n.

_ Theorem 5.1. {m}{° is a sequence of populations. A sufficient condition for
X — . to converge strongly to 0 in pr. for the sss. {n}{ is that

klim o% (nx1—NzY)=0. (5.1)
If {m}7 satisfies
lim sup f 22 dF; (x) =0, (5.2)
Ao k& Jjzis4

then condition (5.1) is necessary already for X3 — u; to converge in pr. to O for
the sss. {ng}{.

Proof. It is no loss of generality to assume that w,=0 for all k£ and we will
do so. The sufficiency part of the theorem is an immediate consequence of
Lemma 4.2. In the proof of the necessity part we will use the following simple
lemma.

Lemma 5.1. If for some integer 1 it holds that S —>0 in pr. when k—>oco,
then Xy —0 in pr. when k—>oco.

Proof. Assume the lemma to be false, i.e. there are positive numbers ¢ and
o and a subsequence {k,},2; such that P(|X,|>¢)>2p, while
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P(8{”|>¢)—>0 when v —>oo. (5.3)

Then at least one of the inequalities P(X,1>¢)>g and P(X,,1< —¢)>¢ holds
for an infinity of »’s. We assume the first inequality. In other words, there
1s a sequence {nkt};‘il so that a portion >p of the elements in m,, are >e.
Thus,

-1
P(S? > 1) > (N’l‘te) (A;"f) - 0'>0 when 7—>o0. (5.4)

Now (5.3) and (5.4) contradict each other and the lemma is proved.
We also prove the necessity part of Theorem 5.1 by contradiction. We assume
its negation to hold, i.e.

X{—0 in pr. when k—>oo (5.5)
o (ni'—Ni)=p>0, k=1,2, .... (5.6)

To guarantee (5.6) we may have to restrict to a subsequence of {m}. However,
to simplify writing we use the same indices. From (5.2) it follows that ge <0< oo
and thus from (5.6) that sup,m,<oo. Thus there is a subsequence {k,}:>1 such
that n, =I. From (5.5) and Lemma 5.1 we conclude that X;; >0 in probability

when y —oco. This is, however, incompatible with (5.6) when (5.2) holds, because

P(| Xy1|>e)>Pe<|Xp1|<4)= 477 f 2?d Fy, (x)

e<|z|<A

>A‘2[(1—NE,1) a%,—f mzdFk,,(x)—sz]- (5.7)
|

z|>A

By choosing 4 so large that [iz.42*dF,, (¥)<g/6 and £ <g/6 we get from
(5.6) and (5.7) as soon as N, >2

P(| Xy} >e)=> 47" (¢/2—0/6—¢/6)>0
and we have obtained a contradiction. Thus Theorem 5.1 is completely proved.

Corollary. {m;}y is a population sequence which is non-degenerate and satisfies
condition (5.2). Then a necessary and sufficient condition for X$° — ;. to con-
verge strongly in pr. to 0 for the sss. {n.}{° is that

lim n, = + oo, (5.8)

k
Proof. From (5.2) we conclude that 67 <C < . From the non-degenerateness
of {m,}" there follows the existence of ¢ >0, £¢>0 and a k, so that Pﬁ Xulze)=
>0 for k>k, Then o}>pe? for k>k, and the corollary is now an immediate

consequence of condition (5.1).
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We shall consider the following proposition, which we denote (4).

(4) : X3’ — u;, converges strongly in pr. to 0 for every sss. {m}{°, which sa-
tisfies m;—>co when k—> oo,

The above corollary says that (5.2) is a sufficient condition for (4) to hold.
In the next theorem we weaken this condition.

Theorem 5.2. Necessary and sufficient for (A) to hold is that {m.}{° satisfies

lim supf || dF5 (z)=0. (5.9)
Jzi>4

A—>00 k

Proof. Without loss of generality we assume that p,=0 for all k. First we
prove the sufficiency part. Lemmata 4.3 and 4.4 yield

- A (n
P(max|XP|>¢e)<et- ()
v ng Ny

[( N _1 ENX )+ (EA (Xkl))) +E/1(X,,,)], (5.10)
k

The sufficiency of condition (5.9) now follows from (5.10) if we show that (5.9)
guarantees the existence of a function A(x) which fulfils the conditions of Lemma
4.4 and in addition

A '(x)/x -0 when z— oo (6.11)

Slllcp EMX ) < oo, (5.12)

From (5.9) it readlly follows that sup, E|Xj|<oo and that there exists a se-
quence {A;} 1, A; /oo such that

Supfll |x|dFk(x)<3“ s“PEIXle t=1,2,....
x| > At x

14
Let {r;}{2, satisfy 1) 7,700 whent—>oo. 2)7,<2,t=1,2,.... 3) (ti:1—7)/
(41— A) <7 A7, t=1,2,.... Define for >0 p(x) to be the function the
graph of which is the linear interpolation between the points (0,0), (4,, 11),
(Ay, Ty), ... . It is easily checked that A(x)=|x|e(|x|) satisfies the conditions in
Lemma 4.4 and in (5.11), (5.12). Thus the sufficiency of (5.9) is proved.

Next we prove the necessity of (5.9). Remember the assumption that u,=0
for all k. First we show that if (4) is fulfilled, then it holds for every £> 0 that

P(max | X;,/n|>¢)—>0 if n,—>oc0 when k—>co. (5.13)
neng

(5.13) follows from the inequality below:

P(max | X, /n|>¢)=P(max | (S —8%2,)/n|>¢)
nzng nzng

<P(max | XP| > ) +P(max (1-n" IX(J‘11[>£).
nz=ng 2

nxng
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We shall give an indirect proof and we assume that (4) and thus (5.13) are
fulfilled, but not (5.9). Then, by restricting to a subsequence of {m;};* without

introducing a new notation, there is a sequence of integers {Ak}f, A /oo,
such that

LII>Ak|x|dFk(x)>g>0, k=1,2,.... (5.14)

We can also assume that
P(| Xy1|> 4;) >0 when k—oo (5.15)
P(|Xu|>N) =0 for k>k, (5:16)
because if (5.15) does not hold, then (5.13) cannot be fulfilled for n,=A4,, and
if (5.16) does not hold (5.13) cannot hold for n,=[N,/2].
We have for k>k,

P (max | Xin/n|>1)=1— P(| Xpn| <n,n =1y, ..., Ni)
n=ng

N i
=1- [I P(| Xin| <n|| Xo|<v,v =4, ..., 2 — 1)
n=ng

N NkP(|Xk1|<'n)—(n—nk)>

M

=1- =>1- Pl Xn|<n

L Ne—(n—ny) JL P K] <m)

Ng Ng
=1-TI (1 —f dF,,(x))?l—exp{— > f dFk(x)}

n=ng lzisn n=ng J [z|=n
=1—exp {— > (s+1—nk)P(s<|Xk1|<s+l)}. (56.17)

s=ng

In the last step we used (5.16). By virtue of (5.15), we can choose {n,}{ such
that <4y, k=1,2,...,m,—>c0, and n, P(| Xi|>4,)~>0 when k—>oco. Then
we get from (5.17) and (5.14)

lim P(max | Xpn/n]>1)>1~1jm exp {— > (s+1—nk)-P(s<|Xk1|<s+l)}
k n=ng X s=Ax
=1—lim exp {—f I |x|dFk(x)+nkP(]Xk1|>Ak)} =1—e>0.
P Jzl> Ax

This result contradicts (5.13) and thus the necessity of (5.9) follows. Hence
Theorem 5.2 is completely proved.

6. The law of the iterated logarithm

The sharpest result (under suitable conditions) about the asymptotic fluctua-
tions of sample sums in the case of independent r.v.’s is the law of the iterated
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logarithm. We shall prove an analogue of this law and we shall first prove
some lemmata.

Lemma 6.1. 7 is a population of size N and n' is obtained from z by removal
of t elements. Then

2 < (N-1)/(N—t-1), t=1,2,...,.N—2.

Proof Without loss of generality we assume that 7= {a,, a,, ..., ay} has mean 0.
Let 7' ={a1,a, ...,an_:}

N-1
— 1 2 —1\" —_—a2 T
S(N—-t-1)" Za SWN-t-1)7* Za, L
and the lemma is proved. The next lemma is the counterpart of a well-known
result for independent r.v.’s (see e.g. Loéve [14] p. 248).

Lemma 6.2. 7 is a population with mean 0 and variance 0%, and x is a posi-
tive number. Then

P(max |8,|>2)<2P(|8,|>2(1—n/N)—cV2n).

Irgn

Proof. For t=1,2,...,n A, is the event (max,..|S,|<z and |S,=>=). B is
the event (|8,|>xz(1—n/N)—oV2n). Let, as before, B, be the algebra of events
defined by conditions on X, X,, ..., X;,. From the disjointness of 4,, ..., 4, and
the fact A4,€8B, it follows that

P(B) > élPBAt)=él APB'(ISnI>x(l—n/N)-aV2_n)P(dw).. (6.1)

Accordmg to the conditioning principle (p. 385), the mixed conditional distribution
of S, glven B,, is at the pomt w, equa,l to the distribution of 8, () + Sn—¢, where
Spt=X3+..=X,_; and Xj,..., X, ; is a random sample from the population
7' (w) =z with the elements X, (w), «e., X; (w) removed. Thus

E‘*‘Sf&(l -X,i’t) and o (S, | B) () = 0%y (n =) (1= (n-= 1) /(N —1)).

Lemma 6.1 yields
A8, ]|By<etm—(1—(n—1t)/(N—t)) (N—1)/(N—t—1)<no® (6.2)

From Tchebychev’s inequality we get
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P&(|s,4>x (1 ~%)—a v%)‘xm (ISH—E“S,,|<|EB‘S,1|—:¢(1—%)+0V2_n)

>1-0%(S,|By) (oVﬂHEmS,J—x (1 —%))2 (6.3)

When w€d, it holds that |S,|>z and thus |E*S,|>z(1—(n—t)/(N—1t)>
z(1—n/N). Combining this with (6.2) we get from (6.3) that

when €4, then P¥*(|S,|>z(1—n/N)—cV2n)>}. (6.4)

We insert (6.4) into (6.1) and obtain
P(B)> %til P(4) ie. 3 P(4) <2 P(B),
= 3

which is the desired inequality, and Lemma 6.2 is proved.

| Lemma 6.3. n={a,,a,,...,ay} is o population with mean 0, variance ¢* and
a,|<M,y=1,2,...,N. Then

S, 6 oM
p(5so) <o |- (1-2)], acrzn
(cV’r—L XP{ 2 ,2"ﬂ}

Proof. This is a well-known inequality for independent r.v.’s (if o® stands
for ordinary variance), see e.g. Loéve [14] p. 254. A scrutiny of the proof
shows that it is an inequality of the Tchebychev type based on a function which
satisfies the conditions of Lemma 3.2. Thus the inequality carries over to
sampling without replacement. The relation ¢%=N(N—1)"! EX} only weakens
the inequality.

Theorem 6.1. {m}{° is a sequence of populations, all having mean O and vari-
ance 1 and all elements on an interval [— M, M). Then it holds for every £>0
and every sequence {m)Y¢ for which lim n,= oo, that

Q)
lim P (max —S": <1 +s) =1. (6.5)
ke \s>n, V29 log log »

Conversely, to a given sequence {m.}y, which satisfies the above conditions, there
exists a sequence {m )y with limy n,= oo, such that for every ¢>0 it holds tha

St
lim P(max ———"————>l—s)=l. (6.6)
k>0 \s2m, V29 log log v /
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Proof. First we prove the direct part (6.5). After the preparation with the
above lemmata the rest. of the proof is an almost verbatim repetition of the
proof of the analogue result for independent r.v.’s. Let 0<e<} and A>1. We
define 7,=[1], t=1,2,... and the events

A= (max SP>(1+¢)V2T, loglog Ty), k,t=1,2,....

1<y< Ty

First we only consider f-values for which T; 1<2 '¢N,. (As N,-—>cowhen
k—oco such t-values exist when k is large enough.) From Lemma 6.2 we get

a,,t=P(A,,t)<2P(| 8P |=(1+e) (1 —-5) V2T, log log T,— V2 Tm).

Tiia
As Ti.1(T; log log T;)' >0 when t—>oco, we have for sufficiently large t’s
e <2P (lS(Tk,)HI') (1 +£) V2 T, log log T,)

and from Lemma 6.3 we conclude

: VT, Tog g T,
4) T, log log T, (1 _MV27T, log log ,)}

P
< —_ —
o S 4 exp { (1 + o 2T,

We assume that 1 was chosen <1+e¢/4. Then it holds if ¢ is sufficiently large
o <4 exp {— (1 +§) log log T,} < OA) ¢, (6.7)

where O(1) is a constant depending on 4. We define ¢, =max (¢|7;<n;) and
tx =min (¢|{T,>3 '¢N,). Then

g0 v t
P( max '—_.%_1’_:—2 1 +8) < P ( U Alct) < z Oyt - (6.8)
ne<r<sieN, /2y log log » 4 =t

As t; tends to infinity with k it follows from (6.7) that the sum in (6.8) tends
to 0 when k-—>oo. Thus, we have proved: If 0 <e<}, 7, <37 e Ny, and ny— o0
when %k —co, then

(k) y
lim P< max %:->1+s)=0. (6.9)
ke \mv<iteNy /2y log log ¥

From (6.9) one easily deduces that

St 6
hmP( max :t_—:>1+8)=0, 8=1,2,,[_] (61())
koo \ 387N <o<(s+1)671eN, /2y log log » 3
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The direct part of Theorem 6.1 now follows from (6.9) and (6.10). We shall
prove the converse part by a reduction to the corresponding result for inde-
pendent r.v.’s. We introduce a notation; X;, X,, ... arer.v’sand §,=X, + ... + X,.
Then A(n,m,¢) stands for the event A(n,m, &)= (max,<,<m S, (2% log log ») >
1-—-¢). The pr. of A(n,m,e) depends on the distribution of the X’s. When the
X’s are assumed independent with the same d.f. F we indicate the dependence
on F by writing Pr(4) and when the X’s are sampled from the population =
we write P,(4). The following proposition (B) is a consequence of the law of
the iterated logarithm for independent r.v.’s

(B): Let X, X,,... be independent copies of a r.v. X with df. F, which
satisfies EX =0, ¢(X)=1 and |X|<M (with pr. 1). Then, for all positive num-
bers ¢ and 6 and any natural number m, there is an N, depending only on
e,0,m and M, such that

Pg(A(m, N, &) =1—8. (6.11)

Let {&}° and {6} be sequences such that &\ 0 and 6\ O when ¢{—>co.
From (B) there follows the existence of a sequence {m,};° of integers, m, 7 oo,
such that Pp(A(my,mei1,8)>1-6,t=1,2,... if F satisfies the conditions in
(B). We say that a population s has property E, if P, (A(my, mei1, &) =1 — 26,
Now let {m} be the given population sequence. We claim that for every fixed
t only a finite number of the m;’s lack property E, Assume the contrary.
Then, by selecting a subsequence (without introducing a new notation) we can
assume that Fy—F, id. when k-—>co and that P, (A(my,mis1,8))<1—26,.
The event A(m, m;.1, &;) depends only on the finitely many variables X, ..., X, .
Thus from Lemma 3.1 we conclude that P, (A(m,, m;i.1, &) =1im;, P, (A(m,,
Mt 41, &) < 1—28,, which yields a contradiction. Thus only finitely many 7,’s lack
property E,. Let for t=1,2,...,k(t)=min (k|n, has property E, v»>k) and let
m=m; when max, k(s) <k <maXs;ci1k(s). It is easily checked that (6.6) holds
for this sequence {,}{" and that n;—oo when k—>oco. This concludes the proof.

Chapter 3. On stochastic processes with continuous sample paths

7. Generalities

We shall later study certain stochastic processes related to samples from finite
populations, and especially convergence of such processes. We shall then make
use of the general convergence theory for stochastic processes, worked out es-
pecially by Prokhorov [18]. We give a brief exposition of some fundamental
concepts and results, and we follow closely Prokhorov’s ideas.

C[0,1] is the metric space of all real-valued continuous functions on [0, 1],
with the uniform metric. Points in C[0,1] will be denoted x or z(!). By a
stochastic process on [0, 1] with continuous sample paths we mean a comple prob-
ability measure P, defined on a o-algebra of sets in C[0, 1] including all closed
sets, and which is inner regular with respect to closed sets, see def. on p. 162
in [18]). When f is a measurable mapping of C[0,1] into another metric space
8, we write P’ for the measure on S, which is the forward transportation of P
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by f, see [18], p. 163. When f is real-valued we call it a functional of the
process or a r.v. defined on the process. For a finite set M; (f,%,, ...,%5),
t,<t,.1, v=1,2,...,m—1, of points in [0, 1] we define the marginal distribution P¥
as the measure in RB™ which is induced by P and the mapping = — (z(t,), z(t,), ...,
2(tn)), x € C[0,1]. A process is uniquely determined by its marginal distributions.

It is a nontrivial problem to determine if a given set of ‘“‘marginal” distribu-
tions actually are the marginals of a process with continuous sample paths, see
Loéve [14], Theorem B, p. 517, and also Prokhorov [18].

8. Wiener processes

We will be much concerned with the stochastic processes known as Wiener
processes and tied-down (or conditional) Wiener processes. These processes are
real Gaussian processes and can be characterized by their mean value function
M(t)=EX(t) and their covariance function R(s,t)=Cov (X(t), X(s)). The ordi-
nary Wiener process (with parameter o°) is defined by M(t)=0 and R(s,t)=
¢% min (s,%). It is well known that this process has continuous sample paths, see
e.g. Lotve [14], p. 547, and we can identify its restriction to 0<f{<1 with a
measure on C'[0,1]. This measure we denote W(c?).

Let X(t) be a Wiener process with parameter o®. The tied-down Wiener pro-
cess with tying point 7' can be intuitively described as the process X(f) under
the condition X(T)=0. Formally we define it by M(¢)=0, R(s,t)=0o®s(1 —t/T),
0<s<t<T. These processes also have continuous sample paths and we denote
the measure on C'[0,1] corresponding to the part 0<#<1 of the proecess by
W(e® T). We make the notational convention that W(¢? co)=W(c?). A treat-
ment of these processes can be found in Doob [5].

9. Convergence of stochastic processes

Py, k=1,2,... and P are stochastic processes with continuous sample paths,
i.e. pr. measures on C[0,1]. We say that P, converges (weakly) to P when koo,
denoted P,= P when k— o, if

f f () Py (dx) — f(x) P(dx) when k— oo
Cro,1]

Cro,13

for every continuous, bounded functional f on C[0,1]. See definition on p. 164
in [18].

The suitability of this convergence concept follows from the next lemma,
which is contained in Theorem 1.8 in [18].

Lemma 9.1. If Py P and if { is a functional which is continuous almost every-
where (P), then Py — P’ i.d. when k— oo.

The following concept is crucial for characterization of weak compactness of
families of pr. measures on C[0,1]. The family P ={P} is said to be tight (to
satisfy condition (x) in [18]) if for every £> 0 there is a compact set K, < C[0, 1]
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such that P(K,)>1-—¢ holds for all P€D (see p. 167 in [18]). The following
result is contained in [18].

Theorem 9.1. Necessary and sufficient for Py=P when k—>oo is that

1. P¥— P id. for every marginal M.
2. {P,)¥ is tight.
In order to apply the above theorem, one needs a manageable criterion for

verification of tightness. The following criterion, usually referred to as Dynkin’s
criterion, will satisfy in the cases we shall consider.

Theorem 9.2. {P,}i° is a sequence of pr. measures on C[0,1]. For 6>0 and
A>0 we define

(A, 8)=1lim sup P,( max |x(t)—x(T)|>0). (9.1)

k>0 0<T1-A TSI<T+A
Then, sufficient for {P,}¥ to be tight is that
1. For every £>0 there is a constant C. such that
P(|2(0)|<C)=1~¢, k=1,2,....
2. For every fized & it holds that A~ (A, ) —0 when A—0.

We indicate a proof (cf. Lemma 2.3 in [18], and Particular case 1° of
Theorem 4 in 35.3, [14]). For §>0 and A>0 we define the following subsets
of CI0,1].

B(A, 8) = (|| 2(t') —z(t")| <o if |t —t"[<A)

A,(A,8)=(x| max |x(t)—=x(sA)|<d), s=0,1,...,[A7"].

SASE<(S+DA

For any positive numbers ¢ and § there is a A, such that P, (B(A,,d))>
1-¢k=1,2,.... To prove this we chose Ag such that

é &
/_1 ’ > =
o ¥ (Ao, 3) <4

supPk( max Ix(t)—~x(T)|>é)<2’lp(A(’),é)
T 3 3

TIST+HA,

and %, so that

for k>k,. Then it holds for k>k,

é

(A
P.(B(AG,8)=1— 5 P, (A; (A{,, -3—\) >1—2([A6”1]+1)w(A6,§)>1—e.
s=0 /
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Further there exist Ax>0,k=1,2,... so that P,(B(A%, 6))>1—¢. The propo-
sition above now follows by putting A,=min (Ao, Ay, ..., Ax,).

Let £¢>0 and 8, 0,v— oco. There is a sequence A, 0,v—> oo, for which
P (B(A,,6,)>1—¢e-27" k,v=1,2,.... Now consider K= 2, B(A,,d,). The
functions in K are equi-continuous with a common modulus of continuity given
by the linear interpolation between the points (A,,d;), (A, 9d,), .... Further
P(K)>1—¢ and the theorem follows easily.

Chapter 4. Central limit problems

10. Preliminaries

Analogues. of the central limit theorem for sampling from finite populations
have been extensively studied. Among the works on the problem we mention
Wald and Wolfowitz [19], Madow [15], Noether [17], Hoeffding [11], Motoo
[16], Erdoés and Rényi [6], Hajek [8], and [9].

We state the problem we shall consider first in this chapter. As usual,
X, ..., Xiw, is a r.p. of the elements in 7, 8§ =0,8P =X+ ...+ Xpn, 1 <
n<Npk=1,2,.... For simplicity we write S, instead of S%. S7, stands for
the standardized sample sum

85, = (8n, — E8x,)/0(8n,)- (10.1)

The problem is to determine the class of possible limit distributions for 87, and

the conditions for convergence. In Hajek [9] there is given a complete treat-
ment of the problem under the infinitesimality condition (N) defined in Remark 1
to Th. 12.1. We shall consider the problem without assumption (N), but under
the additional assumption, that

0 <lim /Ny <lim 7, /Ny <1 (10.2)
k K

Our analysis will be based on the fundamental Lemma 2.1 in [8], a consequence

of which we now state. Let nk={ak,,},1,v="1 and let Y4, ..., Yka be independent
r.v.’s with the following two-point distributions

P(qu=a/kv—,uk)=1_P(ka=0)=nk/Nk, 'V=1,2, ...,.Nk, ’C=1,2,... (10.3)

We define Z, =Y +...+ Yiw, £=1,2,... and Zn,=2Zn,/0(Z,). The distri-
butions of §7, and Z;, are denoted respectively F7, (x) and G (z). The lemma
below is an immediate consequence of Lemma 2.1 in [8].

Lemma 10.1. If condition (10.2) is fulfilled, then {F7}{° and {G7. )3 possess
limit distributions stmultaneously, and if they have limit distributions these coincide.

Following Héjek we will derive results about the convergence of {F,"{k}i"’ by
considering the sequence {G} }i°. G is a convolution of two-point distributions
and we start by studying such distributions.
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11. On convolutions of certain two-point distributions

We shall consider pairs (c,d) of sequences of real numbers, c={c,, ¢,, ...},
d={d,,d,,...}. We assume throughout that such sequences satisfy ¢, <c,<...<0
and lim,¢, =0, d,>d,>...>0 and lim,d,=0. If a sequence c or d is given
only for a finite number of indices it is completed to an infinite sequence by
addition of zeros. By |(c,d)| we mean the sequence we get by arranging —c,,
—Cgy ...y dy, dy, ... in decreasing order, and with (0,0) we mean the pair in which
both sequences consist of only zeros. It will be convenient to have a notation
for componentwise convergence.

Definition. (c(k),d(k))= (c,d) when k-> oo if limy ¢, (k)=c, and lim, d, (k}=d,,
for v=1,2,....
The following result is easily proved.

Lemma 11.1. The set of pairs (c, d) for which D7 (c2 +d2) <M < oo is compact
under = convergence.

Next we define a class of two-point distributions. For 0<A<1 A (; 4) is the
pr. distribution with pr. (1—21) in the point —}2/(1—2) and pr. 1 in the point
V(1—2)/1. The corresponding c.f. g(t; A) is

@(t; A)=(1— 1) exp {—it VA/(1—A)} +2 exp {it V(1 —1)/A} (11.1)

Lemma 11.2. (c,d) is a pair for which > (c2+dl)< oo and 0<A<1. Then
Fz; A e, d)=T1" A (Cf /1) < II*A (df ; /1) (11.2)
v=1 v v=1 ]

converges. (% and []* stand for convolution and A(z/0; A) is the d.f. with pr. 1
in x=0). The representation of F(x;],c,d) as a convolution of factors A(x/c,; )
and A (x/d,; 1) is unique in the following sense when (c, d)=+(0,0):

(i) If A+1} there are exactly two sets of parameters which yield the same
F(x; 2, ¢,d), namely, F(x;4,¢,d)=F(z;1—2, —d, —¢).

! (iit)l )Tf l}.———‘%l ‘it holds that F(x,},c,d)=F(x,4',¢',d’) if and only if X' =% and
C’, nN— (C, ) .

Proof. In order to show that (11.2) converges we show that the corresponding
product of cf.’s

p(t; A, ¢, d) =ﬁl<p(c,, t; A) -vlj pld, t; 2) (11.3)

converges uniformly on every compact interval on the real axis. It will be
convenient to study i for complex arguments. KEasy eastimates yield that

1-g@ <] (11.4)
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holds on every compact set in the complex plane. The constant C depends on
A and the compact set. According to the assumption > (c¢Z+dZ)< oo it follows
from (11.4) that the product (11.3) converges uniformly on every compact set
in the complex plane. Thus y(z; A, c,d) is an entire function. Especially we have
uniform convergence of (11.3) on every compact interval on the real axis. Thus
o(t; 4, ¢c,d) is a cf. and F(x;A,¢,d) is a d.f.

To prove the uniqueness part we consider the zeros of p. From the uniform
convergence of (11.3) it follows that the zeros of y are exactly those of the
factors g(c,2z;4) and ¢(d,2;1). The zeros of @(pz; A) are

2= WAL= [2n+)a—iln {(1-2)/2}, »=0,+1,+2,... (I1L5)
Suppose we have that F(x;4,c,d)=F(x;A’,¢',d’), where > (c2+d%) < oo and
2.(6*+d,%) < oo. The unique correspondence between c.f.’s and d.f.’s yields that

(11.6) then holds for all real z. But both sides in (11.6) are entire functions and
thus (11.6) holds for all z.

gw(cvz; A) glcp(dvz; A= g¢(c;z; ) Eltp(d,',z; ). (11.6)

First we assume 0<A<} and 0<1'<3}. By equating the zeros of the left-
and right-hand sides of (11.6), which are closest to the origin in the quadrant
Im(z) >0, Re(2)>0, we get

VAL -2 (—m—iln {1 -)/AN = VA QL —A) (—a—iln{(1 - A)/A}).

a_Yra-xy_Vra-u) n{a-1)/a}

Th ,
* a Vaa-a Via—-a h{l-2)/4}

which yields A=A4" and ¢, =c;. By considering the zeros closest to the origin in
the quadrant Im(z)<0, Re(z)>0 we obtain that d; =d;. Now we can cancel
the factors g(c,2;4) and @(d,z; 1) in (11.6), repeat the argument, and get that
cz=cz and d;=d; and so on. Next we assume 0<i<} and 3 <1 <1. Again, by
considering the zeros closest to the origin in the quadrant Re(z)>0, Im(z)>0
for the right- and left-hand sides of (11.6) we get that

VAl —A)(—n—iln {Q-2)/2)=d V27 Q-1)(m—iln {1 - 1)/1})
which yields ’'=1-21 and d;= —c,;. By proceeding as above we obtain that a
necessary condition for (11.6) to hold is that A’=1—2 and (¢’,d’)=(—d, —c).
It is easily checked that this condition is also sufficient. In quite an analogous

manner the proposition can be demonstrated for 3 <A<1 and A=%. Thus the
lemma is proved. The following result is immediate.

Lemma 11.3. F(x;2,¢,d) has mean 0 and variance D> (c2+d2).
Next we prove a convergence result.
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Lemma 11.4. Fy(x) = F(z; A, c(k), d(k)), k=1,2, ... is a sequence of distributions
defined according to (11.2) for which it holds that 0 < lim, A <limg A, <1 and
2% (cr (k) +dy (k) =1.

(i) The possible limit distributions for F, when k—>oo are those which can be
written

N0, 1 —2@3 +d2) *ﬁ* Alw/c; ) % f{l* Az/dy; 2) (11.7)

where (c,d) satisfies Y7 (c2+d2) <1 and 0<A<1. N(u, 0%) is the normal distri-
bution with mean y and variance o2

(i) Necessary and sufficient for Fy(z) to convergence i.d. to the distribution (11.7)
when k—oo is

1. if (c,d)=(0,0) that (c(k), d(k))= (0, 0) when k> oo.
2. if (¢,d)+(0,0) and A%} that
(8) {A}3° has at most the two limits points A and 1—A.
(b) for every subsequence {k,}s2, for which lim, A, = A it holds that (c(k,), d(k,)) =
(c,d) and for every subsequence for which lim,2A, =1—1 it holds that
(c(k,), d(K,)) = (—d, ~c).
3. if (¢,d)%+(0,0) and A=1 that
(a) =} when k—oo.
(B) |(e(®), d(®)| = |(c, d)| when &~ oo.
We will use the following estimate in the proof.
Lemma I1.5. y(t; 4, ¢, d) is defined in (11.3). If

|A-3]<o<} and |t|<min(—cils, dvia),

2 o0 N
then p(t; A, ¢,d)— eXP{—t— > (cf+d3)}- [1glet; 2) @l t; /1)’
2 ¥31 v=1
<exp{0[t|3max(—cN+1, dyi1): D (c§+d3)}— 1 (11.8)
N+1

where the constant C only depends on g.
Proof. C,, C,, ... denotes constants. It holds that
@t A)=1-12(1 +iR, (t; 2)), (11.9)
where |B,(t;2)| <O, if |¢|<1 and |A—}|<po<}. Further we have
1—z=¢"?(1+2%R,(2)), (11.10)
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where |R,(2)|<C, if |2|<27'(1+C,). By combining (11.9) and (11.10) we get
for real o’s

@lat; A) =e~ 21+ |t P By (8, 2, 2)), (11.11)

where |RB,(t, «, )| <G, if |t <|a™?| and |A—}|<o<3}. Thus

[ 2 oo -]
IT plet; 2) pldyt; 4) =exp{— L@ +d3)}~ TT (1 +]etPRy) (1+|dt[*Rs)
N1 2 Nt1 Ni1

and if [¢|< min(—cyli,dyti) and |A—}|< o<} it holds that
T 0+ ot 1+t <esp (04leP 3 (lof+a)
N+1 N+1

<exp {03 [t max (—exs1, dusa) Iél(c% + d%)}
and the estimate (11.8) follows.
Proof of Lemma 11.4. First we assume
Ae—>A and (c(k), d(k))=(¢,d) when k—oo. (11.12)

According to Lemma 11.1 it holds that >3 (c2+dZ) <1 and we have
2 0

\ w(t; A, ¢, d) exp {— % (1 - > (2+ df))} — p(t; A, c(k), d(K)) ‘

»=1 o

<

exp {- E2—2-(1 — io (c2 +d,,2))} [zp(t; A, d)— ﬁ o(ct; A) p(d,t; A)

=1 v=1

2

X exp { - > (G+ df)}] | + | Y(t; A, c(k), d(k)) — exp {— e § (e (k) + df(k))}
2 i1 2§51

4_

R

v=1

X }31 e (k)8 &) (d, (k)4 Aw)
X ﬁl(p(c,t; 2) p(d,t; 1) —exp {—— g (1 — IEV: (cE(k) + df(k)))}
v= y=1

X ElfP(c»(k) b A} @ldy (k) 8 A))

= R,(t, N)+ Ry(t, N, k) + By (t, N, k).

Let T and & be arbitrary positive numbers. From (11.12) we conclude that
supy, max ( —cy(k), dy(k)) >0 when N-—>oo and that |4 —}|<e<}. The estimate
(11.8) now yields that there is a N,, depending on 7T and &, such that | B,(f, Nj)| <e
and |Ry(t, Ny, k)|<e if |t|<7T. It is an immediate consequence of (11.12) that
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Rg(t, Ny, k) -0 uniformly on every compact i-interval when k—oco. Thus, in all,
we have proved that if (11.12) holds then it holds uniformly on every compact
t-interval that

limy, p(t; A, c(k), d(k)) = exp { - t2-2 (1 — Z (c2+d; ))} “p(t; A, ¢, d). (11.13)

p=1

According to the continuity theorem for c.f.’s this is equivalent to the following:

(11.12) implies that Fk—>N(O, 1—z(c3+df))*F(x; Acd) id. (11.14)

We observe that the assumption 4,—A was used only to assure that Ry{t, Ny, k)—>0.
It is easily seen that if (c,d)=(0.0) then the assumption A,—A is superfluous
for this, and the sufficiency part of (ii) 1 in the lemma follows.

We prove the sufficiency parts of (ii) 2 and 3 indirectly and we assume that
(a) and (b) hold but that {Fk}l does not converge i.d. From Lemma 11.3 it
readily follows that {F,}" is weakly compact under convergence i.d. By com-
bining this with Lemma 11.1 we see that we can select two subsequences {k,};21
and {k,}>; such that

A, —> 2, (c(ky), d(k,))=(c,d) and F; (r)—>F(z) i.d. when y—>oco (11.15)
b, X', (elky), d(k)) = (¢, d') and F (x)—>F'(z) id. when g—>oco (11.16)
where F(x) £ F' (z). (11.17)

From (11.14), (11.15) and (11.16) it follows that the c.f’.s of F and F' are

ci. of F =exp{—§(l-—§ 2 +d; ))} ﬁ ple t; 2) pld,t; 1) (11.18)

1

2

cf. of F'=exp { - % (1 -+ d;z))} IT (e t; A') p(dyt; 2'). (11.19)
1 v=1

From (b) it follows that >3i°(c2+dZ) =37 (c;>+d,?). Thus (11.17), (11.18) and
(11.19) yield

o0

H (c,t; 2) p(dt; A) $H<pc,,tl)(p(dt}.)

p=1

and this contradicts the result in Lemma 11.2. Hence the sufficiency parts of
(ii) are proved. Next we show that the class of limit distributions is the one
claimed. From a sequence {4, (c(k),d(k))};° we can always select a subsequence
for which (11.15) holds. That every limit function is of the type (11.7) thus
follows from (11.14). Conversely, that every function of the type (11.7) is a
limit function follows from the easily proved fact that every (c,d) for which
221 (cZ+dE) <1 is obtainable as (c(k), d(k))=(c,d), k—>oo, where >{ (ci(k)+
d;’ (k))=1.
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To prove the necessity parts we assume that {F,(z)};° converges to F(z) given
by (11.18). Select a subsequence {k,}:>; for which (11.16) holds. Then F’(x)=F(x)
and from (11.14) it follows that (11.18)=(11.19). First, we assume that (c,d)=
(0,0). Then also (¢’,d’)=(0,0) because otherwise (11.19) has zeros, while (11.18)
is zerofree. Next assume that (¢, d)=+(0,0). The exponential functions are zero-
free. By carrying through an analysis of the zeros of (11.18) and (11.19) exactly
as in the proof of Lemma 11.2, the necessity can be proved. Thus the lemma
is completely proved.

12. Limis distributions for sample sums

Let {m}?, m.={aw}’, be a population sequence and let ok <oue<...<p
and fri>pPre> ... >, be the elements in s, which differ from u,. We
define cx, = (otk» — pi)/Di» i = (Brv — pi)/ D (for def. of Dy see (1.1), Dy is as-
sumed >0), c(mm)={cx1, iz, ...}, (i) ={dr1, Bz, ...} and A, =ne Ni', while S%, is
defined in (10.1).

Theorem 12.1. If (10.2) holds and D,>0 for all k, then:
(i) The possible limit distributions for S, when k—>oo are those given by (11.7).

(ii) Necessary and sufficient for Sy, to converge i.d. to (11.7) is
1. if (c,d)=(0, 0), that (c(my), d(m)) = (0,0) when k—>co.
2. if (¢, d)=*=(0,0) and A+1} that

(@) {A}° has at most the two limit points A and 1—A.

(b) for every subsequence {k,}¥ for which lim, A, =2 it holds that (c(m),
d(m,)) = (¢, d) and for every subsequence for which lim, A, =1— A it holds
that (c(my,), d(7m)) = (—d, —¢).

3. if (c,d)+=(0,0) and 1=1 that

(a) A} when koo,

(b) (el dmed)| = | (e, d)].

Remarks. 1. The condition (c(n), d(m))=(0,0) or, rather, its equivalent
limk DEI max, ]ak,-—,ukl =0 (N)

which is called Noether’s condition (see [17] and [11]) is well-known to be neces-
sary and sufficient for S, to converge to a N(0, 1)-distribution i.d. when (10.2)
holds, see [8].

2. We have excluded the cases limy 2, =0 and lim, 4, =1. That the whole

situation changes considerably in these cases can be seen from Theorem 5.1
in [8].

Proof of Theorem 12.1. Let Y, and Zy, bébthe random variables defined in
§ 10. It is easily checked that o(Z,,) =D, VA, (1 — A} and that (Y, — EY1,)/0(Zn)
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has a A(x/(ar, — ur); Ac)-distribution. Thus, G7,= F(x; A, c(7), d(7,)). Now part (ii)
follows immediately from Lemmata 10.1 and 11.4. From Lemma 11.4 it also
follows that the class of limit distributions cannot exceed the class defined by
(11.7). It remains to prove that every pair (c,d) for which >{°(c2+d7) <1, is
obtainable as a limit (c(m), d(m))= (¢, d), k—>co for some population sequence
{m}7. Let (c,d) be given. We define m, as the population which contains the
elements c,, Cy, ..., €y, dy, dy, ... &y, 272 k(k— 1) elements — k™" (1 — D § (¢ +d?))?, and,
finally, 27'k(k—1) elements &k '((1—2%(c2+d2)}—2(k—1)"'D%(c,+d)). It is
easily checked that 1) u,=0, 2) D,—1 when k->o0, 3) ¢,(m)=c,+o(l) and
d,(7me) =d,+0o(1) when k—oco. Thus, (c(m), d(m))=(c,d) when k—oco, and the
proof of the theorem is complete.

13. Convergence of random walks

7 is a finite population and X,, X,, ..., Xy a r.p. of its elements. Let, as usual,
8;,=0,8,=X,4+...+X,, n=1,2,...,N. It will be convenient to normalize the
random walk 8§, 8,,...,8, in the following way. By the normalized random
walk corresponding to a sample of size n we mean the stochastic process on [0, 1]
for which the sample path at the point w €Q is obtained by connecting the
points

(0,0), (v, (02 Vn) (8, (@) — pz)),
(2n_1: (o= V;’)—l (Sz ((0) - 2,”1!)), cees (L, (Gn V;" )‘1 (Sﬂ ((‘0) - n,un))

by straight lines. This process obviously has continuous sample paths and we
denote the corresponding pr. measure on C[0,1] by P(x,=).

The following condition (L) was introduced in {6] and its relevance is further
exhibited by the result in Theorem 3.1 in [8]. Let m, = {ax1, ..., qxn} and 1<
m <Ny, k=1,2,.... The pair {m}{, {n is said to satisfy condition (L), for
Lindeberg, if for every £>0 it holds that

lim Dj;? S (@i» — px)* =0, L)

ko0 nk R

—aul=eD -
laxy — upch > 2D NI:( Nk)

For def. of! Di see (1.1). We shall also consider the condition (N) defined in
Remark 1 to Theorem 12.1.

Theorem 13.1. If {m}7 and {m}{ satisfy
1. n,/Ny—>2 when k—>oco0, 0<A<]1.
2. In case 1> 0, {m,}7 fulfills (N) and in case A=0, {m}7, {m}3° fulfills (L), then
P, i) = W(1, A7) when k—>oo. (13.1)
Proof. 1t is no loss of generality to assume that =0 for all k, and we do
so thoughout the proof. We first consider the case n, =Ny, k=1, 2, .... We shall
prove the theorem by applying Theorem 9.1 and thus we shall verify that
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Py, N = W(1,1)” when k— oo, for every marginal M (13.2)

and that the family {P(m,, N} is tight. (13.3)

We start with (13.2). Let M: 0<¢,<?,<...t,<1 be a given marginal. A¥ is
the covariance matrix corresponding to the normal distribution W(1,1)”. A

is positive definite. Let nf =[; N;], 1=0,1,2,...,m+1, {,=0 and ¢mi1=1. V¥ is
the random vector

Vi = (Di'S,, ..., D,:l,s',,g,,)).
Let a=(ay, 0, ..., 2,) be a real vector. Our aim is to show that
V¥~ N(0, A™) i.d. when k—oo. (13.4)
According to a well-known result by Cramér ([1] p. 105), (13.4) is equivalent to
(V¥, @) > N0, xA¥’) i.d. for every a=+0, when k— oo (13.5)

{(,) stands for scalar product.) We have
Ni
(V;y’ a) = Zlekvka; (13.6)

where gk, =Di' 37 sk, and s(k,¥)=1 when n{ V<v<n{, i=1,2,...,m+1.
Empty summation gives 0. Let Q= {gi1, ..., oev}. Computations yield that
E(V¥,2)=0 and that

2 M — 72 — 1 S @ _ (-1 < 2_ 1 < (i))2
o*((Vi', o)) =D} o2, Nk—l,-gl("" ng )p}z:iocp N —T) Eloc,-nk . (13.7)

From (13.7) we deduce that

m m m 2
lim (V¥ &)= 3 (t: —t:i_1) ( > oz,,)z— (Z t,-oc,-) . (13.8)
K-> 00 i=1 p==i i=1

It is not difficult to verify that the right-hand side in (13.8) can be written
aAMa’. (13.5) will now follow from Theorems 4.1 and 4.2 and Lemma 4.1 in [9]
if we prove that the sequence {Q;}{" satisfies any of the conditions in Lemma 4.1
in [8]. We choose to verify (iii). A sequence {m}i° satisfies this condition if

(lim 4, = o0) = lim g72 f | 22dFS, =0. (13.9)
I.l' >Ak0,,;

k—>o0 k—»o0

Condition (13.9) is clearly invariant if all elements in 7, are multiplied with the
same nonzero constant. We consider {Q;}{°, where Q;=D;-Q, k=1,2,.... We
observe that all elements in Q; lie on the interval
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m m
[min > @, max oc,,]

1<sg<m+1 p=s 1<ssm+1 p=s

2
and that ¢Q,— axAMa’ >0, because AY is positive definite. Now (13.9) is easily
verified for {Q} and thus for {Q,}7. Hence, (13.5) follows and thus (13.4) is
proved when M is a marginal which contains none of the points 0 or 1. The
extension of (13.4) to an arbitrary ma,rglnal is immediate. Flnally, we have that
P(m,, N,)* is the distribution of [V + (Y9, ..., Y¥)](1— Ni'), where Y§c)
G Ne—[6:N]) Xeoiwg+1- DY, i=1,2, ... m. Condition (N) implies that Y —
in pr. when k—co, and hence (13.2) fo]lows from (13.4).

Next we verify (13.3), and this can be done by applying Theorem 9.2. Let
d and A be positive numbers,

T€[0,1-A], AP=[N,TINz! and AD=([N(T+A)]+1)N;"
For simplicity we write P, instead of P(m, Ni). We have

P,( max |xz(T)—x(t)| > 6) < Pp( max |2(T)—z(AP) +=(AP) — ()| >6). (13.10)

T<IST+A r<t<il

The measure P, is concentrated on polygous with corners in time points which
are integer multiples of Ni'. Thus we can continue the inequality (13.10)

<P, (|x(}.(k1’) —2(T)| > (—;) + Pk( max |z(AP) —=z(t)| > 6)

W <e<a®

<2Pk( max Ix(lg))—x(t)|>g). (13.11)

P<t<a®

From the exchangeability of the X,’s and the fact that polygons attain their
maximum in corners, we conclude that

(13.11)<2P( max |S§">/(va"kak)|>g). (13.12)

2 1
y< Ny (A2 - 2D)

If 29 —-2<} we get from Lemma 6.2 that
(13.12) < 4P (l N, (D~ 1(1))/ ko'k)[ >—— V2 }.(2) }»(1))) (13.13)

As 2P —2P—>A when k->co we have if k is sufficiently large and if A <46/128

S 2, 1
- 4)

Oy VJ—V,C

(13.13) < 4P( > g). (13.14)
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As a special case of (13.2) (or of Theorem 12.1) it holds that the quantity in
(13.14) converges, when k—co, to

4 —a? 81/2 6%
V2B —B) f.z.m °xp {2A(1 = A)} st V,—, Ar=4) e"p{” 128A(1- A)}

Summing up, we have proved: If A <4%/128, then

lim sup P,( max |o(T)—z(t)|<0)
k—oo 0KTK1~A TSIST+HA
8V2 62
<422 - . — 1
<4 ] nA(l A)exp{ 128A(1—A)} (13.15)

By combining (13.15) with the fact S{”=0 we obtain (13.3) as a consequence
of Theorem 9.2. Thus, Theorem 13.1 is proved for the case n,=N,.

It is not difficult to see that the case 0<A<1 is contained in the case
n, = Ny. The difference is merely a change of the time scale. We do not carry
out the details to verify this.

Finally, the case A=0 can be treated quite analogously. We give an indica-
tion of the proof and we follow the steps in the above proof. M is the marginal,
A¥ the covariance matrix corresponding to W(1), nf = [tm], ¢ =0, 1, ..., m.
V= ((or Ver)“ISng), e (0 V) S ). In the representation (13.6) of (V¥ &)

n

we get that
1 m
— Z ap’ 'V=].,2, ---:ngc"')
Qky = 1 Ok Vnk p=s(k,v)
0 , 'V=n§cm)+1,...,Nk,

where s(k,») is defined as before. Again it is a matter of computation to show
that E(VY¥,«)=0 and that o®((V¥,«))—>«A™a’, when k—>oco. To prove the
asymptotic normality of (Vi,«) we again apply Theorem 4.1 in [9], but this
time we verify directly that {m, (0} satisfies condition (4.3) in [9]. “We con-
sider instead the sequence {m, Qi}?’, where Q;={ok1, ..., okn,} = {0% Vi ---s
Oy V’nkaNk}. Let

ik (ks — poy)

Kif -V.N;I-D?,k .—-D%);‘.
It holds that lors— pay | <2 zl|a,| (13.16)

and Dy /me— a AMod. (13.17)

From (13.16) and (13.17) it follows easily that {m, Q:}7 and thus {m, Q)7
satisfies condition (4.3) in [9] as soon as {m}{° satisfies condition (L) and

lim n, /N <1. The rest of the proof runs almost exactly as before. The proof
of Theorem 13.1 is thus concluded.
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The next theorem, which is a counterpart of the so-called invariance principle,
see [3], is an immediate consequence of Theorem 13.1 and Lemma 9.1.

Theorem 13.2. If {m})° and {n,}{° satisfy the conditions of Theorem 13.1 and
tf f is a functional on C[0, 1), which is continuous a.e. (W(1,A17)), then

P, i) (fx) <o) >W(L, A7) (f(x) S &) i.d. when k—>co.

Next we give an application of the invariance principle. We shall consider
the r.v.’s

N, = the number of positive sums among S, S,, ..., S,. (13.18)

Theorem 13.3. If {m.}7 and {n,}y satisfy the conditions in Theorem 13.1 and
f ue=0, k=1,2, ..., then it holds for 0<a <1, that

Lim P(Nn,/n, < o) = ad + %(1 -4
k—>o0

ol—2)

1 . —a)(1—4)
+;[(1-—ad) Arecsine V - e

— (1 —(1—a) A) Arcsine V(:_ 1—2) A

]. (13.19)

Proof. We introduce the following functionals on C[0, 1],ws(x):,u(t|0<t<s,
z(¢)>0), where x is the Lebesgue measure. We will write y instead of v,.
y{z;n)=n"" (the number of the halfopen intervals ({(» — 1) n Lo, v=1,2,...n,
on which z{(#)>0). It holds that

P(Np /7 < &) = Plowg, mie) (9(; m) < ). (13.20)
We now proceed by showing that
Pz, i) (s ma) < @) > W(L, A7) (9(2) <) id, k—co. (13.21)

Then we compute the distribution to the right in (13.21). First we prove that
for every £>0 it holds that

Py, mi) (|9(2; mie) — p(x)| = &) >0 when k—>oco. (13.22)

The set of zeros of z(f) € C[0, 1] is a closed set, and we denote by I, (), I, (%), ...
the zero-free open intervals, arranged according to decreasing length. Let E.,=
(@|>™y w(l,(x))>1—¢). If £€E, » it holds that

| (s n) — ()| < 2mn ' +¢. (13.23)

It is well.known (see e.g. Lévy (13] § 15) that the set of zeros of x(f) has measure
0 with W(1,A")—pr. 1. Thus W(1,1 Y (E,.») "1 when m-—>cc. Hence we can
choose m(s) so that W(1,A7") (B.me)>1—e/2. As P(my, m) = W(1,17) and B, me
is open it holds that

Pty 1) (Bome) > 1—¢ if k>E,. (13.24)
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Now (13.23) and (13.24) imply (13.22). By combining (13.22) with the well-
known fact that y(z) is continuous a.e. (W(1,47")), (13.21) follows from Theo-
rem 13.2.

Next we compute W(1,A17")(p(r)<a). The result for A1=1

W(1,1) (pz)<a)=a for 0<a<l (13.25)

is well-known and can be obtained as follows. Let sma; be the population which
contains k£ 1’s and k(—1)’s and let N3, = the number of edges on the positive
side in the random walk polygon corresponding to a r.p. of the elements in 7rax.
According to Theorem 3 in §2 of Chapter III in [7], N3«/2k has a uniform
distribution over the values 0, 1/k, 2/k, ..., 1. Now N3;/2k and Nax/2k (Nz is
def. in (13.18)) are asymptotically equivalent. Thus (13.25) follows by letting
k—oo.

To treat the case A <1 we introduce the functional 7" on C[0,1], T'(x) =
sup (¢]x(£) =0). The distribution of 7' under W(c? A~ !)-measure can be found in
Lévy [13], p- 39. It is

fl—W(or” ATHY(T(x)<t)=f(t A)=———l{1-’1—:_ o<t<l1 (13.26)
ag” (-2 Vel )

It is clear that the distribution should be independent of o Let 0<7,< 1.
The process “W(¢* A™') under the condition 7'=7'" has the following prop-
erties. For t€[0,T,] it is a tied-down Wiener process with tying point 7. For
t€[T,, 1] it is independent of what happened on [0,7')] and it is equally likely
either strictly positive or strictly negative. This is realized by considering time
reversed on [0,47']. Reversal of time leaves W(o% A~') invariant and makes 7'
independent of the future. By the strong Markov property we get for 0 <a <1

1
W27 o) <a) = | WD) (prle) < (T, B T
1
+%f0 W(l, T) (qu(x) <oa—(1-TH{T,2)dT

i (1 @ 1M 1 T, 2)dT
_Ef min (I,E,)f(T,l)dT+§f max(O,i,(ex—(l—T)))f( , A)

0 0
1

1" a (P/T,8) . 1 _l;gf‘ (T, %)
-zfof(T,/‘L)dT+2LTdT+§ AT, 2y dT - = | SRS

l1-a
(13.27)
The second equality in (13.27) follows from (13.25). It holds
= (2 prsine [/TOA)
AT, 2)—dT (% Arcsine =7 ) (13.28)
(T, 2) d( 2V1—/1[V1—T A V 1-T ])

e | - ———1I}. 2

7 at\" = ey Bk B 0 TT R (13.29)
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By using the primitive functions in (13.28) and (13.29) to evaluate the inte-
grals in (13.27) we get the pr. W(1,A ) (p(z)<a) on the form

1+ 7 [Arcsine Va(l ~ 2) (1 — ad) ' — Aresine V(1 —2A) (1 —a) (1 — A1 — )™
+ad Aretg V(I —a) o T(1—2) T — (1 — ) A Arctg V(1 — )" (L — )],

which is easily transformed into (13.19). This concludes the proof.

Chapter 5. Asymptotic behaviour of empirical distributions and
empirical fractiles

14. On the empirical distribution

The empirical distribution function F*(w,t,n) corresponding to the sample
X,,X,,..., X, of size n from x is the random distribution function (in f) de-
fined by

F*(w,t, n)=n"1§H(t—X,(w)), WEQ, —oo<t<oe, (14.1)
v=1

where F(t) is 0 for t<0 and 1 for £>0. We will often use the less cambersome
notations F*(t,n) or F*().

The following two ideas have been central in the study of the behaviour of
F*(t,n) when the X’s are independent with common distribution F.

1. (Kolmogorov.) When F is continuous, many problems about F*(t,n) can
be reduced to the case where F is uniform on [0, 1]. This reduction is obtained
by the transformation ¥,=F(X,), v=1,2,...n.

2. (Doob [5] and Donsker [4].) When F is uniform on [0, 1], it holds that
Vﬁ(F *(t,n) —t), regarded as a stochastic process with time parameter ¢ €[0,1],
converges to the W(l,1)-process, when n-—>oco,

Our treatment of the behaviour of F*(t,n), when X,, ..., X, is a sample from
a finite population, leans heavily on the above ideas.

First we define some stochastic processes related to F*(t, n), defined in (14.1).
The process Z(t,n) is

Z(w, t,n)=F*(w,t,n) — Fu(t), ® €Q, — oo <t<oo. (14.2)

The sample paths of a Z-process consist of horizontal line segments and are
thus discontinuous. We define the process Q(t, n) as a ““‘continuization” of Z(,n).
For w €Q let (— oo, a(w)) and [f(w), o) be the infinite intervals of constancy
for Z(w,t,m). Q(w,t,n) is for ¢€ [a(w), B(w)] the linear interpolation between the
left endpoints of constancy intervals for Z(w,t, n). Q(w,?,n)=Z(w, x{w),n) .for
t < a(w) and for ¢> f(w) Qw,t,n)=0. Finally we introduce a convenient normaliza-
tion of the Q-process:

R(w,t,n)=n"1—=N"Y) "t Qw,t,n), 0€Q, —oo<t<oo, (14.3)
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The processes introduced possess a symmetry property which is analogous to
the duality principle (p. 385). We need a notation. Let X(£) and Y(f) be stochastic
processes, —oco <¢{<oo, If all their marginal distributions coincide, we write
X(t)=:Y().

Lemma 14.1. Let T'(t,n) be any of the processes Z(t, n), Q(t, n) or Z(t, n) — Q(¢, n).
Then it holds that

= N"Y) Pt n)=:—((N—n)"'—N"Y) tT¢ N —n), (14.4)

where N is the size of m. Especially we have

R(t,n)=:—R({, N —n). (14.5)
Proof. We prove the proposition for 7'=Z. Let w<w’ be the one-one mapping
of Q onto itself, which is reversal of order in the permutations, i.e. (i,, 1, ..., ty) =
0o o' =(iy, ty_1, ..., §;). Then

(n'=NYHY*tZ(w,t,n)=(n"1— N~ hy- [:L % H(t—-X,,(w))-—llv % H(t—X,,(a))):I
y=1 =1

ot [t 3 e - (2-1) § e xo)

y=n+1

N-=n

. 1Y ,
=< (N—n)'=NY" *[r S HE-X, (o) —ﬁglﬂ(t—X,(w))]. (14.6)

The proposition (14.4) now follows from (14.6) and the fact that every point
® €Q has the same probability.

In the sequel we shall consider sequences of empirical distributions corre-
sponding to samples from s, £=1,2,.... The processes introduced depend on
the population m;, and the size m, of the sample from m,. We consider that
notations like Z(f, n,), R(¢, n,) etc. are sufficient to indicate this dependence. We
introduce two conditions on population sequences. {m,}7 is said to satisfy respec-
tively condltlons (A) and (B) if

(A): Ni! (Maximal number of equal elements in 7;) —0, when k— oo,

{B): The elements ay, v=1,2, ..., N; of m; satisfy 0<ay, <1 and lim, Fy(t) =¢
for 0<t<1.

Verbally (A) means that F,(f) is asymptotically continuous and (B) means
that Fy(f) is asymptotically a uniform distribution on [0.1]. It is easy to see
that (B) implies (A) and also that (B) is equivalent to the condition.

(B’): The elements a,, of m, v=1,2, ..., N, satisfy 0<ay, <1 and
limk Sup0<t<1 IFk(t) et tI =0.

The next lemma states that if (A) holds, then the two processes (n~! — N~Y)~tZ(t, n)
and R(t,n) are asymptotically “‘equivalent’.
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Lemma 14.2. If {m}{° satisfies (A) and if lim, min (n,, N, — n,) = oo, then it holds
for every £>0 that

lim;, P((ni' — Ni') ™% sup; | Z(2, n) — Q(t, me) | > €) =0. (14.7)

Proof. From Lemma 14.1 it follows that it is sufficient to prove the lemma
under the assumption n,<N,/2. Then (14.7) is equivalent to

limy, P (Vny sup, | Z(¢, n) — Q(t, mi))| =€) =0. (14.8)

Sup; | Z(¢, ni) — Q(f, )| equals the maximal jump in the Z-process. Let a1, axe,
..., oy be the distinct elements in my, P = P(X i1 = o) and Ty, = ny (Z{ot,, ) —
Ll —0,my)), v=1,2, ..., M. Ty, +npi has the hypergeometric distribution
H(Ny, n, D). From Theorem 3.1 it follows that ET'%, is not greater than the 4th
central moment in the Bi(ny, p;,)-distribution, which is (see e.g. [2], p. 195)

3nE ks Gy + Nk Pies Gy (1 — 6Py Gir), Where g, = 1 — Py

From Tchebychev’s inequality with 4th moments we thus get

P (Vi | Tro /| > €) < £7* (3% + P i ).
Thus

P(Vmy sup, | Z(t, mi) — Q(t, mi)| > ¢)
My M Mg
<> P<V7T,,|Tk,/nk|>s><s-4(3 S bt S pk,>
r=1 p=1 r=1
<& 4(3 max, py, +nx’) >0, when k—>co,

because condition (A) states that lim, max, py, =0. Thus the lemma is proved.
If n has all its elements on the interval [0,1] the significant parts of the
processes Z,  and R are those for which ¢ €[0,1]. The process E(f, n) has con-
tinuous sample paths and we can, according to §8, identify its restriction to
t€[0,1], with a measure on C[0,1]. We denote this measure by E(w,n).

Theorem 14.1. If {n,}{° satisfies condition (B) and if lim, min (ny, Ni—ng)= oo,
then

E(my, my) = W(1,1) when k—oo.

Proof. We prove the theorem by applying Theorem 9.1, and first we prove
marginal convergence

B(my, n)” = W(1, 1Y for every ma,rginé,l M, when k—oo. (14.9)

Let M: 0<t¢ <f,<...<#,<1 be a given marginal. We define the random vector
Yio,=(Y2, Y2, ..., Y™) by YE=1if Xs, <t;and YL =0 if X4, >8, ¢=1,2,...,m.
Then the distribution E(sw, 7)Y equals the distribution of
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nk
(' =Ny tni' 3 (Yi,—EYw)
r=1

+ (0t = N ) H(@— 2) (b, ma), -, (@ — Z) (bmy ma).  (14.10)

From Lemma 14.2 it follows that the last term in (14.10) tends to 0 in pr.
when k-—co. Thus it suffices to study the random vector

nE
nit (it = Ni') 3 Y (Yo — E V). (14.11)

y=1

Y1, Yz, ... is a sample from the m-dimensional population (, in which the ith
component containg N F(t) 1’s and N, (1—F.()) 0’s, 1=1,2,...,m. The co-
variance matrix [o{"] of the vector (14.11) is (cf. Theorem 1.1)

P =N (N, — 1) F(t) (1-F(¢)), 1<i<j<m.
From condition (B) it follows that
lim, [oP] =A™, (14.12)

where AM is the covariance matrix corresponding to the normal distribution
W1, 1) To prove (14.9) we apply the result in remark 3.2 in [8]. From the
fact that AM is non-singular and from (14.12) we conclude that condition
(3.16) in [8] is fulfilled. We also have to verify that every component {QP}%.1,
1=1,2,...,m of {Qk}l satisfies condition (L) with the sequence {nk}l as soon
as lim,min (n,, N,—n;) = co. According to Th. 4.2 and Lemma 4.1 in [9] (13.9)
is sufficient for that. That {QP}{° satisfies (13.9) is clear from the fact that
an-)(t) is a 0-1 distribution which tends to a distribution with positive variance

when k-—>oo. Thus (14.9) is proved for every marginal M not containing =0
or 1. From the easily proved facts that R(0,n,) and R(1,n,) tend to 0 in pr.
when k—oo, it follows that (14.9) holds for every marginal M. Thus conver-
gence of marginal distributions is proved and it remains to verify tightness of
the family {E(m,,n)}°. Here we insert a lemma.

Lemma 14.3. Let Z(t,n) be the process defined in (14.2). For every x>0 it
holds that

P( sup |Z(t,n)—Z(Ty,n)|>2)<2P(Z(Tyn)—Z(Ty,n)|

T1<t<T,
zz(l-p(T,, Tz)/(l ~p(T, Ty))) - V2P(T1, Tz)/(l =p(Ty, Ty)) n).
where p(T,, Ty)=F,(T,)— F,(T,).

Proof. We fix n and we write Z(t) instead of Z(f,n). The first point ¢ (if
any) on (T,,T,]), where Z(t)— Z(T 1) jumps over the level » or under —uz,
must be one of the jump-points 4,4, ...,5; of F,(t) on (T,,T,]. Let for

=1,2,...,s and |z,|>z, 4, (xo)—(iZ(t) Z(T)|<=z for T,<t<j, and Z(j,)—

( 1)—:1:0) and let A(y) —(|Z —Z(T,)|>y). Then
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Ay)> U U A@) 4, (). (14.13)

|zol22 »=1

As two events 4,(x,) are disjoint, if both arguments » and z, do not agree,
we get from (14.13)

PAW)> 3 3 PAG) @)= 3 5 P @) PAG)| 4, @), (1414

o227 r=1

Fix v and let Y,, and ¥, be the number of observations X on the resp. inter-
vals (T',4,] and (3,, T,], ie.

Y, =n(F* () — F* (1)), Yo =n(F* (Ty) = F* (). (14.15)

Let p,=F,(j) — Fx(T,) and p,=F,(T,) = Fy(j,).

The joint distribution of ¥, and Y, is the hypergeometric H(N,n, p,, p,). We
use, without formal proof, the following conditioning property. If A4 is an event
defined in terms of the observations X which satisfy T, <X <j, and ¥, =n,
(=const.) on A, then the conditional distribution of Y, given A equals that of
Y, given (Y, =n,). The event A, (z,) is of the type described, with n,=n(z,+p,).
Thus, the conditional distribution of Y,, given A, (z,) is the hypergeometric
H(N —ny n—ny,p,/(1—p,)). We use the suffix , to indicate quantities under
the condition that A4, (x,) occurs. From (14.15) it follows that

1

By (Z(Ty) = Z(Ty) = By (v (Yy+ Y) — (P + D)) =7, (1 - ngp ) (14.16)

UL~ 2T ) = (L) =2t (B (1o T (1o 2o

p2 p(Tl’ T2) 14 17
Sall—p) Sa(l—p(T, T) (14.17)

From Tchebychev’s inequality it now follows that if | E, (Z(T,) — Z(T,)) | >y, then

Py (A(y)) = Py (| Z(T,) — Z(T,) — By (Z(T,) — Z(T))) |

03 (Z(Tz) - Z(T1))
(IEOI _?/)2

<| By (Z(Ty) — Z(T))| —y)=>1— (14.18)

By choosing

2o(T,, T
y—=a(l = p(T,, Tp)/ (1= p(T,, Ty)) — m

and by inserting (14.16) and (14.17) into (14.18) we get that P(A(y)| 4, (z,)) > }.
The desired inequality now follows from (14.14) because
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P(_sup |Z)~Z(T)|>0)= 3 3 P4, (@)
T,<IgT, jzol2x v=1

Thus Lemma 14.3 is proved, and we continue the proof of Theorem 14.1.
We want to prove that the family {E(m, n)} is tight, and we do that by
applying Theorem 9.2. Let § and A be positive numbers and 7' €{0, 1 — A]. Then

B(m, m) (|, max [2(t) —2(T')| > 6)

<P ((n;‘—NE‘)_* sup | Z(t, mi) — Z(T, m) | > g—)

TS T+

+ P((n,}1 —Nig)t sup A [(Z—Q) (¢, m)— (Z— Q) (T, ne) | > g) (14.19)

TSIST+

According to Lemma 14.2 the last term in (14.19) tends to O uniformly in 7
when k->oco. To estimate the first term we apply Lemma 14.3 and we obtain

P((n;1~N;1)-* sup lzu,nk)—zmnk)bé)
T<t<T+A 2

P)
=1 __.a-411-% — it —_
<2P((ni' = Ny 2T +A,m) ~ Z(T,m) | > 5 (1 T

—V2(1 —ne/N) 0o (T, T+ A) /(1 — pic (T, T + A)). (14.20)

According to Lemma 14.1 we can, and do, assume that n,<N,/2. Condition
(B) implies that p, (T, T +A)=A+r(T,A), where 7. (T,A)—>0 uniformly in 7',
when k—>co. Thus, if A<SAyS) and if k is sufficiently’ large, we can con-
tinue the inequality (14.20)

< 2P((n,;1—zv,;l)~% | Z(T + A, ne) — Z(T, m)| %). (14.21)

The marginal convergence proved earlier implies that for every fixed 7 it holds
that

2

14.21 Tr——
( )—>V2nA(1—A)

f e~ TPPAA-D) g0 when k—> oo, (14.22)
[2]=6/4

We show that the convergence in (14.22) is actually uniform in 7. Let
AT, A, m) = (ni” — N&") ™4 (Z(T + A, ) = Z(T, my)).

We give an indirect proof and we assume that' the convergence in (14.22) is
not uniform. Then, by restriction to a subsequenee (for simplicity we introduce
no new notation), it holds that there is an £>0 and a sequence {7%};° such
that T, —T,, when k—co and
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P(|A(Tk, A,n,,)|>g)—(2nA(1—A))—% f e TEACD gl > e (14.23)

lz|>0/4
It is no essential restriction to assume that 7', T, and we do so. Then we have

ATy, A,y =A(Ty A, ) — AT, T — Too i) + A(Ty+ A, T~ Ty mi).  (14.24)

An estimate with Tchebychev’s inequality yields that if 4, 0 then
AT, 2, m;)—0 in pr. uniformly in 7' when k—>oo. (14.25)

It is now easy to combine (14.22), (14.24) and (14.25) so that they yield a
contradiction to (14.23). Thus the uniform convergence in (14.22) is proved.
The tightness of the family {E(sm,,n:)}5° is now a consequence of Theorem 9.2,
and Theorem 14.1 is thereby completely proved.

We define the following random variables, which are analogues of the well-
known Kolmogorov statistics. Let F*(t,n) be defined according to (14.1). Then

DP=(n = N7)7F sup (F* (t,n) — Fx (1)

DP=m'—-N"Yt sup |F*(t,n)— F.(8)].
t

Theorem 14.2. If {m}¥ satisfies condition (A) and if lim, min(ng, Ny —n)= oo,
then

lim P(DP <a) =

ko

1—¢ 2% for =0
0 for <0

1-2 5 (—1e2¥* for a>0
k=1

lim P(DP <o) =
0 for a<0.

k—o0

Proof. First we assume that {m}° satisfies condition (B). We have that
D) =sup (ni" ~ Ni®) * Z(t, m) =sup ((ni = Vi) ™* Q(t, na)
t t

+ (%51 —N; 1)_i (Z(t, ) — Q8 mi)) = Sltlp (B(2, ny) + (2, m))-

Lemma 14.2 states that sup, #(f, nx)—0 in pr. when k—oco. Thus the limiting
distribution of D(,,lz equals that of sup; R(f,n,). The functional supe<i<i z(t) is a
continuous functional on C[0, 1] and from Theorem 14.1 and Lemma 9.1 it follows
that this limiting distribution is the distribution of supoc:<i(f) under W(1,1)-
measure. In the same manner it can be shown that the limiting distribution
of D‘,?: is the distribution of supg<t<i|(t}| under W(1,1)-measure. These distri-
butions are those claimed in the theorem, see Doob [5].
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Next we reduce the case when (4) holds to the case when (B) holds. Let
the T-transform of the population 7z = {a,, a,, ..., ay} be the population T'n = {F,(a,),
F,(ay), ..., Fy(ay)}. We will use the following two properties of the transfor-
mation 7.

1. If {m}{ satisties (4), then {T 7 }{° satisfies (B).

2. The distributions of D and D® are invariant under 7-transformation of
the populations.

1. follows from the facts that O0<F,(#)<1 and that distinct elements in
are mapped onto distinct elements in Tn. To prove 2 let exi, oy, ..., 0 be the
distinet elements in zz. We define y(f) as p(o,) = Fr (2,), =1, 2, ..., M. p(¢) is strictly
monotone on &, a,, ...,y and can be extended to a function on— oo <¢< oo,
which is continuous and strictly monotone, which tends to oo with ¢ and tends
to 0 when {t— —co. Let 1/;‘1 be the inverse of . For a distribution function
F, we define F¥ by F¥({)=F(p~'(t)). Then we have Fr,(w,t, n)=Fz*(w,t,n)
and Fr,(t)=F¢(t). Thus

Fra(w,t,n) — Fl, (t) = F3(w,t,n) — F4 () = Fa(w, 97 (t),n) — F.(p 7" ().  (14.26)
By taking supremum over ¢ in (14.26), proposition 2 follows. The proof of the

theorem is then concluded.

15. On empirical fractiles

Let 0<p<1. The p-fractile of a d.f. F(t) is defined as supremum over the
t-values .for which F(#)<p. Analogously, we define the empirical p-fractile cor-
responding to a sample of size n from 7 as the supremum over the {-values
for which F*(t,n) <p, where F*(t,n) is defined in (14.1). The following theorem
gives an analogue of the result on p. 369 in [2].

Theorem 15.1. Let Y(p,n) be the empirical p-fractile in a sample of size ny
from m, k=1,2,.... We assume that there is a continuous d.f. F(t) such that

lim Vy, sup | Fy, (6)— F()| =0 (15.1)
k toa

and, furthermore, that F'(f) is continuous and positive in a wvicinity of the p-
fractile &, of F(t). Then, if limy n,=oco and lim, ny/ Ny <1 it holds for every real

o that

: F (59) (Y(P: nk) - Ep) 1 J‘a ~z42

lim P Sal=——— “dx. 15.2
ko (l/p(l iy “) vemld LS W (15.2)

Proof. First we assume that {nk}f also satisfies conditien (4), i.e. that F(f)
in (15.1) equals ¢ for 0<t<1. p is fixed and we define U(n,)=p— F*(p,ny)
and V(n)=Y(p,n) —p. We shall show that for every £>0 it holds that

—o0

lim P (Ve | Ume) — Vi) | = &) =0. (15.3)

Let A, (A)=(U(ny) =2/ V;k), i.e. the event that among the observations Xy,
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Xks, ..., Xin, there are exactly (1) =mny (p— 4/Vn,) which are <p. We assume
that A4, (1) is non-empty and we introduce the conditioned process

G* (t, e A)=F* (8, m) | Ak (A), p<t<l. (15.4)
Simple conditioning arguments yield that G*(,n;; 4) can be described as follows:
Gt ) =p—A/ Vi -+ i - (The number of observations <? in a sample of

size n,—n (1) from s (1)), where m; (1) is the population of size N, (1— Fy(p))
with d.f. Gy (t) = (Fy (£) ~ Fr (p))/(1 — Fi(p)), p<t<1l. Thus, we get

A +(1 _’"k(M) Fy(t)— Fi(p)

EG*(t,n; ) =p—

V’ITk Ny 1-F(p)
2 AN [(t—p R%’(t))
—p—2 i (1-p+ L)L+ 15.5
? Vn,f( p+l/nk)(1_ﬁ Voo (15.5)
2 i . _me—m(A) [ Ny — N (A)
o i) =Pt (1o )

Fk(t)_Fk(p)‘l_Fk(t)<l(t P, RD (1)
1-Fy(p) 1—Fi(p) mny V’ﬂk

where R{ (t) and R?(f) tend to O uniformly in ¢ when k—>oo (cf. (15.1)). Let
0<e<1l. From (15.5), (156.6), and Tchebychev’s inequality we obtain that, when
A>0, it holds

) (15.6)

P(G (p+(1—8)V o )<P)/1_nlk((1£§o)g_)l/_£ Ra))

A (1—¢) R%P)]
X[Vnk ( +Vnk>((1«p)ﬁ+l/n7 T e (151

In a similar manner it can be proved that

P(G*(p‘l-(l +e)—£—, 'nk;}.) >p) —1 when k—>oo. (15.8)

Ve

We observe that, when ¢ is fixed, then the convergence in (15.7) and (15.8) is
uniform in A on every interval 0<A<A<oo. We now claim that for every
£>0 it holds that

lim P (Ve | U(my) = V(mg) | > | A () =0 (15.9)
and that the convergence in (15.9) is uniform in A on every interval |1| <A < oo.
To prove (15.9) we observe that (15.7) and (15.8) state that when 2>0 it

holds for every fixed >0 that, with a probability tending to 1 uniformly on
0<A<A< oo, the process G* (¢, n; A) crosses the level p on the interval
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[p+(1—e) AV, p+(1+e) 1/ Vnl.

This proposition is equivalent to (15.9), which is thus proved when A>0. The
case <0 can be treated in the same manner by considering instead the process
G* (t,m; 2) for 0<t<p. Thus we regard (15.9) proved and next we prove (15.3).
We have

P (Vny | Utng) — V(m) | > ¢) =;P<Ver| U(m) — V() | >¢| Au() P (4i(2)). (15.10)
Now (15.3) follows from (15.10), (15.9) and the formula

m 3 P4, () =1-p(A), (15.11)

k—>o00 IM <A

where (A)—>0 when A —>oco. To prove (15.11) we consider

U(m) __h@-Few p-Fp) (15.12)
Vp(1—p) (ne* ~N&)  Vp(l—p) (ni'=NzY)  Vp(l-p) (nic' = NiY)

The last term in (15.12) tends to O when k— co (cf. (15.1) and the assumption

that lank/N x<1) and from the marginal convergence proved in Theorem 14.1 it
follows that

(p(1—p) (ni" — Ni)]* Ulny) > N(0, 1) id., k— oo. (15.13)

Now (15.13) and (15.12) easily yield (15.11) and thus (15.3) is proved. From
(15.3) it follows that (15.13) still holds if U(n,) is changed into V(m;). Thus
the theorem is proved for the case F(f)=t, 0<t<1.

We treat the general case with the aid of the 7T-transform introduced in
§ 14. The following two properties of the 7T-transform are easily proved.

3. If {mJ}{° satisfies (15.1), then {Tm )y satisfies (15.1) with F(f)=t for
0<t<l.

4. Let Y(p,n) and Y,(p,n) be the empirical p-fractiles corresponding to
samples of size n from respectively z and Tn. Then Y,(p,n) and F,(¥(p,n))
have the same distribution.

It is well-known that if (Xy—u)/0,— N(0,1) id. and ¢, —>0 when k—> oo,
then (9(X,) —g(u))/9’' (1) o — N(0,1) i.d., provided that g'(u)#0. By combining
this with 3, 4 and the above result for F(f)=¢ we can conclude that

F' (&) [F (F (¥ (p,m))) — F* (p)]
Vp(1 —p) (nx* — Ni)

-~ N(0,1) id. (15.14)

F-' stands for the inverse of F, and it is well-defined, at least in a vicinity
of &,. The theorem now follows from (15.14) and the proposition

Voo [F (Fu (Y (p, m)) — ¥ (p, m)] 0 in pr. when k—>oco  (15.15)

(15.15) is an easy consequence of the following two propositions, the verifica-
tions of which we omit,
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(a) Y(p,ng)~>&, in pr., when k— oo,
(b) Vny supses| F~(Fi () —t| =0 holds for some neighbourhood I of &,
The proof is concluded.
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