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Limit theorems for sampling from finite populations 

BY BENGT ROSI~N 

Introduction and s,Tmmary 

Let ~ = {al, a s ..... aN) be a finite population, i.e. a finite set of real numbers. 
X 1, X2 . . . . .  X~ is a sample from ~ drawn with or without replacement. In  the 
first case we speak of independent observations from ~ and in the lat ter  simply 
of a random sample from 0~. A major  problem in sampling theory can be for- 
mulated thus: Compute, in terms of x, the probabil i ty distribution of the random 
variable o0(X 1, X 2 . . . . .  X,),  where ~ is a given function of n variables. I t  is 
seldom tha t  a neat  closed form solution of the above problem can be found. 
However, one can often give an approximate  solution by  considering a limit 
procedure. 

For independent observations a natural  limit procedure is obtained by  letting 
the number  of observations tend to infinity. There is a wealth of limit results 
for different functions ~0. 

For samples drawn without  replacement the above limit procedure looses 
meaning as the population will be exhausted after a finite number  of drawings. 
A fruitful limit procedure, t reated by  many  authors, is obtained by  considering 
a double sequence of random variables: 

Xll,  )/12 . . . . .  Xln, is a random sample from ~r 1 

X~I, Xk~ . . . . .  Xk~k is a random sample from ~ 
: : : 

One can now consider the limiting behavior of various sample functions 
~0k(Xkl . . . .  ,Xk,k), when k-->oo. The present paper  is devoted to a s tudy of limit 
problems associated with the above scheme. The problems and the results are 
in many  respects analogous to those in the case of independent observations. 

In  what  follows we give a brief summary  of the contents of the paper  and 
we describe the problems considered by  referring to analogue problems for in- 
dependent observations. 

Chapter 1 contains definitions and some basic elementary results concerning 
sampling from finite populations. 

Chapter 2 treats strong and weak laws of large numbers. There is given an 
analogue of the law of the i terated logarithm. 
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B. SOS~N, Limit theorems for sampling 

Chapter  3 is exposi tory and  in it we have collected results about  stochastic 
processes, t h a t  will be used in the later chapters.  

I n  Chapter  4 we consider central  limit problems. Especially we give an ana- 
logue of the  so-called invariance principle (cf. Donsker  [3]). 

Chapter  5 is concerned with the behavior  of empirical distr ibutions and em- 
pirical fractiles. 

Chapter 1. Definitions and fundamentals about sampling from finite populations 

l .  Definitions a n d  s o m e  elementary results 

B y  a d-dimensional /inite population zt we mean a finite set of d-tuples of 
real numbers.  

~ ( a  1, a s . . . . .  as}, a, = (a(~ ~) . . . .  , a(~d)), 

where ,(o _, are real numbers  

i = 1 , 2  . . . . .  d, ~ = 1 , 2  . . . . .  N.  

We will often omit  the  word finite and say s imply a popula t ion ~t. The letter 
N will t h roughou t  be used to  denote population size. The population mean vector 
/x. and  population covariance matrix [ao] i, ~, = l ,  2 . . . . .  d, are defined as follows 

N 

1 ~=la, and  [ a o ] = - -  
1 N 

Z (a, --/x,) '  (a, -- ~t=) 
N - 1  ~=1 

( 's tands for mat r ix  transposition). F o r  1-dimensional populat ions we write a~ 
instead of qn  for the ToTulation variance, and we also define the quan t i ty  

N 

D~ = Z ( a , - j u - ) S =  ( N -  1)a]. (1.1) 

The population distribution is the  probabi l i ty  measure on R ~ (d-dim. Eucl idean 
space) obtained by  giving each element in ~t the mass N -t .  We denote the 
corresponding distr ibution function, which we assume to be r ight  continuous,  by  
F .  (x). The centered distribution [unction F~ (x) is defined as F= c (x) = F .  (x-/x~).  

Nex t  we define a r andom sample X1, X s . . . . .  X ,  f rom zt. Let  ~N be the set 
of all permutat ions  to = ( i l ,  i 2 . . . . .  iN) of the  numbers  1, 2 . . . .  , N. The probabi l i ty  
P on ~N is defined by  P ( ( 9 ) = ( N ! )  - 1  for all r Let  T .  be the  mapping  

N d T ,  :~N---> X~=I R, (X s tands for Cartesian product)  given by:  

for to = (il, i s . . . . .  iN) is T .  (co) = (a~,, at . . . . . .  aiN). 

This vector  valued function T~ on ~N we call a random permutation (r.p.) of 
the elements in ~t and  we denote  its components  by  T n =  (X v X 2 . . . . .  XN). B y  a 
random sample o/size n, (n <~ N), from ~t we mean  the r andom vector  (X1, Xg. . . . . .  Xn). 
I n  the sequel we will denote the sample space s imply by  ~ instead of ~N. For  future  
reference we list some simple properties of r andom samples. 
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Exchangeability: XI, X~ . . . . .  XN are exchangeable ,  i.e. thei r  j o i n t  dis t r ibut ion 
is invar ian t  under  p e r m u t a t i o n  of the  X 's .  

Duality principle: We define S o = 0 and  S, = X x + Xg. §  + X,,  v = 1, 2 , .  :., N.  
Le t  ix, i2 . . . . .  i ,  b e  chosen a m o n g  1, 2 . . . . .  N.  I f  p~ = 0 ,  t hen  the  two r andom 
vectors  (St,, S, . . . . . .  S~,) and  ( - SN-q, -- SN-i .. . . . .  -- SN-~,) have  identical  distr ibu- 
tions. 

X 1, X21 .. . .  XN are dependen t  and  i t  will be essential  for  us to be able to 
handle  the  dependence.  When  dealing with  condit ioning concepts,  we will follow 
Lo6ve 's  nota t ions ,  [14] Chapte r  VI I .  The  following result  is in tu i t ively  obvious 
and  easily proved.  

Conditioning principle: The mixed condit ional  d is t r ibut ion of Xn+a, X = ~  . . . . .  
X=+m, n + m ~ N ,  given X:,X~ . . . . .  Xn, ~s a t  the  po in t  w identical  wi th  the  di- 
s t r ibut ion of a r a n d o m  sample  of size m f rom the popula t ion  ~t'(~o) = ~t wi th  the ele- 
ments  X 1 (co) . . . . .  X~ (co) removed .  

We will use s t andard  p robab i l i ty  notat ions,  par t icu lar ly  E X  and  a~(X) for 
respect ively  expec ta t ion  and  var iance  of the r a n d o m  var iable  X.  We  will also 
use s tandard  abbrevia t ions  as r .v.  = r a n d o m  variable,  p r . = p r o b a b i l i t y ,  d.f. = 
dis t r ibut ion funct ion,  c.f. =cha rac te r i s t i c  function,  i.d. = i n  distr ibution.  Some 
addi t ional  abbrevia t ions  are in t roduced  in connect ion with  definitions. Concerning 
the  nota t ions  for  wel l -known dis t r ibut ions  such as normal ,  binomial ,  etc. we 
follow Witks [20]. Fina]ly,  we will use [a] to  denote  the  integral  p a r t  of a, 
and  A '  for  the  complemen t  of the  set  A. 

The  following result  is well-known, see e.g. Wilks  [20] p. 222. 

Theorem 1.1. X1, X 2 . . . . .  XN is a r.p. o/ the elements in ~, which has covariance 
matrix [~j]. Sn = X:  + . . .  + Xn, n = 1, 2 . . . .  , N. Then 

E ( S .  - rig,,)' ( &  - rig,,) = n(1  - n / N )  [,~.]. (1.2) 

Particularly, when ~t is I-dimensional, 

~ ( # . )  = n(1 - n / N )  ,,~, (1.3) 

We shall main ly  be concerned wi th  1-dimensional populat ions,  and  f rom now 
on z s tands  for a 1-dimensional  popula t ion ,  unless otherwise s ta ted.  

2. Limit  procedures for sampling flora finite populations 

As s ta ted  in the  introduct ion,  we shall consider a l imit  procedure  based on 
a sequence { ~}1 of popu]at ions.  We  assume once and  for  all  t h a t  a popula-  
t ion sequence has the  p rope r ty  t h a t  N~k--> oo when  k--> c~. W h e n  we are dealing 
wi th  a sequence { k}x, we will usual ly  write /~k, ~ ,  Nk, Fk etc., ins tead of /z~k, 
a~k' N ~ ,  F ~  etc. 

Yf oo ~ o o  A sequence { k}l is said to be degenerate if i t  contains  a subsequence { k,},:, 
for  which F~, (x) converges i.d. to the  d is t r ibu t ion  with  pr.  1 in x = 0 .  

Le t  {~t~}~ be given. Then  Xkl,  X~2 . . . . .  XkNk will t h roughou t  the  pape r  s tand  
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for a r.p. of the  e lements  in ztk. Le t  {qkn}, n = l , 2 ,  . . . ,Nk,  k = l , 2  . . . .  be a 
double sequence of r .v. 's ,  where  qkn is a funct ion of Xkl . . . . .  Xkn, i . e .~k .  = 
q~k,(X~l, Xk2 . . . .  , X~n). We say  t h a t  {~0k,} converges in pr.  to  the  cons tan t  c for the  
sample size sequence (sss.) {nk}~ if for  every  e > 0 it holds t h a t  lim~ P([ ~0gnt - c [ ~> e) = 0, 
and  we say  t h a t  {~0~n} converges strongly in pr.  to c for  the  sss. {n~}~ r if for  
every  e > 0 it  holds t h a t  limk P(maxnk<n<N k [ ~0zn -- c ] .>/e) = 0. Obviously,  s t rong 
convergence in pr.  for the  sss. {nk}F implies convergence in pr.  for  the  same sss. 

3. Relat ions between sampl ing  wi th  and wi thout  replacement 

We shall here consider two types  of relat ions be tween  sampling with and  
wi thout  replacement ,  which can be roughly  described as follows. 

1. I f  the  p ropor t ion  sampled  f rom ~ is small,  then  sampling wi th  and  wi thout  
rep lacement  are a lmos t  equivalent .  

2. When  a sample  is d rawn wi thou t  r ep lacement  there  is a t endency  t h a t  
the sample  sum lies closer to  its mean  t h a n  i t  does when  the  sample  is d rawn 
with  replacement .  

We  shall give some exac t  formula t ions  of these heurist ic s ta tements .  

Lemma  3.1. {ztk}• is a population sequence /or which Fk--> F i.d. when k--> oo 
and X k l  . . . . .  XkN~ is a r.p. o/ the elements in gk. Then it holds /or every f ixed 
m that the distribution o/ X k l  . . . . .  Xw~ converges i.d. when k--> oo to the distribu- 
tion o/ m independent r.v.'s each having d./. F.  

Proo/. L e t  x 1 ~ x 2 <-~ . . ,  <<. x m, Then 

P ( X k l  <<. x ,  . . . . .  Xkm <~ xm) 

�9 Nk ~k (Xl). ~ k  Fk (x2) -- 1 N~ Fk (xm) -- = ( m -  1)__>F(xl)F(x2 ) ... F(xm) i.d. (3.1) 
Nk N e -  1 "'" Nk- -  (m--  1) 

as according to our  general  a s sumpt ion  hmk Nk = oo. Because of the  exchange- 
abi l i ty  of the  X ' s  (3.1) holds wi thout  the  above  rest r ic t ion on the  x~'s, and  
the  l emma  is proved.  

The following theorem due to  Hoeffding [12] is a precise formula t ion  of 2. 

Theorem 3.1. Xl,  X 2 . . . . .  Xn and  X~, X~ . . . . .  X'n are samples /rom xe, drawn re- 
spectively without and with replacement, Sn = X 1 + . . .  + Xn and S'~ = X~ + . . .  + X'~. 
I /  ~ is continuous and convex it holds that Ev2(S~)<.E~v(S'~). 

As pointed  out  b y  Hoeffding,  the  theorem can be used to get  inequalit ies for 
probabil i t ies  concerning sums of samples  f rom finite popula t ions  f rom inequalities 
concerning sums of independent  r .v. 's .  

Lemma  3.2. Let v2(x ) be positive, nondecreasing and convex /or  x > O. Sn and S'~ are 
de/ined in Theorem 3.1. Then it holds /or ~ >  0 that 
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Theorem 3.1. 
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E ' E '  P(IS~-ES~I>~a)<<.[~(~)]  -1 ~ ( ] S , -  S , I ) .  

an immediate consequence of Tehebychev's  inequality and 

Chapter 2. On laws of  large n-tubers 

4. Inequal i t i es  concerning sample  s u m s  

L e t  X1, X 2 . . . . .  XN be a r.p. of the elements in the population ~ , S 0 = 0  and 
S , = X I + . . . + X , , n = I , 2  . . . . .  N .  We denote sample mean S , / n  by - ~ .  Our 
aim is to prove analogues of the strong and weak law of large numbers. We 
s tar t  by  deriving two estimates of P(max~>~ [ b~ S~ ] >/~) where b0, b 1 . . . . .  bN are 
real numbers. The method used to obtain these estimates is similar to tha t  
used by  Hs and R~nyi in [10]. 

Lemma 4.1. ~ is a populat ion with mean 0 and variance a ~, and (bv}~ a se- 
quence o/ real numbers. Then, it  holds /or every e >  0 and /or n = 1, 2 . . . . .  /V 

P(max ibvsv i~>e)  - -  1 -  ~ b~+ X 
v>~n ~ E 2 ~=n v = n + l  

+ ] 

where a + = m a x  (0, a). 

Proo/. ~ We consider instead P(max~<~ I c~ S~ [ ~ e) for c~ = b N - v .  Let  s > 0 be 
given. We define the following r.v. 's. For  v = 0 ,  1,2 . . . . .  N, Iv is the indicator 
function of the event  ~ 2 2 (max~,<vc~ St < e )  and Hv = 1 -  L. L is the first (if any) 
index v for which c 2 S 2 ~> e z. Then 

n - 1  
e 2 H ~  < ~ L  2 2 ~ 2 (c~+1 Sv+l - c y S t ) .  (4.1) 

v=0 

To prove (4.1) we first assume tha t  max,,<. c 2 S~ < e  2. Then the left-hand side 
of (4.1) is 0, while the r ight-hand side is c2S2>~0, and (4.1) holds. I f  max,,<~ 

2 2 cv S~ >/e 2, the left-hand side is e 2 and the right-hand side equals 2 2 e~ CL SL ~ and 
(4.1) is proved. By integrating (4.1) over ~ we obtain 

e 2 P (max  2 2 ~> e2) ~ S~) P (do)). c; S~ = e 2 EH~ ~ 2 2 2 (c~+i S~+1 - cv 
v~<n v=O I v : l )  

(4.2) 

Let  for v = 0, 1, 2 ,  .. . .  N B~ be the algebra of subsets of ~ induced by  S 0, S 1 . . . . .  Sv. 
From the conditioning principle (p. 385) it readily follows tha t  E By X~+I = - S , /  
( N - v ) .  Using this result, and some well-known computational  rules for con- 
ditioning (see e.g. Lo~ve [14]) we get 

E I~v $ 2 + 1  = E By S 2 + 2 E ~v ~*~v X~+I + ]~Bv v 2  

= ~ + 2 s v  ( - s J ( ~ v -  v)) ~- ~ Y ~  - ~ (4.3)  . . . . .  +1 - & (1  - 2 / ( N -  v)) + ' ~  ~,2 
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From (4.2), (4.3) and the obvious inclusion (A = 1)6 B~ we get 

e 2P (max 2 ~ >~ e2) J E~  2 2 9 2 - c; ,S,) P (do)) e ,  8~ < ~ (C ,+I  $7,+1 
v<~ n v=O ( lv=l )  

= ~ S~ c~+1 1 - c ~  P(deo)+  ~ 2 ~ 2 -- C~+ 1 E ~ X r +  1 . 
I, ffio g (h ,= l )  ~ s,~O h , = l )  

The above inequality is on ly  unsharpened if we first change 

2 q, = (c,+, (1 - 2 / ( N  - ~)) - c~) into ~+ 

and then enlarge the domain of integration to ~ in the integrals in both sums. 
This observation together with Lemma 1.1 yields 

._1 ( ( §  )+._, 
2 2 ~2 2 2 2 2 c,,+1 EX~+I e 2P(maxc ,S~>~e  ~)< ~. EM, c,+1 1 - -  - c ,  + 

I,~<n I,=0 7,=0 

= ~  1 -  ~ d +  2~  1 -  ~L, 1 - y _ _ ~ - ~ ,  . 
~,=I v = l  

(4.4) 

The inequality in Lemma 2.1 now follows from (4.4) and the formula 

P ( m a x  Ib~&l > ~ e ) = P (  max  Ib~--,,s,,l~>e), 
l,>~n v<~N- -n  

(4.5) 

which is an immediate consequence of the duality principle. Thus the lemma 
is completely proved. The following result is a special case. 

Lemma 4.2. ~r is a population with mean 0 and variance a 2. Then it holds/or 
every e > 0 and /or n = 1, 2, ..., N. 

P(max,>~n ILl~>e)~<--e2 1 -  , , = n ~ = ~  - C(n,N)  

where C(n, N) <. 1 + n  -1. 

Proo[. The inequality follows readily from Lemma 4.1 by  putt ing b , = v  -1 
I t  is easily checked tha t  (b~-i ( 1 -  2u -1)-bY) + = 0  for b,=7, -1. The upper bound 
for C(n,N) can be derived thus. When n = N  we can put  C(n,N)=O. For 
n - - l , 2  . . . . .  N - 1  we have 

N-I 

C(n, N) = n ( N -  l) ( N -  n) -1 ~ v-2. (4.6) 

Now 
N-I N--2 

2 "-2 < I/n' + ~. I/v (, + I) = I/n z + I/n- I/(N- I). 
y=n ~=n 
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We insert the last estimate into (4 .6 ) and  get C(n, N)  <~ ( N -  n -  1 ) / ( N -  n) + 
( N - 1 ) / n ( N - n ) < , l + n  -1 and Lemma 4.2 is proved. 

Next  we give an estimate of P(max~>~n [b~ S~[/> ~) in terms of E[Sn[. 

Lemma 4.3. zr is a population with mean 0 and {b,}g is a sequence o/ non- 
negative numbers such that {ub~}~ -1 is non-increasing. Then it holds /or every 
e > 0  and /or n = l , 2  . . . . .  N 

P ( m a x  [b , ,Sv[>le)<. t - lbnE[Sn[ .  (4.7) 
v~r/. 

Proo[. The proof will run almost  parallel to tha t  of Lemma 4.1 and again 
we first prove the dual result. Let  c, = bN_~, Thus cv ( N - ~ )  is non-decreasing 
for ~ = 1, 2 . . . . .  N - 1 .  For fixed e >  0 we define the following r.v.'s. For  ~ =0 ,  
1 . . . . .  N, /~ is the indicator of the event (maxt<~ c t Sr < e) and H~ = 1 - / ~ .  L is 
the first (if any) index ~ for which c~S~>~e. Then the following inequality, 
where a -  = min (0, a), holds 

n - 1  

e l l , <  - c . S Z  + ~ /~(C~+lSv+l--CvSv). (4.8) 
v=0 

I f  max,<n c~ S, < s the left-hand side in (4.8) is 0, while the right-hand side is 
- c, S ;  + c, S~ >10. I f  max ,< .  c~ Sv ~> ~ the left-hand side is e and the right-hand 
side - cn S~ + CL SL >~ e. Thus (4.8) is proved. Let, as before, •, be the algebra 
of events which are determined by  conditions on So, S 1 . . . . .  S~. Then (L  = 1)cig~. 
By integrating (4.8) over ~ we get 

Tf eP(max  c~ S,/> e) = eEHn <~ - cn E S ;  + (C~+l S~+I - c~ S,) P (deo) 
~<n v=0 d (Iv=l) 

= - cn ES~  + ~ (c~+1E~'S~+I - c~ S,)  P (do)) 
�9 ffi0 Iv~l) 

= - cn ES~  + ~ C~+l c, S~P(do)). (4.9) 
~=o N -- y Z,=l) 

In  the last step we used the formula EsvS~+I=[(N - (~,+ 1 ) ) / ( N - ~ ) ] . S v ,  which 
follows from the conditioning principle. From the assumption tha t  c~ ( N - r )  is 
non-decreasing, it follows tha t  c~+1 [(N - (v + 1))/(N - u)] - c~ >~ 0. I f  we show tha t  
the integrals in the last  sum in (4.9) are non-positive we can cancel the sum 
and end up with the inequality 

P (max,<n e~ S~ >i e) ~ ~-1 Cn E S n  = (2 E) -1  c n E [ S n I. (4.m) 

T h e  equality in (4.10) is a consequence of the assumption tha t  g has mean 0. 
For fixed e > 0  we define for t = 0 , 1 , 2  . . . . .  N the events At as follows: At  = 

(St>~e and S r < s  for r < t ) .  Then it holds tha t  At E Bt and further 
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(Iv =0)  = 5 At where At and As are disjoint for t#s  (4.11) 
t = 0  

Remembering tha t  zr is assumed to have mean 0, we get from (4.11) 

t:o ~ P(d~) 

=.t~o -~-- t  L StP(dto)>~ s 

and (4.10) is completely proved. By considering - S o , - S  1, ..., 
from (4.10) 

P ( m i n  c~S,<~ - t ) < ( 2 s ) - l  c~E[Sn[. 

--SN, we obtain 

(4.12) 

Addition of (4.10) and (4.12) yields 

y~n (4.13) 

By use of the duality principle we get from (4.13) 

P ( m a x  Ib,   )=P(max Ib, S~_~]>~ ~) t,>/n v<~n 

~<~N- n 

and the proof of Lemma 4.3 is concluded. When applying the lemma we will 
need an estimate of E ISn [. The next  lemma gives such an estimate. 

Lemma 4.4. 2(x) is an even /unction such that /or x >~ 0 is 2(x)/x positive and 
non-decreasing, while 2(x)/x 2 is non-increasing. For a population with mean 0 it 
then holds that 

N - n  �89 E ]~n] ~ - l  (n) [(~-~-~ E~(X1)-~ (E~(X1)) 2) +E~(X1)] , 

where 2-1(y) is the inverse o/ 2(x) /or x>~O. 

Proo/. We fix n and define for v = l , 2  . . . . .  N , X : = X ~  if IX~l<~2-1(n) and 
X: = 0 otherwise, Y~ = X, - X~ and S: = X~ + . . .  + X:. Evident ly  X~, X~ . . . . .  X~ is 
a r.p. of the elements in the population ~' ,  which is obtained from ~r by re- 
placing all elements in ~r with absolute value > ~-1 (n) by  zeros. From Sehwarz's 
inequality we get 

E]SnI<~E[S;]+E] ~ Y,]<~ Ev~E~ +nEIY1]. (4.14) 
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Now 
ES~ = a s (S'~) + (ES~) ~= n(1 - n / N )  (1 + 1 / / ( N -  1)) (EX12- (EX~) 2) 

q- n ~ ( E X 1 )  ~ = n( /V - n)  (z~ - 1) -1 E X 1 2  q- n l V ( n  - 1) (N - 1) -1 ( E X 1 )  2. (4.15) 

As 2(x)/x ~ is non-increasing for x>~0 we have 

f [  X2 j~- 1 (n)2 EX'~* = ~(x~)" 2(x) dF. (x) <. E2(X1). 
z l <.).-~ (n) n 

(4.16) 

From g . = O  and the assumption tha t  2(x)/x is non-decreasing for x~>0 it  
follows tha t  

I f  x 2(x)dF.(x)  <~ "~-l(n) E2(X1). (4.17) IEX'xl = ]EYll  = ~(x)" n 

We now obtain the desired, inequality by  inserting the estimates (4 .16)and  
(4.17) into (4.15) and (4.14). Thus the lemma is proved. 

5. Convergence of sample means 

Thus prepared we shall prove some results about  convergence of sample means. 
7/: r162 We shall consider population sequences { k}k=l. As usual we denote a r.p. of 

the elements in gk by  Xkl, Xk2 . . . . .  Xk~. Furthermore,  we will use the nota- 
tions S~ ) = Xkl + . . .  + Xkn, n = 1, 2 . . . . .  Nk, S(0 ~) = 0 and X ~  ) = S~)/n. 

Theorem 5.1. { k}l is a sequence o/ populations. A su//ieient condition /or 
X(n k) -la~ to converge strongly to 0 in pr. /or the ass. {nk}~' is that 

I /  {~t~}~ satis/ies 

l im o~k (n~l--_hr~ 1) = 0 .  (5.1) 
k--~ oo 

[, 
lim sup | x ~ dF~ (x) = O, (5.2) 

A - - ~  k J I z I > A  

then condition (5.1) is necessary already /or ~(nk)-la ~ to converge in pr. to O /or 
the sss. {nk}F. 

Proo[. I t  is no loss of generality to assume tha t  /t~ = O for all k and  we will 
do so. The sufficiency par t  of the theorem is an immediate consequence of 
Lemma 4.2. In  the proof of the necessity par t  we will use the following simple 
lemma. 

LemmA 5.1. I /  /or some integer 1 it holds that S~)--> 0 in pr. when k-->oo 
then Xkl  --> O in pr. when k --> cr 

Proo/. Assume the lemma to be false, i.e. there are positive numbers e and 
and a subsequence {k~}~l such t ha t  P(IXk~ll ~>e)~>2~), while 
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P(I S}~) I >~ e) -*  0 when u -~ oo. (5.3) 

Then  a t  least one of the inequalities P(X~I >~ e)>i Q and P(X~I <~- e)>~ Q holds 
for an  irdinity of ~'s. We assume the first inequality.  I n  other  words, there 

7~ oo is a sequence { k~}~=l so t h a t  a port ion ~>~ of the elements in 7tk~ are >~e. 

Thus, 

P(S~ ~) >/I e) ~> ~ ~ --~ 0 ~ > 0 when ~ --~ oo. (5.4) 

Now (5.3) and  (5.4) contradict  each other  and  the lemma is proved. 
We also prove the necessity pa r t  of Theorem 5.1 by  contradiction.  We assume 

its negat ion to  hold, i.e. 

X ~ ) ~ 0  in pr. when k--*oo (5.5) 

a~(n;l-NT~l)>~>O, k = l , 2  . . . . .  (5.6) 

To guarantee  (5.6) we m a y  have to  restrict  to  a subsequence of {n~}~o. However,  
to  simplify writing we use the  same indices. F r o m  (5.2) i t  follows t h a t  a~ ~ C < 
and  thus  f rom (5.6) t h a t  sup~nk<  c~. Thus  there is a subsequence {k~}~l such 
tha t  n~, = l .  F rom (5.5) and Lemma 5.1 we conclude t h a t  Xk, l --~0 in probabi l i ty  

when v--~ c~. This is, however,  incompatible with (5.6) when (5.2) holds, because 

P(I x~ l  I >/=) >I P(= < Ixk,11 <~ A) >1 A -~ f~<i~i<Ax2dFk, (x) 

(5.7) 

B y  choosing A so large t h a t  J'I~I>A x~ dFk, (x) < ~/6 and  e ~ < 9 /6  we get  f rom 
(5.6) and  (5.7) as soon as N~, ~> 2 

P(I >/A -2 (Q/2 -- Q/6 -- ~o/6) > 0  

and  we have obta ined a contradiction.  Thus  Theorem 5.1 is completely proved.  

Corollary. {~k}F is a populat ion sequence which is non-degenerate  and  satisfies 
condit ion (5.2). Then  a necessary and  sufficient condit ion for X(~ ) - / z k  to con- 
verge s t rongly  in pr.  to  0 for  the  sss. {nk}~ is t h a t  

lim nk = + o o .  ( 5 . 8 )  
k 

ak ~< C < oo. F r o m  the  non-degenerateness Proo/. F r o m  (5.2) we conclude t h a t  2 
of {~k}~ there follows the  existence of ~ > 0, e > 0 and  a /r o so t h a t  P(IXkl ] ~ e) 

ak >~ ~e s for k >/]c o and  the  corollary is now an  immedia te  > 0  for k>/k  0. Then  2 
consequence of condit ion (5.1). 
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We shall consider the  following proposi t ion,  which we denote  (A). 
(A) :X'~ ) - / z k  converges s t rongly in pr.  to 0 for  every  sss. {nk}~ 0, which sa- 

tisfies nk--* co when k --> oo. 
The above  corollary says t h a t  (5.2) is a sufficient condit ion for  (A) to hold. 

I n  the  nex t  theorem we weaken  this condition. 

Theorem 5.2. Necessary and su]]icien$ /or (A) to hold is that {~k}~ ~ satisfies 

l im s u p (  ] x ] dF~ (x) = 0. (5.9) 
A.-*oo k J lxl>A 

Proo[. Withou t  loss of genera l i ty  we assume t h a t  #~ = 0  for  all k. Fi rs t  we 
p rove  the  sufficiency par t .  L e m m a t a  4.3 and  4.4 yield 

P (max ] X(~k) [ >~ e) < e-l.;t-a (nk) [ ( Nk-nk )�89 ] I,>>-nk "lgk -~'~_ I B~(Xkl)"I'- (E~ (Xkl)) $ +E~t(Xkl) . (5.10) 

The  sufficiency of condit ion (5.9) now follows f rom (5.10) if we show t h a t  (5.9) 
guaran tees  the  existence of a funct ion 2(x) which fulfils the  conditions of L e m m a  
4.4 and  in addi t ion  

~-l(x)/x -->0 when x - +  co (5.11) 

sup E~(Xkl) < co. (5.12) 
k 

F r o m  (5.9) i t  readi ly  follows t h a t  supk E [ X k t [ <  co and  t h a t  there  exists a se- 
A oo quence { t} t=l, At Z o o  such t h a t  

sup fj ]xldF~(x)<3 -t sup EIXkx], t = l , 2  . . . . .  
k x]>At k 

oo CO Let  { t}t=l sat isfy 1) T t S  when t-->co. 2)vt, .<2t,  t = l , 2  . . . . .  3) ( ~ t + l - T t ) /  
(At+l-At)<vtAi  -1, t = l , 2  . . . . .  Define for x>~0 ~(x) to be the  funct ion the  
g raph  of which is the  linear in terpolat ion be tween the  points  (0, 0), (A 1, 7 0,  
(A s, ~ )  . . . . .  I t  is easily checked t h a t  ~ (x)=  Ix[ e(lxD satisfies the  conditions in 
L e m m a  4.4 and  in (5.11), (5.12). Thus  the  sufficiency of (5.9) is proved.  

Nex t  we prove  the  necessi ty of (5.9). R e m e m b e r  the  assumpt ion  t h a t  # k = 0  
for  all k. F i rs t  we show t h a t  if (A) is fulfilled, then  it  holds for  every  e > 0 t ha t  

V(max  [X~/n I >~ e) --> 0 if nk --* o~ when k ---> co. 
n>~nk 

(5.13) 

(5.13) follows f rom the inequal i ty  below: 

P ( m a x  I X~n/n [/> e) = P ( m a x  I (S~) - S~)-~)/n I >~ e) 
n>~nk n ~ n k  

\ n>~nk \ n ~ n k  
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We shah give an indirect proof and we assume that  (A) and thus (5.13)are 
fulfilled, but  not (5.9). Then, by  restricting to a subsequence of { k}l without 
introducing a new notation, there is a sequence of integers {Ak}F, A ~ / ~ ,  
such that  

. . . . .  (5.14) k = l , 2  

We can also assume tha t  

P(I X~l [/> A~) -~ 0 when k -~ oo 

P(I Xkl [/> Nk) = 0 for k >1 k 0, 

(5.15) 

(5,16) 

because if (5.15) does not  hold, then (5.13) cannot be fulfilled for nk=Ak, and 
if (5.16) does not hold (5.13) cannot hold for nk = [Nk/2]. 

We have for k>lk 0 

P ( m a x  I x ~ / , ~  l >~ l ) = l - P(I X ~  l < ~, ,~ = n~ . . . . .  N~) 
n ~ n ~  

N~ 

= 1 -  1--[ P(Ix~l<,~llx~,l<~,~=n~ . . . . .  n - l )  

Nk 
N~ ,v~ P([ xk ,  [ < n) - ( n -  n~) >/1 1-I P([ Xk~ [ < n) = 1 -  1-I 

. = . .  ~v~ - (n - n~) . = . .  

f ) } =1-- I-I 1 -  dFk(x) > / 1 - e x p  - ~ dFk(x) 
n=m.  x l ~ n  I, n=nt,  xl>/n 

{ ,} 1 -n~) P(s<~ Ix ,l < ~ +  1 (5.17) /> 1 - e x p  - s 

In  the last step we used (5.16). By virtue of (5.15), we can choose {nk}~ such 
that  n~<~A~,k=l,2 ..... nk-->oo, and nkP(IXkll>~Ak)-->'O when k - + ~ .  Then 
we get from (5.17) and (5.14) 

lim p(max lX~/nl>~ l)>~ l - h m  exp { - ~ A . ( s +  l -nk) 'P(s<]X~l l  <s+ .~.. 

~> 1 - 1 i m  exp 1 - f l  ' x ' d F ~ ( x ) + n k P ( ] X k l [ > ~ A k ) } > ~ l - e - q > O .  

This result contradicts (5.13) and thus the necessity of (5.9) follows. Hence 
Theorem 5.2 is completely proved. 

6. The law of  the iterated logarithm 

The sharpest result (under suitable conditions) about the asymptotic fluctua- 
tions of sample sums in the case of independent r.v.'s is the law of the iterated 
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logar i thm.  We shall p rove  an  analogue of this law and we shall f irst  p rove  
some l emmata .  

Lemma  6.1. ~ is a population o/ size N and xd is ob ta ined/ tom z~ by removal 
o/ t elements. Then 

a 2 , < , ( ~ ( N - 1 ) / ( N - t - 1 ) ,  t = l , 2 , . . . , N - 2 .  

Proo/. W i t h o u t  loss of genera l i ty  we assume t h a t  g = {al, a 2 . . . . .  aN} has  mean  0. 
Le t  ~ '  = (al ,  a~ . . . . .  a~v-t} 

N - t  N N - 1  
, 2 ~ ( N _ t _ l ) - i  ~. 2 _  ~ < ( N - t - 1 )  -1 ~ a~ 2 a~ -- o'~ O'y[. 

�9 =I ,=1 N - t - 1  

and  the  l e m m a  is proved.  The  nex t  l emma  is the  coun te rpa r t  of a well-known 
result  for  independent  r .v . ' s  (see e.g. L o i r e  [14] p. 248). 

Lemma  6.2. zc is a population with mean 0 and variance a 2, and x is a l~osi- 
rive number. Then 

P (max  I S, ] ~> x) ~< 2 P (] S ,  I ~> x(1 - n / N )  - a V2n) .  
l < ~ < n  

P r o @  F o r  t = l ,  2 . . . . .  n At  is the  even t  (max,<,lS, l<x and  Istl~>~). B is 
the event d S .  I >t ~(1 - n/~V) - .  2V~n). Let, as before, B, he the algebra of events 
defined b y  condit ions on X1, X 2 . . . . .  Xt .  F r o m  the disjointness of A 1 . . . . .  An and 
the  fact  At E Bt it  follows t h a t  

t = l  t = l  . t 

(6.1) 

According to  the  condit ioning principle (p. 385), the  mixed  condit ional  dis t r ibut ion 
of Sn, given Bt, is a t  the  poin t  o9, equal  to  the  dis t r ibut ion of St (o9) + S'n-t, where 
S'n-t = X ~ +  ... = X ~ - t  and  X~ . . . . .  X'n-t is a r a n d o m  sample  f rom the popula t ion  
zd (o9 )=g  with  the  e lements  X 1 (o9) . . . . .  Xt  (o9) removed.  Thus  

n -- t )  6~,(~) , 
E a t S n = S t  1 - ~ - S ~  and  a2(S, ]Bt) (og)  = 2 ( n - t ) ( 1 - ( n - t ) / ( N - t ) ) .  

L e m m a  6.1 yields 

a 2 (S~ [ Bt) < (r 2 (n - t) (1 - (n - t ) / ( N -  t)) ( N -  1 ) / ( N -  t - 1) < n a  9 (6.2) 

F r o m  Tchebychev ' s  inequal i ty  we get  
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(6.3) 

When w e A r  it holds that  ]St[>~x and thus ]E~ 'S~]~x(1- (n - t ) / ' (N-O)~  
x ( 1 - n / N ) .  Combining this with {6.2) we get from {6.3) that  

when eo E At  then P" (] S. ] >~ x (1 -  n / N) - a V~n) ~ �89 (6.4) 

We insert (6.4) into (6.1) and obtain 

n 

P(B)  >t �89 t~=~= P(At)  i.e. t=l ~ P(At)  <<- 2 P(B) ,  

which is the desired inequality, and Lemma 6.2 is proved. 

Lemm~ 6.3. ~ = {a v a 2 . . . . .  aN} is a population with mean O, variance a ~ and 
[ a , [ < M , ~ = l , 2  . . . . .  N.  Then 

~M 

Proo f  This is a well-known inequality for independent r.v.'s (if a * stands 
for ordinary variance), see e.g. Lo~ve [14] p. 254. A scrutiny of the proof 
shows tha t  it is an inequality of the Tchebychev type based on a function which 
satisfies the conditions of Lemma 3.2. Thus the inequality carries over to 
sampling without replacement. The relation a ~ = N ( N  - 1)-IEX~ only weakens 
the inequality. 

Theorem 6.1. { ~}1 is a sequence o f  populations, all having mean 0 and vari- 
ance 1 and all elements on an interval [ -  M,  M]. Then  it holds for every e > 0 
and every sequence {nk}~ ~ for which l im,  nk = oo, that 

~?) ) 
l i m P  max ~<l+e  --1. (6.5) 

~--,~ \,>~n~ V2v log log v 

Conversely, to a given sequence { k}l, which satisfies the above conditions, there 
exists a sequence (n~}~ with hm~ nk = oo, such that for every e > 0 it holds tha 

lira p (max 8~ *> ) > ~ l - e  = 1 .  (6.6) 
k ~  \,~n~ V ~  log log v 
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Proo]. First we prove the direct part  (6.5). After the preparation with the 
above lemmata the rest of the proof is an almost verbatim repetition of the 
proof of the analogue result for independent r.v.'s. Let 0 < e  < �88 and 2 >  1. We 
define Tt = [~tt], t = l,  2 . . . .  and the events 

Ak, = (max S(~ k) >/(1 + e) 1/2 Tt log log Tt) ,  k, t = 1, 2 ..... 
l~<~<Tt+ 1 

First we only consider t-values for which Tt+l<~2-1eNk. (As Nk--->~when 
k-+oo such t-values exist when k is large enough.) From Lemma 6.2 we get 

otkt=P(Akt)<'-.2P([S~),+ll>.~(i+e) (1-2)1/2TtloglogTt- 2l/~t+l ). 

As Tt+l(Ttlog log Tt)-l--->O when t--->oo, we have for sufficiently large t's 

and from /.,emma 6.3 we conclude 

c t ~ < 4 e x p { - ( 1  e 2  Tt (1 Ml/2Ttl~176 
+ 4 )  T-~+I l~ l~ Tt 2Tt+l Tt)}. 

We assume that  2 was chosen < 1 +e /4 .  Then it holds if t is sufficiently large 

where U(2) is a constant depending on 2. We define t~ = max (t[Tt <~nk) and 
t'~'=min (tlTt>~3-1eN~). Then 

t "  tk 

\.~<.~8-,~N. ]/2 v log log ~ t~t~ 

As t~, tends to infinity with k it follows from (6.7) that  the sum in (6.8)tends 
to 0 when k-->oo. Thus, we have proved: If  0 < e < � 8 8  nk<3-1eN~, and nk-->oo 
when k --> oo, then 

lira P (  max S~k) ) . _ ~ > l + e  = 0 .  (6 .9)  
k-,~ \-~<~<a-,,N~ l/2 v log log v 

From (6.9) one easily deduces tha t  

lira P [ max __ 
k ~  ~s6-,~N~<~<(s+l)6-~,N k I/2 ~, 

S~ ) 
~ l + e  = 0 ,  

log log 
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The direct par t  of Theorem 6.1 now follows from (6.9) and (6.10). We shall 
prove the converse par t  by  a reduction to the corresponding result for inde- 
pendent r.v.'s. We introduce a notation; X1, X2 . . . .  are r .v. 's  and S~ = X 1 + ... + X,. 
Then A(n, m, e) stands for the event  A(n, m, e) = (max..<<~<m S, (2 v log log y)- �89 > 
1 - e ) .  The pr. of A(n, m, e) depends on the distribution of the X's .  When the 
X 's  are assumed independent with the same d.f. F we indicate the dependence 
on F by  writing Pp(A) and when s  X 's  are sampled from the population 
we write P,(A) .  The following proposition (B) is a consequence of the law of 
the i terated logarithm for independent r .v. 's  

(B): Let  Xp  X 2 . . . .  be independent copies of a r.v. X with d.f. F,  which 
satisfies EX=O, a ( X ) =  1 and I X ] ~<M (with pr. 1). Then, for all positive num- 
bers e and (~ and any  natural  number  m, there is an N, depending only on 
e, (~, m and M, such tha t  

Pt  (A(m, N, e)) >~ 1 - (~. (6.11) 

Let  {et}• and {~t}~ be sequences such tha t  et"~O and r when t-->oo. 
From (B) there follows the existence of a sequence {mt}~ of integers, m t S ~ ,  
such tha t  P~(A(mt, rot+x, et)) >~ 1 -(~t, t = 1, 2 . . . .  if F satisfies the conditions in 
(B). We say tha t  a population g has proper ty  Et if P,(A(mt, mr+l, et))>~ 1-2r)t.  
Now let {g~}~* be the given population sequence. We claim tha t  for every fixed 
t only a finite number  of the ~ ' s  lack proper ty  Et. Assume the contrary. 
Then, by  selecting a subsequence (without introducing a new notation) we can 
assume tha t  Fk- ->F 0 i.d. when k-->oo and tha t  P~(A(mt,  mt+l, e t ) ) < l - 2 ~ t .  
The event  A(mt, mr+l, et) depends only on the finitely many  variables X x . . . . .  Xmt+l" 
Thus from Lemma 3.1 we conclude tha t  PF,(A(mt, mt+l, et))=limk P,k(A(mt, 
mr+x, et))~< 1 -  2(~t, which yields a contradiction. Thus only finitely many  ztk's lack 
property Et. Let  for t = l , 2  . . . . .  k( t )=min  (/clTr, has property Et, v>~lc) and let 
nk = mt when maxs<t k(s) ~</c < maxs<t+l ]C(8). I t  is easily checked tha t  (6.6) holds 
for this sequence {nk}F and tha t  nk--> oo when k--> co. This concludes the proof. 

Chapter 3. On stochastic processes with continuous sample paths 

7. Generalities 

We shall later s tudy certain stochastic processesrelated to samples from finite 
populations, and especially convergence of such processes. We shall then make 
use of the general convergence theory for stochastic processes, worked out es- 
pecially by  Prokhorov [18]. We give a brief exposition of some fundamental  
concepts and results, and we follow closely Prokhorov's  ideas. 

C[0, 1] is the metric space of all real-valued continuous functions on [0, 1], 
with the uniform metric. Points in C[0, 1] will be denoted x or x(t). By a 
stochastic process on [0, 1] with continuous sample paths we mean a comple prob- 
ability measure P,  defined on a a-algebra of sets in C[0, 1] including all closed 
sets, and which is inner regular with respect to closed sets, see def. on p. 162 
in [18]. When / is a measurable mapping of C[0, 1] into another  metric space 
S, we write p r  for the measure on S, which is the forward transportat ion of P 
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by  /, see [18], p. 163. W h e n  / is real-valued we call it a funct ional  of the 
process or a r.v. defined on the process. For  a finite set M;  (tl, t ~ . . . . .  tin), 
t, < t~+l, v = 1, 2 . . . . .  m - 1, of points  in [0, 1] we define the marginal distribution pM 
as the measure in R m which is induced by  P and the mapping  x--> (x(tl), x(t2) . . . . .  
X(tm)), x E C [0, 1]. A process is uniquely  determined by  its marginal  distributions. 

I t  is a nontr ivial  problem to  determine if a given set of "marg ina l"  distribu- 
t ions actual ly  are the marginals of a process with continuous sample paths,  see 
Lo~ve [14], Theorem B, p. 517, and  also Prokhorov  [18]. 

8. Wiener processes 

We will be much  concerned with the stochastic processes known as Wiener 
processes and  t ied-down (or conditional) Wiener processes. These processes are 
real Gaussian processes and  can be characterized by  their mean  value funct ion 
M(t )=EX( t )  and  their covariance funct ion R(s , t )=Cov  (X(t), X(s)). The ordi- 
n a r y  Wiener process (with parameter  (r 2) is defined by  M ( t ) = 0  and  R(s, t )= 
a 2 min (s, t). I t  is well known t h a t  this process has continuous sample paths,  see 
e.g. Lobve [14], p. 547, and  we can identify its restriction to  0~ t~<  1 with a 
measure on C[0,  1]. This measure we denote W((r2). 

Let  X(t) be a Wiener  process with parameter  a ~. The tied-down Wiener pro- 
cess with ty ing point  T can be intui t ively described as the  process X(t) under  
the condit ion X(T)  = 0. Formal ly  we define it by  M(t) = O, R(s, t) = a ~ s(1 - t /T) ,  
0 ~< s ~< t ~< T. These processes also have continuous sample paths  and we denote 
the  measure on C [0, 1] corresponding to the pa r t  0 ~<t ~< 1 of the process by  
W(a ~, T): We make the nota t ional  convent ion tha t  W(a 2, ~ ) =  W(a2). A treat-  
men t  of these processes can be found in Doob [5]. 

9. Convergence of  stochastic processes 

P~, k =  1,2 . . . .  and P are stochastic processes with continuous sample paths,  
i.e. pr. measures on C[0, 1]. We say t h a t  Pk converges (weakly) to P when k--> c~, 
denoted Pk ~ P when k --> oo, if 

fcEo.1/(x)Pk(dx)--> fcEo,1/(x)P(dx ) when k--> 

for every continuous,  bounded  funct ional  [ on C[0, 1]. See definition on p. 164 
in [18]. 

The suitabil i ty of this convergence concept  follows f rom the n e x t  lemma, 
which is contained in Theorem 1.8 in [18]. 

Lemma 9.1. I /  Pk =~ P and i~ / is a/unctional which is continuous almost every- 
where (P), then P~ --> pr  i.d. when k --> oo. 

The following concept  is crucial for characterizat ion of weak compactness of 
families of pr. measures on C[0, 1]. The family ~ = {P} is said to  be tight (to 
satisfy condit ion (~) in [18]) if for every  e > 0 there is a compact  set Ks = C[0, 1] 

28:5 399 



B. ROSfiN, Limit theorems for sampling 

such that  P(K , )>  1-8 .  holds for all P E ~ (see p. 167 in [18]). The following 
result is contained in [18]. 

Theorem 9.1. Necessary and su//ieient /or Pk ~ P when k---> co is that 

1. pM___> pM i.d. /or every marginal M.  

2. {Pk)~ is tight. 

In  order to apply the above theorem, one needs a manageable criterion for 
verification of tightness. The following criterion, usually referred to as Dynkin's 
criterion, will satisfy in the cases we shall consider. 

Theorem 9.2. {Pk}F is a sequence o/ pr. measures on C[0, 1]. For (~ > 0 and 
A > 0 we de/ine 

~p(A, 5 ) = h m  sup Pk( max [x(t)-x(T)l>~5). (9.1) 
k .--> oo O ~ < T ~ I - A  T<~t<~T+A 

Then, su//icient /or {Pk}~ to be tight is that 

1. For every 8. > 0 there is a constant C~ such that 

P~(Ix(O)l<C,)>~l-8., k =  1,2, . . . .  

2. For every fixed ~ it holds that A-lv2(A, (~)-+0 when A-->0. 

We indicate a proof (cf. Lemma 2.3 in [18], and Particular case 1 ~ of 
Theorem A in 35.3, [14]). For  (~ > 0 and A > 0 we define the following subsets 
of C[0, 1]. 

B(A, ~) = (~ II ~(t') - ~(t") I < ~ ~ I t ' -  t"[ < A) 

As (A, O) = (x l max Ix(t)-x(sA)l<~), s = 0 , 1  . . . . .  [A-l] .  
8 A ~ t ~ ( s +  l)A 

For any positive numbers e and ~ there is a A o such that  Pk(B(A o, (~))> 
1-8. ,  k = l , 2  . . . . .  To prove this we chose Ao such tha t  

and k 0 so that  

\r<~t<~r+A" ~ 3] 

for k~>k o. Then it holds for k~>k 0 

Pk (B(Ao, ~)) >~ 1 - ~--~o Pk ~ 8  >~l--2([Ao-1]+l)v2 Ao, ~ >1  - - 8 . ,  
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Further  there exist A~ > 0, k = 1, 2 . . . .  so tha t  P~ (B(A~, (~)) > 1 - e. The propo- 
sition above now follows by  put t ing A 0 = m i n  (A0, A1 . . . . .  A~0). 

Let  e > 0  and O~',~0, v--~oo. There is a sequence A~'~0,  v--> oo, for which 
Pk(B(A~,5~))>l-e.2-~,k,v=l,2 . . . . .  Now consider K=f'I~=IB(A~,O~). The 
functions in K are equi-continuous with a common modulus of continuity given 
by  the linear interpolation between the points (A2, Ol),(A3,52), . . . .  Further  
P(K) > 1 - e  and the theorem follows easily. 

Chapter 4. Central limit problems 

10. Preliminaries 

Analogues of the central limit theorem for sampling from finite populations 
have been extensively studied. Among the works on the problem we mention 
Wald and Wolfowitz [19], Madow [15], Noether [17], tfoeffding [11], Motoo 
[16], Erd6s and Rdnyi [6], I-I~jek [8], and [9]. 

We state the problem we shall consider first in this chapter. As usual, 
Xk~ . . . .  ,XkN k is a r.p. of the elements in gk, o =u ,  = X k 1 + . . . + X k , , l ~ <  
n<-.N k, k =  1, 2, . . . .  For  simplicity we write S,~ instead of --"k"q(k) S*,~ stands for 
the standardized sample sum 

s *  .~ = ( s . .  - E S n . ) / a  ( S . ) .  (10.1) 

The problem is to determine the class of possible limit distributions for S* and 
the conditions for convergence. In  Hhjek [9] there is given a complete treat- 
ment  of the problem under the infinitesimality condition (N) defined in Remark  1 
to Th. 12.1. We shall consider the problem without  assumption (N), but  under 
the additional assumption, tha t  

0 < l i m  nk/Nk<,.lim nk/Nk< 1 (10.2) 

Our analysis will be based on the fundamental  Lemma 2.1 in [8], a consequence 
N k  

of which we now state. Let  gk={ak,}~=l and let Ykl . . . . .  YkNk be independent 
r .v. 's  with the following two-point distributions 

P(Y~,=ak~-I~k)=l-P(Yx,=O)=nk/N~, v = l , 2  . . . . .  Nk, k = l , 2  . . . .  (10.3) 

We define Z~k= Y~I + ... + YkN k, k = 1, 2 . . . .  and Z* =Z~,/a(Z~,). The distri- 
butions of S* and Z* are denoted respectively F *  (x) and G* (x). The lemma n k n k n k 

below is an immediate consequence of Lemma 2.1 in [8]. 

, oo S G ,  lo0 Lemma 10.1. I/ condition (10.2) is /ulfilled, then {F%}l and possess ( n k . f l  

limit distributions simultaneously, and i/they have limit distributions these coincide. 

Following H~jek we will derive results about  the convergence of t %si by  
~G* )oo G* is a convolution of two-point  distributions eonsidering the sequence t . # 1 .  "k 

and we s tar t  by  studying such distributions. 
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11. On convolutions of  certain two-point distributions 

We shall consider pairs (c,d) of sequences of real numbers, c={cl,  c ~ . . . .  }, 
d = {d 1, d 2 . . . .  }. We assume throughout  tha t  such sequences satisfy c 1 ~< cz < . . .  < 0  
and lim, c ,=0 ,  d 1~d~>~.. .>70 and lim, d , = 0 .  I f  a sequence c or d is given 
only for a finite number  of indices it is completed to an infinite sequence by  
addition of zeros. By I(e, d)l we mean the sequence we get by  arranging - c  1, 
- c 2 . . . .  , d~, dz . . . .  in decreasing order, and with (0, 0) we mean the pair in which 
both sequences consist of only zeros. I t  will be convenient to have a notation 
for componentwise convergence. 

De/inition. (c(k), d(k)) :~ (c, d) when k -+ oo if limk G (k) = c~ and limk d, (k) = d ,  
for u =  1 , 2 , . . . .  

The following result is easily proved. 

Lemma 11.1. The set o/ pairs (c, d) /or which ~ (c~ + d~) <~ M < oo is compact 
under ~ convergence. 

Next  we define a class of two-point distributions. For  0 < 2 <  1 A (x; 2) i s  the 
pr. distribution with pr. ( 1 - 2 )  in the point - ] / 2 / ( 1 - 2 )  and pr. 2 in the point 

] / ( 1 - 2 ) / 2 .  The corresponding c.f. ~v(t;2) is 

~( t ;2 )=  ( 1 - 2 )  exp { - i t  V 2 / ( 1 - 2 ) } + 2  exp {it ] /O-~t) /2}  (11.1) 

Lemma 11.2. (c,d) is a pair /or which ~ ( c ~  +d~)< ~ and O < 2 < l .  Then 

F(x;2, c,d)=[-I* A x; 2 ~-I - I*A x-2,  (11.2) 

converges. ( ~e and 1-I* stand for convolution and A(x/0;  2) is the d.f. with pr. 1 
in x =0).  The representation o/ F(x; 2, c, d ) a s  a convolution o/ /actors A(x/c~; ~) 
and A (x/dr; 2) is unique in the /ollowing sense when (c, d) ~ (0, 0): 

(i) I /  2=# �89 there are exactly two  sets o/ parameters which yield the same 
F(x; 2, c, d), namely, F(x; ~, c, d) = F(x; 1 - 2, - d, - c). 

(ii) I /  ~ = �89 it holds that F(x, �89 c, d )=F(x ,  ~', c', d') i/ and only i/ 2 '=  �89 and 
{(e',d')l=l(~,d) [. 

Proo/. In  order to show tha t  (11.2) converges we show tha t  the corresponding 
product of e.f.'s 

~o(t; 2, c, d) = ]~ ~0(c, t; 2)" f i  ~o(d~ t; 2) (11.3) 
v = l  v = l  

converges uniformly on every compact interval on the real axis. I t  will be 
convenient to s tudy ~o for complex arguments.  Easy  eastimates yield tha t  

11 - ~(~; ~)l < c I~ I ~ i n . 4 )  
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holds on every  compact  set in the  complex plane. The cons tan t  C depends on 
and  the compac t  set. According to the  assumpt ion  ~ (c, 2 + 2 d~) < r i t  follows 

f rom (11.4) t ha t  the  p roduc t  (11.3) converges uni formly on every compact  set 
in the complex plane. Thus  ~(z; 2, c, d) is an  entire function. Especially w e  have 
uniform convergence of (11.3) on every  compact  interval  on the real axis. Thus 
q(t; 2, c,d) is a c.f. and  F(x;~t, c, d) is a d.f. 

To prove the uniqueness pa r t  we consider the  zeros of v 2. F rom the uniform 
convergence of (11.3) it follows t h a t  the zeros of ~ are exact ly  those of the 
factors  ~0(c~z;~) and ~0(d~z;~). The zeros of ~0(~z;~) are 

z = ~ - ~ V ~ ( 1 - ] t ) [ ( 2 n §  n = 0 ,  __+1, --4-2 . . . .  (11.5) 

Suppose we have t h a t  F(x; ~, c, d) = Y(x; ~', c', d'), where ~ (c~ + d~) < co and  
~(c:2+d'~ 2) < ~ .  The unique correspondence between c.f. 's and  d.f. 's yields t ha t  
(11.6) then holds for all real  z. B u t  bo th  sides in (11.6) are entire funct ions and  
thus  (11.6) holds for  all z. 

v = l  = . = = 
(11.6) 

First  we assume 0 < 2  < �89 and  0 < ~ ' <  �89 B y  equat ing the  zeros of the  left- 
and  r igh t -hand  sides of (11.6), which are closest to the  origin in the quadran t  
I m  (z) ~> 0, Re (z) > 0, we get  

c{ ~ l/t(1 - i )  ( - ~r - i In {(1 - 2)/~}) = C1-1 ]/~-(1 - ~t') ( - a - i h {(1 - t ')/~t'}). 

Thus c~ = l/)/(1 -- 1'} = Wt' (1 - 1 ' ) .  In {(1 -- Jl ')/1'} 

Cl U~(1 - it) ]/~(1 - ) . )  In {(1 - Jt)/~t} ' 

which yields ~=)~'  and  c I = C  1 .  B y  considering the zeros closest to  the origin in 
the  quadran t  Ira(z)~<0, Re (z)> 0 we obta in  t h a t  dl =d'l. Now we can cancel 
the factors  ~0(ClZ;~t ) and  q(dlZ;2 ) in (11.6), repeat  the argument ,  and  get  t h a t  
c2 = c~ and  d~ = d~ and  so on. N e x t  we assume 0 < 2 < �89 and  �89 < ~t' < 1. Again,  b y  
considering the zeros closest to  the  origin in the  quadran t  Re (z)> 0, I m  (z)> 0 
for the  right- and  lef t -hand sides of (11.6) we get  t h a t  

c ; *  V ~ ( 1  - ~ )  ( - = - i In  { (1  - ~ ) / ~ } )  = d F  1 V~; (1 - ~ ' )  ( ~  - i h { ( l  - ~ ' ) / ~ ' } )  

which yields 2 ' =  1 - ) ,  and  d~ = - c  r B y  proceeding as above  we obtain  t h a t  a 
necessary condit ion for (11.6) to hold is t h a t  ~ ' = 1 - ~  and  ( c ' , d ' ) = ( - d , - c ) .  
I t  is easily checked t h a t  this condi t ion is also sufficient. I n  quite an analogous 
manner  the  proposi t ion can be demons t ra ted  for �89 < ~t < 1 and  2 = �89 Thus the 
lemma is proved.  The following result  is immediate.  

Lemma 11,3. F(x; ~, c, d) has mean 0 and variance ~.~ (c,,§ 2 

Next  we prove a convergence result. 
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Lemma ll .4. Fk(x) = F(x; 2k, c(k), d(k)), k =  1, 2 . . . .  is a sequence o/distributions 

defined according to (11.2) /or which it holds that 0<l im~2k~<l imk2k<l  and 

(i) The possible l imit distributions /or Fk when k - - > ~  are those which can be 
written 

N(O, 1 (c~ + d2,))~e i]* h (x /c , ;  ~)~e ~ *  A(x/d~; 2) (11.7) 
~=1 ~=I ~=I 

where (c, d) satisfies ~ 2 (c, + d~) ~< 1 and 0 < 2 < 1. N(/~, a 2) is the normal distri- 
bution with mean la and variance r ~. 

(ii) Necessary and sufficient for F~(x) to convergence i.d. to the distribution (11.7) 
when k ---> oo is 

1. if (c, d) : (0, O) that (c(k), d(k)) =~ (0, O) when k --> oo. 

2. i /  (c, d) :~ (0, O) and 2 :V �89 that 
2 ~ (a) { k)l has at most the two limits points 2 and 1 - 2 .  

(b) /or every subsequenee {k,}~=l for which lira, 2,, = 2 it holds that (c(k,), d(k,)):~ 
(c, d) and for every subsequenve /or which l im ,2~=  1 - 2  it holds that 

(c(k,), d(k,)) :~ ( - d, - e). 

3. if (c, d) r (0, O) and 2 = �89 that 

(a) 2~-->�89 when k-->c~. 

(b) I(c(k), d(k)) I ~ [(c, d) I when k--> ~ .  

We will use the following estimate in the proof. 

Lemma 11.5. ~(t; 2, c, d) is defined in (11.3). I f  

12-�89189 a n d  Itl<min(-eN+X,-1 dNl+t), 

t2 ~. (c: +d:)}" _I~(c,t;2)~0(d,t;2) then I yJ(t; 2, c, d) - exp [ -  ~ ~+1 

~<exp Oltl~max(-c~+~,d~+~). (c,+d,) - 1  (11.8) 
N+I 

where the constant C only depends on O. 

Proof. C1, C 2 . . . .  denotes constants. I t  holds that  

~0(t; 2) = 1 - I f ( 1  + tR1 (t; 2)), 

where IRI(t;~)I<,C 1 if I t l < l  and 12-�89 Further we have 

1 -- z = e-~(1 + z2R2(z)), 
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where IR~(z)l < c~ if 
for real ~'s 

I z l < 2 - ' ( l + C 1 ) .  By combining (11.9) and (11.10) we get 

~(~d; ~) = e-(:"')+~ (1 + [~l :R:( t ,  ~, ~)), (11.11) 

where [R3(t, ~, A)[ ~< C a if It[ ~< [~-~[ and  [ 2 -  �89 ~< ~ <  �89 Thus 

~ ~c ~ § d~) �9 YI (1 § Iv~tl:R:) (1 § Id:~l:R~) ~(c,t; ~t) ~(d~t; ~t) = exp - ~ ~ 
N+I  2 /Y+l J N+I  

and if Itl< min(--c~l+l,  dNl+l) and 1~-�89 ~< �89  it holds t ha t  

( l§  tl3R3)(l§ C3[tl a Ic:l:+e. ~) 
N+I  

< e~p {c~ I tl= .max  ( - c~+:, d~+l) 

and the est imate (11.8) follows. 

: d~)l (el+ 
N-i-1 J 

Proo] o�89 .[,emma 11.4. First  we assume 

2~-->)[ and (c(/c), d(k))=~(c,d) when /c-->c~. (11.12) 

~ ~c s + d~) ~< 1 and we have According to Lemma 11.1 it holds t h a t  /.~ ~ 

<~ e~p -- f f  I -  (c,+d,) ~o(t;2~,c,d)-I-Iq~(c,t;~.)q)(d,t;]t) 

II {"(-A )} x I-I ~(c~ (k) t; ;re) ~(d~ (~) t; 2k) + exp -- ~- i (c~ + d~) 

x ,=IYI ~(c,t; X) q~(d,t; ~t) - exp - 2- 1 - (c~(k) + d2(k)) 

x 1-I ~(c,(k) t; ;tk) ~(d,(/~) t; A~)) = R~(t, N) + R,(t, g ,  k) + R.(t ,  N,  k). 

Let  T and s be arbi t rary  positive numbers. From (11.12) we conclude tha t  
supk max  ( --CN (k), d~(k))--> 0 when N--> co and tha t  I ~ -  �89 ~ < �89 The estimate 
(11.8) now yields t ha t  there is a No, depending on T and e, such tha t  IR4(t, No) ] ~< e 
and [Rs(t, N0, k)l~<e if Itl~<T. I t  is an immediate  consequence of (11.12) t ha t  
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R~(t, No, k)-->O uniformly on every compact t-interval when k-->oo. Thus, in all, 
we have proved that  if (11.12) holds then it holds uniformly on every compact 
t-interval tha t  

-~(1- -  + d,2))} y)(t; 2, c, limkv2(t;2k, c(k),d(k))=exp{ v~=l(C2 �9 d). (11.13) 

According to the continuity theorem for c.f.'s this is equivalent to the following: 

( ) (11.12) implies tha t  F~->N 0, 1 -~ (c ,~+d~)  -)eF(x;2, c,d) i.d. (11.14) 

We observe that  the assumption ;tk-->;t was used only to assure that  R~(t,N o, k)-->O. 
I t  is easily seen that  if (c, d )=  (0.0) then the assumption ;tk-->2 is superfluous 
for this, and the sufficiency part  of (ii) 1 in the lemma follows. 

We prove the sufficiency parts of (ii) 2 and 3 indirectly and we assume that  
(a) and (b) hold but  tha t  {Fk}F does not  converge i.d. From Lemma 11.3 it 
readily follows that  (F~}~ ~ is weakly compact under convergence i.d. By com- 
bining this with Lemma 11.1 we see that  we can select two subsequences {k~},~l 

k ~ and { /*}/~=1 such that  

2~--->2, (c(k~), d(k,))~(c,d) and Fk,(x)--->.F(x) i.d. when v-->~ (11.15) 

2%-->2', (c(k~,),d(k~,))=-(c',d') and Fk,(x)-->F'(x) i.d. when F-->oo (11.16) 

where F(x) ~z F '  (x). (11.17) 

From (11.14), (11.15) and (11.16) it follows that  the c.f'.s of $' and F '  are 

c.f. of F = e x p  - ~  1 -~(c ,2+d~)  ~Ir (11.18) 
1 ~=1  

c.f. of F ' =  exp - ~ -  1 -  (c~+d: ~) ~(c:t;2') r (11.19) 
1 v = l  

From (b) it follows that  ~[*(c~+d~)=~['(c',,2+d'~2). Thus (11.17), (11.18) and 
(11.19) yield 

~ I  ~ ( c , t ; ~ ) ~ ( 4 t ; ~ ) ~  ~ I ~ ( c ; t ; ~ ' )  ' �9 ' ~(d~t, 2 ) 
V=I IJ~l 

and this contradicts the result in Lemma 11.2. Hence the sufficiency parts of 
(ii) are proved. Next we show that  the class of limit distributions is the one 
claimed. From a sequence {;tk, (c(k), d(k))}~ ~ we can always select a subsequence 
for which (11.15) holds. That  every limit function is of the type (11.7) thus 
follows from (11.14). Conversely, tha t  every function of the type (11.7) is a 
limit function follows from the easily proved fact tha t  every (c, d) for which 
~ o  (c~ + d, 2) ~< 1 is obtainable as (c(k), d(k)) => (c, d), k--> oo, where ~,~0 (c, 2 (k) + 
d~(k) )  = 1. 
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To prove the necessity parts we assume that  {F~(x)}~ r converges to F(x) given 
k ~ by (11.18). Select a subsequence { ,}~1 for which (11.16) holds. Then F '  (x)=F(x) 

and from (11.14) it follows that  (11.18)--(11.19). First, we assume that  (c,d)= 
(0, 0). Then also (c', d') = (0, 0) because otherwise (11.19) has zeros, while (11.18) 
is zerofree. Next assume t h a t  (c, d ) *  (0, 0). The exponential functions are zero- 
free. By carrying through an analysis of the zeros of (11.18) and (11.19) exactly 
as in the proof of Lemma 11.2, the  necessity can be proved. Thus the lemma 
is completely proved. 

12. Limit  distributions for sample sums 

fa ) N k  Let {7tk}F, ztk=L ~S,=I, be a population sequence and let CCkl~<~k2~<...</~ 
and / ~ > f l k u  >~ ... >/xk be the elements in ~ which differ from /~. We 
define c~=(a~-~t~) /D~,  d~ ,=( f l~ - /~ ) /D~  (for def. of D~ see (1.1), D~ is as- 
sumed > 0), c(z ,)= {Cki , Ok2 . . . .  ) ,  d(g,)= {d~, d,~ . . . .  } and ~ = n , N ~  ~, while s is 
defined in (10.1). 

Theorem 12.1. I /  (10.2) holds and Dk>0 /or all k, then: 

(i) The possible limit distributions /or S~k when k-->oo are those given by (11.7). 

(ii) Necessary and su//icient /or S~  to converge i.d. to (11.7) is 

1. q (c,d)=(0, 0), that (c(zcz), d(zek))o(0,0) when k-->oo. 

2. i/  (c ,d)#(0,  0) and 2# �89  that 

(a) {~}~  has at most the two limit points ~ and 1 -  2. 

(b) /or every subsequence {k,}~ /or which lim~ ~ , = 2  it holds that (c(g~), 
d(~k~)) ~ (c, d) and /or every subsequence /or which lim~ ~t~ = 1 - )t it holds 
that (c(zt~), d(~t~,)) =~ ( - d, - c). 

3. i/ (c, d) # (O, O) and ~ = �89 that 

(a) ~ � 8 9  when k - + ~ .  

(b) I(c(gk), d(zk))l :~ I(c, d) I. 

Remarks. 1. The condition (c(~tk), d(~tk))~ (0, 0) or, rather, its equivalent 

lim~ D;  1 max, lak~ ~/z~l = 0 (N) 

which is called Noether's condition (see [17] and [11]) is well-known to be neces- 
sary and sufficient for Sn~ to converge to a N(0, 1)-distribution i.d. when (10.2) 
holds, see [8]. 

2. We have excluded the cases lim~ ~ = 0  and lim~ ~ =  1. That the whole 
situation changes considerably in these cases can be seen from Theorem 5.1 
in [8]. 

Proo/ o/ Theorem 12.1. Let Yk~ and Zn~ be the random variables defined in 
w 10. I t  is easily checked tha t  q(Z,k)=Dk V 2 ~ -  2k) and tha t  (Yk:--EYk,)/a(Zn~) 
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has a A(x/(ak,--pk); ~tk)-distribution. Thus, * - Gnk -- F(x; ]tk, c(zo,), d(z~k)). Now par t  (ii) 
follows immediately from Lemmata  10.1 and 11.4. From Lemma 11.4 it also 
follows tha t  the class of limit distributions cannot exceed the class defined by  
(11.7). I t  remains to prove tha t  every pair (c,d) for which ~ [~ (c~+d~)< l ,  is 
obtainable as a limit (c(~),d(zo,))=,-(c,d), k-->.oo for some population sequence 
(gk}~- Let  (c, d) be given. We define ~zk as the population which contains the 

�9 - 1  k 2 2 �89 elements cl, c 2 . . . . .  c~, dp d v .. dk, 2 - 1 k ( k -  1) elements - k (1 - ~1 (c, + d~ )) , and, 
finally, 2 - 1 k ( b - 1 )  elements k - l ( ( 1 - ~ ( c ~ + d 2 ) ) � 8 9  I t  is 
easily checked tha t  1) p~--0,  2) D~-->I when k-->oo, 3) c,(z~)=c,+o(1) and 
d,(z~)=d,+o(1) when b-+oo.  Thus, (c(z~k),d(z~))~(c,d)when k-->oo, and the 
proof o f  the theorem is complete. 

13. Convergence of random walks 

is a finite population and X1, X~ . . . . .  XN a r.p. of its elements. Let, as usual, 
S 0 = 0, Sn = X 1 + ... + Xn, n = 1, 2 . . . . .  N. I t  will be convenient to normalize the 
random walk So, S 1 . . . . .  Sn in the following way. By the normalized random 
walk corresponding to a sample of size n we mean the stochastic process on [0, 1] 
for which the sample pa th  a t  the point co E s is obtained by  connecting the 
points 

(o,o), (n -1, (a~ ~ ) - ~  (S~ (o~) - ~)), 

(2n -1, ( ~  Vnn) -1 (S~ (ca) - 2/~.)) . . . . .  (1, (q~ Wnn )-1 (S~ (co) - n/~)) 

by  straight lines. This process obviously has continuous sample paths  and we 
denote the corresponding pr. measure on C[0, 1] by P(z~, n). 

The following condition (L) was introduced in [6] and its relevance is further 
exhibited by  the result in Theorem 3.1 in [8]. Let  ~ k = ( a k l  . . . .  ,akNk} and 1 ~< 
nk ~<Nk, k =  1, 2 . . . . .  The pair {gk}~ ~ {nk}~ ~ is said to satisfy condition (L), for 
Lindeberg, if for every e >  0 it holds tha t  

lim D ;  2 ~ (ak, - pk) 2 = 0. (L) 
k - - ~ o o  . 

For def. of! D 2 see (1.1). We shall also consider the condition (N) defined in 
Remark  1 to Theorem 12.1. 

T h e o r e m  13.1. I f  {~k}~ and {n~)F satis/y 

1. n~/Nk--->2 when k--->oo, 0~<A~<I. 

2. In case ~ > 0, {~k}r/ulfil /s {N) and in case 2 = 0, {z~}~, {nk}F/ul/ills {L), then 

P{z~, nk) ~ W(1, ~t -1) when k-->~. (13.1) 

Proo]. I t  is no loss of generali ty to assume tha t  ~uk = 0 for all b, and we do 
so thoughout the proof. We first consider the case nk=Nk, k = l , 2 ,  . . . .  We shall 
prove the theorem by  applying Theorem 9.1 and thus we shall verify tha t  
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P(gk, N k) M~" W(1, 1) M when k-->co, for every marginal  M (13.2) 

and  t h a t  the  family {P(:t~, Nk)}~ is t ight .  (13.3) 

We s tar t  with (13.2). Le t  M:  O < t , < t ~ < . . . t m < l  be a given marginal.  A ~ i s  
the covariance mat r ix  corresponding to  the  normal  distr ibution W(1, 1) M. A M 
is positive definite. Le t  n~ ) = [t~ N~], i = 0, 1, 2 . . . . .  m + 1, t 0 = 0 and  ~ + x  = 1. V M is 
the  r andom vector  

VM ,D-~ ~, 

Let  ~ = (~ ,  ~ . . . . .  az) be a real vector.  Our aim is to  show t h a t  

V M-+ N(0, A M) i.d. when k - +  co. (13.4) 

According to  a well-known result  b y  Cram~r ([1] p. 105), (13.4) is equivalent  to  

(vM, a)-->N(O,a~Mot ') i.d. for  every  ~ 4 0 ,  when k -+oo  (13.5) 

( ( , )  s tands for scalar product.)  We have 

( V ~ ,  g) = ~ @~,X~,, (13.6) 

m --(~-~) < V ~< -(~) i = 1 , 2  . . . . .  m + l .  where @k, ~ D k  I ~V=s(k,,) a~ and  s(k, ~) = i  when ,~1, ,.l,. 
E m p t y  summat ion  gives 0. Le t  ~ = {@kl . . . . .  @k~}. Computat ions  yield t h a t  
E ( V ~ ,  ~) = 0 and  t h a t  

=•1 m ~ 1 ~n~ ) . (13.7) 2 M 1 (n(~) - n~ -1)) a~ Nk(hr~ - 1) , a ((Vk, a)) =D~ ~ , -  Nk--  1, 

F rom (13.7) we deduce t h a t  

lim a ~ (( V M, a)) = (t~ - t~_l) - t, ~ �9 (13.8) 

I t  is no t  difficult to  verify t h a t  the righ~-hand side in (13.8) can be wri t ten 
~ A ~  '. (13.5) will now follow from Theorems 4.1 and  4.2 and  L e m m a  4.1 in [9] 
if we prove t h a t  the sequence {~k}F satisfies any  of the  conditions in Lemma 4.1 
in [9]. We choose to  ver i fy  (iii). A sequence { k}l satisfies this condition if 

F 
-3 | x~dF~,k = O. ( (lira A ~ =  co) ~ lira ~ 13.9) 

Condit ion (13.9) is clearly invar iant  if all elements in ~tk are multiplied with the 
same nonzero constant .  We consider ~ ks1, where ~ ,  =Dk"  ~k, k = 1, 2 . . . . .  We 
observe t h a t  all elements in ~ '  k lie on the interval  
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rain ~ ,  max 
Ll~<s~<m+l p f s  l~<s~<rn+l  

2 

and that  af2~--> ~ A M ~  ' > 0,  because A M is positive definite. Now 03.9) is easily 
verified for {f2;~}~ and thus for {f2k}~ r Hence, (13.5) follows and thus (13.4)is 
proved when M is a marginal which contains none of the points 0 or 1. The 
extension of (13.4) to an arbi t rary marginal is immediate. Finally, we have tha t  

rTrM • Y(m))](1--N;1), where Y~)= P(~tk, Nk) M is the distribution of t~k 7-t k . . . . .  
i - 1  . . .  (t~Ne-[tiNk]) ~.mnkj+l"D~, i = 1 , 2 ,  m. Condition (N) implies tha t  Y~)-->0 

in pr. when k-+co,  and hence (13.2) follows from (13.4). 
Next we verify (13.3), and this can be done by applying Theorem 9.2. Let  

(~ and A be positive numbers, 

T e [ 0 ,  l - A ] ,  2(kl)=[N~T]N;c ~ and 2~)=([Nk(T + A)]+ I) N; 1. 

For simplicity we write P~ instead of P(ztk, Ng). We have 

P),( max Ix(T)-x(t)l ~>,~) <P~( max Ix(T)-x(;@) +x(;@)'x(t)l >~). (13.10) 
T<<.t<~T+A T<~t<~(2) 

The measure Pk is concentrated on polygons with corners in time points which 
are integer multiples of N ;  1. Thus we can continue the inequality (13.10) 

<~Pk(IX(2~))--x(T)I~)+ P~( max Ix(2~))-x(t)l>~ ~) 
\a(kl) < t < a(k s ) 

<~2Pk( max [x(;t~))--x(t)l~>~). (13.11) 

From the exchangeability of the X,'s and the fact tha t  polygons at tain their 
maximum in corners, we conclude that  

(13.11) ~< 2P ( m a x  
\p-<N a($ ) a (1)) k(z -- x �9 

(13.12) 

If  2(.s)_~ ~0)~< ~ we get from /.,emma 6.2 tha t  

(13.12) r ~ k - -~ ,k  ]]. (13.13) 

As 2~ ) - 2 ~ ) - +  A when k--> c~ we have if k is sufficiently large and if A < ~ /1 2 8  

113"13)<4P\1  . 03.14) 
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As a special case of (13.2) (or of Theorem 12.1) it holds tha t  the quant i ty  in 
(13.14) converges, when k - + ~ ,  to 

4 8 ~ 
I /2~A( l_A)  f ,  zt>~seXP{2A[~-A)}dx<'<4"~ ( 2  A ( 1 - A ) e x p { - 1 2 8 A ( 1 - A ) }  

Summing up, we have proved: I f  A < ~ /128 ,  then 

lim sup P~( max  [x(T)-x(t)[<5) 
k-->~ 0 ~ T ~ I - A  T ~ T + A  

128 A ( 1 -  A) " (13.15) 

By combining (13.15) with the fact S(0k)=0 we obtain (13.3) as a consequence 
of Theorem 9.2. Thus, Theorem 13.1 is proved for the case nk=Nk. 

I t  is not  difficult to see tha t  the case 0<~t~<l is contained in the case 
nk = Ark. The difference is merely a change of the t ime scale. We do not carry 
out the details to verify this: 

Finally, the case )~=0 can be t reated quite analogously. We give an indica- 
tion of t h e  proof and we follow the steps in the above proof. M is the marginal, 
A M the covariance matr ix  corresponding to W(1) M, n(~ ) = [t~nk], i = O, 1 . . . . .  m. 
V M = ((ak V~n~) -1S~(~) . . . .  (ak l /~)  -1Sn(,~)). In  the representation (13.6) of (V M, ~) 

we get tha t  

1 a~, v = 1, 2, _(m) 

0 , v = n(~) + 1 . . . . .  N~, 

where s(k, v) is defined as before. Again it is a mat te r  of computation to show 
tha t  M E(Vk ,~)=O and tha t  a2((VM,~))-->~AM~', when k ~ > ~ .  To prove the 
asymptot ic  normali ty of M (Vk, a) we again apply Theorem 4.1 in [9], but  this 
t ime we verify directly tha t  {gk, ~ } ~  satisfies condition (4.3) in [9]. W e  con- 
sider instead the sequence {Xtk,~}~, where ~ = { P ~ l  . . . . .  O'knk}={ak]/~kl . . . . .  

8k,~= I/ N_ I D 2 ' r~2 " v k ~k" a_Jf~ 

It holds that Io l (13.16) 
~,=J. 

and D~jnk--> aAM a '. (13.17) 

From (13.16) and (13.17) it follows easily tha t  {~k, k)l and thus {gk, k}l  
__satisfies condition (4.3) in [9] as soon as { k}l satisfies condition (L) and 
lim n~/Nk < 1. The rest of the proof runs almost exactly as before. The proof 
of Theorem 13.1 is thus concluded. 
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The nex t  theorem,  which is a coun te rpa r t  of the  so-called invar iance principle,  
see [3], is an  immedia te  consequence of Theorem 13.1 and  L e m m a  9.1. 

Theorem 13.2. I /  {~t,}~ and {n~}[" satis]y the condition~ o/ Theorem 13.1 and 
i/ / is a functional on C[0, 1], which is continuous a.e. (W(1,~t-~)), then 

P(gk, m:) (/(x) <~ o~) -->W(1, 2-~) (t(x) <- o~) i.d. when k---> oo. 

Next  we give an  appl ica t ion of the invar iance principle. We  shall consider 
the  r .v . ' s  

2gn = the  n u m b e r  of posi t ive sums among  S 1, S~ . . . . .  S~. (13.18) 

Theorem 13.3. /1 {~tk}~ and  {n~}~ r satis]y the condition8 in Theorem 13.1 and 
i/ p ~ = 0 ,  k = l , 2 ,  . . . ,  then it ho/ds /or 0 ~ < ~ < 1 ,  that 

l im P ( N ~ / n k  ~< a) = aX + 1 (1 - ~) 

1[ V(-1-- a) ( 1 -  2)1 (13.19) Arcsinc r ] + ( 1 -  a~) Arcsine t 1 -  ~2 

Proof. We introduce the  following funct ionals  on C[O, 1] ,~(x )=p( t ]O<<. t<s ,  
x(t )>O),  where  p is the  Lebesgue measure.  We  wiU w r ! ~  ~ ins tead of v2r 
y(x; n) = n -  (the n u m b e r  of the  halfopen intervals  ((v - 1) n -  , ~n-  ], v = 1, 2 . . . .  n, 
on which x( t )> 0). I t  holds t h a t  

P(N.~/nk  <. o~) = P(ztk, nk) Op(x; nk) < ~). (13.20) 

We  now proceed b y  showing t h a t  

P(~r~,n~)(~p(x;nk)<a)-->W(1,2-1)(~2(x)<a) i.d., k - + o o .  (13.21) 

Then  we compute  the  dis t r ibut ion to  the  r ight  in (13.21). F i rs t  we p rove  t h a t  
for  every  e > 0 it  holds t h a t  

P(ztk, nk) ([ v2(x; nk) - v2(x) I >~ e) -+ 0 when k--> ~ .  (13.22) 

The  set  of zeros of x(t)E C[0, 1] is a closed set, and  we denote  b y  I i ( x ) , I 2 ( x )  . . . .  
the  zero-free open intervals ,  a r ranged  according to  decreasing length.  Le t  E~.m = 
( x l ~ = l p ( I , ( x ) )  > 1 - e). I f  x E E~. m i t  holds t h a t  

[~(x; n) - vj(x) l <~ 2ran -1 + e. (13.23) 

I t  is wel l-known (see e.g. L6vy  [13] w 15) t h a t  the  set  of zeros of x(t) has  measure  
0 wi th  W ( 1 , / t - 1 ) - p r .  1. Thus  W(1 ,~- I ) (E~ .m)71  when  m-->co.  Hence  we can  
choose re(e) so t h a t  W(1, ~-1) (E~,m(o) > 1 - e /2.  As P(g~, nk) ~ W(1, ~ 1) and  E~,m(o 
is open i t  holds t h a t  

P(~k, n~) (E~,~(~)) > 1 - e if k >~ k~. (13.24) 
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Now (13.23) and (13.24) imply (13.22). By combining (13.22) with the well- 
known fact that  yJ(x) is continuous a.e. (W(1,1-1)), (13.21) follows from Theo- 
rem 13.2. 

Next we compute W(1, t -1) (y~(x) ~< g). The result for 2 = 1 

W(1, 1) (~(x) • a) = a for 0 < a ~< 1 (13.25) 

is we l l -kno~  and can be obtained as follows. Let g2k be the population which 
contains k l ' s  and k ( - 1 ) ' s  and let N~*~ = the nmnber of edges on the positive 
side in the random walk polygon corresponding to a r.p. of the elements in g2k. 
According to Theorem 3 in w 2 of Chapter I I I  in [7], N~k/2k has a uniform 
distribution over the values 0, 1/k, 2/k . . . . .  1. Now Nh/2k and N2k/2k (N2k is 
def. in (13.18)) are asymptotically equivalent. Thus (13.25)follows by letting 
~----~ OO. 

To treat the case 1 < 1 we introduce the functional T on C[0,1], T(x)= 
sup (t[x(t)=O). The distribution of T under W(a2, t-1)-measure can be found in 
L6vy [13], p. 39. I t  is 

d ~ 1 V I - ~  0 < t < l .  (13.26) 
w W  , z -  ) (T(x) <<. 0 = / ( t ,  ~) = :~(1 - ~t) ~ - t) 

I t  is clear that  the distribution should be independent of a s. Let 0 < T o < 1. 
The process "W(a2, t -1) under the condition T=To" has the following prop- 

erties. For t E [0, To] it is a tied-down Wiener process with tying point T 0. For 
t 6 [To, 1] it  is independent of what happened on [0, To] and it is equally likely 
either strictly positive or strictly negative. This is realized by considering time 
reversed on [0,2-1]. Reversal of time leaves W(a~,~ -1) invariant and makes T 
independent of the future. By the strong Markov property we get for 0 ~< g ~< 1 

w ( 1 ,  ~-1) (~o(x) < ~) = ~ w(1, T) (~(x) < ~)/(T, ,~) d T  

e f ~  + ~ w(L T) (~o~(x) < o~ - (1 - T)) I(T, ~) dT 

= _ _  1 1 ~ 1 _ T))] 
e fomin(1 ,  T ) / (T ,~ )dT+~fomax(O, ,~ (~- (1  ]/(T, ~)aT 2 

=~ /(T, 2)dT+~ -- -T-- -  2.]1_~ [ (T ' t )gT-  2 

(13.27) 
The second equality in (13.27) follows from (13.25). I t  hol~ls 

~) d {2 I /T(1-Z)~ (13.28) /(T, = d-~ ~ Arcsine r 1 - iT - ]  

/(T, 2) d (  2]/1-~t  [ V I ~ _ T + _ ~  - Aretg ~/T~I--zT~ ] ) .  (13.29) 
T ~ ~ Vl-Z ) 
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B y  using the  p r imi t ive  funct ions  in (13.28) and  (13.29) to  eva lua te  the  inte- 
grals in (13.27) we get  the  pr.  W(1,2 -1) (~ (x )<  a) on the  fo rm 

�89 + ~-1 [Arcsine Yg(1 - 2) (1 - ~ ) - 1  _ Arcsine I/(1 - 2) (1 - ~) (1 - 2(1 - ~))-1 

+ 06t Arctg  V(1 - a) a-~ (1 - 2 )  - 1  - (1 - a) 2 Arctg  Va(1 - 2) -a (1 - 0t)-x], 

which is easily t r ans fo rmed  into (13.19). This  concludes the  proof.  

Chapter 5. A s y m p t o t i c  b e h a v i o u r  o f  empir ica l  dis tr ibut ions  and  
empir ica l  fract i les  

14. On the empirical distribution 

The empirical distribution 1unction F* (to, t, n) corresponding to  the  sample  
X1, X 2 . . . . .  X= of size n f rom z is the  r a n d o m  dis t r ibut ion funct ion (in t) de- 
fined b y  

n 

F* (o9, t, n) = n -1 ~. H ( t -  X~ (o9)), (o E ~ ,  - oo < t < oo, (14.1) 

where H(t) is 0 for t < 0 and  1 for  t >10. We will of ten use the  less cumbersome 
nota t ions  F* (t, n) or  F* (t). 

The following two ideas have  been centra l  in the  s tudy  of the  behaviour  of 
F*(t ,  n) when the  X ' s  are independent  wi th  common  dis t r ibut ion F .  

1. {Kolmogorov.)  W h e n  $' is continuous,  m a n y  prob lems  abou t  F* (t, n) can 
be reduced to the  case where  F is uni form on [0, 1]. This  reduct ion is ob ta ined  
b y  the  t r ans fo rmat ion  Y, = $'(X,),  v = 1, 2, ... n. 

2. (Doob [5] and  Donsker  [4].) W h e n  /v is uni form on [0, 1], i t  holds t h a t  

Vnn (_F*(t, n ) - t ) ,  regarded  as a s tochast ic  process wi th  t ime  p a r a m e t e r  t E [0, 1], 
converges to  the  W(1, 1)-process, when  n--> cr 

Our t r e a t m e n t  of the  behaviot t r  of ~'* (t, n), when X 1 . . . . .  X ,  is a sample  f rom 
a finite popula t ion ,  leans heavi ly  on the  above  ideas. 

Fi rs t  we define some s tochas t i c  processes re la ted to F*(t ,  n), def ined in (14.1). 
The  process Z(t, n) is 

Z(og, t, n) = F* (o9, t, n) - $',(t), o9 e f~, - oo < t < oo. (14.2) 

The sample  pa ths  of' a Z-process consist  of horizontal  line segments  and  are 
thus  discontinuous.  W e  define the  process Q(t, n) as a "con t inu iza t ion"  of Z(t, n). 
For  o9 E f~ let  ( - o o ,  ~(w)) and  [fl(eo), oo) be  the  infinite in tervals  of cons tancy  
for  Z(og, t, n). Q(eo, t, n) is for  t E [a(r fl(w)] the  linear in terpola t ion  be tween the  
left  endpoints  of cons tancy  intervals  for  Z(r t, n). Q(og, t, n) = Z(og, ~(09), n) for  
t < a(o9) and  for t > •(o9) Q(og, t, n) = 0. F inal ly  we introduce a convenient  normal iza-  
t ion of the  Q-process: 

R(eo, t ,n )=(n- l -N-1) - �89162 eoe~ ,  - c ~ < t < c ~ .  (14.3) 
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The processes introduced possess a symmet ry  proper ty  which is analogous to 
the duality principle (p. 385). We need a notation. Let  X(t)  and Y(t) be stochastic 
processes, - ~ < t < oo. I f  all their marginal distributions coincide, we write 
X(t)  = : Y(t). 

Lemma 14.1. Let T(t, n) be any o / the  processes Z(t, n), Q(t, n) or Z(t, n) - -  Q(t, n). 
Then it holds that 

(n -1 - N-~) -�89 T(t, n) = : - ( (N - n) -1 - N - l )  -�89 T(t, N - n), (14.4) 

where N is the size o/ ~. Especially we have 

R(t, n) = : - R(t, N -  n). (14.5) 

Proo/. We prove the proposition for T = Z .  Let  o~-~o~' be the one-one mapping 
of ~ onto itself, which is reversal of order in the permutations,  i.e. (iv i2 . . . . .  iN) = 
r = (ira iN-1 . . . . .  il). Then 

( n - l - N - I )  -�89 Z(og, t , n ) = ( n - 1 - N - 1 )  -~ ~ H ( t - X , ( e o ) ) - ~  ~ H ( t - X , ( e o ) )  
~,=1 ..tv ~,=1 

( ] N 1 1 ~, H ( t - X . ( ~ o ) )  = - ( n - l - N - ~ )  -~ ,=,+~E H ( t - X , ( w ) ) -  ~ - ~  ,=~ 

[ 1 N-,~ , 1 N ] 
= 

The proposition (14.4) now follows from (14.6) and the fact tha t  every point 
oJ E ~ has the same probability. 

In  the sequel we shall consider sequences of empirical distributions corre- 
sponding to samples from ~tk, k = 1, 2 . . . . .  The processes introduced depend on 
the population ~tk and the size n~ of the sample from ~tk. We consider tha t  
notations like Z(t, nk), R(t, nk) etc. are sufficient to indicate this dependence. We 
introduce two conditions on population sequences. {~}~  is said to satisfy respec- 
t ively conditions (A) and (B) if 

(A): N~ 1 (Maximal number  of equal elements in :tk)-+0, when k-->cr 

(B): The elements an,  v = 1 , 2  . . . . .  Nk of ze~ satisfy 0 ~ < ~ < 1  and t im~F~( t )=t  
for 0~<t~<l. 

Verbally (A) means tha t  Fk(t) is asymptotical ly continuous and (B) means 
tha t  $'k(t) is asymptot ical ly a uniform distribution on [0.1]. I t  is easy to see 
tha t  (B) implies (A) and also tha t  (B) is equivalent to the condition. 

(B'): The elements a n  of gk, v = l ,  2 . . . . .  N~ satisfy 0 ~ < a ~ < l  and 

limk sup0<t<i IF  k (t) - t[ = O. 

The next  lemma states tha t  if (A) holds, then the two processes (n -1 - N-1 ) - tZ ( t ,  n) 
and R(t, n) are asymptotical ly "equivalent" .  
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Iacmma 14.2. 1] {7t~}~ satis/ies (A) and i / l im~ min(n~, N ~ - n ~ )  = cr 
/or every e > 0 that 

, then it holds 

limu P(  (n; ~ - N;1)  ~ �89 sup~ [ Z(t, ng) - Q(t, ~*)  =0 .  (14.7) 

Proo/. From Lemma 14.1 it follows tha t  it is sufficient to prove the lemma 
under the assumption n~<<.N~/2. Then (14.7) is equivalent to  

lim~ P ( V ~  supt Iz(t, n~) - Q(t, n~)]~> e) = 0. (14.s) 

Supt IZ(t, nk) - Q(t, n~)l equals the maximal  jump in the Z-process. Let  gkl ,  ~k2, 

�9 .., Cr be the distinct elements in ~k, P~  = P ( X k l  = ~k~) and T ~  = nk ( Z ( ~ ,  nk) - 
Z(ot~-O,  nk)), v = l ,  2 . . . . .  M~. Tk, + n k p ~  has the hypergeometrie distribution 
H(N~, n~,p~,). From Theorem 3.1 it follows tha t  E T ~  is not greater than  the 4th 
central moment  in the Bi(n~,p~),distribution,  which is (see e.g. [2], p. 195) 

2 2 2 3nkpk~q~, + nkpk,  qk, (1 -- 6pk, qk,), where qk, = 1 - pk,. 

From Tchebychev's  inequality with 4th moments  we thus get 

Thus 
P (V~ I T ~ , / ~  I >I e) < ~-' (3pl, + p~, " ~1) .  

P(V-~k supt I z(t, n~) - Q(t, nk) l >~ e) 

M~ / Mk Mk \ 

~< e-4(3 max,  pk, + n ;  t) -+0, when b--> cr 

because condition (A) states tha t  l im~max, pk, =0 .  Thus the lemma is proved. 
I f  ~t has all its elements on the interval [0, 1] the significant parts  of the 

processes Z, Q and R are those for which t E [0, 1]. The process R(t, n ) h a s  con- 
tinuous sample paths and we can, according to w 8, identify its restriction to 
rE f0,1], with a measure on C[0,1]. We denote this measure by  E(zt, n). 

Theo~m 14.1. I /  {z~k}F satis/ies condition (B) and i] l imkmin (nk, 1Vk--nk)= co, 
then 

E(zck, nk) ~ W(1, 1) when k-->oo. 

Proo/. We prove the theorem by  applying Theorem 9.1, and first we prove 
marginal convergence 

E(Ytk, nk) M=~ W(1, 1) M for every marginal M ,  when k-->oo. (14.9) 

Let  M: 0 < t 1 < t 2 < ... <tm < 1 be a given marginal. We define the random vector 
Y k v  - -  ! V ( 1 )  V ( 2 )  y ( r n ) l  k . .  (t) " (t) �9 �9 __ - ~ , - k ,  . . . . .  l k ,  j ~'z Y ~ = I  If Xk,<~ti and Y ~ = 0  if Xk,>t~,  ~ - 1 , 2 ,  . . . ,m.  
Then the distribution E(ztk, n~) M equals the distribution of 
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nit 

(n; ~ - N;~) -�89 n;  ~ ~ (Y~, - EYe, )  

+ (n; 1 - N;~) - t  ((Q - Z) (t~, n,) . . . . .  (Q - Z) (tz, n,)). (14.10) 

From Lemma 14.2 it follows tha t  the last term in (14.10) tends to 0 in pr. 
when k--> oo. Thus it suffices to s tudy the random vector 

nk 

n~l(n;  1 -- N~I) -�89 ~ (Ykv -- EYk~). (14.11) 

Yk~, Yk2 . . . .  is a sample from the m-dimensional population ~k, in which the i th 
component contains NkFk(t~) l ' s  and Nk(1 --Fk(t~)) O's, i = 1, 2 . . . . .  m. The co- 
variance matr ix  [a~ )] of the vector (14.11) is (ef. Theorem 1.1) 

a ( k ) = N k ( N  k -  1)-lF(t t)  (1 -F ( t j ) ) ,  1 <.i<j<.m.  i t  

From condition (B) it follows tha t  

�9 (~) (14.12) limk [a~j ] = A M, 

where A M is the covariance matr ix  corresponding to the normal distribution 
W(1, 1) M. To prove (14.9) we apply  the result in remark  3.2 in [8]. From the 
fact tha t  A M is non-singular and from (14.12) we conclude tha t  condition 
(3.16) in [8] is fulfilled. We also have to verKy tha t  every component  ~ ~k=l, 
i = 1, 2 . . . . .  m of {~}~ satisfies condition (L) with the sequence {nk}~ as soon 
as l imkmin(nk, Nk- -nk)= oo. According to Th. 4.2 and Lemma 4.1 in [9] (13.9) 
is sufficient for that .  Tha t  {~(~)}{ satisfies (13.9) is clear from the fact  tha t  
Fn(~)(t ) is a 0-1 distribution which tends to a distribution with positive variance 

when k - - > ~ .  Thus (14.9) is proved for every marginal  M not  containing t=O 
or 1. From the easily proved facts tha t  R(O, nk) and R(1, nk) tend to 0 in pr. 
when k-->oo, it follows tha t  (14.9) holds for every marginal M. Thus conver- 
gence of marginal distributions is proved and it  remains to verify tightness of 
the family {E(~k, nk)}~. Here we insert a lemma. 

Lemma 14.3. Let Z(t, n) be the process de/ined in (14.2)�9 For every x > 0  it 
holds that 

P (  sup I Z(t, n) - Z(TI ,  n) l t> x) ~< 2P(I  Z ( T  2, n) - Z(T1, •)1 

> x(1 - p ( T , ,  T2)/(1 - p ( T ~ ,  T,))) - V2p(T, ,  T2)/(1 - p ( T  1, T,))n) .  

where p (T1, T2) = F= (T2) - F= (T1). 

Proo]. We fix n and we write Z(t) instead of Z(t, n). The first point t (if 
any) on (T 1, T2], where Z ( t ) - Z ( T 1 )  jumps over the level x or under - x ,  
must  be one of the jump-points  Jl, J2 . . . . .  j, of F~(t)  on (T1, T~]. Let  for 
v = l , 2  . . . . .  s and I X o l > ~ x , A , ( x o ) = ( I Z ( t ) - Z ( T 1 ) l < x  for T a < t < j ,  and Z ( j , ) -  
Z(T1) =x0) and let A(y) = (I Z(T2) - Z(T1) 1/> Y). Then 

417 



B. ROS~N, Limit theorems for sampling 

A(y)D I.J b A(y)A,(xo). (14.13) 
Ixol~>z ~=1 

As two events A, (%) are disjoint, if both arguments ~ and x o do not agree, 
we get from (14.13) 

S p  
P(A(y))>~ ~ ~ (A(y)A,(xo))= ~ ~P(A,(xo)) 'P(A(y)IA,(xo)) .  (14.14) 

Ix,l>~x ~=1 Ixol~>x ~ffil 

Fix u and let Y1, and Y2 be the number of observations X on the resp. inter- 
vals (T1, j~] and (~,, T~], i.e. 

Y1 = n(.F* (iv) - .F* (T1)), Y2 = n(F* (T2) - F* (iv)). (14.15) 

Let  Pl = F= (jr) - F= (T1) and p2 = F= (T2) - F= (?'~). 
The joint distribution of Y, and Y~ is the hypergeometric H(N, n, Pl, P2 ). We 

use, without formal proof, the following conditioning property. If  A is an event 
defined in terms of the observations X which satisfy T I < X  <~]~ and Yl=no 
(=const . )  on A, then the conditional distribution of Y~ given A equals tha t  of 
]72 given (Yl=no).  The event A, (Xo) is of the type described, with no=n(Xo+Pl ). 
Thus, the conditional distribution of Y~, given A,(x0) is the hypergeometric 
H ( N - n  o, n - n o ,  P~/(1-pl ) ) .  We use the suffix 0 to indicate quantities under 
the condition that  A, (x0) occurs. From (14.15) it  follows that  

( P') Eo (Z(T2) - Z(T1)) = Bo ( n-1 ( Y1 § Y2) - (Pl +P2)) = Xo 1 - ~U-p-~p 1 (14.16) 

(Z(T2) - Z(T1) ) = a~ n 2 1 - -  T1 1 

P2 • (TI' T2) (14.17) 
~<n(1 - P l )  ~<n(1 - p ( T 1 ,  T2))" 

From Tchebyehev's inequality it now follows that  if [ E 0 (Z(T2) - Z(T1) ) ] > y, then 

Po (A(y)) >~ Po (] Z(T,) - Z(T1) - E o (Z(T2) - Z(T,)) [ 

a~ (Z(T~) - Z(TO) 
<~ leo ( Z( T2) - Z( T~) ) [ - y) >~ 1 - 

( [ E o l - y )  ~ 

By choosing 

] /  _2p(T1, Tu) 
y = x(1 .-p(Ts, T~)/(1 -P(T1,  T2)))-  r n ( 1  -T (T1 ,  T2)) 

(14.18) 

and by inserting (14.16) and (i4.17) into (14.1g) we get tha t  P(A(y) ] A~ (%)) ~> �89 
The desired inequality now follows from (14.14) because 
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P( sup I Z (O-Z (T , ) I~>= )  ,,,~=,_, T,<,<r, = E P(A, (=o))" 

Thus Lemma 14.3 is proved, and we continue the proof of Theorem 14.1. 
We want  to prove tha t  the family {E(~ ,  nz)}~ ~ is tight, and we do tha t  by  

applying Theorem 9.2. Let  ~ and A be positive numbers and T ~ [0, 1 - A]. Then 

E(:~,nk)( max  Ix(t)-x(T)l ~ )  
T~t~T+A 

(14.10) 

According to Lemma 14.2 the last te rm in (14.19) tends to 0 uniformly in T 
when k-->c~. To estimate the first te rm we apply Lemma 14.3 and we obtain 

/ 
P |(n~ 1-N~1) -�89 sup [Z(t, nk)--Z(T, nk ) l~ -J  

\ r<~t<<.r+A 

< ~ 2 P ( ( n ; ' - N ~ ) - J  }Z(T+A'nk) -Z(T 'nk) I>~ 2 _ 1 - - - - ~ ( ~ T T - A ) /  

- V2 (1 - n~/Nk)-~p~ (T, T + A)/(1 --p~ (T, T + A)). (14.20) 

According to Lemma 14.1 we can, and do, assume tha t  n~<~N~/2. Condition 
(B) implies tha t  Pk (T, T + A) = A + rk (T, A), where rk (T, A) -+ 0 uniformly in T, 
when k -~c~ .  Thus, if A<Ao($ ) and if b is sufficientl~ large, we can con- 
tinue the inequality (14.20) 

( ') (14.21) 

The marginal convergence proved earlier implies tha t  for every fixed T it holds 
tha t  

2 ( e-:~12Aa-A)dx, when b-->c~. (14.21) (14.22) 
V2~A(1 - -  A) J l x l ~ > e / 4  

We show tha t  the convergence in (14.22) is actually uniform in T. Le t  

A(T,  A, n~) = (n-~ 1 - N~')-�89 . (Z(T + A, n~) - Z(T, n~) ). 

We give an indirect proof and we assume t h a t  the convergence in (14.22) is 
not  uniform. Then, by  restriction to a subsequenee (for simplicity we introduce 
no new notation), i t  holds tha t  there is an e > 0  and a sequence (T~}~ ~ such 
tha t  Tk --~ T 0, when k -~ c~ and 

419 



B. ROS~N, Limit theorems for sampling 

IP(]A(Tk, A, nk)}>~)-(2zA(1-A))-~ f,,i~o, e-~'/"Aa-~X) dx] />e. (14.23) 

I t  is no essential restriction to assume tha t  Tk"~ T O and we do so. Then we have 

A(Tk, A, nk)=A(To, A, nk)-A(To, Tk-To, nk)+A(To+A,T~-To, n~). (14.24) 

An estimate with Tchebychev's  inequality yields tha t  if 2k"~ 0 then 

A(T,  2k, n~)--~0 in pr. uniformly in T when k -+c~ .  (14.25) 

I t  is now easy to combine (14.22), (14.24) and (14.25)so tha t  they yield a 
contradiction to (14.23). Thus the uniform convergence in (14.22)is  proved. 
The tightness of the family {E(ztk, n~)}~ r is now a consequence of Theorem 9.2, 
and Theorem 14.1 is thereby completely proved. 

We define the following random variables, which are analogues of the well- 
known Kolmogorov statistics. Let  F* (t, n) be defined according to (14.1). Then 

D ~  ) = (n -1 - N - a )  -�89 sup  (F* (t, n)  - $'~ (t)) 
t 

J ~ ) ( a 2 ) : ( n - l - - ~ - l )  -�89 s u p  [ .~*  ( t , ' / ~ ) - - . ~ n ( t ) l -  
t 

Theorem 14.2.  
then 

lim P(D~ <~ a) = { 1 

lim P(D~), ~ oO = { 1 
k-->~ 

I ]  {~tk}~ satisfies condition (A) and i/limk min(nk, N ~ -  nk) = co, 

- e  -2~' for a>~0 

0 for a < 0  

- 2  ~ ( - 1 ) ~ e  -~k'~' for zr 
k = l  

0 for a < 0 .  

Proo]. First we assume tha t  { ~}1 satisfies condition (B). We have tha t  

D ~  = s u p  ((n; ~ - N ; I )  -~ Z(t, n~)) = s u p  ((n; x - N ; I )  -~ Q(t, n~) 
t t 

+ (n~ I - N~.I) -�89 (Z(t, nk) - -  Q(t, n~)) = s u p  (R(t, n~) + r(t, nk)). 
t 

Lemma 14.2 states tha t  supt r(t, nk)~ 0 in pr. when k - +  ~ .  Thus the limiting 
distribution of /~(1) equals tha t  of supt R(t, nk). The functional sup0.<t<l x(t)is a ~ n  k 
continuous functional on C[0, 1] and from Theorem 14.1 and Lemma 9.1 it follows 
tha t  this limiting distribution is the distribution of supo<t<xx(t) under W(1, 1)- 
measure. In  the same manner it can be shown tha t  the limiting distribution 
of D (2) is the distribution of supo~t<l[x(t)[ under W(1, 1)-measure. These distri- n~ 

butions are those claimed in the theorem, see Doob [5]. 
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Nex t  we reduce the  ease when (A) holds to the  case when (B) holds. Le t  
the  T-transform of the popula t ion ~z = {al, a s . . . . .  aN} be the popula t ion T~t = {F~ (a~), 
F= (as) . . . . .  F= (aN)}. We will use the following two properties of the transfor- 
mat ion  T. 

1. I f  {gk}~ ~ satisfies (A), then  {T~k}~ ~ satisfies (B). 
2. The distr ibutions of D (1) and  D (~) are invar iant  under  T- t ransformat ion  of 

the  populat ions.  
1. follows f rom the  facts  t h a t  O<F,~(t)~< 1 and  t h a t  dis t inct  elements in ~z 

are mapped  onto  dist inct  elements in T~. To prove 2 let al, a2 . . . .  ,aM be the  
dist inct  elements in ~. We define ~(t) as v2(g~ ) = F~ (~),  v = 1, 2 . . . . .  M.  v2(t ) is s tr ict ly 
monotone  on a~, ~s . . . .  , gM and  can be extended to  a funct ion o n - c o  < t  < co, 
which is continuous and str ict ly monotone,  which tends to co with t and  tends 
to  0 when t - - > -  co. Le t  ~p-1 be the  inverse of ~. For  a distr ibution funct ion 
F ,  we define F ~ b y  F~( t )=E(~p- l ( t ) ) .  Then  we have E~,~(co, t, n) = F*~ (w, t, n) 
and  ETa (t) = ~ u  (t). Thus  

f~= (co, t, n) - F*= (t) = F*  (co, t, n) - ~ (t) = F*  (co, ~o -1 (t), n) - E~ (~0 -~ (t)). (14.26) 

B y  taking supremum over  t in (14.26), proposi t ion 2 follows. The proof of the 
theorem is then  concluded. 

15. On empirical fiactiles 

Let  0 < p <  1. The p-/ractile of a d.f. F(t) is defined as supremum over the  
t-values .for which F ( t ) < p .  Analogously,  we define the empirical p-/tactile cor- 
responding to  a sample of size n f rom :z as the  supremum over  the  t-values 
for which F* ( t ,n )<p ,  where F* (t,n) is defined in (14.1). The following theorem 
gives an  analogue of the  result  on p. 369 in [2]. 

Theorem 15.1. Let 
from nk, k = 1, 2 . . . . .  

Y(p,  n~) be the empirical p-/tactile in a sample of size n~ 
We assume that there ks a continuous d./. F(t) such that 

l im ~ sup [F,~, ( t ) - F ( t ) l = O  (15.1) 
k t 

and, furthermore, that F '  (t) is continuous and positive in a vicinity of the p- 
/tactile ~ o/ F(t). Then, if limk nk = oo and ]Jmk nk/N~ < 1 it holds /or every real 
o~ that 

lira P (F" (~v) ( Y(p,  nk) - ~v) <~ zr = e -x's dx. (15.2) 

Proof. First  we assume t h a t  {0z~}~ ~ also satisfies condit ion (A), i.e. t h a t  F(t) 
in (15.1) equals t for 0 ~ t ~ l .  p is fixed and  we define U ( n ~ ) = p -  F* (p, nk) 
and  V(nk)= Y(p, nk)--p.  We shall show t h a t  for every  e > 0  it holds t h a t  

lim P (~/~ ] U(n~) - V(nk) [ >i e) = O. (15.3) 
k 

Let A k ( ~ ) = ( U ( n k ) = 2 / ~ ) ,  i.e. the  event  t h a t  among  the observat ions X k l  , 
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X~ ..... X~n~ there  are exac t ly  n~ (2) = n~ (p - ~t/V~) which are < p.  We assume 
that. A~ (2) is non-empty  and we introduce the condi t ioned process 

G* (t, n~; ~t) = F* (t, n~) [ A~ (A), p ~< t ~< 1. (15.4) 

Simple conditioning arguments  yield t ha t  G* (t, nk; 2) can be described as follows: 
G*(t, nk;]~)=p-)./V~nk+n; 1. (The number  of observat ions ~ t  in a sample of 
size nk--nk(]~) f rom g~(~t)), where 7~ ()t) is the  popula t ion of size N~ ( 1 -  F~(p)) 
with d.f. G~ (t) = (F~ (t) - F~ (p))/(1 - ~ (p)), 1~ ~< t ~< 1. Thus,  we get  

k n~ / 1 - 1 ~ ( p )  

+ {1 t-p+R~)(t)~ (15.5) 

aZ(G*(t'nk;2))--nk--nk(2)( l n ~  3Tk ( lnk--n~(2))_Fk (p)) -- 1 

i~'k (t) -- Fk (p) 1 -- F~ (t) -< 1 / t -- p R~ ) (t)\ 
(15.6) 

where R(k 1) (t) and R<~)(t) t end  to  0 uni formly in t when k-->oo (el. (15.1)). Le t  
0 < e < 1. F rom (15.5), (15.6), and Tchebyehev ' s  inequal i ty  we obta in  tha t ,  when 
2 >0 ,  it  holds 

P ( G * ( p + ( 1 - e ) ~  n k ; ~ ) < p ) > ~  1 _ _ 1  [ ( 1 - e ) 2 . + _ _ R ~ ) \  

• 1 - p  + 1  when (15.7) 

In  a similar manner  it  can be proved t ha t  

))  P G* + ( l + e ) ~ n k ,  nk;~t > p  -->1 when k-->oo. (15.8) 

We observe that ,  when e is fixed, then  the  convergence in (15.7) and (15.8) is 
uniform in 2 on every  interval  0 <  2 < A <  c~. We now claim t h a t  for  every  
e > 0 i t  holds t h a t  

lim P (]/~nk[ U(nk)- V(nk)I ~> el Ak ( 2 ) ) = 0  
k 

(15.9) 

and t ha t  the convergence in (15.9) is uniform in 2 on every  in terval  121 ~< A < oo. 
To prove (15.9) we observe t ha t  (15.7) and (15.8) s ta te  t ha t  when ~>~0 i t  

holds for every  fixed e > 0 tha t ,  with a probabi l i ty  tending to 1 uniformly on 
0 < 2 < A < oo, the process G* (t, nk; 2) crosses the  level p on the interval  
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[p+ (1 - ~) a/VT~, p +  (1 +~) a /V~] .  

This proposition is equivalent to (15.9), which is thus proved when 2~>0. The 
case 2 < 0 can be treated in the same manner by considering instead the process 
G* (t, nk; )~) for 0 ~< t <p .  Thus we regard (15.9) proved and next  we prove (15.3). 
We have 

P (V~nk [ U(nk) -- V(nk) [ > e) = ~ P ( l /~  [ U(nk) -- V(n~) [ >~ e [ Ak (~)) P (A~ (~)). (15.10) 

Now (15.3) follows from (15.10), (15.9) and the formula 

lim ~ P(Ak(~))~> 1-~p(A), (15.11) 

where y~(A)-->0 when A - + ~ .  To prove (15.11) we consider 

u ( ~ )  = ~'~ (p) - ~'* (p, n~) ~ p -  F~ (p) 
Vp(1 -p)(n;~-N;  ~) Vp(1 - p ) ( n k  1 --Nk 1) ~(1~--~)(/bkl-- N ;  1) 

(15.12) 

The last term in (15.12) tends to 0 when k->  ~ (cf. (15.1) and the assumption 
that  lim nk/Nk < 1) and from the marginal convergence proved in Theorem 14.1 it 
follows tha t  

[p(1 - p )  (n~ 1 -- N~I)] -�89 U(nk) .--> ~(0,  1) i.d., k -+ r (15.13) 

Now (15.13) and (15.12) easily yield (15.11) and thus (15.3) is proved. From 
(15.3) it follows that  (15.13) still holds if U(nk) is changed into V(n~). Thus 
the theorem is proved for the case F ( t )=  t, 0 ~ t ~< 1. 

We treat  the general case with the aid of the T-transform introduced in 
w 14. The following two properties of the T-transform are easily proved. 

3. If  {gk}~ r satisfies (15.1), then {Tgk}~ ~ satisfies (15.1) with F( t )=t  for 
0 ~ < t ~ l .  

4. Let  Y(p ,n)  and Y~(p,n)  be the empirical p-fraetiles corresponding to 
samples of size n from respectively g and Tg. Then Y~(p, n) and F ,  (Y(p, n)) 
have the same distribution. 

I t  is well-known that  if (Xk--/~)/ak-->N(O, 1) i.d. and ak-->0 when k-> oo, 
then (g(Xk) -- g(~u))/g' (~u) ak'-> N(O, 1) i.d., provided tha t  g' (#) =~ 0. By  combining 
this with 3, 4 and the above result for $ ' ( t )= t  we can conclude tha t  

/~, (~p) [E-1 (F  k ( y (p ,  nk)) ) _ /~-1  (p)] 
--> N(0, 1) i.d. (15.14) 

Vp(1 - p )  (n~ 1 - ,v~ 1) 

F -1 stands for the inverse of F,  and it is well-defined, a t  least in a vicinity 
of ~ .  The theorem now follows from (15.14) and the proposition 

V~k[F- l (Fk(Y(p ,  nk))) - Y (p ,  nk)]-->O in pr. when k--> oo (15.15) 

(15.15) is an easy consequence of the following two propositions, the verifica- 
tions of which we omit, 
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(a) Y(p, nk) ---> ~ in pr., when k-+ ~ .  
(b) ~ supt~ I F-I(Fk (t)) - t I = 0 holds for some neighbourhood I of ~ .  

The proof is concluded. 
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