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On the probabilities that a random walk is negative 

By BENGT ROSI~N 

l .  Introduction, notations and summary 

Let X1, X~ . . . .  be independent copies of a random variable X with distribu- 
tion function F(x).  The successive partial sums are denoted Sn = X I + X2 + ... + Xn, 
n = 1, 2 . . . . .  We define a~ = P(Sn < 0), n = 1, 2 . . . . .  To every distribution func- 
tion we get an associated sequence {an}[ r We list two immediate relations 
between the existence of moments of X and the asymptotic behavior of {a ,}~ .  

A. The law of large numbers implies that  l im~_.~an=0 if E X > O  and that  
l im~_ ,~a== l  if E X < 0 .  

B. From the central limit theorem follows that  if E X ~ <  co and E X  = 0 then 

lim a= = �89 (1.1) 

The main aim of this paper is to answer the following question raised by 
F. Spitzer in [3], p. 337. Does there exist a distribution F(x)  for which the 

a sequence { =}1 fails to have a (C, 1)-limit? 
In  Theorem 1 we show that  there is a distribution such that  E IXI2-~< co 

for every ~ > 0 ,  for which {a=}~ does not possess a (C, 1)-limit. In  Theorem 2 
we discuss the limitability of {an}[ r for general limitation methods, and show 
that  for any regular linear limitation method there exists a distribution for which 
{an}F cannot be limited. 

According to A, B and the result in Theorem 1, the condition E X ~ <  co and 
E X  = 0 is a weakest possible sufficient condition in terms of moments only for 
(1.1) to hold. In Theorem 3 we give a more general sufficient condition for 
(1.1). The essence of this theorem is that  (1.1) holds if F(x)  does not deviate 
too much from a distribution which is symmetric around zero. 

I wish to thank Professor L. Carleson for having suggested the theme of this 
paper and for valuable guidance. 

a oo 2. Existence of distributions for which { .}1 cannot be limited 

Theorem 1. There exists a distribution F(x) with E IXI 2 ~ < cr /or every (~ > 0  
/or which upper and lower (C, 1)-limits o~ {an}~ are respectively 1 and O. 
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Proo/. W e  show the  exis tence  b y  an  expl ic i t  exampel .  We  def ine a d iscre te  
d i s t r i bu t ion  wi th  mass  po in ts  {c:}~ r and  cor responding  p robab i l i t i e s  

p~=P( X=c ~) =[ ( e - 1 ) v ! ]  -1, v = l , 2  ..... 

The essent ia l  f ea tu re  of th is  choice of the  p robab i l i t i e s  is t h a t  p:+l/p:-+O 
when v--> + .  W e  f i rs t  de t e rmine  the  c's wi th  odd  indices.  L e t  

C 2 v _  1 ~ ( __ l~v+l  ~-(�89 ~] F 2 ~ - I  , v = l , 2 , . . . ,  

where  ;t(2v - 1) = ~t(2v) = (log 2v) -+. (2.1) 

The. essent ia l  p r o p e r t y  of +~(v) is t h a t  i t  t ends  to 0, b u t  no t  too  fast ,  when  
--> + .  W e  observe  t h a t  c~ is a l t e r n a t i v e l y  pos i t ive  and  nega t ive  when  v runs  

t h rough  odd indices. F o r  even indices we define c2~ th rough  the  r e l a t ion  

pe~-lc2~=l+p2~c~=O, v = l , 2  . . . .  (2.2) 

,'n�89 l(2~) ~-1 (2.3) which yie lds  c2~ = ( - 1)" " r2 , -1  i02,. 

The  d i s t r ibu t ion  is now comple t e ly  specified and  we der ive  some of i ts  p rop-  
ert ies .  I t  is eas i ly  checked t h a t  

~P~"~Pn when N--->co (2.4) 
N 

a n d  t h a t  [e2~-11 < [c2~[, v = l, 2 ..... (2.5) 

Note. Throughou t  the  p a p e r  the  symbol  ~ means  t h a t  the  r a t io  of the  quan-  
t i t y  to  the  r igh t  and  to  the  lef t  of ~ t ends  to  1. 

N e x t  we show t h a t  E[X{2-o< c~ for eve ry  (~>0. Le t  v be even a n d  (~>0. 
As ~t(n)-->0 vhen  n--> c~ the  following inequa l i t y  holds  when v is suff ic ient ly  
large  

P~I ~: ll~-~ _- ~={ ~- ~<~)<2-~) ~1=~ < (v l) - ~ .  

F o r  v odd and  suff ic ient ly  large we have  

":i - r :  1 , : -1  ~< -- ~v[(v I)!]-+~. 
\ P ~  l " 

T h u s  EIX[:-  : < + .  (2.6) 

I n  pass ing we m a k e  the  fol lowing observat ions .  W e  are  going to  show t h a t  
f o r  the  d i s t r i bu t ion  we have  cons t ruc ted  i t  holds  t h a t  {an}~ r has  n o t  a (C, 1)- 
l imi t  a n d  a /ortiori t h a t  {an}~ has  no t  a l imit .  F r o m  A and  B in w 1, i t  follows 
t h a t  such a d i s t r i bu t ion  m u s t  sa t i s fy  
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(i) EX 2= ~ , 
(ii) E X  = 0 if the  m e a n  of X exists.  

Fo r  the  above  dis t r ibut ion (i) is easily verified and  (ii) follows f rom (2.2). 
We  shall need the  following es t ima te  later.  

N 

Ep~c~<HpNCUN, N even,  (2.7) 
1 

where H is a cons tan t  independen t  of N.  F r o m  (2.2) if follows t h a t  p2~[c2~]= 
p2v-1]C2v-l[ and (2.5) gives 2 2 p2~c2~ > P2~_ l c2~_1. Thus  

N N/2 N/2 
C2 1 ~ 2pNc~ Y. p2~ 2,pN C;~ ~. 

v=l  v=l v=l 

Es t ima tes  wi th  Stir l ing's  fo rmula  yield 

2 -1  - 2  0 
l i m  P2(v-1)  c 2 ( ~ - l ) p 2 v  c2v = 

y.-~ or 

c 2 - I  c2~ ~< for  and  thus  p2(v-1) 2(v-1)P2v �89 V~Vo. 

This implies 

NI2 2 ~ 0 2 { 
~l P2~C2~--~pNCN 1 + �89 + (�89 +. . .  + p~l c~2 ~ p2vc2~} 

and  now (2.7) follows as p~C2N--> ~ when N--> ~ .  
We  in t roduce the  events  

A(n, N):  Sn and  cN have  the same sign. 

B(n, N) : Xt, X~ . . . .  , X,~ all a t t a in  thei r  values  among  (ct, %, . . . ,  CN), 

Ck(n, N):  E x a c t l y  k of X1, X 2 . . . . .  Xn a t t a in  the  value cN, k =  1, 2, . . . , n .  

Fo r  simplicity,  we shall somet imes  suppress the  indices n and  N and we 
under s t and  t h a t  t hey  bo th  are the  same for  A, B and C when  these events  
occur s imultaneously.  The  following inequali t ies are immed ia t e  

n 
P(A) >1 P( [.J ABCk) = ~ P(ABCk) 

k=0 k=O 

>1 ~ P(B). P(Ck[B)" P(A I BC~), 
k=K 

where K is a non-negat ive  integer  <~ n. P(A]BCk) increases wi th  k for  k<~n 
and  we ge t  

P(A(n, N)) >7 P(B). ~ P(C~ I B). P(A ]BCK). (2.8) 
k=K 
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We shall let N tend to infinity and we consider the following choices of n 
and K as functions of N. 

n(N)=N ~a(N)p~l for � 8 9  1, 

K(N)=�89 

Our aim is to show that  

P(A(n(N), N)) ---> 1 (2.9) 

uniformly in a for �89 ~< ~ ~< 1, when N--> ~o through odd values. We do this by 
showing tha t  all three factors to the right in (2.8) tend to 1 uniformly in 
for �89 ~< ~ ~< 1. We start  by showing 

lim P(B(n(N), N))  = 1 (2.10) 
N - - ~  

and the convergence is uniform for �89 ~ a ~< 1. 

~n(N) ~ (1 ~ , n ( N )  
P(B(n(N),N)) = ( ~ p ~ )  - ~+lp.  ) exp ( -n(N)pN+I)  

according to (2.4). 

and (2.10) follows. 

Thus 

P(B(n(N), N)) ,,~ exp ( - N -~(m) 

Next we prove 

n(N) 

lim Z P(Ck(n(N),N)[B)= 1 
N.--~oo k f  K(N) 

(2.11) 

and the convergence is uniform for ~ <~ ~ ~< 1. We introduce the truncated random 
variable X (m and the random variable y(N). 

Then 

and 

N - 1  

. : : 1 , 2  . . . . .  N ( 2 1 2 )  

otherwise. 

"2 P ( C k ( n ( N ) , N ) I B ) = P  . . . .  
k = K(N) 

where the Y~(m's are independent. The random variable ~ y(N) has a binomial 
distribution with mean n(N)pN (~Np~)-l. Estimates with Tchebyeheff's inequality 
give tha t  the right hand side in (2.13) tends to 1 uniformly for �89 1. Thus 
(2.11) is proved. Finally we show 
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P(A(n(N),  N)[ BCK(m) -+ 1 (2.14) 

uniformly for �89 ~< ~ ~ 1 when N--> oo through odd values. 
The conditioned random wr iab le  Sn I BCK(m is identical in distribution with 

the random variable 
n ( N ) - K ( N )  

K ( N ) .  cN + ~ y ( N - 1 )  
1 

where the X~ N-l) are independent copies of the random variable X (N-l) defined 
in (2.12). Thus 

As N is assumed to be odd it follows from (2.2) tha t  E X  (~-1)= O. Tchebycheff 's  
inequality now yields 

N - 1  

( n -  K(N))  ~, p,c~ 
P(A ] BC K(N)) >1 1 1 

N - 1  

K(N) c  V p, 
1 

and in virtue of (2.7) >1 1 - H" n ( N ) p N - 1 C ~ - 1  
N--1 

K(N) 5 P, 
= 1 - R ( N ) .  

By inserting the choices of n(N) and K(N)  we get 

R ( N ) , - , 4 H  PN+a "PN-2 p~,~(N) 
~ 2  )~(N-2) "~Vga(N) 

PN'PN-1 ~'N-2 

�9 ~20,( N)-  )'( N - 2)) " 4 H N ~ ( N ) [ N ( N -  1)] -2~(N) ~,N-2 

_20(N)-~(N-~)) ~ 1 and we get An estimate with Stirling's formula gives tha t  ~,~_~ 

R ( N )  ~ 4 H  e x p  - 4) Vl- g 

Thus P(AIBCK(m)-> 1 uniformly for ~ ~<m~< 1 and (2.14) is proved. Now for- 
mulas (2.8), (2.10), (2.11), and (2.14) together imply (2.9). 

For  odd values of N, cN is every second t ime positive and every second t ime 

negative. Thus we get as an immediate consequence of (2.9) tha t  l imn_~ an = 1 
and li_mmn_,~an=0. We want  to sharpen this to the result tha t  also upper and 

lower (C, 1)-limits of {a~}~ are respectively 1 and 0. Choose e > 0 .  From (2.9) 
it follows tha t  if N is odd and sufficiently large and CN < 0, then 

an/> 1 - e for n 1 (N) <~ n <~ n~(N), 

where n 1 (N) = N-a(N)p~l+l and n2(N ) = N-�89 1. Thus 
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1 n~(N) 1 n,(N, [ 

= n , ( N )  

Now n I ( N ) / n  z (N) ---> 0 when N---> ~ .  Thus  

lim 1 ~ a , = l .  
7 t - - ~  r  n v =  1 

nl(N)~ 
n~(N)] " 

I n  the same manner ,  i t  follows t h a t  

n 

lim _1 ~. a~ = 0  
n-~cr n~=l 

and Theorem 1 is proved.  

Concluding remark. As the  an's are probabilities, t hey  lie between 0 and 1. 
I t  is well known t h a t  Abel and  (C, 1)-limitability are equivalent  for bounded  
sequences (see e.g. [1] Theorem 92). Thus  for the distr ibution constructed above 
it holds t h a t  (an}; r cannot, be Abel limited. I n  fact,  it is no t  hard  to show 
directly t h a t  {an}~ has upper  and  lower Abel limits respectively 1 and  0. 

The par t  of Theorem 1 which concerns non-l imitabil i ty of {a~}~ holds for gen- 
eral linear l imitat ion methods.  We consider a regular l imitat ion mat r ix  [Tmn], m, 
n =  1,2 . . . . .  i.e. we assume 

(ii) lim 7~= = 0 for  all n, 
m - - ~  

(iii) ~ 7ran---> 1 when m---> ~ .  

Theorem 2. .For every regular limitation mawix  [~'mn] there exists a distribution 
F(x)  /or which the sequence {an}~ satisfies 

amt 

lim ~ )~mn an = 1 
rn  - -~  oo  n 

lim ~ ~'mn an = O. 
(2.15) 

Remark. We do not  know a ny  general relation between [Tmn] and the o r d e r  
of the moments  t ha t  F(x)  can possess when (2.15) holds. 

Proo/. The main  idea in the  proof is the same as in the proof of Theorem 1 
and therefore we make  the proof somewhat  brief. We const ruct  a discrete dis. 
t r ibut ion with points  of mass {c~}~ ~ and corresponding probabilities {p~}~. The 
successive signs of Ca, C 2. . .  are chosen + - + - + - . . . .  Let  {~v}~ ~ be a se- 
quence of positive numbers  which tend  to  0. We determine {p,}~o, {c~}~o a se- 
quence {m~}r of integers and a sequence {i,}~o of intervals of integers I~ = [i,, ~'~] 
recursively. We assume t h a t  p,, c~, mr, and  Iv are determined for  v = 1, 2 . . . . .  
N -  1. We consider PN as a funct ion of the  parameter  2N given b y  the relation 
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N - 1  

and  we shall determine PN by  determining ;tN, �89 ~ 2N< 1. Firs~3~,we choose cN so 
N C - -  ~ v  t h a t  IcN[ > ICN_i I and  sgn (ZI P, ,) - sgn (cN) when 2N = �89 Let  y(N) (2N), V 1, 2 , . . . ,  

be independent  r andom variables with dis tr ibut ion 

N - 1  

Tchebycheff ' s  inequali ty implies the  existence of a number  iN=i(eN)SUCh t h a t  
iN > ?'N-1 and  

e (~1X(~N) (2N) and  cN have the same sign) ~>1 - e N  (2.16) 

i N 
when n >~ iN and �89 ~< 2~ < 1. Now choose mN> mN 1 S O  large t h a t  ~n=l  I~)mlvn [ <~- ~N 
and  jN large enough for ~n%J,,+llYm~vnl <'~.eN to  hold. These choices are clearly 
possible. Finally, we fix RN and  thus  PN by  the  condit ion 

)'- 
p~ /> 1 - eN. (2.17) 

The dis tr ibut ion is now completely determined.  Le t  X1, X~ . . . .  be independent  
r andom variables with this distr ibution and @ (n, N)  = P{S,~ and  cN have the  same 
sign). Then  

~(n,N)=P(Sn and cN have the same sign IM  nlX I < N)P(MaxlX l<cN). 

I n  vir tue of (2.16) and (2.17) we get  

Q(n ,N)~>(1 -eN)  ~ when n E I N  

and  thus  an >~ (1-- eN) ~ when n E I N  and N is even, while an ~ l -- (1-- eN) 2 when 
n E IN and N is odd. The theorem now follows. 

3. A suf f ic ient  c o n d i t i o n  for l i m  an = �89 

According to  B in w 1 E X ~ <  co a nd  E X = O  is a sufficient condit ion for 
lim an = �89 However,  this condit ion is no t  necessary. This follows immediately  from 
the fact  t h a t  if F(x) is cont inuous and  symmetr ic  a round  0 then an = �89 for all 
n and  thus lim a==�89 I n  the next  theorem we show t h a t  the assumptions 
about  s y m m e t r y  and the existence of a finite second momen t  and zero mean  
can be combined to  get  a more general sufficient condition. 
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Theorem 3. I /  F(x)  is non-degenerate and can be decomposed F(x)  = H(x)  + G(x), 
where H and G are o/ bounded variation and satis/y 

(1) H(x)  is symmetric around O, i.e. 

H( - x) - H(  - ~ ) = H( oo ) - H(x)  /or all x/> 0 which are continuity points of H(x).  

(2) S-~ x2 IdG(x){ < oo ant ~_% xdG(x) = 0 ,  

hen limn_,r162 an = �89 

Proo/. The proof will be based on the following formula from [2], p. 331. 

Jan-  �89 <_n (~  I~(t)l" larg q~(t)[ d t+R(n ,O) ,  (3.1) 
Jo t 

where ~(t) is the characteristic function of F(x) and where R(n,&)--->O when 
n--> ~ for every 6 > 0. 

As H(x)  is symmetric around 0, we have 

Im {~(t)}= f ;  sin xtdF(x)=f[:csinxtdG(x) 

and from (2) it  follows thai', 

lira t -2 ~ sin xt dG(x) = O. 
t - -~0  j-r162 

Thus ]arg q~(t) l <~ t ~ h(t), (3.2) 

where h(t) --> 0 when t --> 0. 
We shall also use the fact tha t  there are positive numbers 60 and C such that  

I~(t) l < 1 -  Ct 2 for I t1-<6o (3.3) 

For a proof of (3.3) see e.g. Lemma 1 in [2]. 
By inserting the estimates (3..2) and (3.3) into (3.1), we obtain, for 0 < 6  ~<6 0, 

, f: { a n - � 8 9  sup h(t) nte-"~ 6) 

1 
sup h(t) + R(n,  6). 

Thus lim I a n -  �89 (2~C) -1 sup h(t) 
n - - ~  O~<t~<~ 

and by letting 6--> 0, we obtain the desired result. 
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