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On the probabilities that a random walk is negative

By Bener Rosién

1. Introduction, notations and summary

Let X, X,,... be independent copies of a random variable X with distribu-
tion function F(x). The successive partial sums are denoted S, =X, + X, +... + X,,
n=1,2,.... We define a,=P(S,<0), n=1,2,.... To every distribution funec-
tion we get an associated sequence {a,}°. We list two immediate relations
between the existence of moments of X and the asymptotic behavior of {a,}{.

A. The law of large numbers implies that lim,., . a,=0 if £X >0 and that
lim,, ,a,=1 if EX<O.

B. From the central limit theorem follows that if EX2%< oo and EX =0 then

lm a,=1%. (L.1)
N —>»00

The main aim of this paper is to answer the following question raised by
F. Spitzer in [3], p. 337. Does there exist a distribution F(z) for which the
sequence {a,}{° fails to have a (C, 1)-limit?

In Theorem 1 we show that there is a distribution such that B |X[*® < oo
for every >0, for which {a,}® does not possess a (C,1)-limit. In Theorem 2
we discuss the limitability of {an}{” for general limitation methods, and show
that for any regular linear limitation method there exists a distribution for which
{a,}i° cannot be limited.

According to A, B and the result in Theorem 1, the condition EX®< oo and
EX =0 is a weakest possible sufficient condition in terms of moments only for
(L.1) to hold. In Theorem 3 we give a more general sufficient condition for
(1.1). The essence of this theorem is that (1.1) holds if F(zx) does not deviate
too much from a distribution which is symmetric around zero.

I wish to thank Professor L. Carleson for having suggested the theme of this
paper and for valuable guidance.

2. Existence of distributions for which {a,}}° cannot be limited

Theorem 1. There exists a distribution F(x) with E|X|2"6 < oo for every >0
for which upper and lower (C, 1)-limits of {a,}s* are respectively 1 and 0.
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Proof. We show the existence by an explicit exampel. We define a discrete
distribution with mass points {c¢,}i and corresponding probabilities

p,=P(X=c)=[(e—1)»!T"%, »=1,2,....

The essential feature of this choice of the probabilities is that p,.:/p,—0
when v — oo, We first determine the ¢’s with odd indices. Let

oy =(— 1) pr AP0 y=1,2,..,
where A2y —1)=2(29) = (log 2v)"%. (2.1)
The essential property of A(y) is that it tends to 0, but not too fast, when

y—>oo. We observe that ¢, is alternatively positive and negative when » runs
through odd indices. For even indices we define ¢z, through the relation

P2y-1C2p-1 +p2v62v=0’ 'Vzl: 2; s (22)
which yields o, = (— 1) pd, 78 p3,). (2.3)

The distribution is now completely specified and we derive some of its prop-
erties. It is easily checked that

%pv ~py when N-—>oo (2.4)

and that legay—1|<[e2s], »=1,2,.... (2.5)

Note. Throughout the paper the symbol ~ means that the ratio of the quan-
tity to the right and to the left of ~ tends to 1.

Next we show that E|X[|*® < co for every >0. Let » be even and 6>0.
As A(n)—>0 vhen n-—>oo the following inequality holds when » is sufficiently
large

) Bl 60— phd IO < o< ()0,

For » odd and sufficiently large we have

-~ _ 18— Ay@— Pr-1 1-6 B
p,le, [P0 =pit piift-ime-o <(p—) P <v[(p—-1)17F,
v

Thus E|X|F = ip,,lc,,lz"s < oo, (2.6)
v=1

In passing we make the following observations. We are going to show that
for. the distribution we have constructed it holds that {a,}i has not a (C,1)-
limit and a fortiori that {a,}? has not a limit. From A and B in § 1, it follows
that such a distribution must satisfy
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(i) EX®= oo,
(ii) EX =0 if the mean of X exists.

For the above distribution (i) is easily verified and (ii) follows from (2.2).
We shall need the following estimate later.

N
> p,ce<Hpycy, N even, 2.7)
1

where H is a constant independent of N. From (2.2) if follows that ps,|cs.|=
P2y-1|C2,-1| and (2.5) gives ps,c3, > P2, 1¢5,.1. Thus

=z
(5]

N/2

2 2 2 2 -1 -2
PyCi<2 1p2v62v=2chN lezmzva v
v y=

M=

v

1

Estimates with Stirling’s formula yield
Hm p2-1 -1 P2y 2y =0
V>

2 -1 ,—2
and thus Poo-1)Cep-1 P2y C2v <3 for vy,
This implies

N2

; pzvc§,<2p,\,c§,{l+§+(§)2+ R S gpzucm}

and now (2.7) follows as pycy—> co when N-—> oo,
We introduce the events

A(n,N): 8, and cy have the same sign.
B(n,N): X, X,, ..., X, all attain their values among (¢, ¢,, ..., Cy),
Ci(n, N): Exactly k of X, X,, '..., X, attain the value ¢y, k=1,2,...,7n.

For simplicity, we shall sometimes suppress the indices » and N and we
understand that they both are the same for A, B and C when these events
occur simultaneously. The following inequalities are immediate

P(4) > P(kt:JOABOk) =éop(ABc,,)
>k§KP(B) - P(Cy| B) - P(4| BCy),

where K is a non-negative integer <n. P(A4|BC,) increases with k& for k<n
and we get

P(4(n, N)) > P(B)"_ ;%K P(C,| B)- P(4| BCx). (2.8)

319



B. ROSEN, On probabilities that a random walk is negative

We shall let N tend to infinity and we consider the following choices of n
and K as functions of N.

a(N)=N"2® gyt for }<a<l,
K(N)=3%n(N)py.
Our aim is to show that
P(A(n(X), M) ~>1 29)

uniformly in & for 3 <a<1, when N—> oo through odd values. We do this by
showing that all three factors to the right in (2.8) tend to 1 uniformly in «
for }<a<1. We start by showing

lim P(B(n(N),N))=1 (2.10)

N> w

and the convergence is uniform for } <a<1.

=]

N n(N) n(N)
PB@W), N)=(3p)  =(1- 3 p)  ~exp(-nd)pya)

according to (2.4). Thus
P(B(n(N), N))~ exp (— N~*)

and (2.10) follows. Next we prove

lim kn(zm P(C{n(N), N}| B)y=1 (2.11)
N> k=K(N)

and the convergence is uniform for } <« <1. We introduce the truncated random
variable X and the random variable Y.

N -1
P(X(N)=cv)=p" (va) 4 V=1, 29“'3N (2.12)
1

y _ 1if XW™=¢,
0 otherwise.

" Then P(C,|B)=P (; Y-k
and S P, (M), N)| B) =P ((ZN Ty K@), (2.13)
k=) 1

where the Y{™’s are independent. The random variable > Y$" has a binomial
distribution with mean n(N)py (S p,)”'. Estimates with Tchebycheff’s inequality
give that the right hand side in (2.13) tends to 1 uniformly for $ <e<1. Thus
(2.11) is proved. Finally we show
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P(A(n(N), N) | BCguy)—1 (2.14)

uniformly for } <a<1 when N ->co through odd values.
The conditioned random variable S,|BCku, is identical in distribution with

the random variable
n(N)—K(N)

K(N)-ey+ 2 X0,
1

where the X{"V are independent copies of the random variable X~ defined
in (2.12). Thus

n(N)~ K(N

)
P(A|BCg) =P ( > XgN-DI < K(N)- ]cN|).

As N is assumed to be odd it follows from (2.2) that EX®~» =0, Tchebycheff’s
inequality now yields

N-1
(n~K(N) 2. pC

P(4| BOF™) > 1 ~ >
KNPy 3 p,
1
2
and in virtue of (2.7) s1-p. "Wty By
K2y 3 p,

By inserting the choices of n(N) and K(N) we get

. 2 (V)
R(N)~4H pN"'f Pr-2 Iz):(IN—2)'N“MN)
Py DPrn-1 PN-2

~ 4HNO:}.(N) [N(N - 1)]-21(1\/') . p%v(};(é\l)—l(Nwm).

An estimate with Stirling’s formula gives that p3*®*¥ 2 <1 and we get
R(N)~4H exp {(ax —4)Viog N}-

Thus P(4|BCkx)—1 uniformly for }<a<1 and (2.14) is proved. Now for-
mulas (2.8), (2.10), (2.11), and (2.14) together imply (2.9).
For odd values of N, ¢y is every second time positive and every second time

negative. Thus we get as an immediate consequence of (2.9) that ﬁnén_m a,=1
and lir__n,,_,°° a,=0. We want to sharpen this to the result that also upper and

lower (C,1)-limits of {a,}{* are respectively 1 and 0. Choose &£>0. From (2.9)
it follows that if N is odd and sufficiently large and cy <0, then

a,21—¢ for n,(N)<n<n,(N)},
where n, (N)=N"*™pzl, and n,(N)=N "™ p21  Thus
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1 n4(N) 1 ny(N) B B nl(N))
ny(N) vgl ay?”fz(N) nl%l)av> (1=¢) (1 ny(N)/

Now n,(N)/ny(N) >0 when N - co. Thus

— 12
lim -~ Y a,=1.

ns>oo MNy=_1

In the same manner, it follows that

n

lim 1540

n-r00 Nyp=1

and Theorem 1 is proved.

Concluding remark. As the a,’s are probabilities, they lie between 0 and 1.
It is well known that Abel and (C, 1)-limitability are equivalent for bounded
sequences (see e.g. [1] Theorem 92). Thus for the distribution constructed above
it holds that {a,}? cannot be Abel limited. In fact, it is not hard to show
directly that {a,}{° has upper and lower Abel limits respectively 1 and 0.

The part of Theorem 1 which concerns non-limitability of {@,}7 holds for gen-
eral linear limitation methods. We consider a regular limitation matrix [yn.], m,
n=1,2,..., i.e. we assume

(@) %l'}’mn|<01
(i) lim y,,=0 for all n,
(iii) > Ymn—>1 when m — co.

Theorem 2. For every regular limitation mairix [y,,] there exists a distribution
F(x) for which the sequence {a,} satisfies

lim > Vimn @ =1

m->00 7

and lim > ynna,=0.

m—>00 N

(2.15)

Remark. We do not know any general relation between [y,,] and the order
of the moments that F(x) can possess when (2.15) holds.

Proof. The main idea in the proof is the same as in the proof of Theorem 1
and therefore we make the proof somewhat brief. We construct a discrete dis-
tribution with points of mass {c,}° and corresponding probabilities {p,}i". The
successive signs of ¢, ¢,... are chosen + — + — + —.... Let {&}¥° be a se-
quence of positive numbers which tend to 0. We determine {p,}i°, {c¢,}i° a se-
quence {m,}i of integers and a sequence {I,}{ of intervals of integers I, =[i,, j,]
recursively. We assume that p,, c,, m,, and I, are determined for »=1, 2, ...,
N—1. We consider py as a function of the parameter Ay given by the relation

322



ARKIV FOR MATEMATIK. Bd 5 nr 22
N-1
Pn= lN(l - ‘ST: Pv)

and we shall determine py by determmmg v, 1 <Ay<1. First®we choose cy so
that |ey| > |cy-1| and sgn (OF p, ¢,) =sgn (cy) when Ay=1}. Let X (Ay), v=1,2,
be independent random variables with distribution

N -1
P(X® (Ay) =) =P (zpv) , k=12 .., N.

Tchebycheff’s inequality implies the existence of a number iy =i(ey) such that
iN > jNvl and

(2 X{™(Ay) and cy have the same slgn) 1-ey (2.16)

when n>1iy and }<Ay<1l. Now choose my>my ; so large that ZinN:l | Ymyn | < ey
and jy large enough for >3, .y Iymﬂ,,lésb, to hold. These choices are clearly
possible. Finally, we fix 1y and thus py by the condition

(%m)jﬂ Z1—ey. (2.17)

1

The distribution is now completely determined. Let X,, X,, ... be independent
random variables with this distribution and g{n, N)=P(S, and ¢y have the same
sign). Then

o(n, N)=P(S, and cy have the same sign |Max|X,|<cy) P( MaxIX | <ew).

1<rgn
In virtue of (2.16) and (2.17) we get
o(n, N)>(1—¢&y)®> when n€ly

and thus a,>(1—¢y)* when n€ly and N is even, while a,<1— (1 —&y)* when
n€ly and N is odd. The theorem now follows.

3. A sufficient condition for lim a,=1

According to B in §1 EX?<oco and EX=0 is a sufficient condition for
lim a, = }. However, this condition is not necessary. This follows immediately from
the fact that if F(x) is continuous and symmetric around 0 then a,=1} for all
7 and thus lim a@,=3}. In the next theorem we show that the assumptions
about symmetry and the existence of a finite second moment and zero mean
can be combined to get a more general sufficient condition.
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Theorem 3. If F(x) is non-degenerate and can be decomposed F(x)=H(x)+ G(x),
where H and G are of bounded variation and satisfy

(1) H(x) is symmelric around 0, i.e.
H(—xz)— H(— o) = H(oo)— H(x) for all x >0 which are continuity points of H(z).
(2) [% 2?|dG(x)| < oo and [%, zdG(z) =0,
hen lim,_, . a,=}.
Proof. The proof will be based on the following formula from [2], p. 331.
* |

lan—%lgﬁf Mlargqp(t)ldt—l-R(n,é), 3.1)
T Jo t

where ¢(t) is the characteristic function of F(x) and where R(n,d)— (0 when
n— oo for every 6>0.
As H(z) is symmetric around 0, we have

o0

Im {(p(t)}=fw sin xf dF(x) =f sin at dG (x)

-~ 00

and from (2) it follows that

lim ¢2 f sin zt dG (x) =0.

t>0 —o0

Thus |arg @) | < A1), 3.2)

where %(t) -0 when {—> 0.
We shall also use the fact that there are positive numbers d, and C such that

lp@t)|<1—0 for |t]|<d,. (3.3)

For a proof of (3.3) see e.g. Lemma 1 in [2].
By inserting the estimates (3.2) and (3.3) into (3.1), we obtain, for 0 < <4,

1 ’ .
la,—}|<- sup h(t) | nte "°“dt+ R(n,d)

TTO<ES 0

<-—— .

52 S MO+ B

Thus lim |a,—3}|<(2720)7! sup A(t)
n—>o0 0gi<s

and by letting § -0, we obtain the desired result.
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