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On radial zeros o f  Blaschke products 

B y  /~KW SAMUELSSON 

1. Introduction 

Let B be the class of all Blaschke products defined on the open unit disc C, 
i.e. all functions of the form 

B ( z )  = d ~ z m I ]  a~ (ak - z)  
[ a k t ( 1 -  d~z) '  

where 0 is real, m a nonnegative integer and {ak} a set of nonzero complex 
numbers in C, such that  the series 2 ( 1 - l a k l )  converges. 

A point ~ on the boundary of C (henceforth denoted by ~C) is a radial zero 
of a Blaschke product B if 

B(~) = lira B(r~) = O. 
t - - > l - 0  

In  his thesis, Frostman ([2], p. 109) gave an example of a Blaschke product B; 
namely, 

oo 1 --k-2--Z 
B(z)  = 1-[ z '  k=l 1 - ( 1 - k  -2) 

which has zero radial limit at ~=  1. More recently, Somadasa [11] and Tanaka 
[12] obtained sufficient conditions in terms of the sequence {ak} for the corre- 
sponding Blaschke product to have a zero angular limit at a point ~E~C. In  
the following section we will give a different sufficient condition for a point 

E~C to be a radial zero of a Blasehke product. I t  turns out that  the condi- 
tions given by Somadasa and Tanaka are stronger than ours. We will also es- 
tablish a necessary condition for ~ to be a radial zero of a Blaschke product B. 
In  fact, we will investigate the radial and angular growth of - l o g  [B(z)[ as z 
approaches a radial zero o f  B. 

In  Section 3 the local results of Section 2 are used to obtain global results, 
while in Section 5 we improve a uniqueness theorem given in [10], p. 199. 

Section 4 contains two simple lemmas. 

2. Radial behavior o f  Blaschke  products 

Before stating the main result of this section, let us introduce some notation. 
Let :H be the class of functions h, continuous and nondecreasing on the in- 

terval [0, oo), 'such that h ( t ) > 0  if t > 0  and t l h(t) is noninereasing on (0, oo). 

32:5 477 



X. SAMUELSSOr(, On radial zeros of Blaschke produrts 

The subclass of 7-/, consisting of functions h satisfying the additional condition 
h(0) = 0 will be denoted by  :H0. In  particular, we will be interested in the func- 
tions h~ E :H0, ~ ~< 1, defined by  

0 t =  O, 

h~(t)=t(-logt) ~-~ if O<t<~t~, 

t + h~(t~) - t~ t~ < t, 

where t~ is chosen in the interval (O,e -~) so that  

log t~ + ( - log t~) ~ + 1 - :r = O. 

If  a <  1, the number t~ is uniquely determined by this equation, while if a = 1 
the choice of t x is immaterial. 

I f  hE 74 and B EB, let L(B,h) be the set 

1 - r  1 } 
L(B, h) = r E 0C; limr._>l_0inf ~ log i B(r~) I + ~o . 

In  like manner, let Ls(B, h) be the set of all points $E8C such tha t  

l iminf  [z -S1  log 1 

z E SC,  ~) 

for all Stolz domains S(~,~) defined for 0 <  ~ <  1 by  

S(~,~z)={zfiC; [ z - E l  ~<V1 -r162 [arg (1--~z)l < a r c  sin ~}. 

In  the particular cases of h =  ht and h = h  0, we will use the notation Z(B)= 
L(B, hl), L(B)= L(B, ho) and Ls(B)= Ls(B, ho). Obviously Z(B) is the set of all 
radial zeros of B. Moreover, it i~ a well-established fact that  if a Blaschke prod- 
uct has a zero radial limit at  ~EOC, then it also has a zero angular limit a t  

([7]), p. 5); and, therefore, Z(B)=L(B, hI)=Ls(B, hl). 
I f  B E B  and ~E~C let 

a(B,~,t)= ~ (1-[a~l), ( t>0)  

be the remainders of the convergent series ~ ( 1 -  ]akI). I t  is convenient to in- 
troduce the sets 

_: (B'h)={~E~C; lim inf ~(B' ~ ' t ) t _ ~ + 0  ) h ( t - - -  + ~}  

and 

~ (B, h) = {$ E ~C; lim sup a(B, ~, t) } t-~+o h ( t ~ -  + oo . 

In  this notation the main result of this section can be stated as follows. 
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Theorem 2.1. Let hE ~t and let BE B. Then 

~ (B,h)= Ls(B,h)= L(B,h)= ~ (B,h). 

Theorem 2.1 is an immediate consequence of the following lemma. 

Lemma 2.2. Let o~ be a fixed number such that 0 <  ~ <  1. Then there exist po- 
sitive constants A 1 and A2 such that 

A l l i m i n f a ( B ' $ ' t ) < . l i m i n f  i z - ~ l  log 1 
h(t) h(l - r IB( )I 

and 
1 - r 1 a(B, ~, t) 

lim inf - -  log lira sup - -  
~-,1-o " h ( 1 - r )  ~ <~A2 t-~+o h(t) 

/or all ~ E~C all B E B and all h E 71-1. 

Proo/. Let {ak} be the nonzero zeros of a Blaschke product B. If  lakl-z-~[l~<l 
I z -  r then I 1 - h k z  I < 2  1 z -  ~1. Moreover, there exists g ( a )  such tha t  
~ > K ( a ) l z - ~  for all zES(~,a) .  Hence, if zES($ ,a)  

1 1 ~ log (1 (1-lzl~)(1--!a~12)~ 
log ~ > ~  - -~  la~-~l<l~-r - 11--5':zl ~ ] 

1 1-1a l 
~>~(1-1z l )  ~ l l -5kz]Z  lak-r162 

r Is-  
8 

The first par t  of Lemma 2.2 follows from this inequality. To prove the second 
inequality in Lemma 2.2 we use the following lemma. 

Lemma 2.3. Let t be a fixed number such that 0 <  t <  �89 and let I t be the closed 
interval [1 - 3 t, 1 - 2 t]. Suppose that h E 7t, B E B, B(O) ~: 0 and a(B, 1, x) <~ h(x) /or 
x > O. Then there exists an absolute constant A > O, such that 

1 
inf log r ~,, ~ < At-lh(t)" 

Proo/. The proof of this lemma is based on two simple estimates of Green's 
potential  of the mass t uniformly distributed over the interval I t. Let 

1 - ~ w  , 
g(z, w) = log ~ (z, w E C) 

be Green's function with logarithmic pole at z, and let 
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O(z) = f,  g(z, ~) d~ 

be the potential at the point z E C. 
We prove the existence of two absolute constants Ax and A2, such that, 

for zEC, 

( 2 . 4 )  G(z)<Al(1-Jzl) and G(z)<A~t~(1-1zl) / l l -z l  ~. 

Simple calculations show, that if rE I t, then 

(2.5) g(z, r )=  l log (1-t ( 1 -  r2' jr--- z~ (1 - IzlZ') -<1"~ log (1 + 12tlr_zl z(1-'z I ,) ,  

If min~,,  J r -  z 1/> t and rEIt,  then by (2.5), g(z, r) ~<6t-1(1 - Izl) and thus G(z) <~ 
6(1-1zl). if minr%lr--z l<t ,  then t < l - l z  I and thus, by (2.5) 

G(z)<~ 1 f log (1 + 1 6 ( 1 -  Izl)~'~ 
J,, - i;-: V~)~ ! a~ 

f,~ ( 16 (1 - Izl)~'i ~< log 1 + dr 
o, i;-: ~z~ ! 

= 4(,-Izl)folog (l +x,)~ .  

This completes the proof of the first part of (2.4). 
To prove the second part of (2.4) let us first consider z E C such that 1 - z  >4t .  

If I I - z  > 4 t  and teXt, then z - r  I >�88 1 - z .  Hence g(z,r)<<.96t(1-Iz ) / 1 1 - z  2, 
by (2.5), and thus G(z)<.96tz(1 - z ) / l - z ]  2. If I I -z l~<4t ,  then, by the first 
part of (2.4), G(z) K 16 A 1 t 2 (1 - I zl)/I 1 - z]3. The proof of (2.4) is complete. 

Lemma 2.3 follows readily from (2.4). Let {ak} be the zeros of the Blaschhe 
product B. Then, by (2.4), 

1 inf log t -1 r,,, ~ < ~ O(ak)+t -1 Y O(a~) 
I a k - l K t  I a k -  l l > t  

1--1a~l <al t -~(B, l , t )+A2t  2 Ii_a~l~. 
I a~-~ I>t 

Since a(B, 1, 2 ~ t) Kh(2nt) K2~h(t), we have 

1-1akl 
i a,_~ll>t I ~  [::1! - ~ : I1-- a~[ 2 n = l  2 n - l t <  [ a k - 1 [<~2nt  

<~ ~ 2-3 ~+2 t-2 a(B,  1, 2 ~ t) <~ 4 t-2h(t).  
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Hence 

1 
inf log ~ ~< (A t + 4A~) t-lh(t) 

Eit ID~rJl 

and Lemma 2.3 is proved. 
Let  us now prove the second par t  of Lemma 2.2. Wi thou t  loss of generali ty 

we m a y  assume tha t  $ = 1 and 

a(B, 1, t) 
lim sup - - = l ,  ( O ~ l <  + ~ ) .  

t~+o h(t) 

Given s > 0  there exists t o > 0  such tha t  

a(B , l , t )<~( l+s)h ( t )  for 0 < t ~ < t  0. 

Let  {ak} be the sequence of nonzero zeros of B. Pu t  

B t ( z )  = I-I a ~ ( a ~ -  z)  
I~k _ll<t. lak[ (1 - S k z )  

and B 2 (z) = B(z ) /B  t (z). 

Then a(B t, 1, x)<~ (l+ s)h(x) for x >0 .  Hence, by  Lemma 2.3 applied to B t and 
the funct ion (1 + s) h, 

i - - r  
inf - -  
~, h(l - r) 

1 <~ 3t  . A ( l + s ) h ( t ) < 3 A ( l + e )  
l o g ~  h(3t) " t 

whenever 0 <  t <  �89 I t  follows readily f rom this inequali ty t ha t  

l-r 1 
lim inf - -  log ~<3A(I+ s). 

r ~ t - 0  h(1 --  r) 

Since all nonzero zeros ak of B 2 satisfy the inqual i ty  I 1 -  aa I > t  o, the l imit 

exists and IB~(1)I= 1. Hence, 

B 2 (1) = lim B 2 (r) 
r-->t 

1 - r  1 1 - r  1 
lim inf - -  log = lim - -  log 
r-~l-o h ( 1 - r )  ~ r-.t-o h ( 1 - r )  IBm(r) I 

+ l i m i n l  1 - r  1 r~t-o h(-i-:7- ~) log ~ < 3 a ( l +  ~); 

and since s > 0  is arbi t rar i ly  chosen, we have 
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l i m i n f  l - r  1 ~<3Al. 
~-~t-o h ( 1 - r )  log [ ~  

This completes the  proof of L e m m a  2.2. 
Le t  us single out  two special cases of Theorem 2.1 corresponding to h = h~ and  

h = h0, respectively.  

Corollary 2.6. I /  B E B then Z (B, hi) ~ Z(B) c ~ (B, hi). 

Corollary 2.7. I /  B E B  then Z (B, ho)c L s ( B ) c L ( B ) c  ~ (B, ho). 

Theorem 2.1 gives a sufficient condition for ~E~C to  be in Ls(B,h). I n  the  
following theorem we establish a simpler, bu t  s t ronger  sufficient condition. 

Theorem 2.8. Let h E ~4 and B E B. I[ there exists a subsequence {:r162 el zeros 
el the Blaschke product B, such that ak ~ ~ 6 ~C as k ~ + ~ in such a manner that 

(2.9) lira h(i~k -- gk +1[)/(1 - ]gk ]) = 0, 
k--)+ oo 

then ~ E Ls (B, h). 
Theorem 2.8 with h = h  I is due to Somadasa  ([11], p. 296). 

Free/. I t  follows f rom 2.9 t h a t  (1 - I : r162  as k o  + cr so we 
m a y  assume t h a t  

as k - ~ + o o .  Given ~ > 0 ,  there  exists an integer n such t ha t  h ( [ ~ g - ~ k + l [ ) ~  < 
~(1--  ~g+l ) for all k ~ n .  Given O < t < [ ~ = - ~ [ ,  let m be the smallest  integer 
such t ha t  : r  for all k~>m. Then for k ~ > m - 1  we have  

[OCk-- O~k+l[ ~[O~k-- ~ [ @ [O~tc+l-- ~[ < 2 ]O~m-X-- ~[ �9 

h(Jam-1- ~'l) ; 

and  therefore 

a(B,~,t)>~ ~ (1-l~+~[) 
k=m-1 

k=m-1 
h ( [ ~ - i -  r 

>~ (2 e)-I  k=m-l~" ]O~k--O~k+il-[Of.m_l__r 

/> (2 e)-lh(l~m_~ -- r ~> (2 e)-lh(t) .  
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Thus a(B,$,t)>~(2e)lh(t) if 0 < t < l c c n - ~ l ,  i.e. S E ~ ( B , h ) .  By  Theorem 2.1, 
~ELz(B,h) and Theorem 2.8 is proved. 

To see tha t  Theorem 2.8 is weaker than  Theorem 2.1, let us consider Frostman 's  
example, quoted earlier. Application of Theorem 2.1 shows tha t  1 ELz(B, h) for all 
h E ~/, where h = o (Vt) as t-~ + 0, while 1 ~ L (B, Vt). However, if h (t) = t ~, �89 < 

~ 2, then there exists no subsequence of zeros satisfying the hypothesis of 
Theorem 2.8. 

To see tha t  Somadasa's result (Theorem 2.8 with h=h~) is weaker than Cor- 
ollary 2.6, consider the Blaschke product B with zeros 1 -  e -~ of multiplicity k, 
k =  1, 2, 3, . . . .  I t  follows easily from Corollary 2.6 tha t  1 E Z(B). However, it is 
impossible to find a subsequence (ak} of zeros of B such tha t  (2.9) with h =  h a 
holds. 

Tanaka ' s  result ([12], p. 472), is contained in Theorem 2.8 with h =  h 1. 
The relation between the radial growth of - l o g  [B(r~)l and the remainder 

(~(B, ~, t) bears a close resemblance to the relation between the radial growth of 
a nonnegative harmonic function u and its Poisson-Stieltjes measure d/~ (el. 
Lemma 2.2 and Lemma 4.2). Our next  theorem emphasizes this resemblance. 

For B EB let R(B) be the set 

R(B)=(~EOC; lim ]B(r~)l= 1}, 
r->l-0 

and let ~ ( B )  be the set 

~ ( B ) =  {~ e 0C; t~+oaim c~(B,~,t)t 0}. 

We have; 

Theorem 2.10. I/  B e B then ~ (B) = R(B). 

In  the proof of this theorem we will use a lemma similar to Lemma 2.2. I f  
is a fixed boundary point and ~ is a fixed number  such tha t  0 < a <  1 let 

B~.~ designate the class of all Blaschke products B such tha t  B(z)~=O for 
z e S(~, a). 

Lemma 2.11. There exists a positive constant Aa, depending only on ~, such that 

1 - r 1 a ( B ,  ~, t) 
lira sup - -  log ~ A~ lim sup 

t - ) i -  0 h ( i - r )  ]~:~(r~) I "~ t-~+0 h( t )  

for all BEB~,~ and all hE~ .  

Lemma 2.11 is proved exactly as Lemma 2.2 once we have established the 
existence of a positive constant A~, depending only on a, with the following 
property;  /or all h E ~  and all B~B;.a, such that B(0)~:0, and a(B,~,t) <~h(t) /or 
t >0 ,  the inequality 

1 h(1-r)  log <A  

holds whenever r > r ~ =  1 - (1 - a) �89 (1 + ~)-�89 
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We will omit the proof of Lemma 2.11, but prove the existence of a constant 
A~ with the above property.  

I f  B E BL ~ and B(0) # 0, then, for r > r~ 

1 1 ( (1 -- ]ak]2) (1 -- r~)~ 
lOglB(r~) I - 2  ~ log 1-f la_r l  ! 

< 2 ( l - r )  ~. 1-la~[ 
]ak-rCl)ct(i-r) ]ak-- r$] ~" 

Let {u~}~ r be an increasing sequence for which ~u~2(u~+~+ 1)converges, u~=a ,  
and u = ~ + o o  as n ~ + ~ .  As in the proof of Lemma 2.3 one shows that ,  if 
(r(B, ~, t) <~ h(t) for t > 0, then 

y 1-lakl _<h(1--r_) ~ Un2(Un+l~_ 1). 
[ak-r~l~>~(1-r) [ag--r~[ 2"~ ( l - - r )  ~ 1 

Thus A ~ = 2 ~  Un2(Un+l-~ ]) is a positive constant with the required property. 
Let us now turn to the proof of Theorem 2.10. The inclusion R ( B ) ~ ( B )  

follows from the inequality 

1 >~ a (B ,  ~, 1 - r) 
8 log ~ 1 - r 

established in the proof of Lemma 2.2. I t  remains to prove tha t  ~ ( B ) o R ( B ) .  
Suppose that  ~ E~ (B ) .  Let  ~ be a number  such tha t  0 <  :r 1. Then there 

exists K(~) > 0  such tha t  1 - [ z [ ~ > g ( ~ ) [ $ - z [  for all zES($,a) .  Let  0 <  s < K ( ~ )  
and let t o > 0  be such that  a(B, ~, t)<et  for 0 <  t ~<t o . Put  

B 1 (z) = YI 5~ (ak - z) 
lak-~l<~t. [a~l (1 - G z ) '  

and B 2 (z) = B(z)/Bl(z). 

Then B1EB;. a and therefore, by  Lemma 2.11 applied to B = B  1 and h=hl ,  we 
have 

lira I Bl(r~)[ = 1. r--~l 

Since the zeros ak of B 2 satisfy the inequality [~-a~[  >to, we have 

[lira B 2 (r$)[ = 1, 
r->l 

and thus SER(B). This completes the proof of Theorem 2.10. 
I t  should be noted that  the condition a(B, ~-, t)-~0 as t ~  + 0, does not imply 

the existence of the radial limit of B at  SEOC. Frostman ([3], p. 176) proved 
tha t  there exist Blaschke products B, which, for each $ E ~C, can be written as 
the product of two Blaschke products B;  and Br in such a manner that  B;  
does not have a radial limit of modulus 1 at  ~EOC. Let  B be such a Blaschke 
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product and let ~E~C be such that  the radial limit B(~) exists and [ B ( $ ) [ = I  
Then by Theorem 2.10 a(B,~,t)/t-+O as t-->+0. Obviously ~(B~,$,t)/t~O as 
t ~  +0 ,  while limr-.l_0 B~(r~) does not exist. 

3.  R a d i a l  z e r o s  a n d  H a u s d o r f f  m e a s u r e s  

Throughout this section we will consider Hausdorff measures induced by func- 
tions in :H0- We will denote the Hausdorff measures induced by the functions 
h, g~, h~ . . . .  , etc., by H, G~, H~ . . . .  respectively. 

We prove the following lemma. 

L e m m a  3.1. Let h E ~to and B E B. 

~o (B, h) = {~ e ~C; 

Then H(~o(B , h)) = O. 

Let Z0(B, h) be the set 

lim sup a(B, $, t) l > 0  . 
t~+o h(t) J 

Proo[. Let {ak}~ r be the sequence of zeros of B. Put  for a >0  

~a(B,h)={$E~C; limsup a(B'$'t) } 
~ + o  h ( t ~  > a  . 

Obviously it suffices to prove that  H(~a(B,h))=O for all a > 0 .  Given s > 0 ,  
there exists an integer K > I  such that  ~%K(1- - [ak[ )<sa(22)  -1. Let  ~ be a 
positive number such that  ~< infl<k<K-l(1 --]ak[). For each ~E ~a(B, h) consider 
all closed discs C(~,t) with center ~ and radii t, such that  h(t)<a-la(B, ~,t)and 
0<  t ~<~. The family of all such discs is a covering of Z~ (B, h) in the Vitali 
narrow sense (cf. [1], 13. 104, and [10], p. 198); and, therefore, by Besicovitch's 
theorem ([1], pp. 104-106, and [10], 13. 198), we can extract a subcovering of 
~a(B, h) consisting of 22 countable subfamilies of disjoint discs. Then, if 

F~ = {C($~.,, t~.,)}= (i = l, 2 . . . . .  22) 

denotes the subfamilies of such a subcovering, we have 

2 2  2 2  

~ h(ti.,) <.a -1 ~ ~ a(B, r ti.,) 
i = l  n 4 = 1  n 

2 2  
~<a- l~  ~ ( 1 - ] a k [ ) < ~ .  

i = l  k = K  

Consequently, H(~--a (B, h)) < e. Thus, since e is arbitrarily chosen, H(~a (B, h)) = 0. 
This completes the proof of Lemma 3.1. 

Combining Theorem 2.1 and Lemma 3.1, it is easily proved that  H(L(B, h)) = 0 
for all hE:H0 and all BEB.  In fact, if L0(B ,h) is the set 
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Lo(B,h)={~E~C; l iminf  1 - r  1 } r--~i-0 h ( ~ -  r) log ~ > 0 , 

Lemma 2.2 and Lemma 3.1 yield the following theorem. 

Theorem 3.2. I /  B E B  then the set Lo(B, 1) is empty. I /  hE~/0, then 

H(L o (B, h)) = O. 

Incidentally, the first par t  of Theorem 3.2 is a simple consequence of results 
due to Heins ([4], pp. 193-196). 

Before stating our next  result let us introduce the following notation. Let  
ga(t) = t a, 0 <  ~ ~< I and let ha be the functions introduced in Section 2. If  E is 
a subset of the complex plane, for which H i ( E ) = 0 ,  the Hausdorff dimension 
of E is defined by  

dim E = inf {~; a ~< 1, G~(E) = 0}. 

Analogously, let dimH~ be defined by  

dimH~ = inf {a; :r ~< l, Ha(E) = 0}. 

In  this notation our next result can be stated as follows. 

Theorem 3.3. I f  B E B then H a (Z(B)) = 0 and Ho(L(B)) = O. Conversely, there 
exist Blaschlce products B and B o such that dim Z(B)=  1 and dim~0Ls(B0)=0. 

The first par t  of this theorem follows from Theorem 3.2 with h = hi and h = h 0, 
respectively. 

To prove the second part  we use the following lemma. 

Lemma 3.4. Let h, g E ~lo. Suppose that 

(i) t-lh(t) is decreasing on (0, ~ ) ,  

F (ii) dt/h(t) converges, 
0 

(iii) g(t~)=O(tg(t)) as t ~  +0, and 

(iv) g(u .Io 

Then there exists a Blaschke product B such that 

H(Ls(B, g)) >0.  

Proof. Under the hypothesis of Lemma 3.4 there exists a sequence {~)n}~ 
such tha t  

(:r 0<2~n+l<r189 ( n = l , 2  . . . .  ), 

(/~) ~ 2n ~n converges, 
1 
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(y) lim inf 2~h(~) >0, 
n--~ + OO 

(~) 2ng(~)=o(~  2kQk), as n-+ + ~ .  
n + l  

To see this, define 

2"~.=K2-"/h(2 -~) ( n = l , 2 , . . . ) ,  

where K is chosen so that  0 < K <  2h(2-1). Property (~) then follows from (i), 
and (/3) follows from (ii) and from the inequality 

f 2-~ dt 
2nQ~<2K h(t)" 

J 2 - ( n + l )  

Property @) is a consequence of the inequality 

2.h(~.)=Kh(~.) 2-" 
~. h(2_~)>K, 

which follows from (a) and (i). To prove (6) assume that  

g(t 2)<~Atg(t) for 0~<t~<l. 

Then, for n sufficiently large, we have 

2=K 
< g(2-==) 

Thus 

AKg(2 -~) <~ 
h(2- ~) 

2k ~k/2~g (~n)  >~ - -  
n + l  

K (2-- dt 

2ng(~) ./o h(0 

A_ lh(2 -~) (2 -~ dt ~> 
g(2 -~) ./o h(t) 

and (~) follows from hypothesis (iv). 
Given a sequence {~n)F , with properties (a) through ((~), construct on ~C the per- 

fect symmetric set 

(3.5) E={e'=; x=~Enr~,e~=0 or 1}, 
r t = l  
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where r I = 27t - Q1, rn = ~)n-1 -- ~)n (n = 2, 3 . . . .  ). Let  L be the Lebesgue-Cantor func- 
tion constructed on E and let col be its modulus of continuity. Then using 
proper ty  (y) it is easily proved tha t  

~o~.(t)=O(h(t)) as t-> +0 .  

Consequently, since the Hausdorff  measure of E induced by  col is positive (cf. 
[5], p. 30), we have H(E)>0 .  

To prove Lemma 5.4 it therefore suffices to construct a Blaschke product B, 
such tha t  E c L s ( B ,  g). Let B be the Blasehke product having the zeros 

7Z 

a .............. = (1 -- en) exp (ik~18 k rk}, 

where n = l , 2  . . . . .  and s k = 0  or 1. I f  2 ( )n_1>t~>2~ and ~EE,  then the disc 
I z -  ~1 ~<t contains at least 2 k zeros of modulus 1 -Q~+k (k = 0, 1, ...), and therefore 

a(B, ~, t)/g(t) >~ ~ 2k~,+k/g(2 ~n-1) 
0 

>1 2%/2n§ g(en 1). 
n 

Consequently, by  property (~) 

lim inf ~ (B, $, t) 
t-,+o g(t) 

- - - - §  

and thus, by Theorem 2.1, ~ELs(B,g).  Hence E c L ~ ( B , g )  and the proof of 
Lemma 3.4 is complete. 

To prove the last par t  of Theorem 3.3, put  g =  h 0 and let h be any function 
satisfying the hypothesis of Lemma 3.4, such that  for ~ < 0 

(3.6) h(t)=o(ha(t)) as t - > + 0 .  

Then, by Lemma 3.4, there exists a Blaschke product B such tha t  H(Ls(B))>0. 
Hence, by (3.6), Ha(Ls(B))= § oo for all ~ <  0, i.e. dim~,Lz(B) >~0. Consequently, 
by  the first par t  of Theorem 3.3, dimHoLs(B)=O. 

The existence of a Blaschke product B, such tha t  dim Z(B)=  1, is proved in 
like manner, by  applying Lemma 3.4 to g = h  1 and h=h_l .  Although this re- 
sult may  be known, we state it here for completeness. 

4. Two lemmas 

In  this section we prove two lemmas similar to Lemma 2.2 and Lemma 3.1, 
respectively. 
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Let  u be a nonnegat ivc  function, harmonic  on C. 
Stielt jes representa t ion  

$t 

(4.1) u(re ~x) = P r ( x -  t)d# (t), 

Then u has a Poisson-  

where 
1 - r  ~ 

Pr(t) 1 - 2 r  cos t + r  2 

is the Poisson kernel  and  # is a nondecreasing funct ion defined on the in terval  
[0, 2 ~]. 

L e m m a  4.2. Let u be given by (4.1). Then there exist positive constants A 1 and A~, 
such that 

A t l im inf #(x + t ) -  # ( x - t )  ~< lira inf 1 - r  u(re ~x) 
t~+o h(t) ~ 1 - o  h ( 1 - r )  

and 
1 - - r  

lira sup 
r - - ~ l -  0 h ( 1 - r )  

u(re ~) <~ A 2 l im sup # (x + t ) .  #(x  - t) 
t--~+o h(t) 

/or 0 < x < 2 7 ~  and all hE~:  

I n  case of h =  h o a similar result  was p roved  in [9], p. 290. 

Proo[. The proof of this l emma  is classical and  therefore we restr ict  ourselves 
to the proof of the second par t .  

Assume t h a t  

l i m s u p # ( X + t ) - # ( x - t ) - I  ( 0 ~ < l < ~ ) .  
t~+o h(t) 

Then, given s > 0  there  exists 8 > 0  ( 8 < z ) ,  such t h a t  

# ( x + t ) - t t ( x - t ) < ~ ( l + s ) h ( t  ) for O--.<t---<& 

In tegra t ion  b y  par ts  yields 

f+~P~ (x - t) d#(t) 

Pr  (8) {#(x + 8 + O) - #(x  - 8 - 0)} + f ~  {tt(x + t) - tt(x - t)} Pr  ( -- t) dt 

< P , ( ~ )  { ~ ( x +  ~ + 0) - ~ ( x -  8 - o ) } + , ( l +  ~) h(t)P;(-t)dt, 

where Pr  denotes  the der iva t ive  of Pr with respec t  to t. However ,  if 1 -  r <  8, 
we have  
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1 - r  /~  
h ( i - - r )  h(t) P;  ( - t) dt 

=(1-r)f/' h(t) +f: h ( 1 - r )  P ; ( - t ) d t  _r t 

f/ ; -<<(l-r) P;(-t)dt+ tP;(-t)dt 

--<2+2zt. 

Hence 

h(t) 1 - r 

1 - r ~,x+~ 
limr_.l_osup ~ u(rei~)= l i m s u p  1 - r  

t->l-0 ~ ]d x-~ 

< ( 2 + 2 ~ )  ( /+s )  

h(1-r) tP~ ( - t) dt 

Pr (x - t) d# (t) 

and, since ~ >0  is arbitrarily chosen, the second part  of Lemma 4.2 follows. 
Our next  lemma deals with the sets 

M~ (/x, h) = {e ~ E ~C; 0 < x < 2 g, lim sup 
t->+0 

# ( x + 0 - ~ ( x - 0  } 
h(t) >1 a , 

where 0 ~<a ~< + ~ ,  # is a nondecreasing function defined on [0, 2 g] and h is a 
function in class ~/. 

Lemma 4.3. Let  h e r o .  Then  H ( M a ( / ~ , h ) ) = O  i / a =  + ~ ,  while H ( M a ( ~ , h ) )  is 
]inite i / a  > O. 

For a =  + ~ and h = h o ,  Lemma 4.3 was proved in [10], p. 198. The same 
proof holds for any h E~/0. The second part of the lemma is proved in like 
manner with obvious modifications. We omit the proof. 

The second part  of Lemma 4.3 cannot be improved. For instance, if hE ~/0 
and t - lh( t )  is strictly decreasing, if E is the perfect symmetric Cantor set given 
by (3.5) with r 1 = 2 g -  Q1 and rn = Qn-1 - ~ (n = 2, 3 . . . .  ), where h(Q~) = 2 -~, then, 
by a theorem of Hausdorff, 0 < H ( E ) <  + ~ .  ([4], p. 30). On the other hand, if 
# is the Lebesgue-Cantor function (constructed on E) multiplied by  2 a, then, 
using the technique developed in [8], pp. 226-227, it is readily shown that  
M a (/z, h) = E\{ 1 }. Hence, 0 < H ( M  a (1~, h)) < + cr 

5. Sets  o f  un iqueness  

Let :~ be the class of all functions, bounded and analytic in the open disc C. 
If /E:~ and / # 0 ,  then 

(5.1) / = II 111 B-E, 

where [[l[[ is the supremum norm of 1, B is the normalized Blaschke product of 
/ and E is a function in ~ with no zeros in 6'. 
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and 

For 0~<a< + ~ ,  h E~/ and /E:~, let L~(/,h) and L(/,h) be the sets 

L~(/,h)={~e~C; liminf 1 - r  1 } 
r-->l-0 h(1 --r~ log ~ > a  

L(/,h)={$E~C; liminf 1 - r  1 } 
r-~l-o h (1 - r ~  log II(rr + 

In this notation our first result can be stated as follows. 

Theorem 5.2. I/ /~=0 is a/unction in :~, then the set L(/, 1) is empty, while the set 
La (/, 1) is/inite/or all a > O. 

The first part of Theorem 5.2 is in [4], pp. 195-196, and the second part is 
a slightly stronger version of a result of Kegejan [(6], p. 245). More precisely 
Kegejan proves that, if the set 

{~ESC; I/(r~)[ ~< exp { ( r -  1) -1} for 0 ~ r <  1} 

is closed, then it is finite, unless / = 0 .  
Theorem 5.2 has the following corollary. 

Coronary 5.3. I/04=/E:~, then Lo(/, 1) is countable. 

Proo/ o/ Theorem 5.2. Let / be given by (5.1) and suppose that  hE~/. 

(5.4) L(/, h) c Lo (B, h) U L(E, h), 

Then 

where 

L(E,h)={~E~C; limsup 1 - r  1 ) 
,-~1-o ~ log ]E(r~)]- + ~ " 

By Theorem 3.2 the set Lo(B , 1) is empty. Lemma 4.2, applied to u = - l o g  IEI 
and h(t)= 1, shows that  L(E, 1) contains no other points than possibly ~= 1. 
However, if 1 E L(E, 1), then ~0 E L(E 1, 1), where El(z ) = E (z~o) and 14: ~o E ~C. This 
contradicts the fact that  the only possible point in L(E1, 1) is ~ = 1. Hence, L(E, 1) 
is empty and therefore, by (5.4) the set L(/, 1) is empty. 

If hE~/ and t=o(h(t)) as t-~ + 0  then 

(5.5) La(/, h) c L o (B, h) U La (E, h), 

where 

La(E,h)={$E~C; limsup 1 - r  1 ) 
T-.1-o ~ l ~  . 

Let u = - l o g / E /  and let /t be the corresponding nondecreasing function in the 
Poisson-Stieltjes representation of u. Then, by Lemma 4.2 
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(5.6) La (E, h) = Mo, (~, h) U {1}, 

where a ' =  aA21 and A 2 is the positive constant in Lemma 4.2. Obviously Ma,(/~ , 1) 
is finite if a' >0; and, therefore, by (5.6) the set La(E, 1) is finite. Hence, by 
Theorem 3.2 and (5.5), the set La(], 1) is finite. This completes the proof of 
Theorem 5.2. 

Theorem 5.7. Let h e r o .  I /  ]#O is a /unction in :~, then H(L(/,h)) = 0  while 
H(La(], h)) is ]inite /or all a >0.  

Proo/. Let / be given by (5.1), let u =  - l o g / E l  and let # be the corresponding 
nondecreasing function in the Poisson-Stieltjes representation. Then, by Lemma 4.2 

L ( E , h ) c  i : c ( # , h )  U {1}. 

Hence, by Lemma 4.3 H(L(E,h))=O; and, consequently, by (5.4) and Theorem 
3.2, H(L(], h)) = O. 

To prove the second part of Theorem 5.7, we may assume that  t=o(h(t)) as 
t - + §  If this is not the case, then h(t),,~at as t - ~ + 0  for some ~ > 0 ,  and 
there is nothing to prove. However, by (5.6) and Lemma 4.3, H(La(E, h)) is 
finite; and, consequently, by (5.5) and Theorem (3.2), H(La(/,h)) is finite. 

Theorem 5.7 will be used to prove two uniqueness theorems. Before we state 
these theorems, let us introduce the following notation. 

For functions /1 and ]2 in 9:, let D(]I, ]2) be the set of all boundary points 
such that  

lim /~k) (r~) = lim ]~k) (r~) (k = O, 1, 2 . . . .  ). 
r - - ) l - O  r - - ~ l - O  

In like manner, let Ds(]l,/2) be the set of all points ~ E ~C such that  

lira ](1 k)(z) = lim /(2 ~)(z) (k= O, 1, 2, . . . ) ,  
z - ~  z - ~  

z e S(~, ~) z e S(~, a)  

for all Stolz domains S(~, ~). If /2=0,  we will simply write D(/1)=D(/1, 0 )an d  
Dz(/1) = Dz(/1, 0), respectively. 

The following ]emma was proved in [10], p. 195; we abbreviate Ls(/,ho)and 
L(/, ho), with Ls(/) and L(/), respectively. 

LemmaS.8.  I /  [E:~, then 

Ls(/) = Ds(/) ~ D(/) c L(]). 

The following theorem is an immediate consequence of Lemma 5.8 and The- 
orem 5.7. 

Theorem 5.9. I] /1,/2E~ and Ho(D(/1,/2))>O, then /1=/2 . 

Proo/. Put  1= /1 -12  and assume that  / #O.  Then by Lemma 5.8 D(/1,/2)c 
D(/) ~ L(/) = L(/, ho). Consequently, H o (L(]) ) > 0, contradicting Theorem 5.7. Hence, 
]1 =/2; and the theorem is proved. 
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Theorem 5.9 is best  possible in the following sense: there exists a funct ion 
[E :~, such t h a t  dimH. D([)= O. This follows immedia te ly  f rom Theorem 3.3 and  
L e m m a  5.8. 

For  funct ions /1 and  [2 in :~, let U~ (/1, f2) be the set  of points  $ e ~C, such t h a t  

(i) 

and  

(ii) 

lim 11 (r~) = lira 12 (r~) 
r-->l-0 r-->l-0 

as r- l-0. 

The sets U=(/1 , 12) are sets of uniqueness in the  following sense. 

Theorem 5.10. Let I1, 1~ E :~. Then /1 = 12 i / a n d  only i / there exists ~ > -  1, such 
that Ho(U~(/ .  1~))= + oo. 

Proo/. First  let us assume tha t  11 = 12. Le t  E be the  except ional  bounda ry  
set, where /1 has no radial  limits. Then  U~(/1 ,/2) =~C\E  for all ~. B y  Fa tou ' s  
theorem HI(~C\E ) >0 .  Hence,  since hl(t)=o(ho(t)) as t -* + 0 ,  we have  

for  all ~. 
Ho (1.12))- -  + co 

Next ,  assume tha t  /1 :W/2. P u t  / = /1  - / 2 .  

I I' I de II(rC) l 

= 0 ( ( 1  - -  r )  1+r 

H e n c e  

Then,  if $ E U: ([1,/2), and  a > - 1, 

as r-+ 1--  O. 

1 - r  ] 
lira inf - -  log >t 1 + ~, 
,-,1 0 h0(1 - r) 

i.e., U~(/1 ,/2) cL~( / ,  ho) , where a +  1 > a > 0. Thus b y  Theorem 5.7 Ho(U ~ (/1, /~)) 
< + co for all a > -  1. This completes  the  p r o o f  of Theorem 5.10. 

Incidental ly,  if ~ < - 1 ,  there exists / 4 0  such t h a t  H 0 ( U ~ ( / , 0 ) ) =  + o o .  To 
see this, let E be any  closed set  on the  bounda ry  ~C, such t h a t  Ho(E ) = + co 
and  H I ( E )  : 0. Construct  / E :~ such t h a t  / :~ 0 and  lim,_,l_0/(r~) = 0 for all $ E E 
(cf. [7], p. 34). Since I / ' ( r ~ ) l = O ( ( 1 - r )  ~) as t - * l - 0  for any  funct ion / E S ,  
whenever  ~ - 1, we conclude t h a t  E c  Ua(],O). And thus  Ho(U~(/,O))= + oo. 

Theorem 5.10 has the  fo]lowing corollary. I f  ] I , / ~ E ~  let D1(/1,/2) be the set  
of boundary  points  ~, such t ha t  

l im /(1 k)(r$) = lira /(k)(r~) for k = 0, 1. 
r-->l 0 t -> l -  0 

Obvious ly  D 1 (/1' /2) C U 0 ( /1 , /2) -  T h u s ,  w e  have; 

Corollary 5.11. I /  /1,/2 E :~ and H o (D 1 (/1,/2)) = § co then /1 =/2. 
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Corollary 5.11 is equivalent to the statement (we abbreviate DI(/,O ) with 
D:(/)); i/ O#/E:~,  then Ho(D:(/) ) is /inite. For the class B a stronger result 
holds (cf. [10], p. 200); i/ B e B then H o (D I(B)) = 0. 

University o/ Cali]ornia, Riverside, U.S.A. 
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