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On radial zeros of Blaschke products

By AkE SAMUELSSON

1. Introduction

Let B be the class of all Blaschke products defined on the open unit disc C,
ie. all functions of the form

B =[] D

lazcl _akz)

where 6 is real, m a nonnegatlve integer and {@;} a set of nonzero complex
numbers in C, such that the series > (1 —|az|) converges.
A point { on the boundary of C (henceforth denoted by oC) is a radial zero
of a Blaschke product B if
B()= lim B(r)=0.

r—>1-0

In his thesis, Frostman ([2], p. 109) gave an example of a Blaschke product B;
namely,
0 1— k—2
B Z _—7
(=) I_I —(1-k%)2

which has zero radial limit at {=1. More recently, Somadasa [11] and Tanaka
{12] obtained sufficient conditions in terms of the sequence {ak} for the corre-
sponding Blaschke product to have a zero angular limit at a point {€0C. In
the following section we will give a different sufficient condition for a point
(€80 to be a radial zero of a Blaschke product. It turns out that the condi-
tions given by Somadasa and Tanaka are stronger than ours. We will also es-
tablish a necessary condition for { to be a radial zero of a Blaschke product B.
In fact, we will investigate the radial and angular growth of —log |B(z)| as z
approaches a radial zero of B.

In Section 3 the local results of Section 2 are used to obtain global results
while in Section 5 we improve a uniqueness theorem given in [10], p. 199.

Section 4 contains two simple lemmas.

2. Radial behavior of Blaschke products

Before stating the main result of this section, let us introduce some notation.
Let # be the class of functions %, continuous and nondecreasmg on the in-
terval [0,c0), such that A(f) >0 if £>0 and ¢ 'A(f) is nonincreasing on (0,co).
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X. sAMUELSSON, On radial zeros of Blaschke products

The subclass of ¥, consisting of functions A satisfying the additional condition
h(0)=0 will be denoted by H,. In particular, we will be interested in the func-
tions k, €N, a<1, defined by

0 t=0,
ho@ty=t(—log t)™* if 0<i<i,
t+ ho(t,) — 1ty t,<t,
where #, is chosen in the interval (0,e”!) so that
log ¢, + (—~log £,)*+1—a=0.

If x<1, the number #, is uniquely determined by this equation, while if x=1
the choice of # is immaterial.
If he Y and BERB, let L(B,k) be the set

.. 1
L(B,h>—{<:eao, 1:3113)&“1 S log | 751 = +oo}.

In like manner, let Ls(B, %) be the set of all points {€9C such that

[z—¢| 1
Iim inf 1 = -+ oo
o Rz =2)) B B

S¢.@
for all Stolz domains S(, «) defined for 0<a<1 by
={z€0; |z2—¢|<V1-a |arg (1 —Cz)| <arc sin a}.

In the particular cases of A=h, and h=h, we will use the notation Z(B)=
L(B, k), L(By= L(B, hy) and LS(B) Lg(B, hy). Obviously Z(B) is the set of all
radial zeros of B. Moreover, it is a well-established fact that if a Blaschke prod-
uct has a zero radial limit at {€8C, then it also has a zero angular limit at
¢ ([, p- 5); and, therefore, Z(B)= L(B,h,)= Ls(B, k,).

If BER and (€aC let

G(B, é" t) = | %[(t(l - lakl)a (t >0)

a;—LI<

be the remainders of the convergent series > (1—|ax|). It is convenient to in-
troduce the sets

(B, h)~{§eac lim nfw + }
t>+0 h(t)

and

S = . 1 ( ’C’t) }
2 (B, k) {:eao, lim sup S5 = o o

In this notation the main result of this section can be stated as follows.
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ARKIV FOR MATEMATIK. Bd 7 nr 33
Theorem 2.1. Let h€Y and let BERB. Then

S (B, k)< Lg(B, h)y< L(B, k)< 3 (B, h).

Theorem 2.1 is an immediate consequence of the following lemma.

Lemma 2.2. Let x be a fized number such that 0<o<1. Then there exist po-
sitive constants A, and A, such that

aBLty . |z 1
A, lim inf ——="7 <lim inf lo,
ST e T P R B
and
L. 1—r 1 ] o(B,C,t)
lim inf, lo <A, lim sup ————
o R(1—7) BB T AN )

for all L€2C all BEB and all hEN.

Proof. Let {a} be the nonzero zeros of a Blaschke product B. If [a;— | <
|z—¢|, then |1 —a,z|<2|z—¢|. Moreover, there exists K(x) such that 1—|z]
>K(x)|z—¢| for all z€S(¢,«). Hence, if z€S(, )

1 1 (1—|Z|2)(1*|dk|2))
log ——> —= lo (1 — p
g | B(2)] 2 |ak~clz<|z~c| g |1 =z
1 1—-|ak|
=>—{1—|z ——
2! | I)Iak~§I<l5~Cl [1—dzf®

K(e) (B, L, |2 L))
8 lz—¢l

>

The first part of Lemma 2.2 follows from this inequality. To prove the second
inequality in Lemma 2.2 we use the following lemma.

Lemma 2.3. Let ¢ be a fized number such that 0<t<} and let I, be the closed
tnterval [1—3t, 1 —2¢]. Suppose that h€ §, BER, B(0)+0 and ¢(B, 1, x) <h(x) for
x>0. Then there exists an absolute constant A >0, such that

inf log <At h().

1
rel, lB(r)]

Proof. The proof of this lemma is based on two simple estimates of Green’s
potential of the mass ¢ uniformly distributed over the interval I,. Let

1—%
g(z, w)=log 2 , (z,w€l)

w—z

be Green’s function with logarithmic pole at 2z, and let
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4. saMUELsSON, On radial zeros of Blaschke products

be the potential at the point z2€(.

We prove the existence of two absolute constants 4, and 4,, such that,
for 2€C,

(2.4) Gz)<A,(1—|z]) and G(z)<4,8*(1—|z])/|1 -2~

Simple calculations show, that if r€1,, then

1 — 2y (1 —[z]? _
(25)  gler)=ylog (1 +<1_|Tr)%l2|i)) <%log (1+12|15:£z||2z|))’

If min,;|r—2|>t and r€1, then by (2.5), g(z,r) <671 (1—|z|) and thus G(z) <
6(1—|z]). If min,.;|r—z|<t¢, then t<1—|z| and thus, by (2.5)

G(z)<% f log (l + M) dr

(r—12])*
* 16(1—|z|)2
<ﬁz.1°g(”?f“zn—2) ar

=4(1—]z|)f log (1+2%) QZ—”.
0 X

This completes the proof of the first part of (2.4).

To prove the second part of (2.4) let us first consider z € C such that |1 —z|>4¢.
If |1 —2| >4t and r€1,, then |[z—7|>}|1—2|. Hence g(z,7)<96¢(1—|z|)/[1—z[,
by (2.5), and thus G(z) <96#*(1—|z|)/|]1 —z[%. If |1 —z|<4¢, then, by the first
part of (2.4), G(z)<16 4, (1 —|z|)/[1—z[>. The proof of (2.4) is complete.

Lemma 2.3 follows readily from (2.4). Let {ax} be the zeros of the Blaschhe
product B. Then, by (2.4),

inf log—l——<t‘1 > Hap)+tt D A

rel; |B(7')| lag—11<t lag—1l>t

<At (B, 1,t)+ Ayt S 1_—_|@|_2
|az—11>t Il - a/k!

Since o(B,1,2"t) <h(2"t) <2"h(t), we have

l—lakl § ]._|ak|

lag—1[>t ll - aklz - n=12n-1t<|ap~1|<2nt | 1- a'kl2

< 27°in 272 6(B, 1,27 8) <4872A(8).

n=1
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Hence

1
inf log r—— <(A4,+ 4 4,)t 7 h(t
Yo ng(")l (4, 2) 2]

and Lemma 2.3 is proved.

Let us now prove the second part of Lemma 2.2. Without loss of generality
we may assume that {=1 and

lim su o(B,1,1)
t—>+op h{t)

=1I, (0<l< + oo).
Given ¢ >0 there exists f, >0 such that
oB,L,)<(I+e)h(@t) for 0<i<t,.

Let {ax} be the sequence of nonzero zeros of B. Put

. @ (o — 2)
B = lax-1]<te | @] (L — @x2)
and B,(2) = B(z)/ B, (2)

Then o(B;, 1, %) <(l+¢&)h(x) for £>0. Hence, by Lemma 2.3 applied to B, and
the function (I+¢)#,

. 1—7 1 3t A(l+e) h(t)
f 1 < . <3 A+
ren h(1—1) 8 [B,(r)| ~h(3%) : (¢+e)

whenever 0<¢< }. It follows readily from this inequality that

lim inf 1
r=->1-0 h(]-_T Og IBl( )l

<3A(+e).

Since all nonzero zeros @, of B, satisfy the inquality |1 —a|>1, the limit

B,(1)=1lim B,(r)

r—>1

exists and |B,(1)|=1. Hence,

1
l f 1 Iim lo
i in h(l—r) o8 |B< N o oh(l—) 8 1B,
+ lim inf 10 1 <3 A(l+e);
1 1 3
e h( ) B

and since ¢>0 is arbitrarily chosen, we have
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A. SAMUELSSON, On radial zeros of Blaschke products

1

<34l
B(r)|

. 1—-7r
lim inf W1=7) logl

r—=>1-0

This completes the proof of Lemma 2.2.
Let us single out two special cases of Theorem 2.1 corresponding to = A, and
h=h,, respectively.

Corollary 2.6. If BEB then 3 (B, h)<Z(B)<2 (B, hy).

Corollary 2.7. If BEB then S (B, hy) < Ls(B)< L(B)< > (B, hy).

Theorem 2.1 gives a sufficient condition for {€0C to be in Ls(B, k). In the
following theorem we establish a simpler, but stronger sufficient condition.

Theorem 2.8. Let he ¥ and BEB. If there exists a subsequence {oy}i° of zeros
of the Blaschke product B, such that «,—C€3C as k— + oo in such a manner that

(2.9) kliiﬂwhd“k‘ﬁkﬂl)/(l_I“k|)=0,

then (€ Lg(B, k).
Theorem 2.8 with k=4, is due to Somadasa ([11], p. 296).

Proof. Tt follows from 2.9 that (1—o|)/(1 —|axs1]) =1 as k—> + oo, 80 we
may assume that
h(lak”aknl)/(l"lka+1)l—’0
as k- + co. Given &>0, there exists an integer n such that A(|a,— asa|) <
e(1 —|agss|) for all k>n. Given 0<t<|a,—(|, let m be the smallest integer
such that |a— | <t for all k>m. Then for k=>m—1 we have

o = otiers] <Jae— |+ |otess = E[ < 2 Jam-1— |-

Hence h(lo‘k—“k+1l)>h(2|“m—1“C|)
|tk — ot 41 2 |atm-1—C|
>h(|am——1~C|)

- 2 l“m«l - C l
and therefore

>€¥1 Z h(lozk—otk+1|)

k=m-1
% 1 =<
2(28)_1k 2 llak—akﬂl (ll:‘m ll_éll)
=m- m—

>(2e) 'h(|an-1—C]) =2e) h().
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Thus o(B,{, )= (2¢) 'h(t) if 0<t<|a,—C|, ie. (€Y (B,k). By Theorem 2.1,
{€Lg(B,h) and Theorem 2.8 is proved.

To see that Theorem 2.8 is weaker than Theorem 2.1, let us consider Frostman’s
example, quoted earlier. Application of Theorem 2.1 shows that 1€ Lg(B, ) for all
heH, where h=o0(Vt) as t— +0, while 1¢L(B,Vt). However, if h(t)=1%, }<
a<$§, then there exists no subsequence of zeros satisfying the hypothesis of
Theorem 2.8.

To see that Somadasa’s result (Theorem 2.8 with h=5,) is weaker than Cor-
ollary 2.6, consider the Blaschke product B with zeros 1—e * of multiplicity %,
k=1,2,3,.... It follows easily from Corollary 2.6 that 1€ Z(B). However, it is
impossible to find a subsequence {oy} of zeros of B such that (2.9) with h=h,
holds.

Tanaka’s result ([12], p. 472), is contained in Theorem 2.8 with h=h,.

The relation between the radial growth of —log |B(r{)| and the remainder
o(B, ,t) bears a close resemblance to the relation between the radial growth of
a nonnegative harmonic function # and its Poisson-Stieltjes measure dg (cf.
Lemma 2.2 and Lemma 4.2). Our next theorem emphasizes this resemblance.

For BeB let R(B) be the set

R(B)={C€60;TE{130|B(TC)|=1},
and let > (B) be the set

§<B)={ceao; lim

t—>+0

9B, L,t) _ 0}.
t
We have;

Theorem 2.10. If BEB then > (B)= R(B).

In the proof of this theorem we will use a lemma similar to Lemma 2.2. If
¢ is a fixed boundary point and « is a fixed number such that 0<a<1 let
B« designate the class of all Blaschke products B such that B(z)+0 for
2€8(L, o).

Lemma 2.11. There exists a positive constant A,, depending only on o, such that

. 1—7r 1 . O'(B’ C; t)
lim su lo <4, lim sup ———
e h(L—n) 8 [BE)] = AR T R

for all BEB¢ , and all heN.

Lemma 2.11 is proved exactly as Lemma 2.2 once we have established the
existence of a positive constant A,, depending only on «, with the following
property; for all h€ Y and all BEB¢ ., such that B(0)+0, and o(B,,t) <h(t) for
t >0, the inequality

' 1 h(l—7)
1 <A
0g|B(rC)| ¥ l-r

holds whenever r>r,=1—(1—a) (14 )72,

483



A. SAMUELSSON, On radial zeros of Blaschke products

We will omit the proof of Lemma 2.11, but prove the existence of a constant
A, with the above property.
If BEB¢,. and B(0)+0, then, for r>r,

_1 (1_'%'2) (1—7’2))
——é%log (1+ (4 — L

1- Iakl
lag—rt TSt -n | — rC]z'

] 1
B0

<2(1-r1)
Let {u,}3° be an increasing sequence for which > u;?*(u,.1+ 1) converges, u, =,
and u,— + o as n— +co. As in the proof of Lemma 2.3 one shows that, if
(B, {,t) <h(t) for £>0, then

1—|ay| R(1-7)&
2< 2
laxg—rl[Zad-n Ialc - TCI (I-r7 7

uﬁz(un+l + 1)

Thus A, =27 u;? (un+1+1) is a positive constant with the required property.
Let us now turn to the proof of Theorem 2.10. The inclusion R(B)< 2 (B)
follows from the inequality
1 o(B,,,1—7)
8 lo P
EBeOl” T 1-r

established in the proof of Lemma 2.2. It remains to prove that > (B)< R(B).

Suppose that [€> (B). Let « be a number such that 0<a< 1. Then there
exists K(x) >0 such that 1—|z|>K(x)|{—2| for all z€8(C,«). Let 0<e< K(a)
and let £, >0 be such that ¢(B,{,t) <&t for 0<t<{t, Put

_ (a4 — 2)
Bil)= lax-Cl<cto [ax| (1 — Grz)’
and B,(z)= B(z)/By(z).

Then B,€B;,, and therefore, by Lemma 2.11 applied to B=B, and A=A, we
have

lim | B, (r0)|=1.
r—>1

Since the zeros a; of B, satisfy the inequality |{—ax|>#, we have

[lim B,(rl)|=1,

r—>1

and thus € R(B). This completes the proof of Theorem 2.10.

It should be noted that the condition ¢(B,{,?)—0 as t— +0, does not imply
the existence of the radial limit of B at (€8C. Frostman ([3], p. 176) proved
that there exist Blaschke products B, which, for each [€0C, can be written as
the product of two Blaschke products By and B; in such a manner that By
does not have a radial limit of modulus 1 at (€0C. Let B be such a Blaschke
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product and let {€2C be such that the radial limit B({) exists and IB =1
Then by Theorem 2.10 o(B,Z,t)/t—~0 as t— +0. Obviously (B, ¢, /t-—>0 as
t—> +0, while lim, ,;_o By (r{) does not exist.

3. Radial zeros and Hausdorff measures

Throughout this section we will consider Hausdorff measures induced by func-
tions in 3, We will denote the Hausdorff measures induced by the functions
h, Qo by, ..., ete., by H,G,, H, ..., respectively.

We prove the following lemma.

Lemma 3.1. Let he ¥, and BEB. Let >o(B,h) be the set

Then H(S,(B,h))=0.

Proof. Let {ak}i” be the sequence of zeros of B. Put for a>0

< . B,Z,t
2a(B, k) ={C€80; lutrij%pg—(—ﬁ(g—)>a},

Obviously it suffices to prove that H(3,(B,h)=0 for all a>0. Given &>0,
there exists an integer K >1 such that Zk x (1—[m])<ea(22)"'.  Let o be a

positive number such that o< inficycx-1(1—|ax|). For each { €5, (B, k) consider
all closed discs C((,?) with center { and radut such that A(¢) < a_la(B £, t) and

0<t<p. The family of all such discs is a covering of Za (B, k) in the Vitali
narrow sense (cf. [1], p. 104, and [10], p. 198); and, therefore, by Besicovitch’s
theorem ([1], pp. 104-106, and [10], p. 198), we can extract a subcovering of

>.(B, k) consisting of 22 countable subfamilies of disjoint dises. Then, if
Fz={0(51,m tzn)}n (7‘=1:2, ceey 22)

denotes the subfamilies of such a subcovering, we have

u'MN

3 e

Consequently, H(>,(B, h))<e. Thus, since ¢ is arbitrarily chosen, H(>,(B,4))=0.
This completes the proof of Lemma 3.1.

Combining Theorem 2.1 and Lemma 3.1, it is easily proved that H(L(B, ))=0
for all A€W, and all BEB. In fact, if L,(B, k) is the set

485



A. SAMUELSSON, On radial zeros of Blaschke products

.. 1—r 1
Ly (B, h)—{CE@O, h,lilllftf Wi=7) log B0D)] >0},

Lemma 2.2 and Lemma 3.1 yield the following theorem.

Theorem 3.2. If BEB then the set Ly(B,1) is empty. If h€ N, then
H(Ly(B, k))=0.

Incidentally, the first part of Theorem 3.2 is a simple consequence of results
due to Heins ([4], pp. 193-196).

Before stating our next result let us introduce the following notation. Let
g.(t)=1*, 0<a<1 and let h, be the functions introduced in Section 2. If E is
a subset of the complex plane, for which H,(E)=0, the Hausdorff dimension
of E is defined by

dim E=inf {& a<1, G,(E)=0}.
Analogously, let dimy, £ be defined by
dimy, E =inf {a; a <1, H,(E)=0}.
In this notation our next result can be stated as follows.

Theorem 3.3. If B€B then H,(Z(B))=0 and Hy(L(B))=0. Conversely, there
exist Blaschke products B and B, such that dim Z(B)=1 and dimy, Lg(B,)=0.

The first part of this theorem follows from Theorem 3.2 with k= A, and A= hy,
respectively.

To prove the second part we use the following lemma.

Lemma 3.4. Let h,g€N,. Suppose that

(i) t71h(t) ts decreasing on (0, oo),
1
(ii) f dt/h(t) converges,
0
(iii) g(2)=0(tg(t) as ¢ +0, and
.\ h(t) [

(lv)g(—t) . dt/h(t)~> + oo as t— +0.

Then there exists a Blaschke product B such that
H(Ls(B, g)) > 0.

Proof. Under the hypothesis of Lemma 3.4 there exists a sequence {o,};
such that

() 0<2p,11< 9<% (=12,..)),

(B) > 2"p, converges,
1
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(y) lim inf 2"h(g,) >0,

n—>+oo

(6) 2"g(gn)=o(212"@k), as m—> + oo,
nt

To see this, define
2"0,=K2"/B27") (n=1,2,...),

where K is chosen so that 0< K<2hk(27"). Property (x) then follows from (i),
and (f) follows from (ii) and from the inequality

<2k
@ 2 (n+1)h
Property () is a consequence of the inequality

Mo, 27"
2hio) =K~ 2 g,
)= K he )

which follows from (x) and (7). To prove (6) assume that
g(f?) <Atg(t) for 0<t<l.

Then, for » sufficiently large, we have

K -2n
2”g(en)=2"g( 2 2)

h2Z ™)
2"K —on
<AKg(2_")
v ES)
Thus
22 Qk/ 2n (Q) 0 h(t)
_ B2y [ dt
>4 —
=4 e

and (6) follows from hypothesis (iv).
Given a sequence {o"}{°, with properties («) through (9), construct on oC the per-
fect symmetric set

(3.5) E={e®; x= Y e,1,, £,=0 or 1},
. n=1
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where 7, =27 —0;, 1, = 0p-17 0, (n=2,3, ...). Let L be the Lebesgue-Cantor func-

tion constructed on E and let w; be its modulus of continuity. Then using
property (y) it is easily proved that

wr(t)y=O0(h(t)) as t—>-+0.

Consequently, since the Hausdorff measure of E induced by w; is positive (cf.
[56], p. 30), we have H(E)>0.

To prove Lemma 5.4 it therefore suffices to construct a Blaschke product B,
such that Ec Lg(B,g). Let B be the Blaschke product having the zeros

n
Cner o ninen (1—pgn) exp {ikzlek 7'k}:

where n=1,2,..., and &=0 or 1. If 29, ,>t>2p, and (€K, then the disc
Iz - | <t contains at least 2¥ zeros of modulus 1 -, (£=0, 1,...), and therefore

o(B, L, 0/9)> 3 20n /02 en-0)

= > 20,/2"  g(on-1).

aM3g

Consequently, by property (d)

tim inf 9220 o
t>+0 g(t)
and thus, by Theorem 2.1, {€Ls(B,g). Hence EcL,(B,g) and the proof of
Lemma 3.4 is complete.
To prove the last part of Theorem 3.3, put g=~%, and let & be any function
satisfying the hypothesis of Lemma 3.4, such that for <0

(3.6) h(t)= o(hy (t) as t— +0.

Then, by Lemma 3.4, there exists a Blaschke product B such that H(Lg(B))>0.
Hence, by (3.6), Hy(Lg(B))= -+ oo for all <0, i.e. dimg, Ls(B)=0. Consequently,
by the first part of Theorem 3.3, dimy, Ls(B)=0.

The existence of a Blaschke product B, such that dim Z(B)=1, is proved in
like manner, by applying Lemma 3.4 to g=h, and A=~h_,. Although this re-
sult may be known, we state it here for completeness.

4, Two lemmas

In this section we prove two lemmas similar to Lemma 2.2 and Lemma 3.1,
respectively.
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Let u be a nonnegative function, harmonic on C. Then u has a Poisson—
Stieltjes representation

(4.1) u(re’)= J%Pr (x—¢t)du (b),
0
1—¢2

where Pr(t)=1—2r cos t+1r°

is the Poisson kernel and u is a nondecreasing function defined on the interval
[0, 2 7).

Lemma 4.2. Let u be given by (4.1). Then there exist positive constants A, and 4,,
such that '

.. ‘u(x+t)—,u(x—t)< .. 1—7 i
Al 0n i =y )
and
. 1—r i . p+t)—u@—1)
) <
B 5, (=) “0¢7) S Aa Immsup =0

for 0<x<2x and all heN.
In case of h=~hy a similar result was proved in [9], p. 290.

Proof. The proof of this lemma is classical and therefore we restrict ourselves
to the proof of the second part.
Assume that

et - pe—t)
lim su =
t—>+0p h(t)

I (0<i< oo).

Then, given ¢ >0 there exists >0 (d<wmx), such that
plett)—ue—t)<(+e)h(@E) for 0<Ei<d.

Integration by parts yields

T+
| pe—naun

-0

g
=P, (0) {uz+ 6+0)—,u(x—5—0)}+f0 {wa+8) —u—t)} Pr(—t)de
[
<P, () {px+6+0)— pulx— 6—0)}‘—]—‘(l+e)f h(t) Py (—t)dt,
0

where P, denotes the derivative of P, with ‘respect to t. However, if 1—r<$,
we have
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1—7 8 ,
h(l_r)fok(t)P,(—t)dt
a0 o R0 N S
=(1 r)fo h(l—r)P'( t)dt+f1_r . h(l_r)tP,( t) dt

—r ]

<(1—r)f1 P,’(—t)dt+f
0

<2+ 2m.

tP,(—t)dt
r

Hence

lim sup —— u(re’*) =lim L=r fMP(x t) du(t)
=limsup ——— , (r—
oo h(1—1) e MI—1) Jaes #

<2+2a)(+e)

and, since £>0 is arbitrarily chosen, the second part of Lemma 4.2 follows.
Our next lemma deals with the sets

—ulx—t
M, (u, b)= {e“EEC’; 0<z< 2m, limsup M? a},
t>+0 h(t)

where 0 <a < + oo, u is a nondecreasing function defined on [0,2x] and A is a
function in class .

Lemma 4.3. Let h€ W, Then H(M,(u,h))=0 if a= + oo, while H(M,(u, h)) is
finite if a >0.

For a= + oo and h=h,, Lemma 4.3 was proved in [10], p. 198. The same
proof holds for any A€, The second part of the lemma is proved in like
manner with obvious modifications. We omit the proof.

The second part of Lemma 4.3 cannot be improved. For instance, if € 3,
and ¢t 'h(t) is strictly decreasing, if E is the perfect symmetric Cantor set given
by (3.5) with r,=2nx~9, and r,=pg,-1—90, (n=2,3,...), where h(g,)=2"", then,
by a theorem of Hausdorff, 0< H(E)< + co. ([4], p- 30). On the other hand, if
u is the Lebesgue—Cantor function (constructed on E) multiplied by 2a, then,
using the technique developed in [8], pp. 226-227, it is readily shown that
M, (u,h)=E\{1}. Hence, 0< H(M,(u,h))< + co.

5. Sets of uniqueness

Let F be the class of all functions, bounded and analytic in the open disc C.
If f€F and f==0, then

C3) F=I1l-B-B,

where || f|| is the supremum norm of f, B is the normalized Blaschke product of
f and E is a function in F with no zeros in C.
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For 0<a< + oo, h€H and feF, let L,(f,h) and L(f, k) be the sets

1— 1
L,(f, h)= {CE@C hmlnfh(l__ log i C)I }

r—=>1-0
and

L{f, h) = {Ceao hrxfln;fh( 5 log If(rC)I +oo}_,

In this notation our first result can be stated as follows.

Theorem 5.2. If {==0 is a function in F, then the set L(f, 1) is empty, while the set
L,(f, 1) is finite for all a>0.

The first part of Theorem 5.2 is in [4], pp. 195-196, and the second part is
a slightly stronger version of a result of Kege]an [(6), p. 245). More precisely
Kegejan proves that, if the set
{¢eaC; |f(r)| < exp {(r—1)"'} for 0<r<1}

is closed, then it is finite, unless f=0.
Theorem 5.2 has the following corollary.

Corollary 5.3. If 0=+f€F, then Ly(f, 1) is countable.

Proof of Theorem 5.2. Let f be given by (5.1) and suppose that A€3. Then

(5.4) L(f, By < Ly(B, b) U L(E, h),
where
1
L(E, )= {CE@O hglsltp h(l log ZeD)|~ =+ 00}.

By Theorem 3.2 the set L,(B,1) is empty. Lemma 4.2, applied to u= —log | E|
and A(t)=1, shows that L(E,1) contains no other points than possibly {=1.
However, if 1€ L(E, 1), then {,€ L{E,, 1), where E,(z)=E(z,) and 1+ {,€2C. This
contradicts the fact that the only possible point in L(E,,1)is {=1. Hence, L(E, 1)
is empty and therefore, by (5.4) the set L(f, 1) is empty.

If heY and t=o(h(t)) as t— + 0 then

(55) La(f’ h) < LO (B? h) U Za (E’ h)a

where

. 1—7r 1
L(E, h)={§€60, llrlills_l:)p =) log IE(VC)|>a}.

Let w= —log|E| and let u be the corresponding nondecreasing function in the
Poisson-Stieltjes representation of u. Then, by Lemma 4.2

491



A. sAMUELSSON, On radial zeros of Blaschke products
(5.6) LB, hy= M (u, By U {1},

where a’=ad;" and A, is the positive constant in Lemma 4.2. Obviously M, (u, 1)
is finite if @’ >0; and, therefore, by (5.6) the set L,(#, 1) is finite. Hence, by
Theorem 3.2 and (5.5), the set L,(f, 1) is finite. This completes the proof of
Theorem 5.2.

Theorem 5.7. Let h€ W, If f+0 is a function in F, then H(L(f,h)) =0 while
H(L,(f,h)) s finite for all a>0.

Proof. Let f be given by (5.1), let u= —log |E| and let u be the corresponding
nondecreasing function in the Poisson-Stieltjes representation. Then, by Lemma 4.2

LB, hyc M (u, b) U {1}.

Hence, by Lemma 4.3 H(L(E, k))=0; and, consequently, by (5.4) and Theorem
3.2, H(L(f, )=

To prove the second part of Theorem 5.7, we may assume that t=o(h(f)) as
t—+0. If this is not the case, then A(f)~at as t— +0 for some « >0, and
there is nothing to prove. However, by (5.6) and Lemma 4.3, H(L,(E,k)) is
finite; and, consequently, by (5.5) and Theorem (3.2), H(L,(f,)) is finite.

Theorem 5.7 will be used to prove two uniqueness theorems. Before we state
these theorems, let us introduce the following notation.

For functions f, and f, in F, let D(f;,f,) be the set of all boundary points
¢ such that

lim f¢r¢)= lim f(r8) (*=0,1,2,...).
r—>1-0 r—>1-0

In like manner, let Dg(f;,f,) be the set of all points { €0C such that

lim £ (z)= lim ) (6=0,1,2,...),

2=
2e8(¢, @) 2eS(, x)

for all Stolz domains S(,«). If f,=0, we will simply write D(f;) = D(f;,0) and
Dy(f,) = Dg(f,, 0), respectively.

The following lemma was proved in [10], p. 195; we abbreviate Lg(f, k) and
L(f, hy), with L(f) and L(f), respectively.

Lemma 5.8. If f€3F, then
Lg(f) = Ds(f) = D(f) = L{(f).

The following theorem is an immediate consequence of Lemma 5.8 and The-
orem 5.7.

Theorem 5.9. If f,,f,€F and Hy(D(f,, 1)) >0, then f,=f,.

Proof. Put f=f,~f, and assume that f&=0. Then by Lemma 5.8 D(f,,[,) <
D(f)y= L(f) = L(f, k). Consequently, Hy(L(f)) >0, contradicting Theorem 5.7. Hence,
fi=1/;; and the theorem is proved. '
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Theorem 5.9 is best possible in the following sense: there exists a function
f€JF, such that dimy, D(f)=0. This follows immediately from Theorem 3.3 and
Lemma 5.8.

For functions f; and f, in F, let U,(f,, f,) be the set of points ¢ €aC, such that

@)
lim f, ()= lim f,(r)
r—>1-0 r—>1-0
and
(ii)
|f1(r0) — f(r0)|=O((1 —1)*) as r—>1—0.

The sets U,(f,,f,) are sets of uniqueness in the following sense.

Theorem 5.10. Let f,,f,€F. Then f,=f, if and only if there exists oo > — 1, such
that Hy(Uy(fy, f2))= + oo.

Proof. First let us assume that f,=f,. Let B be the exceptional boundary
set, where f; has no radial limits. Then U,(f,,f,)=0C\E for all «. By Fatou’s
theorem H,(@C\E)>0. Hence, since k,(t)=o(h,(t)) as t— +0, we have

Hy(Uea(f1; fo)) = + o0
for all «.
Next, assume that f,+f,. Put f=f —f,. Then, if (€ U,(f,f,), and a> —1,

1
101 < [ 17 @21l do

=0((1~7r)'*% as r—>1-—0.
Hence

B inf - log )
10 ho(l—7) 8 JF (O]

ie., Ualfy, f2) = Ly(f, hy), where a-+1>a>0. Thus by Theorem 5.7 Hy(U, (1, f2))
< 4+ oo for all &> —1. This completes the proof of Theorem 5.10.

Incidentally, if «< —1, there exists f=0 such that Hy(U,(f,0))= + . To
see this, let B be any closed set on the boundary 8C, such that Hy(E)= + oo
and H,(E)=0. Construct f€F such that f+0 and lim, ,;_¢ f(rZ)=0 for all € E
(cf. [7], p. 34). Since |f' (r{)|=0((1—7)*) as r—~1—0 for any function f€JF,
whenever a<< —1, we conclude that E<U,(f,0). And thus Hy(U,(f,0))= + oo.

Theorem 5.10 has the following corollary. If f,,f,€F let D, (f.,f,) be the set
of boundary points £, such that

=1+«

lim f{? ()= lim f§°(rf) for k=0,1.
t->1-0

r—>1-0

Obviously D, (fy, fs) < Uy (fy, fo)- Thus, we have;
Corollary 5.11. If f,,f,€F and Hy(Dy(fy, f5))= + oo then fi=f,.
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Corollary 5.11 is equivalent to the statement (we abbreviate D,(f,0) with

D,(f); if 0f€F, then Hy(D,(f)) is finite. For the class B a stronger result
holds (cf. [10], p. 200); ¢f BEB then Hy(D,(B))=0.

11.

12.

University of California, Riverside, U.S.A.
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