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On a strong form of spectral synthesis 

BY JOHN E. GILBERT 

When G is a locally compact abelian group with character group F, the Fourier 
Transform of a function / in the group algebra LI(G) is defined by  

f(~)= fJ(x)(x,;~)dx (hEr), 

and, for a given closed set ~ in F, I ( ~ )  denotes the closed ideal in LI(G) of all func- 
tions for which f = 0  on ~.  Following Wik ([8], p. 56) we say tha t  

1. ~ is a Ditkin set i/ to each / E I ( ~ )  there corresponds a sequence {#~}c 1(~) 
where fin =0 in a neighbourhood o / ~  and II/-/~n~/ll--->0 as n--->c~. 

2. ~ is a Strong Ditkin set i / the  sequence {#~} in condition 1 can be chosen inde- 
pendently o/ /E I (~ ) .  

I f  ~d(F) denotes the discrete coset-ring of F, i.e., the Boolean algebra generated 
by cosets of all subgroups of F whether closed or not, we prove in this note: 

Theorem 1. Let F be a separable, metrizable group. Then each closed subset ~ o / F  in 
~d(F) is a Strong Ditkin set. 

Using Theorem 1 we obtain immediately the converse of a result of Rosenthal 
([6], Theorem 3.1, p. 187) completing the characterization of Strong Ditkin sets 
in R ~, T ~, ... without interior points. 

Theorem 2. Let F = R ~, T ~ or any compact, metrizable group such that the union 
o /a l l  o/ i ts / ini te  subgroups is everywhere dense. Then a closed set ~ c  F having no 
interior points is a Strong Ditkin set i / and  only i / ~  eZd(P). 

The principal step in the proof of Theorem 1 is the description of closed sets in 
Zd(F): every closed subset ~ of F (not necessarily separable, metrizable) in ]Ed(F ) 
is the finite union of sets of the form ~t(II\A)where ~tEF 1, I I  is a closed subgroup 
of F and A belongs to the coset-ring Z(II)  of YI (Gilbert [1], Theorem 3.1); conversely, 
every such union is a closed subset of F in Zd(F). Thus, in R n for example, a closed 
set ~ without interior points is a Strong Ditkin set precisely when 

1 The group operation in all groups is written multiplicatively. 

(1) 
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with F a finite (possibly empty) set and ~ ,  an affine transformation of a set (I), 
differing from R ~ • • • by at  most finitely many  cosets of R ~ (here 
0 ~ p  = p ( i ) < n ,  p +q  ~<n, a~E R and R ~ is interpreted as the trivial subgroup {0}). 
The examples given by  Wik and l~osenthal follow easily from (1) as do the 
examples given by Rosenthal for sets which fail to be Strong Ditkin sets ([6], 
pp. 187, 8). 

First we introduce some notation: for a closed subgroup H of G the norm on 
the group algebra LI(H) is written ]I(')[[H while that  on Li(G) or on the measure 
algebra M(G)is written [[(.)[[. The Haar  measure on G/H is adjusted so tha t  

for every k in the space :~(G) of continuous functions with compact support in G. 
The m a p p i n g / - ~ / '  defined by 

/'(x')= f /(x~)d~ (x'EG/H), 
3H 

is norm decreasing homomorphism from LI(G) onto LI(G/H) (cf. Reiter [2], p. 415) 
which can be extended to the respective measure algebras M(G), M(G/H) (Rudin 
[7], Theorem 2.7.2; Reiter [5]). The Fourier Transform of / '  is the restriction of f 
to the annihilator group of H in F. 

Proo/ o/ Theorem 1. In  view of the known structure of closed sets in Za(F) and 
the fact tha t  finite unions of Strong Ditkin sets are again Strong Ditkin sets (Wik 
[8], Theorem 3) we need only show that  a set of the form ]] \A, A E Z(II),  is a Strong 
Ditkin set in F. For then, certainly, any translate ~t([[\A) and hence any  closed set 

E Za(P) is a Strong Ditkin set. Since already we know tha t  any  ~ E Za(P) is a Ditkin 
set (Gilbert [1], Theorem 3.9), given any e > 0  and gEI (~) ,  there exists geEI(~)  
such that  

(a) ~ = 0  i n a n e i g h b o u r h o o d o f ~ ,  (b) ]lg-g~ii<e. (2) 

Now let ~ = H \ A ,  AEE(II) .  When H is the annihilator group of II in G, let #n be 
the idempotent measure in the measure algebra M(G/H) whose Fourier-Stieltjes 
Transform is the characteristic function of A (as a subset of [I). Further,  let # be 
any  measure in M(G) for which the restriction to II of the Fourier-Stieltjes Trans- 
form of/~ coincides with that  of/~a. Now assume for the moment  that  the following 
result has been proved. 

Lemma 3. For each A > 1, there is a sequence {~n}c M(G) such that 

(i) II nll <A,  
(ii) the Fourier-Stieltjes Trans/orm o/ v~ is 1 in some neighbourhood o/H, 
(iii) ]or any/eLl(G), 

lim cSn~n-)e/ldx<ASazHlt'(x')ldx" (3) 
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Under the conditions of P there is a sequence {an} ~LI(G) forming an approximate  
identi ty i.e., lla~II = 1 and 

lll-an (-/ll o a s  n ~ o o  ( /EL~(G)) .  (4) 

Since, clearly, t e ~ a  nE/(~) ,  choose a sequence {~n}c I (~ )  for which 

(a) ~ n = 0  i n a n e i g h b o u r h o o d o f ~ ,  (b) ][v,~-te-)eanll<l/n. (5) 

Setting te= =an-(V~-)ea=-v=~%) (n = 1, 2 .. . .  ), 

we can soon check tha t  f i~=0 in some neighbourhood of ~ .  On the other hand, for 
any  [ ELl(G), 

lll-a   -III + (l-te  I)II +AI I I I I  ll,'n-te a ll, 
i.e., by (3), (4), (5) 

lira lll-te.- lll<A I ll'-te' l'Id/'. (6) 
n - + ~  J G I n  

But  # '  = # a  and, if / E I (~) ,  then tea ~-/ '  = [', for clearly when IH(g2) is the closed ideal 
in LI(G/H) of functions whose Fourier Transforms vanish on ~ (as a subset of II),  

/ '  E I~(~),  IH(~)=tea~eLI(G/H) 

(cf. [4], p. 561). Hence, by  (6), i f /EI(~2) ,  limn-~]l/-ten~r = 0  which proves tha t  
is a Strong Ditkin set. 

Remarks. Lemma 3 is only a mild reworking of a generalization by  Reiter (un- 
published, but see Rciter [3], Lemma 2) of a result of Calderon (cf. ]~udin [7], 
Theorem 2.7.5). Yrom Reiter 's  version of Lemma 3 it follows, in particular, tha t  if 
~2 c IF[ is a Ditkin set in II  then ~ is a Ditkin set in P. Theorem 1 shows, in effect, 
tha t  a similar result holds with Ditkin set replaced by Strong Ditkin set at  least 
when ~EF~(II). In  general, however, the result fails for, as Rosenthal points out, a 
finite interval in R 1 is a Strong Ditkin set in R 1 but  it cannot be a Strong Ditkin set 
in R 2 since it then has no interior points and does not belong to the discrete coset- 
ring Za(R~). Notice that,  even so, it is a Ditkin set in R 2. I t  is, perhaps, worth noting 
tha t  the proof of Theorem 1 for an arbi t rary Strong Ditkin set fails because the rate 
a t  which 

becomes 0 or negative depends on ] and it should be clear tha t  the sequence {te~} 
cannot always be chosen independently of /E I (~) .  

Proo/ o/Lemma 3. When {Kn} is an increasing sequence of compact symmetric 
sets in H for which U nKn=H , let {Un) be a nested sequence of symmetric neigh- 
bourhoods of the identi ty e in F/H z shrinking to e and such tha t  ] 1 -  (x, y)] < 1/n, 
x EK=, 7 E U n. Following the construction of approximate units in LI(H) as in Reiter 
([2], p. 405) we obtain, for each A > 1, a sequence {Tn}cLi(H) satisfying 
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(i) f I-~n(~)ld~ <~A, 

(ii) i',~ = 1 in a neighbourhood of e in I ' / I I ,  

(iii) s u p  f I T n ( ~ - l ~ )  - v,(~)ld~ < 2A/n. 
~e Kn J t l  

When each T~ is regarded as a measure on G, the first two of these conditions give the 
corresponding conditions (i), (ii) of the lemma. For  condition (iii) suppose first t ha t  
(3) has been established for each k E :/~(G). Then, by  (i), for any  e > 0  and k E ~(G) 
satisfying II/-kH <~, 

lim f( ]v=-~/]dx< lim {f l    dx+ll/-kll 113=11.} 
n-->cr L ~ n--~oo 

i.e., (3) then holds for / since s was arbitrary.  Now only minor modifications are 
required of the second and third steps in Reiter 's  proof of his Lemma 2 in [3] to 
obtain (3) for k E ~(G).  For  clearly 

Ilk~v=ll.< f. fHk(X )d  I 
I f, k(x,7)d,  + (2A/n) ll kxll,, (7) 

for all sufficiently large n since the function k(x~l) vanishes outside some fixed 
compact  set as x ranges over the support  of k and ~/ over H (in fact, the compact  
set C -1- C f3 H where C is the suppor t  of K). As both  sides of (7) are functions on 
G/H we m a y  integrate both  sides with respect to dx' obtaining 

~ tl kx-~ v. ]].dx= s { f . l f kA,) v.(, l d,} dx 

Taking the limit as n ~  ~ we obtain (3). This completes the proof of the lemma. 

The University, 1Vewcastle.upon.Tyne, England 
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