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An inequality of Paley and convergence a.e. of
Walsh-Fourier series

By PER SjoLiN

Introduction

Let §, denote the nth partial sum of the Walsh-Fourier series of a function
f€L'(0,1). Let Mf(x)=sup,|S, (x)|. In this paper we will prove results concerning
the operator M, which are analogous to the results for trigonometric Fourier
series proved by Carleson [2] and Hunt [3]. In [1] Billard has shown that the
Walsh~Fourier series of an L*-function converges a.e. Billard essentially uses the
same method as Carleson but makes some modifications of the proof to adapt
it to Walsh series. We proceed in the same way and use Hunt's variant of
Carleson’s method with modifications according to Billard. The results are:

Theorem.
(A) If filf(x)|log™ |f(x)|log* log® |f(»)|dx < oo, then S,(x) converges a.e.
(B) || Mf||, <Const. |3 |f(x)| log" |f(x)|)? dx + Const.
(C) ”Mf”p <G, ”f”p’ l<p<eo.
(D) m{x€(0,1)| Mf(x)>y} <Const. exp (— Const. y/||f||c), ¥ >0.
To be able to prove (A), (B) and (D) we estimate certain constants in a

theorem of Paley ([4], p. 249). This is done in Section 1. The result needed for
the proof of the theorem is the following lemmas:

Lemma 1.8. Assume fe€L”(0,1). Let n={n}>s with =0 or 1, k= —1,0,
1,2,.... Let
2

k=—

Hf(t)=sup

n

. N Ay (t) ’:
where A= Spv1— 8 for k20 and A 1=38,. Then

m{t€ (0, 1)| Hf(t) >y} < Const. exp ( — Const. W;I/I—) , y>0,

where the constants are independent of 7.

In Section 2 we use Hunt’s method and Lemma 1.8 to prove the following
basic result:
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P. SJOLIN, Inequality of Paley

Lemma 2.7. Let ), be the characteristic function of a measurable set F<(0,1).
Then
m{x€(0,1)| Myz(z) >y} <Bjy "mF, y>0,1<p<eo,

where B, <Const. p*/p—1.
Using Lemma 2.7 we could continue in the same way as in [3] to prove (B),
(C) and (D). However, to establish (B) and (D) we use another method, shown to

us by Professor Carleson, which also gives (A). This is done in Section 3. For
ordinary Fourier series this method gives the result

(E) I [™.|f(x)]log* |f(x)|log* log" |f(x)]dx< oo, then the Fourier series of f(z)

converges a.e.

1. Estimation of constants in a theorem of Paley

Let @y, @, ... denote the Rademacher functions and wy, wy, ... the Walsh func-
tions on (0,1). We introduce notations for dyadic intervals:

wo, 2=(—2,2), w-1,-1=(—2,0), wo,-1=(0,2) and
wp=(G-27", (j+1)27*), vinteger>0, jinteger, —2-2"<j<2-2"—-1.

If fe L' (o), w=w,, =0, we define

1
al=al(w)=al(w>f)= m J‘ .f(t)w2"l(t) dt7 l=0: ]-32: LERE]

8, (@)= 8, (%, ) = 8, (z, o, f)=§:a,(w, Huwg(@), n>1, and Se(z)=0,
k+1_q
A ()= Ar(z, w) = Ax (2, w, f)=zlizk a,(w, wy (x), £k=0,1,..., and

A_1(x) = agw, (x).
For §=0,1,2,..., let
2 it O0<it<277]
Fy=y —2 if 277 l<i<27,

0 otherwise,.

If n=S &2 (6=01) we define 8,()= 3 & ().
ic0

£i=1

If r=2 27" and t=
1

~N8

/’]12_1.(51"771':0: 1) let z—i—t:;IEi_niIzul

It is wellknown that for every z€(0,1) the formula w,(z +f)=w,{z)w,(t) holds
for almost all t€(0,1). For y>0 we define a mapping
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@, w,—>(0,1) by ¢, ( %E#"') = Zl &+i270

. 270 g2 i >0,
If n=237¢2 let nlw,] = { i;

n if »<0.
We define »*=» if >0 and " =0 if »<0. If n[w]=2""n we write nint(w)

(0= wy).
We first give formulas for S, and A,.

Lemma 1.1. Assume o= w;, Cwy and T€w. Then

S, (z, co)=f f@) we (x +8) S, (x + 1) dE, =0, (1.1)
A (z, o) =f &) 0% (e +t)dt, k>0. (1.2)
Proof.  Sy(t,0)= 3 ay(o, we @) =23 f ft) wr(a+ ) dt

Y f 1o (nngv; @+ t)) d.

Using (1-4) in [1], p. 363, we get (t€Ew)
n—-1

% wa”l (x + t) = noz_lwl (‘Pv (.’L‘+ t)) = wn ((pv (.’I} + t)) 6n ((pv (.’E+ t)) = 2_vw2vn (x + t) 62”1; (.’I} + t);

which yields (1.1).
(1.2) can be proved in the same way if we use the equality

ok+1_4

2 wy(x) =0 ().
2

If feL'(0,1) we define a maximal function f*:
ro—sup- 2 | |f]ds
I mI 1 ’

where supremum is to be taken over all intervals I satisfying t€1<(0,1). It
is wellknown that the following estimate holds:

Lemma 1.2. There exists a constant C>1 such that for 2< p< oo

f llf*l"dt<0f 1P a | (13)
0 0

For a proof see [58], p. 652.
We need some more lemmas,
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Lemma 1.3. If C is the same constant as in (1.3) the following inegquality holds
fol(s:p|S2n|)”dt<0fol|f[”dt, 2<p< oo, (1.4)
Proof. From (1.1) it follows that
Srt0] <2 |1l

where t€I<(0,1) and mI=2"". We therefore have sup,|Sy(¢)| <f*(¢), which
yields the lemma.

Lemma 1.4. Let m, >max (my, my, ..., m,) and let v be an odd positive integer.
Then

1
f AL Ay Ay oo Ay dt =0, (L5)
0

Proof. This lemma is proved for r=1 in [4], p. 250, and the same proof holds
also in this case.

Theorem 1.5, Assume k is an even integer >2 and f€LF(0,1), f real. Then

|G

Proof. In [4] (pp. 253-254) Paley proves ||(> AZ)"?||; < By ||f|lx. However, the
method used by Paley gives B; > (Const.)* and we modify the proof to get (1.6).
Let v=1k and Fy=>"'A,=8,~. Assume N —~1=2n;2n,>... 20, ;. We have

< Const. Vi || f[f. (1.6y

N-1 2 N-1 N-1
F?v=(Fm+ ) An) —Fo+ 3 423 AFL s 3 AA,
1 n=n =T n <nnTnﬁN*1

and it follows that

1 1 N-1 1
[REECR S [atm mass | s.0 st
N-1 1 1
v2’s [(an .. AF.a+ S f A% AAndr.
n=n; 40 nEm 0

m<n, mEN-1

The two last terms vanish according to Lemma 1.4 and we get

N-1 p1 1
s [az..ar Avds f AR, A2 FYd. L7y
n=n, V] 0

Let y(ng, ..., n, 1) denote the number of different permutations of n,, ..., ny-1.

We have
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1 /N—-1 ki2 1
2 — 2 2
f (z An) dt= > y(nq, ...,n,,;l)f A%, .. A di
0 -1 Moy enes My 0
N-12ne>...2n,_ 3

It is easy to verify that y(n, ..., 7n,_1) <vp(ny, ..., n, ). Using this inequality and
(1.7) we get

1 /N—-1 k2 N-1 1
f (z A,%) d= S S g e f A A2 Adt
0 -1 n=mn, 0

Niyeees ny_q
N~1>n1>...>nv,1

1
g v Z )’(”1: ey nv—l)f A%lz Aiu 1F%} dt
0

Risess Ny _q
N-1zaz..2n,_

1
=”f ( 2 Py, o myo1) AT, iH)F?th
31 n

0 oty
N-12m>...2n,_;

1 /N-1 v—1
=vf (z Aﬁ) P
0\ 1
Hélder’s inequality now gives
1 /N-1 v 1 /N-1 # @w—-Djv 1 1
5[ (ol (e
0o\ 1 o\ 1 0

1 /N-1 4 1
that is f (2 Aﬁ) <y f Fdt.
-1 Q

0
T /N-1 v 1
Lemma 1.3 implies j (z Aﬁ) dtév”CJ‘ |f12 dt,
0 -1 [
and (1.6) follows from this estimate.

Theorem 1.6. If k is an even integer =2 and f is real, then

Il < Const. k” (2&)”2 (18)

13

Proof. Paley has proved (1.8) with a constant B, instead of Const. % ([4], pp.
251-252), but his method gives a larger value for B, than Const. k.
We first prove

k2
fFN+1dt< Ck) f (zAz) dt, N=-1,0,1,2,..., (1.9)
where C is the same constant as in Lemma 1.2.
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We show (1.9) by induction with respect to N. For N= —1 we have

1 1 1/ ki2
fﬂ;m:f&@mf (zAz) .
0 0 (4] -1

1 /2
Now assume JF" dt < (Ck) f (Z AZ) ds. (1.10)

For 0<n <N we have

1 v .
f (Frn F")dt—f [(Fot An— Frldi= 2, (@)f AL Ftde
§=1 0

S ) e

because the terms with odd ¢ equal 0 according to Lemma 1.4. We therefore get

1

0

N yc
=> > (27)f AZ FE- 2’dt+f A*, dt
n=0j=1

1 N
. f (Z A?,’F’,i*”) dt+f A*, dt
0 \n=0 [\]

1,8 ‘
. f ( > A?L’) max FE~2 ¢

0 \n=-1 0gngN

X
<> (k)f (Z A2) max Fj % di.
i=1\2] o<n<N

1 /00 j
Thus, letting [jzf (Z Aﬁ) max FE2 gt
0 \-1

o<nsN

1 3k k
we have f Fi dt< > ( ) I, (1.11)
0 -1\2j

For j< 1k Holder’s inequality implies

1 /e k2 @Hik 1 k (k-2)ik
zj<(f (ZAﬁ) dt) (f (max |Fn|) dt) .
0 \—1 0 \ogngN

According to Lemma 1.3 and the induction assumption (1.10) we have

1 k 1 1/ k2
f (max [F,,]) dtSCj F% dt <C(CkY f (ZA?,) dt.
0 \0snEN 0 0 \—1
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It follows that

1 /00 ki2 1 /o0 k2
I,.<0<k‘2">”€(0k)’f"27f0 (;Ai) dt<0(0k)"(0k)‘2’f0 (¥1A?’) dt.

This inequality obviously holds also for j=1k.
Using (1.11) we get

1 1 /00 k/2 %/ F
f Fé o dt< f ( Aﬁ) dt (CkYC > (27,) (Ck)%.
0 \—1 j

1) i=1
We have
Ek—-1)...k—3+1) 1 1

] (ICRED  JCORELS L
j=1 2j \i=2 7/ \01:2 1‘2'..."1: ki\01=2 \O,

and (1.9) follows.
We can now continue in the same way as in Paley’s proof ([4], p. 252) and
we get (1.8).

Remark. Theorems 1.5 and 1.6 hold even if k is not an even integer. To extend
Theorem 1.5 we can use Marcinkiewicz’s interpolation theorem and the extension
of Theorem 1.6 follows from an argument similar to the proof of Theorem 1.7.

In the sequel let 5={n}7-.,, where 5,=0 or 1. '

Theorem 1.7. Assume f€L(0,1), p>=2, and let f,()=>"1m, A, (¢ f). Then

“fn”p < Const. p”f”p' (1.12)

Proof. A combination of Theorems 1.5 and 1.6 gives ||f,||, < Const. p*2||f|l,, » > 2.
In the original version of this paper we used this estimate instead of (1.12) and
obtained a slightly weaker theorem than the theorem in the introduction. How-
ever, the inequality (1.12) can be obtained as a consequence of a result of
C. Watari [6]. Watari proves

mi{z€(0,1) | |f,(®)| >y} < Const. % y>0.

Using this result and Parseval’s formula and applying Marecinkiewicz’s interpola-
tion theorem we obtain

1

7], < Const. |

Ifll,, 1<p<3. (1.13)

(1.12) now follows from (1.13) and a standard argument with conjugate indices.
We will now prove Lemma 1.8 (see the introduction).

Proof of Lemma 1.8. First assume f€L”(0,1), p>2. We have

Hf(t) =sup

kzZ_lnkAk(t, hH l - Sl;P k:z_l Ax(t, 1) |= S‘:P ‘Sz" ¢, fn)l
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From Lemma 1.3 and Theorem 1.7 we get
]|, < Comst. ||f,l, < Const. p ]|,

From the proof of Theorem (4.41) in [7], p. 119, it follows that |f|<1 implies
1
f exp (Const. | Hf|) dz < Const.,
0

and the lemma is an easy consequence of this estimate.
By a change of scale we can prove Lemma 1.8 with (0, 1) replaced by an
arbitrary interval o= w,:

Lemma 1.9. Let f€L”(w), o=w,, v=>0. Let Hf(t)=sup,|>r-—1neAc(t, o, f).
Then

m{tElef(t)>y}<Const.|w|exp( Const. il ), y >0, (1.14)

2. Proof of the basic result
We need some more notations. If fELl(w), w=w;, »>0, we write

1

A, (w)=4 —%gl |m

and A} (w)=max, A,,(w'), where maximum is to be taken over the four
subintervals o’ of o with 4|o'|=|w| If fEL'(0,1), n=>0 and € w=w) < wy
we define

S (x, 0)= Sy (z, w, )= ff(t L (8) 8, (x+8) dt.

For € wyy let S () =S85 (2, wo,2) = 87 (%, wo.-1) = 57 (%, wgp) and. 8, (x) = 8, (x, weo)-
From (1.1) it follows that
|85 (@)] = | 87 (). (2.1)
We also define the operators M and My (N positive integer) by
MUf(x)=sup|8,(@)| and Myf(x)=sup|S,(@)].

We will now prove the basic result using Lemma 1.9 and the method in [3],
Sections 5-11. Since our proof contains no new ideas, but is just a combination
of the proofs in [1] and (3], we do not give all the details.

Starting from a function f= 2, and numbers 1<p< oo, y >0, N >0 and k>0,

we define the Walsh polynomials Py (x, w) (0 = w;,, > 0) and the set Gy ([3], Section
5). We get

If a, is a coefficient of Py(x, w) then |a,|>bey??(bp=27"), (2.2)
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|@, (0, f— P(-, )| < by for all m, (2.3)
( z): . || <4b;%y PmP. (2.4)
n.w)eEGE

We define A4,(x) and X, as in [3], and take X} as the union of all intervals
wjr,y-2 such that wj,,-2>w; for some w; < X,. We then have

mX; <16b,y "mF, (2.5)

If wd X, then P,(x,®) has at most b;° terms, (2.6)

If od X, and Py(w, )= apws, (x) then |Py(z, w)| <> |a,| <br%y??. (2.7)
Defining G, as in [3] and then G as in [1], p. 373, we get

> || <Const. by "mF. (2.8)

(n, w)€G}

The following two lemmas are consequences of the definitions made above
(see [1], pp. 373-374).

Lemma 2.1. Assume w=w;, v>0, ot X, and (n,0)¢G (k=1). Let @, (x)
denote the sum of those aw;(x) in Py(x, w) for which |n—A[w]|>b,'® holds. Let

Py(x, w) = @y () + @, (). (2.9)

For x€w we then have
Qo () = ayw;, () + ayws, (), where |ay| <|a,| <bg2y?? and |A [w] — A[o]|=1. (2.10)

Lemma 2.2. Assume o< X; and (n[w],w)¢Gi. Let o; j=1,2,3,4 satisfy
4|ojl=|w|, v,cw. Lt Pz, 0,)=Q, w,)+ Q,(x,w,), where Q, contains those
terms aw; in Py for which |n[w,)|—Alo,]| =>b;®.

Then Qo(x, w1) = Qo (@, ®5) = @y (%, w3) = Qy (, w,)-

We now define the set 8 as in [3] and take S* as the union of all w; ,
for which ;. ,.2> w; for some w;, <S. We get

mS* <16y *mF, 2.11)
woF S* implies A} (wy) <y and A} (wy)<y® for all n, (2.12)
If wod 8* then by_1y > A% (w,) = by for some k=1, unless =0 a.e. on w,. (2.13)

According to [3] there exists an integer L= L(p) such that

2

L(p) < Const. —1’-—1 (2.14)

and woES* and A (wy)=byy imply yPE<bi}'y. (2.15)
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Given (n[wpl, wg), Wp=jo.v,, —2<vy<N—2, (if wyF wy, We assume that w,
equals wg,_y Or wo,_g) and k=1 satisfying the condition

Q(k) : (n[wp), o) EGrr  and  Ajwn (o) < br-1Y,

we construct the partition Qu((n[w,), w,), k) of wy as in [3]. If x€wy N wyy
and z is not an endpoint of an w; we define wy(x) as in [1], p. 374

Now assume n int (wg) and wy(r) S0 Swy, o =y, . Let ny,=2""n[w’]. As
in [1], pp. 375-376, we get

|85 (2, 0e)| =185, (2, )] | < Ra =, o), (2.16)

where R, (z, wy) = sup kZ Ciin Az, 0, B (n— 242 ) (2.17)

and B (t, wp) = —= flu) w, (w) du. (2.18)
lwo )| J oo

Now let T*(n[wy], wg) = {x € wy| R, (%, wg) > CLk b1y}, (2.19)

where C is a constant. (If y,<0 let

k

Z CjAj(x: Woo» E.(, @y))

=0

Rn (.’E, wo) = sup
k

and T*(n[wo), wy) = {x € wyy | R, (x, wy) > CLkby_1y}.)
Observing that |E, (¢, wy)| <Const. b, ;¥ and using Lemma 1.9 we get
mT™* (n[w,], w,) < Const. |w,| exp (— Const. CLE). (2.20)

We sum up the results in the following lemma:

Lemma 2.3. If nint (w,), n{w,] and w, satisfy Qk), z € wyy and wy(x) < o' < wy,
then for x ¢ T*(n[w,), w,)

|18% @, wo)| — |8}

2" nlw’]

(z, )] | < CLkby 1y, 2.21)

We define the sets X*, T* and W* as in [3]. Letting E=8*U X*yT*y W*
we then get
mE < Const. y *mF. (2.22)

We now prove the analogue of Lemma 10.2 in [3]:

Lemma 2.4. Assume W = Djo.) TEwy N wog, & E and (ny[wp], wy) ¢ Grr, where
k ts defined by by_1y > A% wa(we) = bey. Then there exist w, and n, such that

Wy D wy, (2.23)
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(m[o,], 0,) € G, myint (1), where 4|wi|=|w,],
and |1y [0g] = my[eg)| < AbiY, where A is a constant. (2.24)
If n satisfies |ny[we] —nlwgl| <2452, then
185y (22 )| = |8 (2, 00)] | <Const. {43 wn(wo)+ by} (2.25)
Proof. Defining o, o', Py, P as in [3] we get
A (o, f— P)<b2y for all n (2.26)
and Ao (@0, Po) = (b — biE) y. (2.27)

P, must contain an index A with |A[ws] —ne[we]|< brf, because otherwise we
would have (Py=3 a,wz,)

P S

1+ (Lulwo] — m[wo])®

138 8 1-2 p/2 15
<Z Ia'ul bir <bir bkL?/Dl <byg Y,

Ano["’ﬁ] (wé? PO) < Z lal;[ A"u[‘”c’l] (0‘)6’ 'M)},M) = Z Ia,;

which contradicts (2.27).
Since (nq[wy], wy) ¢ Gk, We have according to Lemma 2.1 Py, (x, »') = @y (x, ') +
Q,; (z,w'), where

Qo=0, w1+ gows, with [y <|p,| <BzZy*® and |4[0']—A[w'l]=1 (2.28)
and
All indices 4" of @, satisfy |1’ [w']—ny[w']|> b (2.29)

Lemma 2.2 implies

The polynomials @, corresponding to different subintervals ' are
equal. (2.30)

(2.27) implies (b, — bi7) ¥ < Ay (00, Qo) + Anegwiy (00, @1), and using (2.28) and
(2.29) we get

b — bY%) y < Const. 1
(b)Y < COmSt 1 ) — sl T H

We define n,=1,. (n,[w1], w1) € Gy, for some wi>wg. If w,> w1, 41601":,(01.',
then w; >y, n; it (1), (n[w;]), w;) €GEL and |n, [we] — ne[wo)| < brs. Using this
estimate together with (2.26) and (2.29) we get

Ao (w(;, 01%a, F @aWn,) < Ay (606, )+ Aoy (wé, f—Pg)+ Am[w.’,l(w(), Q1)

< Aﬁ,[m.,] (woy f) + b}cllz,y + b}c7L Y.
We also have

Anl[wax(a’a’ 01 W1, 0aw3,) = |91‘ o |921 * 10 3= %6‘91]>
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and a combination of these inequalities yields
1] < Const. {47 g (o) + bEZY}- (2.31)

It we use (2.12), (2.24) now follows from the above estimates.
It remains to prove (2.25) and we therefore assume that n satisfies

|n[ew] — nlwy]| <2A4b3%. (2.32)
Assume z€w”, 4]0w”|=|wy|. According to [1], p. 381, we have
|12t (2 @0)| = S (2, ") | | < Comst. Ak (). (2.33)

2¥0n{we]
Using (2.26), (2.29) and (2.32) we get

An[w’] (wl’ f < An[m’] (6(), fa P + An[w’] (wl’ Qlwlx + Q2wlz) + An[w'] (w,: Ql)
<b1/2y+2|91|+bk[,y

A combination of this inequality with (2.33) gives

l[s;onom (@, 06)| = | Sy oy (2 wo)|| < Const. (B¥2y+|a1)

nlw”] -1

Z a’l(w”7f) wzvo+21(z)

I=nolw”]

+ (if nolw"]< n[w"]). (2.34)

The last sum is less than or equal to

|3 au(f = P wpore (@)| + |3 @,(@)) w2, )]
12 ay(oywa, + 0awa,) Wyere, (@) = dy + dy + d.
(2.3), (2.15) and (2.32) yield
d, <245 263ty <b.y (L large),
d,=0 because of the definition of ¢, and (2.32), and
ds <2 |Q1 |-

(2.25) therefore follows from (2.31) and (2.34) and the lemma is proved.

We can now conclude the proof of the basic result in the same way as in [3].
Since we need not make any essential changes of the argument in [3], we omit
this part of the proof. We finally get

|87 (x)| <Const. 3 1, _; Ly = Const. Ly, x¢E, n<N.
=1

Hence m{x|Myf(x) >Const. Ly} <mE and the basic result follows if we use (2.22)
and (2.14).
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3. Proof of the theorem

Proof of (A). From the basic result we get
1 ¥4
m{x€(0, 1)| M (x) >y} < Const. (;_—1) y ?mF, l<p<3, y>0. (3.1)

For 0<y<1 we substitute p=1+ (log (1/y))"" in (3.1). After some computation
we conclude
m{x€(0,1)| Mxz(x) >y} <Const. élogémF, 0<y<i. (8.2)
Taking p=2 in (3.1) we get
m{z€(0,1)| MXz(x) >y} <Const.y *mF, y>0. (3.3)

Let N denote the set of all functions of L!(0, 1) which take only finitely many
values, where the taken values are zero or of the type 2V 4 2Me4 | 4 2V
N,<N, 1<...<N;, N, integers. Also let

J(Hy=| |H(x)|{log" |f(x)|log* log™ |f(z)| + 1} de.
0

For feN,J(f)<}, we define a function f€N in the following way:

(a) If =0 we let f=0.

(b) If f£0, let « be the largest number of the type 27", n =2, which satisfies
S5a<J(f). From this it follows that (1/a)f€N and

a<i, (3.4)
(1/a)f takes some value >4 ((1/a)f<4 implies J(f)< 4«), (3.5)
J(f) < 10c. (3.6)

Let G,={z€(0,1)|2"<(1/x) f(x)< 2"*'}, n=2,3,..., and let 2, be the charac-
teristic function for @,. We now define § by

2= )
From (3.7) it follows that
j=1+a3 2, (3.8)
) <3f@x) for we (‘2] @,, f@)=f(x) otherwise. (3.9)
We will now prove
JEN,J()<} implies J(f) <&HJI(f). (3.10)
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(3.10) is obvious if J(f)=0. For J(f)>0 we set f=g+h, where

[f(x), zeU G, {f(x), 26U G,
glx)= 2 h(z) = 2
0 otherwise, 0 otherwise.

We have J(f)=J(g)+J (k) =5a. (G, and o defined as in the definition of f.) From
h <4« it follows that J(k)< 4a, which gives J{(g)>a >$J(h). Using (3.9) we get

J(f) <TGg)+ () <3J(g)+I(h) <} (g) + 54 (9) + 5T (B) = 5 (T (9) + T(B) = &I (),

and (3.10) is proved.
We now prove the following lemma:

Lemma 3.1. Adssume fEN and J(f)< . Then there exists a set E with mE <
Const. J(/)® such that

r¢E implies Mflx) < Mf(x)+ J(H)>*°. (3.11)

Proof. This lemma is obviously true if J(f)=0. For J(f) >0 we use the same
notations as in the definition of f. Let o be a number larger than 1 and define

F,={z€(0, )] Mz,(0) o2 "a%}, F= UF,,
={z€(0,1)|p2 "n %< MY, () <02 n} (3.12)
and L,={x€(0,1)| Mx,(x) <o2 "n?}.
From (3.2) and (3.3) it follows that

1 1 3
mF, <Const. - 2"n %log - 2"n ?m@, if p2 "n’<}
0 e
A 1. ., ,
and mF, <Const. {-2"n" %) m@G, <Const. - 2"n"*m@, otherwise.
e e

We now estimate the measure of F:

mF <3 mF,<Const. > Lorn ‘210g 2"n " m@,
2 4

e2nni<} 0
+Const. > - 2”n"2mGn < Const. ——f og —fdx
e2—nntzt 0 e2—rnt<i JGn O
1
+Const. > — fdz.

e2-mnt>} JGn QX

From the definition of J(f) it follows that

mF < Const. J (i f) . {3.13)
o
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We now want an estimate of M(>5 2"%,) outside F. We have

f M(Z 2”)(”) de <3 f M@ y)de<> 28| Mx,de+ Z2”f My, dx.
CF 2 2 JCFn 2 Kn 2 Ln
The definition of L, implies
f M(Z 2"xn) dz <S+ 3 pn 2= 8+ Const. g, (3.14)
CF 2 2
where S=>2"} My,dx. (3.15)
2 Kn

Introducing the distribution function u,(1)=m{z€(0,1)| M2, (z)>1} we get

‘7”71,2 n ~nn2
o | My, do— -2 f“’z Ay ()=~ 2 [, @)] 2700+ 20 f RReY7

—n,—2
En 02 "*n~ 27 n 02 "2

We will now prove

1
2n Mxndx<00nst.f lfloglfloglog—]‘alac. (3.16)
Gn & o o

Kn
We consider three cases:

Case 1. 2 "n?< 1.

Using (3.2) we get

2" | My, dx <Const. 2" log 1 2"n?m@,,
4

Kn

ann2 1
.+ Const. 2”Je log (1/2) dAm@, = Const. 2" Jog o 2"n*m@,

02 %p~2 A
1 2 1 2
+ Const. 2® {(log - 2"7),2) - (log - 2"%‘2) } m@,.
4 4

According to the mean value theorem there exists a number &, log (1/p) 2"n %<
E<log (1/p) 2"n?, such that

1., 5\° 1., \° 1 1., .,
log - 2"n?) — |log - 2"n"%) =|log =2"n®—log = 2"n %) 2&
e e e Q
< Const. log  log Zl’ 2" 5? < Const. log 2" log n.

(3.16) now follows from the above estimates and the definition of G,.
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Case 2. 02 "n ?<}1<p2 "n%

Using (3.2) and (3.3) we have the following estimates:

1
2| M, dx <Const. 2" log - 2"n*mG,
0

Kn

e2™™? ]

1/4
log (1/4) FadimG,

+ Const. Q"J —= = dAm@,+ Const. 2" f

02~ "2 A 1/4
1 1o s\ 2
< Const. 2" log - 2"n*m@G, + Const. 2" 1 | log o 2°n?) — (log 4)%t m@G,.
4
The mean value theorem implies (log4< &< log (1/p)2"n%)
1o, 2\ 2 1on 2
log - 2"n*) —(log4)*=|log —2"n®—log 4] 2¢&
0 0
< Const (log ! 2"n? — log 1 2"n"2) log ! 2" p?
@ e 0
< Const. log 2" log n

and it is easy to see that (3.16) holds.

Case 3. 027 "n 2> 1.

(3.3) implies

2 %2 ]
2% | My, dx <Const. 2"m@G, + Const. Q"JQ — dAm@, <Const. 2"mG,,

2
Kn 22 A

which yields (3.16) also in this case.
(8.15) and (3.16) imply S <Const. J[(1/«)f]. From (3.14) we now get

& 1
f M (oc > 2”%,,) dx < Const. o (f f) + Const. ag.
CF 2 o
Let y be a positive number and let

H={x€(0,1)|xEO’F, M(ocZQ"x") (x)>y} and E=FUH.
2

We obviously have

mH <Const. ZJ (1 f) + Const.ig,
Yy o\« 14

and if we use (3.13) we get

mE <Const. {J (;—af) +§J(i;‘) +°‘;9}.
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If we choose o=J(f)"2® and y=J(f)*®, we obtain
mE < Const. J(f)!'%.

If z¢ E we have Mf(x) < Mf(x)+ M(x > 2"%,) (*) < Mf(x) + J(f)*°, and the lemma
is proved.
We need another lemma:

Lemma 3.2. There exist constants C; and C, with the following property:

If J()< 1 we can find a set E such that mE <C,J(f)""°
and Mj(z) <Cod ()™ if ¢ E. (3.17)

Proof. We first consider the case when f€N. We define a sequence {f;}i2o of
functions belonging to N by fo=Ff, fir1=Ff, ¢=0,1,2,.... Using Lemma 3.1 and
(3.10) n times we get

n—1 9 2i/5
M) < M)+ TGP S (3] (3.18)
i=0
outside a set of measure smaller than Const. J(f)X'® >75' (9/10)"°. From (3.5) and
the definition of f it follows that f,=0 if » is sufficiently large and it is easy
to see that (3.17) holds for fEN.

Now assume f>0 and J(f)<4. We can then find a sequence {f,}i-1 such that
f. €N, J(f,) <J(f) and lim,,.J(f—f,)=0. For fixed K there exists an n such
that Mg(f— fn) = supi<x | Se(f — fo)| <J(f)*'®, since Mg(f—f,) tends to zero uni-
formly when n tends to infinity. We therefore have

M (f) < Mg(fa) + Mg (f = fa) < Const. J(f,)*° + J(f)*° < CoJ (f)*",

C, = Const., outside a set of measure smaller than Const. J(f,)"® < Const. J(f)'".
If Ex={2x€(0,1)| Mxf(x)>CyJ(f)*°} this estimate gives mEy < Const. J(f)"'°. Mg <
Mg, implies Exc Ex.y, and we get m(U{ Ex) = limg,omEg < Const. J(f)'°.
From the definition of Ej it follows that (3.17) holds with E= Ui E. Thus
we have proved the lemma for positive f and it is easy to see that it holds also
for general complex f.

We are now able to prove (A). We assume that (A) is not true. We can then
find a real function f with J(f)< o and S, (f) diverging on a set of positive measure.
This means that there exist numbers ¢>0 and 8>0 such that lim S,(f) —
lim 8,(f)>¢ on a set of measure §. We now choose a Walsh polynomial P such
that 2C,J(f— P)*P<¢, C,J(f—P)"<§ and J(f— P)<} (C, and Cj as in Lemma
3.2). Using (3.17) we get that lim S, (f) —Lim S, (f) =lim S, (f — P) —lim 8, (f — P) <
2M(f — P) <2C,J(f — P)*® < ¢ holds outside a set of measure smaller than

C,J(f— P)'*<§, and this gives a contradiction. This completes the proof of (A).
The proof of (E) is the same.

Proof of (B). We first use the basic result to deduce the following lemma.
Lemma 3.3. We have

2

1 2p
J‘ (M)’ dx < Const.? (pp 1) mF, 1<p<oo, (3.19)
0

38:6 567



P. SJOLIN, Inequality of Paley
Proof. Let 1<p, <p<p,< oo and let
w(A)=m{x€(0,1)| Mxz(x)>A}.
The basic result gives the following estimates of u(A):
uA<BL A PmF and u(d)<BpA "*mF.

Using the first estimate for 4 <1 and the second for A1>1 we get

1 o - .
J (M%p) dz= —f AP du(d) pr APt () dA ngg:me IS
0 0 0 o

+ pBimF f o tgi=—L_ prpp BmPF.
1

PP Ps—Pp
I we select p, and p, suitably (e.g., for p near 1 we can take p,;=%(p+1)
and p,=p-+3}(p—1)) and use the estimate of B, given in Lemma 2.7, (3.19)
easily follows from the last inequality.

For €N we now define a function f in the same way as in the proof of (A)
but with J(f) replaced by

I(f) = | |Ha)|{(log" |f)])* + 1} da.
[

This time we need no restriction of the type J(f)< % but define f for all fEN.
Using the same notations we get

<} (3.20)

(1/a) f takes some value >4. (3.21)

I(f)< 3 implies I(f)< 10 and I(f)>$% implies =1} (3.22)

f=Ff+a>2"x,, where X,=ZXc,. (3.23)
2

I <{HI(f) (3.24)

Now let p,=1+(1/n), n=2,3,.... Using Holder’s inequality and (3.19) we get

1 1 1/p, P\
f Mxndxé(f (Mln)””dx) < Const. (p " 1) (mG,)7n
0

0 —

< Const. n?(m@G,)" ", n=2,3,.... (3.25)

We have (mG,)" ™+ <Const. m@¥, +272", since m@, >2"*" implies (m@,)" " <
Const. mG,. Combining these estimates we get

1 1 0 0 1
f M({f-§ dx=J‘ M > 2"x,) dx<ocz2"f My, dx
0 0 2 2 0
< Const. a > 2"n? (Const. mG,, + 272") = Const. a >, 2"n’m(,
2 2
& 1
+ Const. o > 2"n*2 2" < Const. al (; f) + Const. a.

2
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Using (3.22) we can prove al[(1/a)f]<Const. (I(f)+ I(f)''?), so we get

fM(f — f) dz < Const. (I(f) + I(f)13). (3.26)
It follows that

fledx<f1Mfdx+f1M(f—f) dx<f1Mfdx+ Const. (I(f) + I(f)¥?). (8.27)
0 0 0 0

We now define fo=f, fisa=f, 1=0,1,2,.... Repeated use of (3.27) and (3.24)
gives

f Midx< f Mfgda+ 2 Const. [(&)" I(f) + ()" I(H)"*]
<Const. S [(&) I(f) + (&) I(f)*] < Const. (I(f) + I(H"?)
»=0

< Const. I(f) + Const.

This estimate implies that (B) holds for f€ N. For positive f (B) now follows
by approximation of f with functions belonging to N, and it is easy to see that
(B) holds also for complex f.

Proof of (C). We use the method in [3]. We get
3

V4
1 Bp < Const,. a—il)z

|3l < A, [fll3., where 4, <Const. pf

From this (C) follows with
2 5

p 4
< Ay < . .
C, <Const p—1 A, <Const p—1°
Proof of (D). The basic result implies
m{z€(0,1)| M1z () >y} <C?p’y " *mF for p>Const., (3.28)

where (' is a constant. Taking p=e¢ 'yC™? in (3.28) we get
m{z € (0, 1)| Miz() >y} < Const. exp (— Const. y) mF, y >Const.  (3.29)
Now assume 0<f(x)<1, x€(0,1). We then have f= >P27"x,, where Y, are

characteristic functions for measurable sets. Letting 4 =272 ™* and using
Mf<>72 "Myx, and (3.29) we get

m{z| Mf(x) > Ay} <3 m{z|27" My, (x) >2 "y}
T
= ; miz| M1, () >2"%y} <Const. ; exp (— Const. 2"%y)
< Const. exp. (— Const. y), y > Const.
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Since m{x|Mf(x) > Ay} <1 for y>0, the restriction y>Const. is unnecessary,
and we get

0<f(z)<1 implies m{z|Mf(x)>y}<Const.exp(— Const.y), ¥y>0. (3.30)

It is easy to see that the condition 0 <f(z) <1 in (3.30) can be replaced by
Ifll« <1, and from this (D) follows.

Note on departure from first version

The original version of this paper was Communicated 10 January 1968, as indicated above
the title. That version had (logt|f(x)])*? instead of log* |f(z)| in (A), it had (log*|f()])>’? instead
of (log*|f(z)])? in (B) and, finally, it had (y/||f]| )*'® instead of y/||f||s in (D). The change to the
presentation now adopted was made in proof, 11 June 1968.
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