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On bounded analytic functions and closure problems

By LENNART CARLESON

Introduction

1. Let us denote by H”, p=1, the space of functions f(z) holomorphic in
]2] <1 and such that

No(f) = 1332{2%,f2””"e”) Pas}s - {%zﬁf(e“’)lpde}% <o,

where f(¢'%) = lim f(re'®) a.e. It is obvious that H” is a Banach space under
r>1

the norm N,. If we combine the wellknown representation of a linear func-
tional on L”(0,2x:) with a theorem of M. Riesz on conjugate functions, we find
that the general linear functional on H?, p > 1, has the form

M L) = [1eD5E0a8, gels, p+qt—1.

The simple structure of the general linear functional on H? is the key to a
great number of results for these spaces.

The “limit' space” as p — oo is the space B of bounded analytic functions
in |z2| <1 with the uniform norm

(2) 71l =|§}1<pl|f(Z) |

Although this space has a simpler function-theoretic nature than H?, its theory
as a Banachspace is extremely complicated. This fact depends to a great extent
on the absence of a simple representation.for linear functionals. On the other
hand, B is not only a Banach space, but also a Banach algebra.

f one seeks results for B which for H” depend on the formula (1), the fol-
lowing question should be asked: how shall we weaken the norm (2) in B in
order to ensure that the functionals have a representation of type (1)? In the
first section we shall treat this problem by introducing certain weight functions.
The method will also be used to find a function-theoretic correspondance to
weak convergence on a finite interval.
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In the second section, we shall consider a closure problem for B where the
relation between B and its subring C of uniformly continuous functions will be
of importance. Finally, we shall make an application of the results to the Pick-
Nevanlinna interpolation problem.

Section 1

2. When we look for functionals on B analogous to (1), there are two essen-
tially different possibilities: we may take for ¢ a function in H* or in L' (0, 2x).
These representations are fundamentally different since the above-mentioned
theorem on conjugate functions fails for p = 1. Let us call the two types of
representations (A) and (B):

(4) L) - [197@0a0, gem;
(B) L{f) = jj;‘(e“’)K(G)dO, KeLl(0,27).

In the sequel, let u(r) denote a continuous function on 0 <r <1 such that
0 < u(r)=1and u(1) = 0. Furthermore; let C, be the space of functions analytic
in |z| <1 such that hm fré®u(@r) =0 unlformly in 6. If we introduce the norm

£l = sup pa(r) If (&) |,

C. becomes a Banach space.
By means of the weight functions u, we can now solve our problem. Let us
first consider functionals of type (A).

Theorem 1. Every linear functional on C, has on its subspace B a representa-
tion of the form (A4) if and only if

3) Tim (1) log

r>1

< oo,
’

Let us first assume that condition (3) is satisfied, and let L(f) be a linear
functional on C,. By a theorem of Riesz-Banach, there exists a function o (2)
of bounded variation in |z] <1 such that

)= [[nile])@dot), [€C,.

lzl<1

If now feB and is represented by its Cauchy integral, we find that if

ffl—ZC

lzl<e

and if L,(f) is the functional of type (A) defined by this function, then
linll L, (f) = L(f). It follows for p <p' <1
e
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! i [f|do‘(z)|=
—Teo~1 J :

esizl=e

lim N, (9, — 9¢) = Const. sup g (r) log
e.e-1 = '

Hence ge H' exists such that N, (g —g,) =0, ¢ = 1, and the functional of type
(A) defined by this function g coincides with L on the space B. The first part
of the theorem is consequently proved. - '

If, on the other hand, (3) does not hold, there exists a sequence {r,};", 7, 11,
such that

1
ty = p(r,) log [, > Y>>

We then form the following expression, which is easily seen to be a linear func-
tional on C:

=v§1f (1) (1) 2 -
{A,}¢ is here a sequence of positive numbers such that
SA <oo and Y Apu, = 0.
1 v=1

For f belongjng to B, we have L(f) =lim L,(f), where L, is the functional of
type (A) defined by the function

gn(2) = j'{;z 2

Let us now assume that the functional defined above has a representa,ti.on
of type (A) on B. If () is an arbitrary function with continuous derivative
and period 2z, then

(4) lim fk 0) g (¢%)d 6 = [k g(¢%)do.

nroo§

Namely, if #(0) is the conjugate function of %, neither side changes its value
if we add ¢4 to h. But for % + ¢k, (4) holds by assumption. For >0, we
choose a non-negative periodic function k,(0) with continuous derivative such
that ;=0 for —¢<0<<0, hs<1 for all 6 and hy =1 for 6 = 60 <c¢<m By
(4), we have

hm,hmfka(ﬁ)gn( 0)d0|<oo
Going back to the expression for g,, however, we find

lim | lim Im{fzz,s(ﬂ)g,,(e“’)zlﬂ}l 2

6+0 ' n>

Z Const. llm zl,,‘u(r,,)fll edoel2 = ConSt-ilvﬂv = 0o,
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This contradiction proves the theorem. )

3. It is very easy to see — in the same way as above, if we represent the
functions in B by Poisson’s integral instead of Cauchy’s — that the following
theorem is true for functionals of type (B).

Theorem 2. The functionals on C, have a representation of type (B) on B for
every choice of the weight function u.

This theorem is a particular case of a more general result which we shall
now briefly discuss.

Let D be the Banach space of bounded functions ¢(z) on (0, 27), where we
have introduced the uniform norm | @||. With every function in D, we associate
the corresponding harmonic function in the unit circle

2n
1 1—o2 ) _ i
uq,—u(z,qo)—ﬁ 1+72—2rcos(0—x)¢(x)dl’ =Tl
o

Let D* be the space of these functions w.
Suppose now that S is a linear subset of D and that S* is the corresponding

subset of D*. If § is the weak closure of S, the following theorem can be
proved. '

Theorem 3. A function w(x)€D belongs to S if and only if, for every weight
function w (r) and every e>0, a function @€S exists such that

(5) fu(zp) —uzp) | <ep(|z])?, 0=|z|<1.

Let us first assume that the above approximation is impossible for some u (7).
&

Then u, does not belong to the closure of S* in the metric of D,, where D
is formed by harmonic functions in the same way as C, was formed by ana-
lytic functions. We conclude that a functional L* on D} exists which vanishes
on S§* and does not vanish for w,. As before, we have a representation on D*

(6) L*(w) = [[ul Dp(lz])do),

jzl<l

where o is of bounded variation in |z| <1. If we insert the Poisson integral
for u; and change the order of integration, we get

2n

I*(w)) = [A1(2) K (#)dw,

0

where K (z) belongs to L'(0,2x). Hence y does not belong to S.
In the proof of the converse we shall use the following lemmas.

Lemma 1. If K(z) belongs to I*(0, 2n) and
(7) K(z)~ %0 + i(an cos nx + by, Sin nx),
& 1
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there exists a sequence of positive numbers A, with lim A, = oo, such that for

n> oo
every sequence {A}1r of positive numbers which is increasing, concave and satisfies

An = A4,
(8)

]

+ > An(a@n cos nx + by sin nx)
1

(CIES

18 a Fourier-Stieltjes series.

Lemma 2. Gwen a sequence of positive numbers a,, im a, = 0, there exists a

n> e

non-negative functeon h(t) mm L1(0, 1) such that
1
an =bn = [t"h(t)d
0

h(t) can furthermore be chosen so that {b,'} is a concave sequence.

To prove lemma 1, we need only observe that the Cesaro mean of (7) con-
verges in mean to K (z) and make repeated use of partial summations in the
series (7) and (8). The proof of lemma 2 is completely straight forward.

We return to the proof of theorem 3 and assume that there exists a func-
tion K (z) in L'(0, 2x) so that

fK (@)p(x)dz =0, @E€S,

while the corresponding integral for v is different from zero. From lenimas 1
and 2 we deduce that K (z) has a representation

K 1'(1) Qh i} o v (0
(x) = ;ﬂnf (r)drf1+ 72— 27 cos (x — 0) w0
0

where 7 is of bounded variation and % (r)
tion u(r) can now be chosen so that f(r)
we define o by do(z) =dv(0)f(r)dr, 2z =
gence from our assumption on K that

L*(u.»Tg{flu@;q))mlzndo(z)=o, p€Ss,

bel ongs to Ll (0, 1). A weight func-
= h(r)u(r)™" belongs to L'(0,1). If
ré'?, it follows by absolute conver-

while L*(u,) 0. This means that the approximation (5) is not possible for
the weight function we have just defined. The proof of theorem 3 is thus com-
plete.

As an illustration of the significance of the functionals (A), let us mention

the following result: if [a,] <1 and i (1 —]a,|) diverges, then for every bounded
1
analytic function f(z) in |2]<<1 and every £>> 0 constants {c,}{ exist so that

n

1 J—

) <elog1—1|—-], 0=|z] <1

287



L. CARLESON, On bounded analytic functions and closure problems

Section II

4. We shall in this section study a problem which is connected with the
fact that we can multiply two elements in B, i.e. that B is a Banach algebra.
It should be stressed that some of our results are easy consequences of a gen-
eral result on Banach algebras — this is in particular true of theorem 5 — but
it is necessary for applications to have proofs of classical nature.?

We start with the following closure theorem for the subspace C of B of uni-
formly continuous functions.

Theorom 4. If f,, fo ..., fn belong to C, then {2°fn(2)}, m=1, 2,...,
n, k=0,1,..., is fundamental on C if and only if

(9) lh@+hE]+ -+ @] #0, |2]=1

We shall prove the theorem in the case n = 2; the general case is treated
quite similarly.

Let L(f) be a linear functional on C which vamshes on the subspace E spanned
by the given functions. The representation

L(f) = f (€% du(d)

follows from the corresponding result for the space of continuous functions on
(0, 27t) without difficulty, since the spaces are separable. We thus have

2n k]
[e* (e du() = [é*du (6) =0
¢ ]
2n

[0 @ au(0) = [¢*0dpm () =0

0

From these relations it follows by a theorem of F. and M. Riesz? that u, and
1, are absolutely continuous functions. We then immediately infer from our
assumption (9) that also u(6) is absolutely continuous. Hence K (8)€ L (0, 2x)
exists so that

fK Vim(@®)e¥0d0 =0, m=1,2 k=0, 1,

This means that K (0)fn(¢'®) is the boundary function of an analytic function
F, (2) which belongs to H' and safisfies F,,(0) = 0. Furthermore,

v Fn (re'f)
K(e) lr+1 fm( 16)

! See I. GELFAND and G. SrLov: Uber verschiedene Methoden der Einfithrung der Topo-
logie in die Menge der maximalen Ideale eines normierten Ringes. Mat. Sbornik 9 (1941).

® See e.g. ZYGMUND: Trigonometrical series, Warszawa-Lwoéw, 1935, p. 158,

¥ For the following, see BEURLING, A.: On two problems concerning linear transformations
in _Hilbert space. Acta Math. 81 (1949).

a.e., m=1, 2
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It follows that F,(z)/f,(z) and F,(z)/f,(z) in |z]| <1 are two different represen-
tations of one and the same meromorphlc function H (z). By assumption (9),
H (z) is holomorphic and belongs to H! and its boundary function coincides a.e.
with K (6). For an arbitrary function f in C we thus have

L =j}l(e”’)f(e”’)d0 =27H(0)/(0)=0

since H(0) =0, and we can conclude that E = C.

If, on the other hand, (9) does not hold, the functions f»(z) must have a
common zero in |z| <1 and only functions which vanish at this point can be-
long to E.

As an immediate consequence of theorem 4 we get the following result.

Theorem 5. If (9) holds, then for every g€C, functions py, Dgy ..., Pn i C
exist such that

a0 SnEhE=06).

It is clearly sufficient to prove the theorem for g(z)=1. By the theorem
above, polynomials P,(z) can be chosen such that || F + 1]| <}, where |

F(z) = ZP @)1 (2)

In particular, |F(z |>% in |z} <1. We see that our relation is satisfied if we
choose p,(2) = P,(2)/ F (z).

For later apphcatlons we observe that the result holds for an arbitrary simply
connected domain bounded by a Jordan curve — the analytic function which
maps such a domain onto the unit circle is continuous on the boundary — and
also that even in this more general case, polynomials P,(z) exist such that

|ZP ()}, ()| = 6> 0 — this follows from a known approximation theorem of

Wa.lsh :

5. We shall now use theorem 5 to prove an analogous result for the space
B. We must in this case replace condition ) by a stronger assumption and
we introduce the following notation. For a given function f in B and an ar-
bitrary @ in |a]| =<1, let us use the notation

pr(@) = lim [£()],

2+a

where, for [a| =1, we have to approach & from inside the unit circle.

Theorem 6. If E is a subfamily of B such that for every a, |a|<1, f€E
exists such that us(a) 70, then any function g in B has a representation (10),
where f, belongs to E and p, belongs to B.

For every a, |a]=1, there is closed interval 4 around a and a function f
in E such that /uf(é‘)>0 for (€A4. We cover |z| =1 by a finite number of
these intervals 4,, 4,, ..., Am, 4, = (¢%, €?), and assume that
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0<oc1<ﬂm<oc2<ﬁly<oc3<,32<..i. (mod 2z).

Let f, be the function in B which corresponds to A,.

Since |f,(2)} =48>0 in a neighbourhood of 4,, there are functions w, in B
such that g,(z) = w, (2)-/,(z) are analytic and 0 on 4,. Let us now choose a
number y so that «, <y <f,. We construct a function ¢, (2)€C such that

[, ( “’]=1 on o, =0=7y
|g1(¢?)] =1 everywhere
g (€] =<eon 0<o,—¢ and 6 =4, " (mod 27),

where &> 0 will be determined later. We may furthermore assume that ¢, (z) # 0.
A similar function g,(z) is constructed for A4, with |g,(¢®)| =1 on (y, B,). We
next consider the functions

F,(z)

P 0 (2) 01(2) £ ¢5(2) " 92 ().

For & sufficiently small we obviously have ur (£)# 0 on (o1, &) and on (B, ﬂg)
and similarly for F,. On the rest of the interval ( (o1, Bs), 1.e. on (ay, fBy), F,
and F, are contmuous and have no common zero, since such a zero would be
a zero for F, + F,. We can as before multiply F; by a function H;, which be-
longs to B, so that Gi(z) = Fi(2) Hi(2), i = 1, 2, is continuous on (x, f). We
may also assume that H;(z) # 0. The new functlons G; are continuous in a do-
main D: ry<r=<1, o, < arg 2=, and in D we have

IGl(z)l+ | G, (2) | # 0.
By the remark of theorem 5, polynomials P, and P, exist such that
@1(2) = P1(2)- Gy (2) + Py(2) - G (2)

does not vanish on («,, 5;).

In our original situation we can thus use @, instead of f, and f,, and 4; in-
stead of 4, and A4,. We continue the same process, which only consists in the
forming of linear combinations, and we finally obtain a function p€C which
is of the form (10) and does not vanish for |z|= p.

In the same way as a,bove, we construct a function y of the form (10) such
that 9 (z) # 0 in |z| <¢’, o’ > . Finally, we consider the functions

“C)_ e+ Ko

$2(2)
If the constant K is sufficiently large, then u ” (@) # 0 for |a|=p, and we see

as before that ¢, and ¢, have no common zeros. After multiplication by suit-
able, non-vanishing functions in B, we obtain two functions y;(z) in C' which
are of the form (10) and have no common zeros. With the aid of these func-
tions, we get by theorem 5 a linear representation of any function in B. The
proof of theorem 6 is thus complete.
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6. As an illustration of the function-theoretic significance of theorem 6, we
make an application to the Pick-Nevanlinna interpolation problem.

Let S = {a,} be an infinite sequence in |z|<C 1. It is well-known that if there
exists an analytic function F(z) in |2{<C1 such that

2n

(11) [log| F(ré®)|d6 = 0(1), r—1,

which vanishes on S without vanishing identically, then there exists a function
of the same kind in B; the condition on S is given by

(12) Sa—lal)<o.

We can then ask the following more general question: given a function F and
a set S, when does there exist a bounded function which takes the same values
as F on S? Unless F is bounded, it is evidently necessary that (12) converge.
We must also introduce some condition which ensures that F is bounded on S.
We shall here prove the following theorem. .

Theorem 7. Let S be a given set such that (12) holds and suppose that arg a,
belong to a closed set E. If the function F(z) satisfies (11) and if furthermore

lim |F(z)| < oo, Q€E,

2t 0

then the interpolation f(a,) = F(a,), {€B, is possible.

F(2) can be represented as the quotient of two bounded functions ¢(z) and
¥ {z), where 9(z) has no zeros, We may furthermore assume that w,(()>0 on
E, since F(z) is bounded in a neighbourhood of E. If now

> oa,—z2 @
(2 =zH — @ 0
() : 1“Zdy|a7|, 1/.5é 3

then u, + p, 0 in |a| < 1. By theorem 6, functions p and ¢ belonging to B
exist such that :

PRy () + ¢(2)n(z) =@ (2).
For z = a, we have

p(w) = 22 < P ),

~—

p(2) is hence a solution of the interpolation problem.

Tryckt den 2 september 1952

Uppsala 1952. Almqvist & Wiksells Boktryckeri AB
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