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On bounded analytic functions and closure problems 

B y  L E N N A R T  C A R L E S O N  

I n t r o d u c t i o n  

1. Let  us denote by H ~, p > 1, the space of functions /(z) holomorphic in 
]z I < 1 and such tha t  

2~ 2~t 

N.(/) - !ira I {2~ f I/(re'o) l'dO}" : {2~/' /(eiO)l 'dO} ~ < co, 
o o 

where / (e  ~~ = lira / ( r e  t~ a. e. I t  is obvious tha t  H p is a Banach space under 
r + l  

the norm N, .  I f  we combine the wellknown representation of a linear func- 
tional on L" (0, 2 ~) with a theorem of M. Riesz on conjugate functions, we find 
that  the general linear functional on H ' ,  p > 1, has the form 

23 

(1) L(/) = f /(e~~176 g6H q, p-' + q-l= l. 
o 

The simple structure of the general linear functional on H p is the key to a 
great number of results for these spaces. 

The "limit" space" as p--> c~ is the space B of bounded analytic functions 
in [z I <  1 with the uniform norm 

(2) I I / l l  = sup 
I z l < l  

Although this space has a simpler function-theoretic nature than H p, its theory 
as a Banachspace is extremely complicated. This fact depends to a great extent 
on the absence of a simple representation, for linear functionals. On the other 
hand, B is not only a Banach space, but  also a Banach algebra. 

I f  one seeks results for B which for H p depend on the formula (1), the fol- 
lowing question should be asked: how shall we weaken the norm (2) in B in 
order to ensure that  the functionals have a representation of type (1)? In  the 
first section we shall t reat  this problem by  introducing certain weight functions. 
The method will also be used to find a function-theoretic correspondance to 
weak convergence on a finite interval. 
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In  the second section, we shall consider a closure problem for B where the 
relation between B and its subring C of uniformly continuous functions will be 
of importance. Finally, we shall make an application of the results to the Pick- 
Nevanlinna interpolation problem. 

Section I 

2. Vfhen we look for functionals on B analogous to (1), there are two essen- 
tially different possibilities: we may take for g a function in H 1 or in L 1 (0, 2 z). 
These representations are fundamentally different since the above-mentioned 
theorem on conjugate functions fails for p = 1. Let us call the two types of 
representations (A) and (B): 

2~ 

(A) L(/) = f /(e~~176 geH1; 
0 

2 ~  

(B) L(/)=f/(e~~ geL~(0,2~). 
0 

In the sequel, let # (r) denote a continuous function on 0 _< r _< 1 such that  
0 <-- #(r)  --~ 1 and/~(1) = 0. Furthermore, let C, be the space of functions analytic 
in [z I <  1 such that  l i ra / ( re i~  = 0 uniformly in 0. If  we introduce the norm 

r §  

II/I1,  = (r)II(re 1, 
C~ becomes a Banach space. 

By means of the weight functions #, we can now solve our problem. Let  us 
first consider functionals of type (A). 

T h e o r e m  t .  Every linear /unctional on C, has on its subspace B a representa- 
tion o/ the /orm (A) i/ and, only i/ 

] <c~.  (3) lira # (r) log 
r §  l - - r  

Let  us first assume that  condition (3) is satisfied, and let L (/) be a linear 
functional on C,. By a theorem of Riesz-Banach, there exists a function a(z) 
of bounded variation in [z I <  1 such that  

L( / )  = l e G .  
I z [ < l  

I f  now / 6 B  and is represented by its Cauchy integral, we find tha t  if 

f f (l l) 
Izl<~ 

and if Lo(/) is the functional of type (A) defined by  this function, then 
lim Lo (/) = L (/). I t  follows for e < 0' < 1 
0 - 1  
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l i -~  N l ( g e - - g ~ ,  ) < C o n s t .  s u p / z ( r )  l o g  1 li--m f.,1f f l d a ( z ) [  = O. 
~.e,- 1 = r < l  1 - -  r Q.~,*I , .  

Hence gEH 1 exists such that  N I ( g - - a q ) ~ 0 ,  e -~ 1, and the functional of type 
(A) defined by this function g coincides with L on the space B. The first part 
of the theorem is consequently proved. ' 

If, on the other hand, (3) does not hold, there exists a sequence {r,}~, rv t l ,  
such that  

1 
F~ F (r~) log 1 - - r ,  

We then form the following expression, which is easily seen to be a linear func- 
tional on C~: 

o o  

L(/) = ~,/(r,)#(r,),L. 
Y = l  

{2~}~ ~ is here a sequence of positive numbers such that  
oo 

2 , < c ~  and ~ ,F,  = c~. 
Y = I  

For / belonging to B, we have L( / )= Iim Ln (/), where L~ is the functional of 
n ~ c o  

type (A) defined by the function 

g. (z)  = g7~ 

Let us now assume that  the functional defined above has a representation 
of type (A) on B. If h(O) is an arbitrary function with continuous derivative 
and period 2~, then 

2 ~  2 ~  

(4) li.m f h  (0) ~ (e' 0) d 0 = f h  (0) g (e' o)d O. 
0 

Namely, if )~(0) is the conjugate function of h, neither side changes its value 
if we add i)~ to h. Bu~ for h + i]~, (4) holds by assumption. For ~ > 0 ,  we 
choose a non-negative periodic function ha(O) with continuous derivative such 
that  h 0 = 0  for - - c < 0 < 0 ,  h ~ < l  for all 0 and h o = l f o r O ~ < 0 < c < a .  By 
(4), we have 

2~t 

limJSm fh~(Ola,(e'O)dO] < oo. 
a * o  "n*~ 6 

Going back to the expression for g~, however, we find 

2 ~  

GI limz= { f h , ( o ) ~ a o }  t >__ 
6 * 0  ~n+oe 0 

> Const. lim /* (r, > Const. 2,F, = oo. 
~.o , =x  1 - - r , O  = 
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This contradiction proves the theorem. 
3. I t  is very easy to see - -  in the same way as above, if we represent the 

functions in B by  Poisson's integral instead of Cauchy's - -  tha t  the following 
theorem is true for functionals of type (B). 

T h e o r e m  2. The /unctionals on C, have a representation o/ type (B) on B ]or 
every choice o] the weight ]unction re. 

This theorem is a particular case of a more general result which we shall 
now briefly discuss. 

Let  D be the Banach space of bounded functions ~(x) on (0, 2~r), where we 
have introduced the uniform norm II ~ II. With every function in D, we associate 
the corresponding harmonic function in the unit circle 

2?t 

1 f 1 - -  # x) ~ (x) d x, u~= u(z; q~) = ~ 1 + # - -  2r cos (O-- z = r e  ~~ 
0 

Let D* be the space of these functions u. 
Suppose now tha t  S is a linear subset of D and that  S* is the corresponding 

subset of D*. If  S is the weak closure of S, the following theorem can be 
proved. 

T h e o r e m  3. A /unction VJ(x)ED belongs to S i] and only i], /or every weight 
/unction tt (r) and every e ~ 0, a ]unction q~ES exists such that 

(5) 

Let us first assume that  the above approximation is impossible for some tt (r). 
Then u~. does not belong to the closure of S* in the metric of D$, where D~ 
is formed by  harmonic functions in the same way as C, was formed by ana- 
lytic functions. We conclude that  a functional L* on D~ exists which vanishes 
on S* and does not vanish for uv. As before, we have a representation on D* 

(6) L* (u~) = f f  u (z; 4 )#( ]  z I)d(r(z), 
I z l < l  

where a is of bounded variation in I z l <  1. If  we insert the Poisson integral 
for u~ and change the order of integration, we get 

27t 

L* (u~) = f ~ (x) K (x) d x, 
0 

where K(x)  belongs to L 1 (0, 2z t). Hence yJ does not belong to S. 
In  the proof of the converse we shall use the following lemmas. 

L e m m a  1. I] K (x) belongs to L 1 (0, 2~r) and 

ao (7) K(x)  ~ ~ + 2..(a~ cos nx  + b~ sin n x ) ,  
T -  
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there exists a sequence o/ positive numbers A~ with lim A~ = o0, such that /or 
n ~  oo 

every sequence {/~}~o o/ positive numbers which is increasing, concave and saris/ice 
~ g A ~  

(8) a~ -~ + ~= (a~ cos n x + b= sin n x) 

is a Fourier-Stiehjes series. 

L e r a m a  2. Given a sequence o~ positive numbers a~, lira a~ = O, there exists a 

non-negative ]unction h(t) in LI(O, l) such that 
1 

a~ ~-- b~ = f tnh(t)dt; 
0 

h (t) can ]urtherraore be chosen so that {b~ 1} is a concave sequence. 
To prove lemma 1, we need only observe tha t  the Cesaro mean of (7) con- 

verges in mean to K(x)  and make repeated use of partial  summations in the 
series (7) and (8). The proof of lemma 2 is completely straight forward. 

We return to the proof of theorem 3 and assume that  there exists a func- 
tion K(x)  in LI(0, 2~) so tha t  

2~ 

f K(x)~(x)dx = O, ~eS, 
0 

while the corresponding integral for ~ is different from zero. From lenimas 1 
and 2 we deduce that  K(x)  has a representation 

2~ f 1 - - r  2 0) dr (0 ) '  K(x)  = 1.i.m. ~ h ( r ) d r  
Q.1 d l + r  2 - 2 r c o s ( x -  

0 0 

where ~ is of bounded variation and h(r) belongs to LI(0, 1). A weight func- 
tion ~t(r) can now be chosen so tha t  / ( r ) =  h(r)#(r)  -1 belongs to LI(0, 1). I f  
we define a by  da(z) = d~(O)/(r)dr,  z = re ~~ it follows by absolute conver- 
gence from our assumption on K tha t  

while L* (u~)#  O. This means that  the approximation (5) is not possible for 
the weight function we have just defined. The proof of theorem 3 is thus com- 
plete. 

As an illustration of the significance of the functionals (A), let us mention 

the following result: if l a~ I < 1 and ~ (1 - - l a~  [) diverges, then for every bounded 
1 

analytic function ](z) in I z I <  1 and every ~ > 0 constants {c~}~ exist so tha t  

I c, < log o-<1 1<1. 
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Section II 

4. We shall in this section study a problem which is connected with the 
fact tha t  we can multiply two elements in B, i.e. tha t  B is a Banach algebra. 
I t  should be stressed that  some of our results are easy consequences of a gen- 
eral result on Banach algebras - -  this is in particular true of theorem 5 -  but  
it is necessary for applications to have proofs of classical nature, x 

We star t  with the following closure theorem for the subspace C of B of uni- 
formly continuous functions. 

T h e o r o m  4. I /  /i, /2 . . . . .  /n belong to C, then {zk/m(z)}, m = 1, 2 , . . . ,  
n; k = 0, l . . . . .  is /undamental on C i] and only i/ 

(9) I/1(01 + I/2(0l + . . .  + I / = ( 0 1 ~ o ,  I~1 -< 1. 

We shall prove the theorem in the case n = 2; the general case is treated 
quite similarly. 

Let  L (/) be a linear functional on C which vanishes on the subspace E spanned 
by  the given functions. The representation 

2~ 

L(/) = f l(e'~ 
o 

follows from the corresponding result for the space of continuous functions on 
(0, 2~!  without difficulty, since the spaces are separable. We thus have 

27t rt 

j 'e  t ko/, (e,O)d,u (0) = re '  ~~ (0) = 0 
9 0 

k = O, 1 , . . . .  
2~t 2 ~  

f e'~~162176 = f r176 = o 
o o 

From these relations it  follows by  a theorem of F. and M. R'IESZ 2 that  #1 and 
/t 2 are absolutely continuous functions. We then immediately infer from our 
assumption (9) tha t  also /t (0) is absolutely continuous. Hence K(O)eLI(O, 2~r) 
exists so tha t  

27t 

j K(O)/m(e'~176 r e = l ,  2; k = 0 ,  1 , . . .  O ~ 

0 

This means tha t  K(O)/m(e ~~ is the boundary function of an analytic function 
Fm (z) which belongs to H 1 and satisfies F~ (0 )=  0. Furthermore,  

K (0) = lim - ~ '  a.e., m = 1, 2. 
,.1 ira(re ) 

1 See I. GELFAND and G. SILOV: ~ b e r  verschiedene Methoden der Einfi ihrung der Topo- 
logie in die Menge der maximalen Ideale eines normierten Ringes. Mat. Sbornik 9 (1941). 

See e.g. ZYGML~): Trigonometrical series, Warszawa-Lw6w, 1935, p. 158. 
s For  the following, see BEURLING, A.: On two problems concerning linear t ransformat ions  

in Hilber t  space. Acta Math. 81 (1949). 
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I t  follows that  Fl(Z)/]l (z) and F2(z)//s(z ) in Iz l<  1 are two different represen- 
tations of one and the same meromorphic function H(z). By assumption (9), 
H(z) is holomorphic and belongs to H 1 and its boundary function coincides a.e. 
with K (0). For an arbitrary function ] in C we thus have 

2y$ 

L(]) -=-fH(e~~ = 2~rH(0)/(0) -~ 0 

since H ( 0 ) =  0, and we can conclude that  E = C. 
If, o n  the other hand, (9) does not hold, the functions /m (Z) must have a 

common zero in I z l g  1 and only functions which vanish at  this point can be- 
long to E. 

As an immediate consequence of theorem 4 we get the following result. 
k 

T h e o r e m  5. I/  (9) holds, then /or every g EC, ]unctions ~gx, 792 . . . . .  ~,  in C 
exist such that 

n 

(10) ~ p, (z)/, (z) -- g (z). 
I ,=1  

I t  is clearly sufficient to prove the theorem for g z) - -1 .  By the theorem 
above, polynomials P,  (z) can be chosen such that  I1 F( § 111 < �89 where 

F (z) = ~ P, (z) 1, (z). 

In particular, ] F (z)[ > �89 i n  I z ] < 1. We see that  our relation is satisfied if we 
choose ~, (z) = P,(z)/F(z). 

For later applications, we observe that  the result holds for an arbitrary simply 
connected domain bounded by a Jordan curve - -  the analytic function which 
maps such a domain onto the unit circle is continuous on the b o u n d a r y -  a n d  
also t h a t  even in this more general case, polynomials P,(z) exist such that  n p  
1 ~  , (z)], (z ) [~  ~ > 0 - -  this follows from a known approximation theorem of 

Walsh, 
5. We shall now use theorem 5 to prove an analogous result for the space 

B. We must in this case replace conditio~ (9) by a stronger assumption and 
we introduce the following notation. For a given function / in B and an ar- 
bitrary a in la I < 1 ,  let us use the notation 

/zl (a) = lim 1/(z)l ,  

where, for l al  1 ,  we have to approach a from inside the unit circle. 

T h e o r e m  6. I /  E is a sub/amily o/ B such that /or every a, l al < 1, f e e  
exists sueh that tq(a) ~ O, then any [unction g in B has a representation (10), 
where /, belongs to B and ~, belongs to B. 

For every a, l a l  = 1, there is closed interval A around a and a function [ 
in E such that  /~r(r  for lEA.  We cover [z I = 1 by a finite number of 
these intervals A1, As . . . .  , Am, A, = (e *~-, e~a,), and assume that  
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0 < 7.1 < /~m < q'2 <~ /~1 < g3 < /~2 < " �9 " (mod 2 ~). 

Le t  /~ be the function in E which corresponds to A~. 
Since l/,(z) t-->/~ > 0 in a neighbourhood of A,, there are functions w, in B 

such tha t  g~ (z )=  w~ (z)./~ (z) are analytic and r 0 on A~. Let  us now choose a 
number 7 so tha t  ~ < ~ < fl~. We construct a function ql (z)eC such tha t  

I q~ (r176 I = 1 on ~1 -< o -< 

]ql(e~~ < 1 everywhere 

[ ql ( e~ 0) I -< e on 0 --< ~1 - -  e and 0 ~ fll (rood 2~),  

where ~ > 0 will be determined later. We may furthermore assume tha t  ql (z) ~ 0. 
A similar function q2(z) is constructed for A~ with ]q2(e~~ = 1 on (7, f12)- We 
next  consider the functions 

P1 (z) 
= ql (~)" gl (~) -+ q2 (~)" g~ (~). 

F2 (z) 

For ~ sufficiently small we obviously have /~F1 ($) ~ 0 on (~1, ~2) and on (fil, fi2) 
and similarly for P2- On the rest of the interval (~1, f12), i.e. on (~2, ill), F1 
and F~ are continuous and have no common zero, since such a zero would be 
a zero for F 1 _ F 2. We can as before multiply F~ by a function H~, which be- 
longs to B, so tha t  G~(z) = Fi(z)H~(z), i = 1, 2, is continuous on (~1, f12). We 
may  also assume tha t  Hf ( z ) ~  0. The new functions G~ are continuous in a do- 
mum D: %~<r~<1,  ~1 -< argz<--fl2 and in D we have 

By the remark of theorem 5, polynomials P1 and P2 exist such tha t  

~1 (z) = P1 (z). C a (z) + P~ (z). G~ (z) 

does not vanish on (al, f12). 
In  our original situation we can thus use ~01 instead of /1 and ]~, and A~ in- 

stead of A1 and A~. We continue the same process, which (~nly consists in the 
forming of linear combinations, and we finally obtain a function ~0E C which 
is of the form (10) and does not vanish for [z]>~e.  

In  the same way as above, we construct a function ~0 of the fo rm (10)such 
tha t  ~o (z) ~ 0 in ] z [ --< 0', 0' > e. Finally, we consider the functions 

~1 (z) 
= ~0 (z) _+ K ~ (z) .  

~ (z) 

If  the constant K is sufficiently large, then /re, (a) ~ 0 for [a I ~ Q, and we see 

as before that  61 and 62 have no common zeros. After multiplication by suit- 
able, non-vanishing functions in B, we obtain two functions ~o~ (z) in C which 
are of the form (10) and have no common zeros. With  the aid of these func- 
tions, we get by theorem 5 a linear representation of any function in B. The 
proof of theorem 6 is thus complete. 
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6. As an illustration of the function-theoretic significance of theorem 6, we 
make an application to the l~ick-Nevanlinna interpolation problem. 

Let  S = {a~} be an infinite sequence in ]z ] < 1. I t  is well-known that  if there 
exists an analytic function F(z) in [z I <  1 such that  

2g+ 

(11) f l o g l F ( ~ e ' ~  = 0(1),  r ~  1, 
o 

which vanishes on S without vanishing identically, then there exists a function 
of the same kind in B; the condition on S is given by 

(~2) ~ (1 - l a y  I) < ~ -  
1 

We can then ask the following more general question: given a function F and 
a set S, when does there exist a bounded function which takes the same values 
as F on S ? Unless F is bounded, it  is evidently necessary that  (12) converge. 
We must also introduce some condition which ensures tha t  F is bounded on S. 
We shall here prove the following theorem. .  

T h e o r e m  7. Let S be a given set such that (12) holds and suppose that arg a~ 
belong to a closed set E. I /  the ]unction F(z) satis/ies (11) and i~/urthermore 

l i~0l F(z)I  < c~, OeE, 

then the interpolation /(a~)= F(a~), / eB ,  is possible. 
F(z) can be represented as the quotient of two bounded functions ~ (z) and 

(z), where y~(z) has no zeros, We may furthermore assume that  ,u~(~)> 0 on 
E, since F(z) is bounded in a neighbourhood of E. If now 

g ( z ) - ~ Z ~ l _ z a ~ ] a ~ l ,  a ~ O ,  
1 

then /~ + / ~  ~ 0 in l a]_~ 1. By theorem 6, functions p and q belonging to B 
exist such that  

For z = a~ we have 

p (~) ~ (~) + q (z) ~ (z) --- ~ (~). 

p (a~) ~(a~) "F(a,) ;  
yJ (a~) 

p(z) is hence a solution of the interpolation problem. 

Tryckt  den 2 september 1952 

Uppsala 1952. Almqvlst & Wiksells Boktryckeri AB 
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