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Integration of Fokker-Planck’s equation in a compact
Riemannian space

By Kosaku Yosipa

1. The result. Let R be an n-dimensional compact Riemannian space with
the metric ds® = g;; (x)d«’d«’, and consider a temporally homogeneous MARKOFF
process on R for which P (¢, z, y), t > 0, is the transition probability that the
point z be transferred to y after the elapse of ¢ units of time. We assume
that P(t, «, y) is continuous in (¢, z, y) and hence satisfies SMOLUCHOVSKI’s
equation

(1.1) Pt+s, zy) = fPt z, 2) P (s, 2z, y)dz (t, s >0),

where the volume measure
dz=Vg@)dz...dz", g(z) = det [g;(2)],
and the probability hypothesis

(1.2) P, z, y) [P(t z, y)dy=1.

The “continuity” of the transition process P (t, z, y) may be defined as follows.!
Let L'(R) be the Banach space of functions f(z) integrable with respect to
dz over R. There exist functions f(z) dense in L'(R) for which the so called
FoxkER-PLANCK equation holds:

2)= [@) Pty 2)dy (t>0),
R

(1.3) ftf(t ) =A@ z)(t 2 0),
1(0, 2) = f (),

where the operator 4 is defined by

! A. KoLMoGoRrROFF: Zur Theorie der stetigen zufélligen Prozesee, Math. Ann. 108 (1933).
W. FerLEr: Zur Theorie der stochastischen Prozesse, Math. Ann., 113 (1937).
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08 e = Gl VoGa ) /@) +
1 ij
+ o S Vi@t @) @)

with a positive definite quadratic form b%/ () &; &;.

The purpose of the present note is to show that, under certain continuity
assumptions on a (z) and b(z), we may integrate (1.3) in the following manner:
there exists ome and only one one-parameter semi-group (U}, 0 <t << oo, of
linear operators on L' (R) to L'(R) such that:

(1.5) UiUs=Uirs (t,s20), Uy=1=the identity;
(1.6)  strong im U,f= U, f for f€ L' (R);

t—t,

(1.7) strogg lim é[Ut+3—~ Ulf=AU,f for { in a dense set in L'(R), A
-0
denoting the closed exiension of the operator A ;

(1.8)  4f f(x)€L*(R) s non-negative, then f(t, ) = (Uf) (i) is also mon-nega-
twe and || Ui f||, = flf(t, z)|dz = f|f(w)|dw= [l ]Iy (Ur may be called
R R

a transition operator on L'(R) to L*(R)).

The method of proof is based upon the theory of semi-groups of linear
operators due to E. HirLe' and the author®? according to which the operator
U, satisfying (1.5)—(1.7) 1s unique and may be given by

(1.9) U= strong lim exp [t 4 (I —n-1d)"]f=
= strong lim exp [tn (I —n~14)"1 —I]},

n— o0

tf In=( — n‘1A~)'1 exists and is of morm <1 (n=1,2,...).% The condition
(1.8) is implied by the fact that the I, are transition operators since

exp (tAI,)f = exp [at(In — I)}f = exp (— nt) exp (ntln)f.

These results may be considered as an extension of the case in which R is
the surface of the three-sphere.?

! Functional analysis and semi-groups, New York (1948) Chap. 12.

2 On the differentiability and the representation of one-parameter semi-groups of linear
operators, Journ. Math. Soc. Japan, Vol. 1, No. 1 (1948), 15—21.

* Cf. E. Hure, loc. cit., pp. 403—407, where the case of the n-dimensional euclidean
space B and of constant a(x), b (x) is treated. Cf. also K. Yo0sipa: An operator theoretical
treatment of temporally homogeneous Markoff process, to appear in the Journ. Math. Soc.
Japan, where the case of one-dimensional euclidean space R and non-constant a (z), b (x)
is treated.

* K. Yosma: Brownian motion on the surface of the 3-sphere, to appear in the Ann.
of Math.
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2. Hypotheses and proof. The operator 4 may be written as

ey une = Vi@ e |+ ew kv e@ie,

We assume that

(2.2)  g(x), b(x) and thewr first derivatives, ¢ () and e (x) are all continuous in R;

(2.8) b9 (x)&& 2 al Z & with a positive constant a.
3

Then the formally self-adjoint operator

{2.4) [Vg(x) b @) 5 ]
Vg( z) 0
has a hypermazimal extension H and, since R is without ‘boundary,
o I 0}‘ of <
2.5 @hh=— [ il tLazso.
R

Qur process of integration may be carried out in two steps.

The first step: I, exists as an operator on L®(R) to L% (R) for large n

Proof. Since H satisfies (2.5), (I —n™! I~1)*1 exists with the norm
I — o H) e 5 1
as operator on L%(R) to L®(R) (n=1, 2, 3, ...). Hence the range
{hy h=(I —n"'H)f, f€ domain D (H) of H}
is dense in L?(R). When h= (I —n~1H)f, we have, by (2.4) since

=By <1,

-”*f e ris [ (7] asf

[ funll o

[
——
Q
\ \__\.‘

| 3t )Wx}' Ln ],

where
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02 —n Y Hf, h=—(H+ Mk H|T—nH ]S
+ Rl —n" H)" Rl < 2|2 ]
so that

. 0 ~
~1gi () - (] — n-1 -1
‘n ¢tz (?xi(l n~TH)"1h

. 3
< [2an—1fz [ci(x)]zdw] 12 ]ls -
2 - I i
We have also _
lIn-te —n-tH) " hll = n~tsup [e(@) | | 2]
Therefore, since {h; h = (I —n~1H)f, f€ D (H)} is dense in L?(R),

2.6) ||n K|y <1, (Kh)(2) =¢ (x)g%(l —n~VH) 1h(z) +
+e@) (I —n 1 H) h(z),
provided

(2.7 {2 an~1 [ Z [¢f (x)]zdx}* +nlsup |e(x)] <1.

R

Hence (I — n’llz)‘l exists and the range {g; 9= (I —n 'K)h, k€D (K)} is
dense in L?(R) if (2.7) is satisfied. Therefore

%—n“lef, fED(H)}

={g9g=1—n"14)f, feDH)}

{g; g=IT —n'H)f —n 1

is dense in L?(R). Since |[n K|, <1 and [[(I —n*H)"![}; £ 1, the solu-
tion f of

g=( —n14)f with ([ —n'Hyf=h, (I —n'K)h=g
satisfies
IFlle S N —n Bkl < Nkl S 1 — 072 K)ol <
< —n 1K) e ol
Thus (I — n~1A)~! exists as a bounded operator on L?(R) to L?(R).

The second step: Let f(x) have continuous second order derivatives and put
f (@) —n"1(Af) (&) =g (z), then, if n > sup |e(x)|, we have

flxg) 2 [1 —n e ()] 19 (%) for some x,.
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. .. .0
Proof. Let f(z) reach its minimum at z = x,. Since Eé (xo) = 0, we have

s P f 1 .
[ (@g) — n~1 8% (2,) oz o (To) — n ™" e (o) f (%0) = 9 (%),

that is,
f (o) [1 — n~te(xo)] Z g (o) .

Moreover we have
[t@de= [f{@)dz—n" [(4f)@)dz=[g@)do
R R R R

since R is without boundary. Thus if the sequence {g.(z)} tends L>-strongly
to a non-negative function g (z) € L?(R) < L'(R), the corresponding functions
fn (x) must tend to an almost everywhere non-negative function

foo (z) € L* (R) < L*(R) and |[feo |l = [l 9= Il -
Since L?(R) is L'-dense in L (R). I, exists as a transition operator on L' (R)
to L'(R) if » is sufficiently large. By formula (1.9), U: exists as a transition

operator satisfying (1.5)—(1.8). Thus the integration process has been carried
through.
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