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On a class of orthogonal series
By H. Borman
1. Let {@.(z)} denote a normalized orthogonal system, defined in the inter-

val (a,b) and belonging to the class L2. The famous theorem of RADEMACHER-
Men~crOFF [1:162] tells us that

s

@n Pn (2)

n=1

1s convergent almost everywhere in (a, b) if

o0

Z (log m)? <<oo.

Conversely, if Xay (log n)? = co then it is possible to find a system {gn} for
which 2'a,@n is divergent almost everywhere.

In order that
Z ay, < 00
n=1

should be a sufficient condition for the convergence almost everywhere of the
series it will thus be necessary to specialize the orthogonal system. KoLMOGOROFF
has found that if {@,} is a system of independent random variables, then
Zan << oo is a necessary and sufficient condition for the convergence almost
everywhere of the series. The object of the following paper is to generalize
slightly this result of KormMogoRroFr.

2. In dealing with questions of this kind, the theory of the torus space seems
to be very useful. Following JEssen, who made the first systematic study of
this space, we denote it by Q..

Qo is an w-dimensional vector space, consisting of all infinite sequences of

real numbers &= (2y, 5, ..., Tn, ...) Where 0 <z, <1 for n=1, 2, .... The

subspace @, consists of the points &, = (;, @y, . . ., Z»). In the same way Qn, o

consists of the points &, ., = (xn+1, Znig, . ..). We may then consider ¢ as the

?rodzlct space Qo = (@n. Qx, ). In accordance with this notation we may write
- n, n, m)

The following two theorems of JESSEN are fundamental for the theory.
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If (&) is an integrable function in Q. then

1 1
2.1)  [fBdi=lim [{@dé&=1lm [dz.[dan [{Edn
Qu "2 Q n—® g 0 0
and

(2.2) lim ff(f)dfn, w=1(£) almost everywhere.

n—- Qn,m

3. Tt is easily seen that an enumerable set of independent random wvariables
may be represented in @, as a system of real functions with the following
property.

If fu(é) for n =1, 2, ... denotes a random variable then f, (&) = fu(xs), i.e.
for each n fn(&) depends only on zy.

Having noticed this fact we can state KorMoGgoro¥F’s theorem in the following
form.

Let {@n(&)} denote a normalized orthogonal system in Q. and suppose that
@n(E) = pu(xs) for each n [111: 141]. Then the series

s

An Pn (ftn)

n=1

converges almost everywhere in @, if Xan << co but diverges almost everywhere
if Xa,=o0.

The first part of this theorem may be proved as follows.

By the Rirksz-FiscHER theorem the partial sums

N
D) tn @ (2n)
n=1

converge in mean to a function ¢ (&).
By theorem (2.1) [II: 286]

N
[@© déx.o =2 angn(an)
n=1

QN,w

and hence by theorem (2.2)

lim Z“” ©n(22) = @ (&) almost everywhere.

Well-known examples of orthogonal systems of this type are

-+ 1 lf 0 < In <
a) RADEMACHER’s system {r,(£)}, [I: 42], where rx{&)={ 0 if z,=0 or

O 20l

b) The system {6 (&)}, [I: 134], where 6, (&) = ¢*™*".
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4. Let {@n(zn)} be a normalized orthogonal system of the type just mentioned.
We will now define a new system of functions {y.(£)} in the following way.

Let

n:81+822'l’ 8322+"'

be the expression for » in the dyad scale. If ¢, is 1 for ¥ =, vy, ... and
0 otherwise, we denote by wn(&) the product

P, Pry Py (pq'k'
By virtue of Fusint’s theorem

. 1 1 1
Jw@de= [gdz, [gdz, - [ghde, =1
Qu 0 0 0

and hence {y,(£)} is normalized. It is also orthogonal. For

wan(f)-wm(e)dé

may be expressed similarly as a product of integrals, one of which, at least, is
of the form

1
frpkdwk= 0.
0

Starting for example with RADEMACHER’s system {rn}, [1: 132], we obtain a
system {y,}, which is easily identified with WALSH’s system.

5. In this and the following sections we will deduce some theorems concerning
real orthogonal systems of the type {yn}.

5.1. We define the distribution function for a measurable function @ (x) as
Fiy=mE (p < 1)

_ S}lppose that the distribution function of each @n is continuous. Then X any,
is either convergent almost everywhere or divergent almost everywhere.

To prove this theorem, we-make the following purely formal decomposition
of the- series

oK

(-]
. . N
S—Z On Yn = Q2rti P+l + 4\_, A2nYPon =
%=1 n=0 n=1

/8

i

=¢1(@1) D) azni1Y2n + D) G2n Yra = g1 S; + S

n=0 n=1

where S; and S, are independent of 9.
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If S and S, are convergent, then S; is convergent. If S is convergent but
S, divergent, then S; is divergent. If a and B were two different values of ¢,
for which the latter case would occur, then (o —f)S; would be convergent,
contrary to the hypothesis. Consequently, for each &; . there is at most one
such value a. According to our assumption the distribution function of ¢, is
continuous; hence m E (¢, = a) = 0.

We can therefore state: If S is convergent in a set E, both S; and S, are
convergent almost everywhere in E. This may also be expressed in the following
way: The measure of F is independent of z,. S; and S, are, however, orthogonal
series of the same type as S. The argument may be applied once again; mK
is independent of z,. We proceed in that way and obtain:

For each n, mE is independent of x;, 7y, . . . Z». By an important lemma of
JESSEN m E is then either 0 or 1 [II:270].

5.2. Consider again a system of the type {@n}. ]
As coefficients for the series we choose a system of funetions {f»}, belonging
to L? and with the property
fn=Ifn(xy, T9, . . ., 2n_1) for every n.

Let S, for =1, 2, ... denote the partial sums

figr + fapa + -+ foos
and Ex the set where

bound (|81}, 18}, - -, |8xl} >
S [ra:

= ]Qm

then

mEy <

To prove this, let B, be the set where |S,| > ¢ and Bz the complementary
set of B,. We may evidently write [IL: 275, T1I:141]

Ey=B,+ByBi +ByBSBi + - + By By_1 By—2 - Bi=4A,+ Ay + g+ - +Au.

According to our hypothesis 4, is for every » a cylinderset in §, with its
base in Q.

& m Ay <f;vnd§<fsndg+szv—sn2d§ [ 8xde.
Ap

Adding these relations for n =1,2,... N, we get
N
e2mBy < [Sydé< [Syde= 2 [fd
Eyx Qc) v=14,

The inequality is thus proved. The method of proof also gives the following
extension.



ARKIV FOR MATEMATIK. Bd 1 nr 2

Let ¢ be a function of the variables
TN+1, TN12, - .. only, i e. g=g(xNi1, Zyt2, .. .)

and let Exy be the set where

bound {[g8,], [9S,], ..., [98n]} > &
then

5.3. We return to series of the type Xa,y, and denote their partial sums
by oy, 1. e.

¥
y

Oy = ZJ Ay Yo
v=_0

It is easily seen that the subsequence o, is convergent almost everywhere, if
2a, < oo,
Since o, converges in mean to a function ¢ and

fadf = O,N
QN,U)

we have by JESseEN’s theorem (2.2)
lim 6,5 = o almost everywhere.

6. We will now denote a function ¢ by y® if it has k factors. We then
divide the system {y,} into partial systems

(¥} E=1,2,3, ...

In each partial system the indices of the functions are changed, while the
mutual order is kept unaltered.

We can now deduce the following theorem.

If Xa, < oo, then the series

/8

@ ' F)

n=1

it

is convergent almost everywhere for every k.
This can be proved by induction. For k=1 the theorem holds true, and
raoreover we have the following inequality (cf. 5.2)

v
Sa

=1

| —

m B {bound {|50]} > ¢} <

1=v=N

< o

2

[«
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Suppose that the theorem holds for % and that

m B {bound {| S8} > kef <E 3 S,

1=+<N g2 — 1

Under these assumptions we can prove the theorem for % -+ 1.
By using the same method of proof as in 5.3 it is easily seen that the se-

quence Séﬁill)ﬂ) is convergent almost everywhere, when » runs through 0,1, 2, ...

and (k+1+v) k+1+49)!

v (k+1)lo!
for (k+ : +”) < (k 2E) the functions Sy "' — Sk 14,y are of the form
v v+1 (1t
ne (BN

Prt2+v Z ("“”)Jr wk)'
u=1
k+1+w
+1
The characteristic function of E, is denoted by f(E.)

The upper bound for these ( functions is greater than ke in a set E,.

mkE, = f.f nd&= fdwk+2+off A ALy - ATkr140 @ Thr340 -

0 (Qr+1+4 @pr2- », o

According to our assumptions the second integral is less than

k-!—l—!—v)
L »=1
., 5 ,
(,Pi?:+«r+2 o Z d(zk+1+w)+,b
& =1 v o
and hence )
EL14 k14
k ( »41 1’) k ( 4‘+711)
Al -
mkE, < 2 2 a; k+1ﬂ - [%+2_ dapror, = — Z a'k+1+w) .
& = ( =1 A

Z mE, is thus convergent; hence m I = m lim sup B, = 0.

’ Choosing »(n) so that
E+1+ 2(n) k+2+v(n))
i B (e

. B {E+1
lim sup |Sk+1—8 k+1)+wn))
n— 0 vi{n)

we get
< ke almost everywhere.

¢ is arbitrarily small, and hence

lim S+ = lim S[(’;;ill)ﬂ.) almost everywhere.

7 — oo ?— 00 v
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To prove the inequality for %k -+ 1, observe that the above proof gives the
following relation.
Let E; be the set where

(F+1)
1bound. |S"‘ -8 (ki1+1-(n>) }>e
<pn<N

then
¥
AR
mE; < o Z a,
py=1
Next we have
k-!-]-!—v)
1
)}

SEY,, Sg;ci?w) = Qrioty Z, a'(k+:+v)+[,, wg“)

»+1 u=1

1. e. the sequence

k41
S(kﬁl‘—IJ.-'v 5 v:()y 17 2! LR
)

is of the same type as the sequence S,, studied in 5.2.
Let vy be the smallest integer for which

]C+2+'Vo)
N
( vp+1 =4

and E,; the set where
bound f

0=r=uwn

S(kJ.pw) l} >z

v

then, using theorem 5.2, we get

k+1+w,
1 ( Vo ) 1 N
- “ 2 < = 2
m by < 2 o« @ 2 Z a
€ =1 € y=1

From these relations we obtain the desired result

mE {bound {SEV) >k + 1) e} <

1=n=¥N & y==1
REFERENCES. [I] Kaczmarz & Steinhaus: Theorie der Orthogonalreihen. Warszawa
1935. — [II] Jessen: The theory of integration in a space of an infinite number of dimen-

sions. Acta mathematica 63 (1934). — [III] Lévy: Théorie de l'addition des variables
aléatoires. Paris 1937.

Tryckt den 10 februari 1949.

Uppsala 1949, Almgvist & Wiksells Bokiryckeri AB

19



