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1. Let  {~(x)} denote a normahzed orthogonal system, defined in the inter- 
val (a, b) and belonging to the  class L 2. The famous theorem of RADEMACHER- 
MENCr~OFF [I: 162] tells us tha t  

~ an~n(x) 
r ~ = l  

is convergent almost everywhere in (a, b) if 

a~ (log n) < c~. 

Conversely, if Xa~( logn)  ~ : -  c~ then it is possible to find a system {~v~} for 
which .~anC, Vn is divergent almost everywhere. 

In order that  
oo  

an<- c~ 

should be a sufficient condition for the convergence almost everywhere of the 
series it will thus be necessary to specialize the orthogonal system. KOLMOGOROI~F 
has  found that  if {~v~} is a system of independent random variables, then 
Xa~ < c~ is a necessary and sufficient condition for the convergence almost 
everywhere of the series. The object of the following paper is to generalize 
slightly this result of KOI,Moe~oRoFF. 

2. In  dealing with questions of this kind, the theory of the torus space seems 
to be very useful. Following JESSEN, who made the first systematic study of 
this space, we denote it by  Q(.~. 

Q~ is an w-dimensional vector space, consisting of all infinite sequences of 
real numbers ~ = (Xl, x2 . . . . .  xn, . . . )  where 0 --< xn < 1 for n = 1, 2 . . . . .  The 
subspace Qn consists of the points $~ = @1, x2 . . . . .  x~). In  the same way Qn, co 
consists of the points $~, r = (Xn+I, X~+2, �9 . .). We may then consider Q~ as the 
product space Q~ = (Q~, Q., (,). In  accordance with this notation we may write 

= (~., ~ ,  ~). 
The following two theorems of J~SSEN are fundamental for the theory. 
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If /(~) is an integrable function in Q(o then 

(2.1) f t($)d$ 
Q~ 

and 

(2.2) 

1 1 1 

= l i r a  f / ( ~ ) d $ ~ = l i m  f d x n f d x n - l " " f ] ( $ ) d x  1 
n ~ ZC Qn n ~  or 0 0 0 

lim f ] ($) d ~., ~, = / (~) almost everywhere. 
It ~ OO Qn, (o 

3. I t  is easily seen that  an enumerable set of independent random variables 
may be represented in Q(o as a system of real functions with the following 
property. 

If /~ (~) for n - ~  1, 2 . . . .  denotes a random variable then ]n (~)~ ]~ (xn), i.e. 
for each n /n(~) depends only on xn. 

Having noticed this fact we can state KOLMOGOI~OFF'S theorem in the following 
f o r m .  

Let {~n(~)} denote a normalized orthogonal system in Q~., and suppose that  
~n(~) = ~.(x~) for each n [III: 14l]. Then the series 

• 
a n C f n ( X n )  

n = ]  

converges almost everywhere in Q(,, if L'a~ < c~ but diverges almost everywhere 
if Z a~ = c~. 

The first part of this theorem may be proved as follows. 
By the RIESZ-FISCliER theorem the partial sums 

N 

Z ancfn(Xn) 
n = l  

converge in mean to a function ~0($). 
By theorem (2.1) [II: 286] 

N 

f q)(~) d~,_v,,, ~-- ~.an~n(Xn) 
QN, • n = l  

and hence by theorem (2.2) 

25 

lira ~ an ~n (x~) = T (~) almost everywhere. 

Well-known examples of orthogonal systems of this type are 

a) RADEMACHER'S system {rn($)}, [I: 42], where rn($)~ 

b) The system {0~(~)}, [I: 134], where 0n($)=  e e'ix~. 

{ +1 if 0 < x n < � 8 9  
0 if x n = 0  or �89 

--1 if 1 < x ~ < 1  

14 



.ARKIV FOR MATEMATIK. B d  1 n r  2 

4. Let  {q. (x.)} be a normalized orthogonal system of the type just mentioned. 
We will now define a new system of functions {W~(~)} in the following way. 

Let  

n = e l  + e2 2 + e 3 2 2 q- . - -  

b e  the expression for n in the dyad scale. If e~ is 1 for v = v 1, v2 . . . .  v~ and 
0 otherwise, we denote by Wn(~) the product 

q~- %,~" q,:, -.. %~. 

By virtue of FUBINI'S theorem 

1 1 1 

Qt,j 0 0 0 

and hence {~v~(~)} is normalized. I t  is also orthogonal. 

Q~o 

For 

may be expressed similarly as a product of integrals, one of which, at least, is 
of the form 

1 

f rfkdxk = O. 
o 

Starting for example with RADEMACHER'S system {r,J, [I: 132], we obtain a 
system {~}, which is easily identified with WALsu's system. 

5. In this and the following sections we will deduce some theorems concerning 
real orthogonal systems of the type {yJn}. 

5.1. We define the distribution function for a measurable function q(x) as 

F (t)= m E  (q~(x) < t). 

Suppose that  the distribution function of each q~ is continuous. Then ~an~fn 
iS either convergent almost everywhere or divergent almost everywhere. 

To prove this theorem, w e  make the following purely formal decomposition 
of the series 

S =  a n o n =  a 2 n + l ~ 2 n + l  q- "~ a 2 n ~ 2 n  ~-- 
n = l  n=0 n = l  

= ~ I ( X l )  Z a2n+ l V, g2n q- a2n y)2n = Cfl " S1 -}- S 2 
n=O n = l  

where S 1 and $2 are independent of x 1. 
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If S and $2 are convergent, then S1 is convergent. If S is convergent but  
$2 divergent, then S 1 is divergent. If a and fl were two different values of ~01 
for which the latter case would occur, then ( a -  fl)S1 would be convergent, 
contrary to the hypothesis. Consequently, for e~ch ~ ,~  there is at most one 
such value a. According to our assumption the distribution function of ~01 is 
continuous; hence m E (9l = a) = 0. 

We can therefore state: If S is convergent in a set E, both S1 and $2 are 
convergent almost everywhere in E. This may also be expressed in the following 
way: The measure of E is independent of x 1. Si and S2 are, however, orthogonal 
series of the same type as S. The argument may be applied once again; m E  
is independent of xz. We proceed in that  way and obtain: 

For each n, m E  is independent of Xx, xz . . . .  x.. By an important lemma of 
JESSEN m E  is then either 0 or 1 [II: 270]. 

5.2. Consider again a system of the type {qn}. 
As coefficients for the series we choose a system of functions {/,}, belonging 

to L 2 and with the property 

/ n = / n ( X l ,  X 2 , . . . ,  X~-I) for every n. 

Let  S, for v = 1, 2 . . . .  denote the partial sums 

and E,v the set where 

then 
bound {I S~ l, I $21 . . . . .  I S,v l} > e 

Z f/:d  
~,=1 Q,. 

r u e s  < 
8 2 

To prove this, let Bn be the set where [Sn ] >  e and B* the complementary 
set of B~. We may evidently write [II: 275, III:  141] 

Eiv = B  1 + B~B~ + BaB~ B{ + ... + BN B ) - I  B ) - 2 "  "B{=A1 + A2 + Aa + " + A s .  

According to our hypothesis An is for every n a cylinderset in Q,,, with its 
base in Qn. 

A n An  An An 

Adding these relations for n = 1, 2 . . . . .  N, we get 
/V 

The inequality is thus proved. The method of proof also gives the following 
extension. 
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Let q be a function of the variables 

xlr x~e+2 . . . .  only, i. e. g = g(x~v+l, xs+2 . . . .  ) 

and let Ely be the set where 

then 
bound {[a&l, l a & l  . . . .  , 

mE:v< f g2d~=l Q~, 
~2 

5.3. We return to series of the type ZTan ~vn and denote their partial sums 
by  r i .e .  

zV 

* = 0  

I t  is easily seen that  the subsequence a2n is convergent almost everywhere, if 
Xa~ < co. 

Since q2v converges in mean to a function a and 

f a d s  = 
Q iv , v~ 

we have by  JESSE~'S theorem (2.2) 

lira %N = a almost everywhere. 

6. We will now denote a function yJ by ~0 (k) if it has k factors. We then 
divide the system {~n} iato partial systems 

~)~ . . .  ~ n '  k = l ,  2, 3, 

In  each partial system the indices of the functions are changed, while the 
mutual order is kept unaltered. 

We can now deduce the following theorem. 
If  2:a;~ < 0% then the series 

~ an v2~) 
n = l  

is convergent almost everywhere for every k. 
This can be proved by induction. For k = 1 the theorem holds true, and 

moreover we have the following inequality (cf. 5 .2)  

N 

mE boundl~ :--~lv {[S('~/I} > e < ~ +=~ 
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Suppose tha t  the theorem holds for k and tha t  

m E tl~b~ {1 S(k),' �9 [} > k e < ~ z-. a,.. 

Under  these assumptions we can prove the theorem for k + 1. 
By  using the same method of proof as in 5.3 it is easily seen tha t  the se- 

o(k+l)  quence ~(k+~+O is convergent  almost  everywhere,  when v runs through O, 1, 2, . . . 

and , , (k+l+v)v ----(k+l)-lv,(k + l + v ) ,  

( 1 )  ( 1 )  o.1 o,.. For  k +  + v  < n <  k - 2  v the functions on - - o / k + l + <  are of the form 
v +  k ,,, ) 

,,,_(k+xo+g 
,Ikl 

~k+24-. z/J atk+l+~ , " ~lt " 
[t=l ( ~ ] ~-# 

The upper  bound for these \ v + functions is greater  than k e in a set E,,. 

The characteristic function of E .  is denoted by /(E,,) 

1 

m E ,  = f t(F ,)ae = f . d x k , + l §  
Qr 0 (Qk+ 1+,', Qk+2-k',', (,~) 

According to our assumptions the second integral is less than  

~,--1 J 
;,,~=-~+,,+2 k \~ .., 

,~.~'J---- 1 a(k+l,+0+'~ 
and hence 

]r \ ,+1 ] 1 ]C t ,.+l ) 

, . ,  r = -  
t t=l  /e=l 

~-a m E~ is thus convergent ;  hence m [ ;  = m lira sup E~ = O. 

Choosing v(n) so tha t  

a}k+l+~,~, 
t, ,, ) 7 - ,~  

we get 

(k  + 1 +  v(n)]  (k + 2 +  v(n) l  
v(n) ] < n - <  v ( n ) + l  ] 

[ '~k~-' 1) ~(k§ ] lim sup - .  ' --*~(k+x+,,<n)~ < ke  almost everywhere.  
n ~ oo k ~, (n) ) 

s is arbi trar i ly small, and hence 

---- lira b'(k+~+,.~ almost everywhere. l i r a  S~ k+l) --(k+l) 
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To prove the inequality for k + 1, observe that  the above proof gives the 
following relation. 

Let E1 be the set where 

- -  { k + l + r ( n ) ' ~  ~ > 8 bound { S~ k+l) S (k't'l} 
1-<- n <-- N \ ',, (n) .) J 

then 
k s 

m E  1 < ~ ~ a~ .  

Next we have 
~,+1 7 

S(k+l) oIk+l)  

i. e. the sequence 

s(k+l) /k+x+~,'~, 'P : O, ] ,  2 . . . .  , 

is of the same type as the sequence S~, studied in 5.2. 
Let v 0 be the smallest integer for which 

k +,2 + ro~ 
v 9 + l  I > N  

and E 2 the set where 
(k+l) 

b o u n d  S~+1+~, l} > e 

then, using theorem 5.2, we get 

m E2 < --~ ~ .  a; < a;. 
* = 1  - -  ~ , r = l  

From these relations we obtain the desired result 

m E  {bound {ISn 'k+l) l}>(k+l)  ) <  e--- ~ /~,a~. 
- l ~ n ~ N  ~=1 
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