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Translation invariant convex metrics

By Jan-Oror ExLUNDH

1. Introduction

In this paper we shall consider metric linear topological spaces with a metric that
is translation invariant and convex. A metric d on a set of points M will be called
convex if for all points x, y €M and for all 4, >0, §, >0 such that d, + 6, =d(z, y) there
exists a point z €M with d(z, z) =4, and d(z, y) =9,.

The concept of a convex metric was first introduced by Menger [3]. According to
his definition a metric space M is convex if for all points z, y € M there exists a metric
midpoint {(i.e. 6, =4, above).

Only slight modifications are needed to make our proofs valid under the weaker
assumption of midpoint convexity. If the space is complete it follows from the theo-
rems of Menger that the definitions are equivalent.

It can be proved that an invariant convex metrie defining the topology of a linear
topological space is & norm if and only if the spheres around the origin are convex.
On the other hand such a space might have spheres which are not convex even if it is
locally convex. Radstrédm [5] has given an example of this in L* [0, 1]. However,
assuming local convexity we shall show that the space is isomorphic to a normed
space. We also give an explicit expression of an equivalent norm in the convex met-
ric. Furthermore we shall show that if the space is reflexive and separable it is iso-
metric to a Banach space.

2. Aucxiliary theorems on convex metrics

If 4 and B are subsets of-a linear space X we write 4 +B={zx€X; z=a+b, a€A,
bEB}. A family of subsets of X will form a commutative semigroup if it is closed
under this addition. Such a semigroup will be called a one-parameter semigroup if
there is an application 6—A4(d) from the positive real numbers onto the semigroup
satisfying

A(3,+8,) = A(8,) +A(5,) (1)

The definition of a one-parameter semigroup usually contains some assumption of
continuity, but this will not be needed here and is omitted.

Let X be a metric linear topological space with a metric d that is translation in-
variant. Denote the open sphere of radius é around the origin by S(8). It then follows

(see [4]) that the metric is convex if and only if the sets S(6) form a one-parameter
semigroup, the bar denoting the closure. We need the “only if”” part of this statement
for the open spheres.
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Lemma 1, If Z is a metric linear topological space, whose metric is translation invariant
and convez, tts open spheres around the origin form a one-parameter semigroup.

Proof. 8(8,+085)>8(8,) +S(d;) follows immediately from the triangle inequality.
Suppose now that x€8(4, +4,). Choose r, and r, such that r; <8, r;<é, and r; +r,=
||, where || denotes d(z, 0). Because of the convexity of the metric we can find 2,
and z, such that |z,| =r;, |2,| =r, and 2, +x,=2x. But then », €5(d;) and 2, €5(Jy),
which proves the lemma.

If we apply the theorems of [4] to a linear space X with the above properties it
follows that the convex metric is a norm if and only if the spheres S(d) are convex.
Here we give a simple direct proof of this statement,.

Suppose that the spheres are convex and let z€X. As the metric is convex there
exist points y, z€X such that x=y+z and |y| =|z| =%|z|. Consequently 3r=4y +
32 and 3x€8S(}|«|) since the closure of a convex set is convex. This implies |§z| <
1|x|. On the other hand the triangle inequality gives |}z| >}|x| that is |§z| =}|=]
for all z€X.

Then 2-*|z|=|2-"z| for all n>0. Moreover |z|=|2-"2"¢|=2""|2"| that is
2"|z| = |2"|. Now if k>1 and if |kx|=k|x| then k|z|=|kz|<[(k—1)z|+|2| <
(k1) |z| +|z| =k |z| so (k—1) |#|=|(k—1)z|. Hence |kx|=k|z| for all k>0
by induction. From this and the fact that | —z| = || we infer that |rz| =|r| || for
all rational numbers of the form r =m2-". The continuity of ¢->|ax| then gives that
|ax| =|a| || for all real «, that is the metric is a norm. The converse is trivial.
Incidentally it follows from this that if the metric is not a norm there exists a neigh-
bourhood basis consisting of spheres which are not convex. Because if we put r =inf
{8; 6=0 and S(J) is not convex} and suppose that r>0, we can choose a such that
0<x<2r and S(x) is not convex. Now by (1) S(«)=8(ex/2)+8S(«/2) and S(«/2) is
convex. But the sum of convex sets is convex, which contradicts the choice of .

It is obvious that this proof is based only on the existence of a metric midpoint.
Moreover, a similar reasoning can be applied to prove Lemma 1 using Menger’s
notion of convexity. From this observation and the fact that subsequent arguments
referring to convexity will be based only on the existence of midpoints, it follows
that the theorems are true whichever definition of convexity is used.

If z and y are two points in X, a segment joining z and y is a set {z(«) EX;0<a<
[2~yl, 2(0) =2, 2(|y—=|) =y} satistying |2(e) ()| = |0t = ts|-

One of the theorems of Menger states that if the space is complete any two points
can be joined by a segment. It can be verified that a set of points obtained by par-
titioning and reordering a segment is also a segment.

In a normed space the straight lines are segments. If the space is linear and if the
metric is not a norm the follwing propositions show that there are segments of an
entirely different type.

Proposition 1. For any point x€X the distance between a segment joining 0 and x
and the point }x is not less than |}x| —3}|z|.

Proof. Suppose that y is a point on a segment joining 0 andz. Then |y| + |y —2z| =
x|. The triangle inequality gives |z —y| > |$z| — |y| and |3z —y| =4z —(x—y)| >
3z| — |z —y|. Adding these inequalities we obtain 2|}z —y| >2|}z| —|y]| — [2—y|,

that is |3z —y| > |}|=.
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Proposition 2. If the melric is not a norm there exist a point x and a number 6 >0
such that the distance between any segment joining O and z and the point x is not
less than 8.

Proof. We have seen that if the metric is not a norm then there is a point x such
that |}z| —}||>0. With 6=|4z| —}|»| the statement follows from Proposition 1.

3. The normability theorem

For any subset 4 of a linear space X, H(A) denotes the convex hull of 4. It is
well-known that H(A) is the set of all convex combinations X}, A%; of elements
x,€A4. A consequence of this definition is the following lemma, proved in a different
way in [6].

Lemma 2. For arbitrary sets A and B in a linear space
H(A+B)=H(4)+H(B) )

Proof. H xEH(A-!—B), x is of the form x=>7; A;{a; + b;) where ¢,€4, b,€ B and
the combination is convex. Hence z =7 Aa,+ Jr-1Ab;€H (A)+H(B) If on the
other hand z€H(A)+ H(B) then for some convex combinations z = >[%; &+ 27y

Bib;. Using that Jio=2718=1 we write x=2/1, 3% 1048, + 20 251045,
—Zk ]‘}lk Ck+dk) where VY= dlﬁj, Cp =0y EA dk—b EB that is wEH(A+B

Theorem 1. Let X be a metric linear topological space with a meiric that is convex and
translation tnvariant and suppose that X is locally convex. Then X is normable and
the convex hulls of the metric spheres form a family of normed spheres.

Proof. Put T(8)=H(S(3)), the convex hull of the open metric sphere around the
origin of radius d. It is well-known that the convex hull of an open bounded set is
open and bounded. This implies that the sets 7'(d) are nelghbourhoods of the origin
and that the gauge function p of 7T'(1) is a norm. Put p(z) = ||z}|. From Lemma 1 and
Lemma, 2 we conclude that T'(8, +46,) =T(8,) + T'(5,). As the sets 7T'(8) are convex this
implies that T'(8)=47(1), so {x; |[=| <} =T(9).

It remains to prove that the metric and the normed topologies coincide. Suppose
8 >0. Evidently S(d)< T'(6). Thus the normed topology is coarser. On the other hand,
as X is locally convex, to every 6 >0 there is a convex neighbourhood U of the origin,
such that U<S(8). But then we can find 8, >0 such that 8(é,)< U, which implies
T(6,)=U, as U is convex. Consequently 7'(5,)<S(5) and the normed topology is
finer, which proves the theorem.

4. The norm expressed in the metric

We shall now consider the mappings z—|z|,=2""|2"¢| where z€X and n is
integer. The convexity of |- | used on the point 2"z shows that |- |, is also & convex
metric on X. This metric makes X a linear topological space with the same topology
as that given by | - |. To see this we put S,(6) ={z; |z|,<4}. The triangle inequality
implies that |#|4 <|2]a 80 8,(8)=8,44(8). The fact that each n-sphere contains
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an (n-+1)-sphere is a corollary to the following theorem which shows, that in the
limit, the sequence S,(6) increases to the convex sphere 7'(d).

Theorem 2. If ||-|| is the norm defined above then
lell= tim 27%]2%|

Proof. The decreasing sequence [z|, has a limit g(z) >0. We show that ¢ is a
seminorm. It is evidently subadditive. Furthermore g(m2~*z) =lim,_, ., 2" |2"~*mzx|
=lm oy 27" |2%ma| =2 g(mx) <m2~*q(x). Hence we have g(iz)<|i| g(x)for
all real A and all z€X. But this implies g(Az)=|4|q(z), so that ¢ is homogeneous.
Write P(3) = {z; ¢(x) <4}. Then 8(1)< P(1) because ¢(z} < | #| and since P(1) is convex
T(1)=H(S(1))<P(l). If on the other hand z€P(1), there is an N such that n>N
implies 2-"{2"x| <1. Now since |- | is convex we can find z;€8(1),i=1, ..., 2-", such
that T, ,=2". From this it follows that x=1/2" Z*, =z, belongs to H(S(1))=
T(1), that is P(1)=7'(1) and g(z)=||=||.

Corollary. The metrics |- |, define the same topology.

Proof. Reasoning as in the proof of Theorem 1, for all » and for all >0 we can
find 8, >0 such that S, (6,) < T(8,) < 8,(9), since 8, ,,(d;)<= T(é;) by Theorem 2.

5. Reflexive spaces
The relation between the spheres 8,(8) and 8,,,(5) can be written

8,41(8) = $(8x(9) +8,(9)) ()

Actually since |-|, is a convex metric, Lemma 1 implies that $(S8,(6)+8,(8))=
18,(28). Moreover z€35,(26) if and only if 20€S,(26) or 2-"|2™+1z| <26 that is
2€8,.,,(8). The equality (3) states that S,.;(d) is obtained from §,(d) by adding all
the midpoints of points in §,(9).

Analogously, because the statement of Lemma 1 is true also when the spheres are
closed and since it follows from the above argument that

1 8,(20) = S, +1(8) we have

Sn+1(6) = 1(84(8) +8,(3)) 4)

Assume now that z is an extremal point of 7'(1) and that x€8,(1) for some n. We
shall show that this implies that || =|«||z| for all real & or in other words that
the norm and the metric coincide on the subspace spanned by z. First, if x€S,(1) but
2¢8,_,(1), according to (4) there exist points y, 2€8,,(1)=T(1) such that x=
L(y +2). Then, since z is extremal in 7'(1), we conclude x =y =z, contradicting that
£ ¢S,_,(1). Consequently z€S,(1) for all n, that is |2"z| =2"|z| for all n. Secondly,
since |2°2"z| =27+"| x| =27|2"z| for all n, p, we can argue as in section 2 to show that
|m2-*z| = |m27*] |z| for all m, which by continuity implies |az|=|a||z|.

The next theorem will show that if the space is reflexive and separable then the
normed and the metric spheres will have enough extremal points in common to span
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the whole space. In order to prove this theorem we shall consider the strongly exposed
points of the normed unit sphere.

Let C be a convex set in a Banach space X. A strongly exposed point of C is a
point z € C such that there is an f€ X*, the topological dual of X, for which (i) f(y) <
f(z) for all y€C, y=+2; and (i) f(z,)>f(z) and {x,}n-1<C imply ||z, —z[ 0. If the
condition (i) is satisfied but not necessarily (ii) the point 2 is said to be an exposed
point of C.

The concept of an exposed point was introduced by Straszewicz [6] who showed
that if € is a compact convex subset of a finite dimensional euclidean space then ¢
is the closed convex hull of its exposed points. This and similar notions have attracted
some attention lately and several theorems of content analogous to that of Stras-
zewicz have been showed. We shall use the following theorem of Lindenstrauss [2]:
Every weakly compaet convex subset of a separable Banach space is the closed eon-
vex hull of its strongly exposed points.

We now give our theorem which is of a converse character to the example in I
given by Radstrém [5] of a convex metric that is not a norm.

Theorem 3. Let X be a metric linear topological space with a metric that is convex
and translation invariant and suppose that X is locally convex. Then, if X 1is reflexive
and separable, the metric is a norm, that s X is isometric to a Banach space.

Proof. For simplicity we write 7'=7'(1) and S=38,(1). Being normable, complete
and reflexive, X considered as a normed space will be a reflexive space and hence
complete. It then follows by the Alaoglu theorem [1 p. 425]that T is weakly compact.

Suppose now that x is a strongly exposed point of 7' and that z¢S. Since S is
closed there is an ¢>0 such that U={y; ||y—z|| <e} does not intersect S. If we
choose f€X* according to the definition of x being strongly exposed, there is an n
such that y € 7' and f(y) >f(x) —(1/n) imply y € U. Then SV ={y; f(y) </(z) —(1/m)},
but since V is closed and convex it follows that 7'< ¥V, contradicting the fact that
x¢ V. Hence all the strongly exposed points of 7' belong to S.

We finally prove that this implies 7'=S. Assume that z€7. As T is weakly com-
pact and convex the theorem of Lindenstrauss states that T is the closed convex
hull of its strongly exposed points. Since the metric and the normed topologies coin-
cide, it follows that for all £ >0 there is a convex combination > j.; 4, z; of strongly
exposed points of 7' such that |x— 37,4z < e Using that |A2|=]%]|]| and
Ixil =1 we have lxl = |x“‘2?=1lixi+2?=llixi| < lx_Zin=1}-ixil + | diakal<e
+ 21| 4| |2} =1+ ¢ that is |z|< 1. Hence 7<= 8. But § <7 by definition so §=7
and the metric is a norm.
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