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Analytic structures in the maximal ideal space of

a uniform algebra

By Jan-Erik Bjork

Introduction

Let 4 be a uniform algebra with its maximal ideal space M , and its Shilov boundary
8,4 We say that M, has a (one-dimensional) analytic structure at a point 2, € M ,\ S,
if the following condition holds. There is an open neighborhood W of xy in M, and
some f€A such that W\ {z,}=V,U...UV,, where V, are disjoint open subsets of
M, each mapped homeomorphically by f onto the set D\ {0} in C*. Here D is the
open unit dise and f(x,) =0. The positive integer n above is called the branch-order
of z,.

If M, has an analytic structure at the point «, as above, then J. Wermer has proved
that if g€Z and if we define g,(2z) =g(x,(z)) on D\ {0}, where z,(2) is the point in
V, for which f(x,(z)) =2 while g,(0) =g(x,), then g, ... g, are analytic functions in D.

Conditions which guarantee that subsets of M ,\ S, bhave an analytic structure
have originally been studied by J. Wermer in [5-6]. In Section 1 of this paper we
prove some results which originally were obtained by Wermer under certain regularity
conditions. The core of this section is the proof of Theorem 1.7. and in the final part
we discuss some consequences of this result.

Section 1

Firstly we introduce some notations and collect some wellknown facts about uni-
form algebras. If X is a compact space and if f €C(X) we put |f|x=sup{|f(z)|: z€X}.
I W is & subset of X then 0W denotes its topological boundary. If 4 is a uniform
algebra and if F is closed subset of M, we put Hull(F)={x€M, : |f(x)| <|f|s for
all fin A}. We also introduce the uniform algebra A(F)={g€C(F): 3(f,) in 4 with
lim|f,—g|z=0}. Here we know that M 4 can be identified with Hull,(F).

If A is a uniform algebra and if € 4 we define the fibers 77 (2) = {x € M, : f(x) =2}
for each z€CL We recall the wellknown result below.

Lemma 1.1. Let 4 be o uniform algebra and let f € A. Suppose that U is an open compo-
nent of the set CV\f(8,). Then two cases are possible, either U N f(M ) i3 empty or
else U< f(M 4).

Next we introduce a concept which appears in [2, p. 525].
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Definition 1.2. Let A be a uniform algebra and let f€A. Let U be an open component
of the set OV f(8 ) such that the fibers n1(2) contain at most n points for each z€ U, while
equality holds for some point. Here n=>0 and we say that U is an f-regular component of
multiplicity n.

In [2] E. Bishop proves that if U is an f-regular component of multiplicity =, with
n>0, then there exists » subsets W, ... W, in M, each mapped homeomorphically
by f onto U. If then g€ 4 and if we put g,(2) =g(n/(z) N W) for all z€U, theng, ... g,
are analytic in U. There also exists some g in 4 such that g, ... g, are distinet. So if
we put Dy, ={z€U: g,(2)=g,(z)}, then W,0 W, is contained in the discrete set
(D;,). This resnlt shows that the open set /(U) has analytic structure at all points
and the branch-order is oneexcept for a discrete subset where the branch-order varies
between 2 and n.

Now we wish to state some criteria which guarantee that an open component
of the set OY\f(8,) is f-regular when f belongs to some A. Firstly we have the so
called Local Principle which appears in [2, Lemma 17].

Lemma 1.3. Let U be an open component of the set CY\ f(8,). Suppose that U contains
an open subset V such that tr7,(2) =n for all z€ V. Then U is f-regular of multiplicity n.

Notice that Lemma 1.1. is the case when =0 in Lemma 1.3. The next result is
the so-called Analytic Disc Lemma.

Lemma 1.4. Let f€ A4 and let T be a closed Jordan curve with its interior A. Suppose
that T contains an open subarc J such that $tmY(z) <n for all z€J and that the (possibly
empty) set w1 (A) s contained in M N\ S,. Then 7 z)<n for all z in A.

Proof. The case when n=1 i3 contained in [6, Lemma 8]. If n>2 we can choose
2,€J so that 37, 1(z,) =n say, while #n;(z)<n for all z in J N D(z,), where D(z,)
is an open disc centered at z,. Let z, ... 2, be the points in 7z,7}(2,) and choose disjoint
open neighborhoods W, ... W, of these points so that f(W,) N J is contained in D(z,)
for each s.

Now we can easily find a closed Jordan curve I, with its interior Ay such that I'yn I’
is a closed subarc of the set J N D(z;) while A is contained in A. In addition we can
arrange this so that 7,1(AyUT'y) is contained in W, U ... U W,, since this set is an
open neighborhood of the whole fiber 7z,7(z,).

From the case n=1 we can conclude that 7 1{z) N W, contains at most one point
for each 4, and hence 3f7;1(z) <= for all 2z€A,. Here A, is an open subset of the con-
nected set A, so an application of Lemma 1.3. completes the proof.

Using Lemma 1.4. and Theorem 1.7. below we can easily deduce the following
result.

Proposition 1.5. Let f € A and suppose that f(S,) coniains a relatively open subset J which
is homeomorphic with an open Jordan arc. Suppose also that the sets S,={x €8, f(x) =z}
contain at most n points for each z in J. Suppose that U and V are the two (distinct)
componenis of the set CY\f(8,) which borders J, and that V is f-regular of multiplicity
m. Here m=0 may occur. Then it follows that U s f-regular of some multiplicity
<m+n.

Let us remark that Proposition 1.5. above was proved by J. Wermer in the case
when J is real analytic and it also appears in [2, Lemma 21] when n=1 under a less
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restrictive regularity assumption about J. Finally we wish to point out that Propo-
sition 1.5. is contained in the work by H. Alexander in [1].

Next we wish to state a result, again due to J. Wermer which will be used in the
proof of Theorem 1.7, below. Firstly we recall that a curve I' in C* is real-analytic
if there is a non-constant real-analytic function ¢ defined on 7' such that ¢(T)=T".
If we assume that the origin 0 belongs to C™\\I" we can introduce the winding number
of I' with respect to 0 in the usual way. If I'; and I'; are two real-analytic curves we
say that I'; =Ty if I'; is contained in the open component of the set C™\I'y which
contains 0.

Proposition 1.6. Let A be a uniform algebra and let S,=K UK, U ... UK,, where
K, K, ... K, are disjoint closed sets. Suppose that f€ A is such that |f|x< € <} while
each K is homeomorphic to the unit circle and f| K ; determines a non-constant real-ana-
lytic function on K; which maps K, onto the real-analytic curve I'y. Here I'y= ... =T,
holds and in addition I'y= {2€C": |z| >1+¢}. Let now N be the maximum of the win-
ding number of 0 for each 1" If U s the open component of the set CY\f(S,) which
contoins the point 1, then U is f-regular of some multiplicity <nN.

In Theorem 1.7. below we apply Proposition 1.6. to obtain a general result dealing
with so called crossing over edges. The reader will see that we have taken great ad-
vantage of [2] in the proof. In particular Lemma 1.8. was already proved there.

Theorem 1.7. Let A be a uniform algebra and let f€ A. Let U be an f-regular component
of multiplicity n. Let z)€9U be such that 7t~(z4) N S, is a non-empty A-convex set —>
in M ,. Then the set 7/(z,)\ S, contains at most n points and in addition M , has ana-
Iytic structure at each point in this (possibly empiy) set.

Proof. Let us assume that n>0 (the case when »=0 is easy and contained in the
following proof using Lemma 1.8.) and choose a point A, in U such that 7,(4,)
contains # points w; ... w,. Denote by D, a small open disc centered at 4, so that
7Y Dy) =W U ... UW,, where W, are disjoint open subsets of M, each mapped
homeomorphically by f onto D,.

Next £>0 is so small that if D(e) is the open disc of radius ¢ centered at A,
then D(e) U T'(¢) is contained in D, Here T'(e) is the circle of radius ¢ centered at
Ay- At this stage we do not fix &, the following lemmas will be true for any ¢ as
above, and in the final part of the proof we choose ¢ to be sufficiently small.

Let us put X =M\ z/D(e)}, so that X is a closed subset of M 4. Here 7T (z))
=0X and we know that X =K, U ... UK,, where K, are disjoint closed sets each
mapped homeomorphically by f onto 7'(e). Next we introduce the uniform algebra
B on X which is generated by the restriction algebra A | X and the function (f —4g) =
fo in C(X). In the series of lemmas which follows we derive some properties of B
which finally will enable us to prove Theorem 1.7.

Lemma 1.8. Let B and X be as above. Then My=X and Sp is contained in the set
(SLUK,U ... UK,).

Proof. Let %,€Mp be given. Since B contains 4|X we get a point y, in M, such
that g(z,) =g(y,) for all g€ 4| X. Since (f—4,) is invertible in B it follows that f(M )
does not contain A, In addition f(Sp)= f(X) which means that D{e)<= C"™\ f(S5).
Then Lemma. 1.1. shows that f(3M ) N D(g) is empty which implies that y,€X. But
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now it is easily seen that f(x,) =/,(y,) which implies that z,=y, in M so that M =X
follows.

Suppose now that Sj is not contained in the set R=8,U K, U ... UK,. Then X\ R
contains a point ¥ which is a peak point for B. Here y€ X\ 90X =0 we can choose a
closed A-convex neighborhood W of y in M, while W< X. Here f —1y==0 on W which
means that f,| W belongs to A(W). Hence A(W)=B(W) andif weletg € Bpeakat y,
then A contains a sequence (g,) such that lim | g, — glw=0. But then we see that if
n is sufficiently large the function g, will determine a local peak set in the interior
of W. Since W< M\ S, this contradiets the Local Maximum Principle. This proves
that Sz< R must hold.

Lemma 1.9. Hully(S,) does not intersect m; (U).

Proof. Let B, =B(Hullg(S,)). Then B, is a uniform algebra and Mz, = Hullz(S,)
while Sz, =8,. Consider / as an element of B,. Since My, <X we see that 1, belongs
to O™\ f(Mp,) and in addition U< O\ f(Sg,). Hence an application of Lemma 1.1.
proves that f(Mz) N U is empty which gives the desired result.

Lemma 1.10. Let B, be as in Lemma 1.9. Then 7/ (2y) N Mp, is a peak set for By.

Proof. Let us put Y =f(Mp,) so that Y N U is empty. Since U is connected and
2,€0U there exists a function P€C(Y) such that P(z))= 1 while [P| <1 on I\ {z,}.
In addition P can be uniformly approximated on ¥ by rational functions E, which
have poles in U only. Since Y N U is empty the functions R,of€B; and hence it
follows that P, =Pof belongs to B,. Clearly P, determines the peak set 717 }(2,) N M ,.

Lemma 1.11. Let y €x(2o)\S,. Then y does not belong to Hullg(S ).

Proof. Suppose that y €Hullz(S,)=M5,. Since 7, (2)) N Mp, is a peak set for B,
and since Sz =8, we can conclude that ¥ even belongs to Hully (8, Nw/(z,). If
K =Hull, (S, N7/ (z,)) it is obvious that K is contained in Mp N7, (zy), so the
function f, is constant on K. This implies that B,(K)=B(K)=A(K) and hence K =
Hull ,(8, N7Y(2,)), so by assumption K =8, N7/ (z,). But here y € M ,\ S, so that
yeM N\ K, a contradiction.

Continuation of the proof of Theorem 1.7. Let y,€ tY(2,)\ S, be a given point.
Using Lemma 1.11. we can choose g in B so that |g|S,<ey< $ while g(y,)=1.
Clearly we may change g slightly so we may assume that g=~Afs" where h€4|X
and N>0. Here N >0 since g clearly cannot belong to 4|X. In addition we may
assume that the function 4 is such that 0 < |A(w,)| < ... < |A(w,)| and that dh,/dz=+0
at A, for each ¢, where h, are the analytic functions determined by 4 on D,

At this stage we make a good choice of &. For we can choose ¢ so small that if
I';=g(K,), then I, are analytic curves where I, = ... <T', and each I'; has the winding
number N with respect to 0. In addition we may arrange this so that I'; < {z€C:
|2] >1+¢,}. So now an application of Proposition 1.6. shows that My has an ana-
lytic structure at the point y,.

Here y,€ X\ 2X so we can choose a small closed neighborhood W of y, in M,
as in Lemma 1.8. for which A(W)=B(W). But then it follows that M, also has an
analytic structure at y,.

Finally we show why 3 (7 1(z,)\8,) <n. For if y€mz)\ 8, then the fact
that M, has an analytic structure at y implies that if f is not locally constant in a
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neighborhood of y, then f(W) is a neighborhood of z, in C* if W is a neighborhood
of y in M,. So if 7,1(2,)\S, contains n+1 points y, ... y,,; Where f is not locally
constant, then we choose disjoint neighborhoods W, ... W, of these points and now
we-can find an open disc D(z,) which is contained in f(W,)N ... N f(W,,). Since
2,€0U we can choose 2,€D(2) N U and then s (z,) N W, are non empty for each
1, 8o that 3 7,/ (z;) =n+1, a contradiction. :

Hence the set Q={y€n(2))\S,: f is not locally constant at y}, contains at
most n points. If we put Z=@ U (7,7(2,) N 8,), then it is clear that m(z,)\Z is an
open subset of M,. Let us introduce the uniform algebra A;=A(7;(2,)). Using
the Local Maximum Principle it follows that §,, is contained in Z. Since @ is a
finite set it follows that M, =n;"(2,) is contained in @ UHull, (w7 (zy) N Sy)=
QU Hull, (7,7 Y(2p) N 84) =Q U (m72(2,) N S,,). This completes the proof of Theorem 1.7.

The next result is fairly direct consequence of the preceeding proof.

Theorem 1.12. Let A be a uniform algebra and let f be a function in A such that each
open component of the set CV\ f(8S,) is f-regular of some multiplicity n=>0. In addition
we assume that R(f(S))=C({(8,)) and that the seis w1 (z) N S, are A-convex in M, for
all z€f(8,). Then 1t follows that M ,\ S, has an analytic structure.

Proof. Let 2,€f(S,) and assume that z is a point in 7r,1(2,)\S,. Using the assump-
tion that R(f(S,))=C(/(S,)) the arguments used in Lemma 1.9-11 show that there
exist finitely many components U, ... U, of the set O\ j(S,) satisfying the following
condition. If we take a point A, in each U, and choose small open discs D(4,) and
let B be the uniform algebra on the set X — M, /(77 (D(A) U ... U D(4,)) which
is generated by 4|X and the functions (f—2,)~%, then = does not belong to Hullz(S ).
Using this fact the same argument as in the proof of Theorem 1.7. shows that M,
has an analytic structure at the point z,.

In this final part we derive some consequences of Theorem 1.7. and 1.12. above.
Firstly we notice that Theorem 1.7. together with Proposition 1.5. immediately
shows that Proposition 1.6. holds in the case when I'; are curves with finitely many
intersection points, i.e. I';=f(K,) where K, contains a finite set S, such that f(z)=+
f(y) for all pairs z +y in K\ 8,

Using the fact above we can for example derive the following result which was
independently obtained by H. Alexander in [1].

Theorem 1.13. Let J be a closed curve in O with finitely many iniersection points
and let A be @ uniform algebra on J which contains the coordinate function z. Then the
(possibly empty) set M ;N\ S, has an analytic structure.

Finally we show how the result of G. Stolzenberg in [6] can be derived from Theo-
rem 1.12.

Theorem 1.14. Let A be a uniform algebra on the unit circle T such that A is generated
by continuously differentiable functions. Then the (possibly empty) set M NS, has an
analytic structure.

Before we begin the proof we insert some preliminary results. Suppose that f €C*T)
and let E be a closed totally disconnected subset of 7. Then 0¥\ f(¥) is connected
so if 4 is a uniform algebra on 7' which contains f, then an application of Merge-
lyan’s Theorem to the simply connected set f(%) shows that if p €C(E) then gof
actually belongs to the closed restriction algebra A(E). It follows that if 4 is gene-
rated by continuously differentiable functions then 4(E)=C(E).
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The next result is essentially contained in [Theorem, p. 509 in 2], though we also
need Proposition 1.5. and 1.6. with a smooth Jordan arc.

Proposition 1.15. Let A be a uniform algebra on T and let f € C*(T) be an element of A.
Assume that T contains o closed totally disconnected subset E such that if x€ T\ E, then
the set S.,={y€T: f(y)=f(x)} is a finite subset of T\ E and in addition f'(z)=+0.
Then it follows that each open component of the set CY\J(T') is f-regular.

Proof of Theorem 1.14. Firstly it is easily verified that 4 contains some f€CYT)
satisfying the conditions in Proposition 1.15. with respect to a closed totally discon-
nected subset E of 7T'. Clearly 8, 7T (in fact S, =T by Corollary, p. 85 in 6), so using
Theorem 1.12. it is sufficient to show that R(f(T)) =C(f(T)) and that 7z/ (2} N T is
A-convex for all 2,€f(T). Now f€CYT) so the planar Lebesgue measure of f(7) is
zero and then it is wellknown that R({(T))=C(f(T)). Next E(z,)=n;Yz) N T is
always a closed disconnected subset of 7' when z, € f{(T'), so by the preceeding discussion
A(E(z))=C(E(2,)) which means that E(z,)=M 4oy =Hully(z;(2y) N T). This
completes the proof.
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