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Analytic structures in the maximal ideal space of  

a uniform algebra 

B y  JAr~-EIuK BJ6RK 

Introduction 

LetA be a uniform algebra with its maximal ideal space MA and its Shilov boundary 
S~. We say that  M~ has a (one-dimensional) analytic structure at a point x o EM~'~S.4 
if the following condition holds. There is an open neighborhood W of x o in M~ and 
some/CA such that  W'~{xo} = V 1 U ... U V~, where V~ are disjoint open subsets of 
M~ each mapped homeomorphicalty by  ~ onto the set D~.{0} in C ~. Here D is the 
open unit disc and f(xo)=-0. The positive integer n above is called the branch-order 
of x o. 

If  MA has an analytic structure at the point x 0 as above, then J. Wermer has proved 
that  if g e g  and if we define g~(z)=g(x~(z)) on D~{0} ,  where xl(z) is the point in 
Vi for which ](xt(z)) =z while g,(0) =g(x0), then gl ... g~ are analytic functions in D. 

Conditions which guarantee that  subsets of MA~SA have an analytic structure 
have originally been studied by J. Wermer in [5-6]. In Section 1 of this paper we 
prove some results which originally were obtained by Wermer under certain regularity 
conditions. The core of this section is the proof of Theorem 1.7. and in the final part  
we discuss some consequences of this result. 

Section 1 

Firstly we introduce some notations and collect some wellknown facts about uni- 
form algebras. If X is a compact space and if ] e C(X) we put ]/Iz = sup({/(x) [: x e X}.  
If  W is a subset of X then aW denotes its topological boundary. If A is a uniform 
algebra and if F is closed subset of M~ we put  HullA(F ) ={xeMA:  ]](x)l <~ I/IF for 
all f in A}. We also introduce the uniform algebra A(F)={geC(F) :  3(f,) in A with 
l i m l £ - g l F = 0 } .  Here we know that  MA(F) can be identified with HUllA(F). 

If A is a uniform algebra and if l e A  we define the fibers g71(z)=(xeMA :/(x) =z} 
for each z E C 1. We recall the wellknown result below. 

Lemma 1.1. Let A be a unilorm algebra and let /EA.  Suppose that U is an open compo- 
nent o/ the set C*".,](SA). Then two cases are possible, either U ~ /(MA) is empty or 
else U c  ](MA). 

Next  we introduce a concept which appears in [2, p. 525]. 
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Definition 1.2. Let A be a uni/orm algebra and let lEA.  Let U be an open component 
o/ the set Ca '~(  S ~) such that the fibers ~$-l(z) contain at most n points/or each z E U, while 
equality holds/or some point. Here n >~O and we say that U is an/-regular component o/ 
multiplicity n. 

I n  [2] E. Bishop proves tha t  if U is an / - regu la r  component  of mult ipl ici ty n, with 
n > 0 ,  then  there exists n subsets W1 ... W~ in MA each mapped  homeomorphical ly  
by  / onto U. I f  then  gEA and if we pu t  g~(z) =g(gr-i(z) N W~) for all zE U, then  gi ... g~ 
are analyt ic  in U. There  also exists some g in A such tha t  gi . . .  g.  are distinct. So if 
we pu t  Dij=(zE U: g~(z)=g~(z)}, t hen  W~ N W~ is contained in the  discrete set z~s - i  
(D~j). This result  shows t h a t  the open set gr-~(U) has analyt ic  s t ructure  a t  all points  
and  the  branch-order  is one except  for a discrete subset where the  branch-order  varies 
between 2 and  n. 

Now we wish to  s tate  some criteria which guarantee t h a t  an  open component  
of the  set Ca'x,](S~) i s / - regu la r  when / belongs to  some A. Firs t ly  we have the  so 
called Local Principle which appears in [2, Lemma 17]. 

Lemma 1.3. I,  et U be an open component o/the set Ca~,J(SA). Suppose that U contains 
an open subset V such that @ ~- l (z )  = n/or all z E V. Then U is/-regular o/ multiplicity n. 

Notice t h a t  L e m m a  1.1. is the  case when n = 0  in L e m m a  1.3. The nex t  result  is 
the so-called Analyt ic  Disc Lemma.  

Lemma 1.4. L e t / E A  and let D be a closed Jordan curve with its interior A. Suppose 
that D contains an open subarc J such that :~gr-i(z) <~n /or all z e J and that the (possibly 
empty) set gTi(A)  is contained in M A~S.4. Then @~Fi(z) <~n /or all z in A. 

Proo/. The case when n = l  is contained in [6, Lemma 8]. I f  n>~2 we can choose 
zoEJ so t h a t  =~gl- i (z0)=n say, while :~gr-i(z)~<n for all z in J N D(z0), where D(zo) 
is an open disc centered a t  z 0. Le t  x 1 ... x ,  be the points in gFi(z0) and choose disjoint 
open neighborhoods W i ... W. of these points so tha t / (W~)  A J is contained in/)(z0) 
for each i. 

Now we can easily f ind a closed J o r d a n  curve D 0 with its interior A 0 such tha t  I~o A F 
is a closed subarc of the  set J A D(zo) while A 0 is contained in A. I n  addit ion we can 
arrange this so t h a t  ~1-i(A0 U D0) is contained in W1 U ... (J W~, since this set is an 
open neighborhood of the  whole fiber ~r-i(z0). 

l~rom the  ease n = 1 we can conclude t h a t  7~r-i(z) n Wi contains a t  mos t  one point  
for  each i, and  hence :~qzFi(z) ~<n for all zE/k o. Here  A o is an  open subset of the con- 
nected set A, so an  application of L e m m a  1.3. completes the  proof. 

Using L e m m a  1.4. and Theorem 1.7. below we can easily deduce the  following 
result. 

Proposition 1.5. Let ] E A and suppose that/(S~) contains a relatively open subset J which 
is homeomorphic with an open Jordan arc. SupTose also that the sets Sz={  x E S A :/(x) =z } 
contain at most n points /or  each z in J. Suppose that U and V are the two (distinct) 
componsnts o/ the set Ca~,J(S4) which borders J, and that V is/-regular o/ multiplicity 
m. Here m = O  may occur. Then it/oUows that U is /-regular o/ some multiplicity 
<~m +n. 

Let  us remark  t h a t  Proposi t ion 1.5. above was proved b y  J .  Wermer  in the  case 
when J is real analyt ic  and it also appears in [2, Lemma 21] when n = 1 under  a less 
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restrictive regularity assumption about J .  Finally we wish to point out that  Propo- 
sition 1.5. is contained in the work by H. Alexander in [1]. 

Next we wish to state a result, again due to J. Wermer which will be used in the 
proof of Theorem 1.7. below. Firstly we recall tha t  a curve F in C 1 is real-analytic 
if there is a non-constant real-analytic function ~ defined on T such that  ~ (T )=F .  
If  we assume that  the origin 0 belongs to C l e f  we can introduce the winding number 
of F with respect to 0 in the usual way. If  F 1 and F~ are two real-analytic curves we 
say that  I~lc F2 if F 1 is contained in the open component of the set C a l F 2  which 
contains 0. 

Proposition 1.6. Let A be a uniform algebra and let S A = K  U K 1 U ... U K~, where 
K, K I ... Kn are disjoint closed sets. Suppose that l E A  is such that I/ l~< E <½ while 
each Kt  is homeomorphic to the unit circle and/]K~ determines a non-constant real.ana- 
lytic /unction on K~ which maps K~ onto the real-analytic curve Fi. Here FI ~ ... ~ F~ 
holds and in addition F~ c (z E C ~ : I z J > 1 + e }. Let now N be the maximum of the win- 
ding number of 0 /or  each F~. I] U is the open component of the set cr"..J(SA) which 
contains the point 1, then U is/-regular o/some multiplicity <~ nN. 

In  Theorem 1.7. below we apply Proposition 1.6. to obtain a general result dealing 
with so called crossing over edges. The reader will see that  we have taken great ad- 
vantage of [2] in the proof. In  particular Lemma 1.8. was already proved there. 

Theorem 1.7. Let A be a uniform algebra and let / 6 A .  Let U be an/-regular component 
o/mult•licity n. Let Zo6OU be such that ~I-1(zo) ~ SA is a non-empty A-convex set , 
in M A. Then the set gr-l(Zo)~SA contains at most n points and in addition M A has ana- 
lytic structure at each point in this (possibly empty) set. 

Proof. Let us assume that  n > 0 (the case when n = 0 is easy and contained in the 
following proof using Lemma 1.8.) and choose a point 4 o in U such that  ~71(A0) 
contains n points w 1 ... w~. Denote by D o a small open disc centered at 4 o so that  
gFX(D0) = W 1 U ... O W~, where W, are disjoint open subsets of MA each mapped 
homeomorphically by / onto D 0. 

Next e > 0 is so small that  if D(e) is the open disc of radius e centered at 40, 
then D(e) U T(e) is contained in D 0. Here T(e) is the circle of radius s centered at 
)t 0. At this stage we do not fix e, the following lemmas will be true for any 8 as 
above, and in the final part of the proof we choose ~ to be sufficiently small. 

Let us put X = M A ~ I - I ( D ( s ) ) ,  so that  X is a closed subset of MA. Here xi-l(T(e)) 
= a X  and we know that  ~X = K  1 U ... U Kn, where K, are disjoint closed sets each 
mapped homeomorphically by / onto T(s). Next we introduce the uniform algebra 
B on X which is generated by the restriction algebra A ]X and the function (/-40) -1 = 
/0 in C(X). In  the series of lemmas which follows we derive some properties of B 
which finally will enable us to prove Theorem 1.7. 

Lemma 1.8. Let B and X be as above. Ther~ M~ = X and Ss is contained in the set 
(S,~UK~U ... UK,~). 

Proof. Let % e M s  be given. Since B contains A ]X we get a point Yo in MA such 
that  g(xo)=g(Yo) for all g e A I X .  Since (/-40) is invertible in B it follows that/(MB) 
does not contain )l o. In  addition ] ( S z ) c / ( X  ) which means that  D(e)cGl" \ l (Ss) .  
Then Lemma 1.1. shows that  ](M~) N D(8) is empty which implies that  yoEX. But 
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now it  is easily seen that/o(xo) •/o(Yo) which implies tha t  x o =yo in Ms  so tha t  Ms = X  
follows. 

Suppose now tha t  S~ is not contained in the set R -~ S A 0 K 1 [J ... (J K n. Then X ~  R 
contains a point y which is a peak point for B. Here y ~ X ~ S X  so we can choose a 
closed A-convex neighborhood W of y in MA while W ~  X. H e r e / - 4 0  ~=0 on W which 
means tha t  ~o] W belongs to A(W). Hence A(W)=B(W)  and if we let g ~ B peak at  y, 
then A contains a sequence (g.) such tha t  lim I g , -g Iw  =0" But  then we s e e t h a t i f  
n is sufficiently large the function g, will determine a local peak set in the interior 
of W. Since W ~  M ~ S a  this contradicts the Local Maximum Principle. This proves 
tha t  S ~  R must  hold. 

Lemma 1.9. Hull~(Sa) does not intersect r~'~(U). 

Proo I. Let  B1 ~B(HullA(SA) ). Then B 1 is a uniform algebra and Ms~=Hulls(SA) 
while SSl--S~. Consider / as an element of B1. Since Ms~ ~ X we see tha t  ~t 0 belongs 
to 5u~f(MB~) and in addition U ~  C-a~](Ss:). Hence an application of Lemma 1.1. 
proves that / (Ms~)  N U is empty  which gives the desired result. 

Lemma 1.10. Let B 1 be as in Lemma 1.9. Then gr-l(Zo) N MB~ is a peak set/or B r 

Proo]. Le t  us put  Y--](Mm) so tha t  Y A U is empty.  Since U is connected and 
zoEaV there exists a function P E C( Y) such tha t  P(zo)= 1 while [P[ <1  on Y~{z0}. 
In addition P can be uniformly approxlmated on Y by  rational functions R~ which 
have poles in U only. Since YN U is empty  the functions R,,o/EB 1 and hence it  
follows tha t  P1 - - P o f  belongs to B 1. Clear lyP 1 determines the peak set g[l(z0) N Ms~. 

Lemma 1.11. Let y Ercr-l(Zo)~S4. Then y does not belong to Hulls(SA). 

Proo/. Suppose tha t  yEHulls(Sa) =Ms , .  Since g71(z0) N Ms1 is a peak set for B 1 
and since S~---Sa we can conclude tha t  y even belongs to Hull~(Sa N gTl(zo). I f  
K = H u l l ~ ( S a  A gFl(zo)) it is obvious tha t  K is contained in Mm N g71(z0), so the 
function ]o is constant on K. This implies tha t  BI(K ) = B ( K ) = A ( K )  and hence K = 
Hulla(S a N g71(zo)), so by  assumption K-~Sa  N ~71(zo). But  here y E M a ~ S  a so tha t  
y E M a ~ K ,  a contradiction. 

Gontinuation o/ the Troo/o/ Theorem 1.7. Let  yo E ~71(z0)~Sa be a given point. 
Using Lemma 1.11. we can choose g in B so tha t  IgiSA<~0< ½ while g(yo)=l .  
Clearly we m a y  change g slightly so we m a y  assume tha t  g=h/g N where h E A I X  
and N >10. Here N > 0  since g clearly cannot belong to A X. In  addition we m a y  
assume tha t  the function h is such tha t  0 < h(wl) i < . . .  < l h(w,)] and tha t  dh~/dz 4:0 
at  ~0 for each i, where h~ are the analytic functions determined by  h on D 0. 

At  this stage we make a good choice of e. For  we can choose e so small tha t  if 
Fi =g(Kt), then F~ are analytic curves where F I =  ... c F ,  and each Ft has the winding 
number  N with respect to 0. In  addition we may  arrange this so tha t  F1c(zECl: 
t z I > 1 + e0}. So now an application of Proposition 1.6. shows tha t  M s  has an ana- 
lytic structure at  the point Y0. 

Here Y0 E X ' ~ O X  so we can choose a small closed neighborhood W of Yo in MA 
as in Lemma 1.8. for which A(W)=B(W) .  But  then it  follows tha t  MA also has an 
analytic structure at  Y0. 

Finally we show why =~= ( g / " l ( z o ) ~ S A ) ~ n .  For  if y E T ~ / - I ( Z o ) ~ S A  then the fact  
tha t  M A has an analytic structure a t  y implies tha t  if / is not locally constant in a 
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neighborhood of y, then f(W) is a neighborhood of z o in C a if W is a neighborhood 
of y in M, .  So if gr-:(zo)~S,~ contains n + 1 points Yl ... Y.+: where / is not  locally 
constant, then we choose disjoint neighborhoods W: ... W.+I of these points and now 
we can find an open disc D(zo) which is contained in I(W:)N ... N/(W,+:). Since 
zoEOU we can choose z:ED(zo) N U and then g/-x(zl) N Ws are non empty for each 
i, so that  :~ gf-:(z:) >~n + 1, a contradiction. 

Hence the set Q={yEg/-l(Zo)~S~: f is not locally constant at y}, contains at  
most n points. If  we put  Z =Q U (gj-:(z0) N S~), then it  is clear that  z/-:(Zo)~Z is an 
open subset of M~. Let  us introduce the uniform algebra Al=A(gi-l(zo)). Using 
the Local Maximum Principle it follows that  S~1 is contained in Z. Since Q is a 
finite set it  follows that  M~=gf-:(Zo) is contained in Q U HullA~(gr-l(z0)N S~)= 
Q U Hull~ (g1-:(z0) N S~) =Q U (gr-:(z0) fi S~). This completes the proof of Theorem 1.7. 

The nex t  result is fairly direct consequence of the preceeding proof. 

Theorem 1.12. Let A be a uniform algebra and let / be a function in A such that each 
open component o/the set Ca~f(SA) is f-regular o/some multiplicity n >~O. In  addition 
we assume that R(f(SA)) =C(](S~)) and that the sets x~7:(z ) A ,.~A are A.convex in M.4 for 
all zEf(SA). Then it follows that M ~ S ~  has an analytic structure. 

Proof. Let  z o E/(S~) and assume that  x is a point in g~-:(Zo)~S ~. Using the assump- 
tion that  R(f(S~))=C(/(SA)) the arguments used in Lemma 1.9-11 show that  there 
exist finitely many components U: ... U~ of the set Ca~f(S~) satisfying the following 
condition. If we take a point ~s in each Us and choose small open discs D(2~) and 
let B be the uniform algebra on the set X - M ~ / ( ~ :  (D(2:) U ... U D()~)) which 
is generated by  A ] X  and the functions ( / -2s) - : ,  then x does not  belong to Hulls(S~). 
Using this fact the same argument as in the proof of Theorem 1.7. shows tha t  Ma 
has an analytic structure at the point x 0. 

In this final part  we derive some consequences of Theorem 1.7. and 1.12. above. 
Firstly we notice tha t  Theorem 1.7. together with Proposition 1.5. immediately 
shows tha t  Proposition 1.6. holds in the case when Fs are curves with finitely many  
intersection points, i.e. F~=/(K~) where K s contains a finite set Ss such that  ](x)4= 
fly) for all pairs x . y  in Ks~Ss.  

Using the fact above we can for example derive the following result which was 
independently obtained by H. Alexander in [1]. 

Theorem 1.13. Let J be a closed curve in Ca with finitely many intersection points 
and let A be a uniform algebra on J which contains the coordinate/unction z. Then the 
(possibly empty) set M A~S~ has an analytic structure. 

Finally we show how the result of G. Stolzenberg in [6] can be derived from Theo- 
rem 1.12. 

Theorem 1.14. Let A be a uniform algebra on the unit circle T such that A is generated 
by continuously differentiable functions. Then the (possibly empty) set M ~'~S~ has an 
analytic structure. 

Before we begin the proof we insert some preliminary results. Suppose that  ] 6 Ca(T) 
and let E be a closed totally disconnected subset of T. Then Ca\ , ] (E)  is connected 
so if A is a uniform algebra on T which contains f, then an application of :Kerge- 
lyan's  Theorem to the simply connected set ](E) shows that  if ~EO(E) t h e n c e /  
actually belongs to the closed restriction algebra A(E). I t  follows that  if A is gene- 
rated by  continuously differentiable functions then A(E)= C(E). 
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The  n e x t  resul t  is essent ia l ly  con ta ined  in  [Theorem, p. 509 in  2], t hough  we also 
need  Propos i t ion  1.5. and  1.6. wi th  a smooth  J o r d a n  arc. 

Proposi t ion 1.15. Let A be a uniform algebra on T and let f E CI( T) be an element of A. 
Assume that T contains a closed totally disconnected subset E such that if x E T ~ E ,  then 
the set S~=(yeT: /(y)=/(z)} is a finite subset o/ T ~ E  and in addition / ' (x)40.  
Then it follows that each open component of the set C l e f ( T )  is/.regular. 

Proo/ o/ Theorem 1.14. F i r s t l y  i t  is easi ly  ver i f ied  t h a t  A contains  s o m e / 6 C 1 ( T )  
sa t i s fy ing  t h e  condi t ions  in  Propos i t ion  1.15. w i th  respect  to  a closed t o t a l l y  discon- 
nec ted  subse t  E of T.  Clear ly  S ~ c  T (in fac t  SA = T b y  Corollary,  p. 85 in 6), so using 
Theorem 1.12. i t  is  sufficient  to  show t h a t  R(f(T)) =C(/(T)) a n d  t h a t  ~r-l(zo) N T is 
A - c o n v e x  for all  %El(T). Now fECI (T)  so t he  p l a n a r  Lebesgue measure  of f(T) is 
zero and  t hen  i t  is welll~nown t h a t  R(f(T))=C(f(T)).  N e x t  E(zo)=r~r-l(zo)N T is 
a lways  a closed d isconnected  subse t  of T when z 0 E ](T),  so b y  the  preceeding discussion 
A(E(zo) ) =C(E(zo) ) which means  t h a t  E(zo)=MA(s(~o~)=HullA(~s-l(z0) N T). This  
comple tes  t h e  proof.  

Depar~men$ o/MaSh~,m~, University of Stockholm, Stockholm, Sweden 
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