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Compact  groups  and Dir ichlet  series  

BY HENRY HELSON 

1. In a previous paper [4] I have tried to show that  the function-theoretic pro- 
perties of Diriehlet series are associated with subalgebras of L : ( - o o ,  oo), rather 
than with almost-periodic functions and compaetifieations of the line. Now I want 
to weaken that  point by  proving a convergence theorem for Dirichlet series, con- 
sidered as Fourier series on a compact group, that  does not apply to Fourier series 
of analytic type in general. 

This paper carries on ideas introduced in [3], but  does not refer to the theorems 
about cocycles proved there. 

We start  with a subgroup F of R~, the discrete real line. The dual of F is a com- 
pact group K with normalized Haar  measure ~. (The case where K is a circle is 
unlnteresting, and is excluded.) A summable function ] on K has Fourier series 

](x) ,., ~. a(2) Zx(x) (2EF), (1) 

where Z~ is the character on K defined by  Z~(x)=x(~t). For p >~ 1, H~(K) is the sub- 
space o f / 2 ( K )  consisting of those functions f in whose Fourier series a(2)=0 for 
all 2<0 .  

A Dirichlet sequence in F is a sequence of real numbers ~ in F such that  

0 ~<~:<22<...; 2.--> ~ .  

Let  H~(K, A) be the space of all functions / in H~(K) in whose Fourier series a(2) =0  
except for ~ in the Dirichlet sequence A. A Dirichlet sequence satisfies the condition 
of Bohr ff there are constants c,/¢ such that  

(2n+:-~,)-:~</c exp (c~t,) ( n = l ,  2 .. . .  ). 

This condition prevents ~, from increasing too slowly, or from bunching up too 
densely. I t  is satisfied in the case of ordinary Dirichlet series: 2 ,= log  n. 

2. Let  e~ be the element of K defined by e~()t)=e~t~(;tEF), for each real number ~. 
Then K 0 = {et} is a dense subgroup of K of measure 0. To a measurable function ] 
on K we associate functions ]~(t)---f(x + et) defined and measurable, for almost every 
x, on the line. If ] is in L2(K), then for almost every x the restriction ]x is square- 
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summable over the line for the measure d/x(t)=(1 +t2)-ldt. Finally, for f in H~(K), 
]~(t) is (for almost every x) the boundary function of f~(z) analytic in the upper half- 
plane, and ]x(t +iu) belongs uniformly to L2(/x) for u > 0. These results are given in [3]. 

To keep track of the analytic extensions we may write formally 

/~ (t + iu) ~ ~ a(X) e - ~  e '~ Z~ (x). 
, t  

The relation between / and the analytic extensions/~(z) is general but  abstract. 
Our result is that  for certain Dirichlet series this relation is simple and direct. 

Theorem.  I / / i s  in He(K, A) ,  where A is a Dirichlet sequence in F satis/ying th~ 
condition o] Bohr, then the series 

o o  

/~ (t + iu) ~ 5 a(A) e-a" e ' ~  Z~. (x) (2) 
n = l  

converges in the ha//-p/ane u > 0, except in a null-set of z. 

For fixed x, (2) is a Dirichlet series in the ordinary sense, whose half-plane of 
convergence is determined by  the coefficients in a manner described by  a classical 
formula. These coefficients are a(1,)X~n(x ), with x regarded as fixed. To establish 
convergence for each u > 0 we have to show for almost every x that  

Fx (2) = ~ a ( ~ )  g~. (x) 

is 0(e a") as 2-* ¢¢, for each u > 0. Our hypothesis is simply 

l a(2.) 1 ~ < ~ .  
nffi] 

In  simple cases, for example if / is a trigonometric polynomial, it is easy to verify 
that  the Fourier transform of e-~UFx(1), with u fixed, is/x(t +iu)/(t +iu). The former 
function is therefore the inverse transform of the latter one. Now approximate f 
by the partial sums of its Fourier series (1). For almost every x and for each u, 
/z(t + iu) is the limit of the partial sums of (2) in the norm of L~(p). Taking inverse 
Fourier transforms gives the result we want: e-a~Fx(t) is, for almost every x, the 
inverse Fourier transform of /~(t+iu)/(t+iu). A consequence is that  e-~U.Fx(t) is 
square-summable over the line for almost all x. We have to go further and show 
this function is bounded. 

Since ] is in /~(K) ,  it belongs also t o / 2 ( K )  for p < 2 .  Denote by P~ the singular 
measure of mass 1 obtained by  placing the Poisson kernel 

1 u 
g u 2 + t ~ 

on K o. Then P ~ - f  is i n / 2 ( K )  for p < 2 ,  so that  

140 



ARKIV FOR MATEMATIK. Bd 8 nr 16 

f ll,(t + i~)I" d,~(x) < o o  

for fixed t, u. By  the Fubini  theorem, for 1 < i~ < 2 we have 

~ f~( t+iu)  Vdt < (almost all x). 

The Young-Hausdorff theorem implies now tha t  the inverse Fourier transform 
e-X~2'~(2) belongs to L q ( -  c~, c~) for 2 < q <  ~ : 

f :  e-~=~ IF~(4) l ~ 4 <  ~ .  (3) 

Set b. = ]F~ (4.)]. Then (3) can be writ ten 

e-~"~'¢bg (4.+~ - 4.) < ~. 
nffil  

The condition of Bohr (which has not been used to this point) means that  

4,+ i --4,~ ~> k - i  exp (-e4n)  

for some constants k, c. Hence 

~ e -~tn(uq+c) b~ < ~ .  
nffil 

The terms of this series must  tend to 0. On taking qth roots we find 

bn=o(e~"(u+~)), e=c/q. 

Since q can be taken as large as we please, and since u is an arbi t rary positive number, 
we have 

Fx(4.) =o(e ~"~) 

for every u > 0, which is enough to prove the theorem. 

3. Let  us assume tha t  A is a semigroup. Then H°°(K, A) is an algebra, and each 
HV(K, A) admits multiplication by  functions of H°°(K, A). Say tha t  a function / is 
outer in HV(K, A) if / belongs to HP(K, A), and the set of all products/g,  g in H~(K, A), 
is dense in Hr(K,  A). 

The definition is analogous to the definition of an outer function in HP(K): / 
should belong to H~(K), and the set of products /g ,  g in H~(K), should be dense in 
H~(K). The following result is proved by  standard methods involving conjugate 
functions: i/ / is outer in H2(K), and if / belongs to Hq(K) /or some q>2,  then / is 
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outer in Ha(K). Unfortunately the proof does not work in Ha(K, A), and no cor- 
responding result is known. 

I t  is obvious that  each / outer in HP(K, A) is outer in/ /~(K),  and therefore satis- 
fies Beurling's condition 

log I log I (0) l > - oo. 

Rudin has shown on the torus that  the converse implication is false [5]. 
These remarks indicate that  invariant subspaces for Dirichlet sequences are not~ 

yet  well understood. Rudin has studied double power series, a special case which 
may illuminate the general problem. From one point of view it is more natural to  
consider power series in infinitely many variables, corresponding to Fourier series 
on an infinite-dimensional toms, and to ordinary Dirichlet series. Bohr called atten- 
tion to the relation between power series in infinitely many variables and ordinary 
Dirich]et series [1]. 

4. Take for A the semigroup of ordinary Dirichlet series: ~t. =log n. Define func- 
tions Z~, u > ½, by  

Z.(~) ~ Y. n -"  Z~o~.(x). 

Here F is the group of all log r, r a positive rational, and K is an infinite-dimen- 
sional toms. 

The restriction of Zu to K 0 is formally the Riemann zeta-function. Our theorem 
gives some properties of Zu on K. 

Theorem. For each u>½, Z~, and Z~, 1 are outer /unctions in Hq(K, A) /or every 
/inite q. 

Z,  obviously belongs to H2(K, A). Its reciprocal has Fourier series 

Z:,'(x) ~ ~l~(n) n-"  Z,o~ .(x); 

/~ is the M6bins function taking only the values 1, 0, - 1. Therefore Z~, i is in H2(K, A). 
Z~ is in Hi(K, A) with Fourier series 

2 - -U z . ( ~ )  ~ ~ d(n) n z ~ . ( x ) ,  

where d(n) is the number of divisors of n. Now d(n)=0(nQ for every positive e 
[2, p. 260]; therefore ~ is in L2(K), or Zu is in H4(K, A). The coefficients of Z~ * ar~ 
dominated by  those of Z~, so that  Z~, 1 is also in H4(K, A). 

Now we proceed by  induction. The coefficient of Z~ of order n is 
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n-U ~ d(r). 
r]n 

The sum contains d(n) terms, each smaller than ne (if n is large enough). I t  follows 
that  Z~ is in H~(K, A), or Z~ in H~(K, A), and the process continues. The coef- 
ficients of Z~ ~ are dominated by those of Z~. Thus finally Z~, Z~, 1 belong to 
Hq(K, A) for every finite q. 

If  g~ is not outer in Ha(K, A) there is some h in L~(K), p-1 +q-1 = 1, perpendicular 
to Z~,g for each g in H~(K, A) but not  to the constant functions. (For if Z~g can 
approximate constant functions, it can approximate any function in H~(K, A).) The 
orthogonality relations mean that  the integral of ~Z~ multiplied by any trigonometric 
polynomial with frequencies in A is 0. Now )~Z~ belongs to L~(K) for each r <p .  In  
the dual space L'(K), r -1 + s -1 = 1, Z~ ~ is the limit of such trigonometric polynomials. 
Hence the integral of h=f~Z~Zu 1 is 0, a contradiction. So Z~ must have been outer 
in Hq(K, A). A similar argument shows that  Z~, 1 is outer. 

5. If ] is outer merely in H2(K), the analytic function Ix(z) is an outer function 
in the upper half-plane in the ordinary sense, for almost every x [3]. So Ix(z) never 
vanishes on such half-planes. I t  seems possible that  more can be said if ] is outer 
in H~(K, A) and Ix(z) is the sum of a convergent Dirichlet series. A plausible con- 
jecture would be: i] A is a semigroup and satis]ies the condition o] Bohr, so the series 
(2) converges in the upper hall-plane ]or almost every x when ] is in H~(K, A), then 
]~(z) never vanishes on hall-planes o] convergence when ] is outer in H2(K, A). 

Some doubt is thrown on the conjecture, or at least on the ease of proving the 
conjecture, by  this consequence of it: i/ the conjecture is true, then the Riemann 
hypothesis is ]al~e. For the Riemann hypothesis implies the convergence of 

~ l # ( n )  n -~  

for u>½ [6, p. 315], thus establishing the half-plane over K o as a half-plane of con- 
vergence for the outer function Z~ 1. Nevertheless ZT, 1 has a zero in this half-plane, 
corresponding to the pole of zeta at 1, contradicting the conjecture. 
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