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On a problem of Smirnov

By Per Enrro

From the theorem that every separable metric space is isometric with a subset
of C(0, 1) and the theorem that all separable Banach spaces are homeomorphic it
follows that every separable metric space is homeomorphic with a subset of Ly(0, 1).
In this paper we shall construct a countable metric space which is not uniformly
homeomorphic with any subset of L,(0, 1). This gives a negative answer to a question
asked by Smirnov. This question is the theme in [3] where among other things it is
proved that Euclidean n-space is uniformly homeomorphic with a bounded subset
of Ly(0, 1). The question is also treated in [2] where a result in the negative direction
is obtained and in [1] where a stronger result is obtained.

1. A geometric property of L,(0,1)

We shall say that a set of 2n+2 points in a metmc space is a double n-simplex
if the points are written a,, a,, ... @, 1 by, by, ... by y. We shall call a pair of points
(@i, a;) or (b;, b,;) i =7 an edge and a pair of pomts (a,, be) a connectmg line. We shall
say that a metric space M has generalised roundness p, if p is the supremum of the
¢’s with the property: for every n>1 and every double n-simplex in M,X ¢ >X s§
where ¢, runs through the lengths of all eonnecting lines and s; runs through the
lengths of all edges. In [1] we defined roundness to be the supremum of the ¢’s for
which the inequality holds for double 1-simplexes. It is obvious that the generalised
roundness ig not larger than the roundness. In [1] it was proved that L0, 1) 1<p <2
has rundness p. If a metric space has the property that some pair of points (a;, @)
has a metric middle point m then its roundness and thus its generalised roundness is
not Ia.rger than 2. We see this by choosing b, =b,= '

Since in every double (n—1)-simplex there are n2 connectmg lines and 'n(n 1)
edges the generalised roundness of a metric space is >0. If in a double (n—1)-
simplex we put the lengths of all connecting lines =} and the lengths of all edges =1
then it is easy to see that we get a metric space with generalised roundness
—2log (1 —1/n) which tends to 0 as n—oco. If in a double (r —1)-simplex we put in-
stead the lengths of all connecting lines =(1 —1/n)"%, (1 —1/n)"?>1, ¢>0, it is easy
to see that we get a metric space with generalised roundness ¢.

Theorem 1.1. Ly(0, 1) has generalised roundness 2.

Proof. Since L,(0,1) has roundness 2, the generalised roundness is not larger
than 2. Thus it is enough to prove X ¢Z > X s§ for all double n-simplexes in Ly(0, 1).
This inequality is for a double (n — 1)-simplex equivalent with the inequality
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1
f (2 (@— b;)n - 2 (a- “1)2 - 2 (b bj)z) dz=>0
] {é;é: 1gi<ign 1<i<j<n

which holds since the integrand is equal to
> @— 2 b

1gign 1<ign
Remark. The identity above gives Xc2=> s§ when the two simplexes have the
same centre of gravity. For double 1-simplexes this is the parallellogram theorem.

2. Universal uniform embedding spaces

We shall say that a metric space M is a universal uniform embedding space if
every separable metric space is uniformly homeomorphic with a subset of M.
((0, 1) is a universal uniform embedding space since every separable metric space is
isometric with a subset of C(0, 1). We now prove

Theorem 2.1. Every universal uniform embedding space has generalised roundness 0.

Proof. We prove that a metric space with generalised roundness p>0 is not a
universal uniform embedding space.

Consider the metric space M = {exp ((2nksi)/2"*?), £=0,1,2, ..., (2"** —~1)} where
n is an even number. Take the product M, of n” such spaces and define a metric in
M, by letting the distance between two points in M, be the largest of the distances
in the coordinate spaces. We shall say that a pair of points (a, b) in M, is an m-seg-
ment if the coordinates of g and b are different in exactly 2™ coordinate spaces, and
the difference between the coordinates in each of these spaces is exp ((2mks)/2") x
{(exp (74/2™) —1) where k may depend on the coordinate space.

We shall consider double (n—1)-simplexes in M, where every connecting line is
an (m + 1)-segment and every edge is an m-segment. In such a double (r —1)-simplex
every connecting line has length |exp (7i/2"*')—1| and every edge has length
| exp (/2™ —1 |. I there exists such a double (n—1)-simplex then, by symmetry,
it follows that for fixed m, all m-segments in M, are edges in the same number N,
of double (n —1)-simplexes of that type and all (m +1)-segments in M, are connecting
lines in the same number N, of double (n —1)-simplexes of that type. For if s; and
8, aTe two m-segments then there is an isometry of M, onto itself by which s, is the
image of s, and the image of each k-segment is a k-segment. We now prove the
existence of such a double (»—1)-simplex, 1<m<n--1.

We consider an ordering of the coordinate spaces and divide the first n™+! co-
ordinate spaces into 2n groups with n™/2 coordinate spaces in each. We let the co-
ordinates of a point in one of the simplexes be exp (#i/2") in all coordinate spaces
of one of the first n groups and be 1 in the remaining coordinate spaces of the first
n groups. The coordinates are exp (n:/2™*') in all the remaining coordinate spaces
of M,. We let the coordinates of a point in the other simplex be exp (7i/>") in all
coordinate spaces of one of the last n groups and be 1 in the remaining coordinate
spaces of the last » groups. The coordinates are exp (73/2™*1) in all the remaining
coordinate spaces of M,. This double (n—1)-simplex has the required properties.

If M, is embedded in a metric space B with generalised roundness p >0 then we
get TdP ,.1=XdE , for every double (n—1)-simplex of the type described above,
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where d;« runs through the lengths of the images of k-segments. We add all these
inequalities for a fixed m. Then we get an inequality where all lengths of images of
m-segments appear N, times on the right side and all lengths of images of (m+1)-
segments appear I, times on the left side. Since there are n? connecting lines and
n{n—1) edges in each double (n—1)-simplex we get S(dZ,.1)=[(n—1)/n]S(d% )
where S(d% ;) is the arithmetic mean of the pth powers of the lengths of the images
of the k-segments. If we apply this last inequality n—1 times we get S(d3,)=
[n—1/n]*"1S(dZ,). From this we get supdZ,>1/einfd?, and sup d,,>(1/e)*”
(mf dz. 1)-

Now we take the union of a countable family of sets M, where we let n tend to
infinity. We put the distance between two points in different M,’s =2. If this metric
space were uniformly homeomorphic with some subset of B and T were a uni-
form homeomorphism then infd,,>¢ for some £>0 and all spaces M,. But then
supd,,=>(1/e)'?-¢ for all » and this contradicts that 7' is uniformly continuous.
The theorem is proved.

Remark. By a modification of the last construction of the proof we can get a metric
space in which no non-void open set is uniformly homeomorphic with a subset of B.
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