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A metric result about the zeros of a complex

polynomial ideal

By CarisTer LecH

Introduction

Let us begin by listing some notations. We shall denote by K the field of complex
numbers, by K[z} =K+, ..., z*] a polynomial ring over K in #» variables, and by
K" the n-dimensional vector space over K. The complex eonjugation in K, and its
natural extensions to K[z] and K", will-be indicated by the: superscnpt ~ over the
respective elements. Let y = (3%, ..., ") be an element of K™, It is called real if y =7,

that is, if 1, ..., y™ are all real. The mnorm.f|y] of  is defined as the non-negative num-
ber sa.tisfying

IylE=3 547
If, in K[z], f = f(x) is an element and a-an ideal, we denote by d(y;f) and d(y;a) the

distances in-the sense of the norm between y and the sets of complex zeros of f and
of a respectively. More precisely,

dy; /) =inf {{ly —y'll | y'€K", (') = O},
d(y;0) =inf {lly =y'|l | ' €K% fy') =0 for every feal},

where the infimum of an empty set is counted as + oco.

Nowlet a =(f,, ..., f,) be an ideal of K [x]..There exists in a a polynomial which has
no more real zeros than the ideal q itself, for

f=p§1ﬂfy

is clearly such a polynomial. The object of the present note is to prove a refinement
of this result in the form of the following

Theorem. Let a be an ideal of K[z]. There exist a polynomial f€a and a positive
constant ¢ such that for every real o€ K™ we have

d(o;f) = cd(oza).
If a has no complex zeros, d(«;a) = -+ oo for every «, and the theorem gives the

existence of an fea without complex zeros, i.e. a non-zero constant polynomial.
Thus in this case we have a form of Hilbert’s ‘“Nullstellensatz.
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C. LECH, The zeros of a complex polynomial ideal

The theorem has interesting applications in the theory of partial differential equa-
tions (see [2]), and this fact is the principal motivation for presenting it. The origin
of this note was a question to the author by Prof. L. Hérmander, and the method,
which will be used, is partly inspired by results of his (cf. esp. [1], § 3.3).

In our proof we shall consider polynomials f of the form

f=2 b

We shall give certain conditions on the K-module generated by f,, fs, ..., fx which will
assure that f (for some constant c) has the property required by the theorem (see
Section 1). Since, moreover, the proof can be reduced to the case where a is a prime
ideal not generated by a single element, we are led to construct, for every such
prime ideal p in K{z], a certain finitely generated K-module M contained in p.
Let us outline this construction, with a slight deviation of a purely formal nature.
Put d = the dimension of p. Denote by [ a (» —d — 1)-dimensional linear variety in
affine n-space, whose direction is determined by a set {7} of indeterminates over K.
There is an irreducible polynomial in K (t)[z] whose set of zeros can be obtained as
the locus of I when moved with fixed direction through the zeros of p. This polynomial
is determined only up to a factor of K (r), which we choose so as to obtain an irredu-
cible polynomial ¥ (x,7) of K[z,7). Now we can describe the module M. It is the
K-module generated by all polynomials F(z,7) that can be derived from F(x,7) by
substituting systems {z} of values in K for the indeterminates {r}. Each of the special
polynomials F(x,7)= 0 in M inherits from F(x,7) the property that its set of zeros
can be obtained by moving a (n —d — 1)-dimensional linear variety through the zeros
of p. This fact will be fundamental in proving that M satisfies the necessary condi-
tions (see Lemma 2 and the “intuitive” outline below the formula (5.6), p. 552).

We shall employ the following algebraic tools: (i) Noether decomposition of ideals
in a polynomial ring over a field (see e.g.[3], Chap. I, or [4], Chap. XII); (ii) elements
of field extensions (see [5], Chap. I, §§ 1, 2, 3); (iii) the notion of a specialization and
the theorem on extension of specializations ([5], Chap. II, §§ 1, 2, 3).

1. Modules

The aim of this section is to prove Lemma 2 below. The proof will be based on
the following

Lemma 1. Let M be a finitely generated K-module in K [x], and suppose that {f,}{' and
{9.}" are two systems of generators of M. Then there is a positive constant ¢, such that
for every real a € K™ we have

d(a; 2 fo )= ¢ min d (x; g,).

Proof. We shall use a certain approximate expression d* (a;f) for d(o;f) where f
is an arbitrary element of K []. If 7 is a natural number, and if h,, ..., &, are arbitrary
elements of K [z], let |y, ..., k|, denote max|h, («)|. Similarly, if Sy, ..., S, are sets

of elements of K[x], let |8, ..., 8|« denote sup|h(«x)| where h ranges over S, U ...
U 8,. In particular these definitions apply to the case r =1. Let t be a new variable
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and consider, for every 0 = (0%, ...,0") in K" of unit norm, the expansion in powers
of t of

fle+10)=f(xr +E0%, ..., 2™ +E0™).

Denote by D*f (k=0,1,2,...) the set of coefficients of t* in these expansions. Then
D*fckfx]. We define d* (a;f) as the supremum of those positive real numbers 4 for
which

|f|« > 4%| D¥fl. £=1,2,3,.

or 0 if there are no such numbers. To elucidate this definition, consider for every 6
of unit norm the expansion of f(« +6) in powers of #, where f€ K. If [{| <d*(o;]),
then, in every such expansion, the first term f(«) will exceed in absolute value each
of the subsequent terms. Moreover, d*(«;f) is precisely the largest number with
this property, or possibly + oo.

Let us show that there are positive constants €, and C, depending on the total

degree of f but independent of a such that, if d(e;f) and d* («;f) are not both 0 or both
-+ o0, then

d(x; f)
01<d* @ /)

It is easily checked that, if d*(«;f) is equal to 0 or + oo, then d(«;f) has the same
value. In the remaining cases we can and shall assume that d*(a;f) =1. For, if
necessary, we can make a homothetic transformation with centre o, which changes
d(o;f) and d*(x;f) by the same suitably chosen factor, and of course such a trans-
formation does not alter the degree of f. Thus, under the assumption that

<0, I1.1)

O|fle= max |D*fl., (1.2)
k=1,2,3,...
we have to find C, and C, such that
0, <d(xf) <0,

If |#] <3, it follows from (1.2) that, for every 6 of unit norm, the first term in
the expansion of f(« +£6) in powers of  will have a larger absolute value than the
sum of the others, so that f(x +#8)< 0. Hence we can take C; =}.

Let m be the total degree of f. Choose k>0 so that |f]« =|D¥f [ - andG so that the
supremum involved in | D*f|, is attained for this §. The kth elementary symmetric
function of the m roots of the equation in z,

z”‘/(oc +z16)=

has then the absolute value one. It follows that the roots cannot all have absolute
values less than 1/m, for
my 1
— < 1.
(k) mi <!

The equation in £, f(e +£6) =0, has therefore at least one root with an absolute
value not exceeding m. Hence we can take C, =m. The formula (1.1) is thereby
established. (The fact that « is real was not used here.)
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C. LECH, The zeros of a complex polynomial ideal

In view of (1.1) and the definition of d* («; f), the statement of Lemma 1 can
be formulated as follows: There is a positive constant Cy independent of o« such
that, if

l [ A"!D" [ k=1,2,3,... 13)
v 1> v (o B
g g y=1,2 ..., N,

A>0,
then, with f =2 f,f,, we have

fle > (Cad)| D*fl. E=1,2,3, ... (1.4)

We shall prove the lemma on this new form. From (1.3) we get
(91 - gu|a > A%| Dy, ..., D¥gnl|e £=1,2,3,...
Since each g, is a linear combination of the f, and conversely, it follows that
Cyilts - Inle > A%| D¥fy, ..., D¥fnle £=1,2,3, ... (1.5)
with C, > 1 independent of . Now we use the fact that « is real. Evidently,

[Hla=h - fula®

Further, | D*f,|, = | D*},|, and hence, expanding f,(« +¢0)f,(x +t0) (=1, 2, ..., N)
in powers of ¢,

| DFfle<N(k+ l)tm?:,:‘ID‘fl, ves Dfnle | Dty oo, Dlfnle £=1,2,8, ...
+i=

Combining the last two inequalities with (1.5) and observing that k +1 < 2% (k =
1,2,3...), we obtain (1.4) with C; = (2N C%)~*. This completes the proof of Lemma 1.

Lemma 2. Let 6 be an ideal of K[x]. Suppose that a finitely generated K-module M
contained in o satisfies the following condition:

For every sequence {a,}i° of real elements of K™ none of which is a zero of a, there
s a generating system {g,}1" of M such that

lim supM>O r=L2,..,N, (1.6)
w>oo - a(ay; 0)
where the fraction on the left is counted as 1 when it has the form co/co, and as O when i
has the form A/oco with A+ co.
Then, if {f,}1' is an arbitrary finite generating system of M, there is a positive constant
c such that, for every real a € K™, we have

d(a;%fwﬁ)%d(a;a)-

»=1
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Proof. Assume that the condition of the lemma is fulfilled. If a has no complex
zeros, it follows from (1.6) that the g, have no complex zeros either, and hence that
M = K. In this case, as also when g = (0), the result is obvious. Let us assume that we
are in neither of these cases. Denote by «, o, «,, ... real elements of K" which are not
zeros of a. (Such elements exist since a= (0).) Put

do; 2 fov)
inf -

e dsa) O

We then have to prove that ¢ is positive. Take a sequence {«,}i° such that

d (“I‘; z,,: fv fv)

lim ————— —o.
e dlasa) ¢

For this sequence {o,};°, choose {g,}1" in accordance with the condition of the lemma
so that (1.8) is valid. There is then an infinite subset I of the natural numbers such
that

min d (etu; 9,)

v

per  d(oy;q) >0.

d (“Il; z fv fv)
By Lemma 1 we have inf ——"——>0.
uermind (o ¢,)

i inf —~

_._"__.> L A—
per  d{o,;a) wer  d(au;a)

d (otu; Z ft'fv) ( d (otu; Z fv fv)) ( min d (o gv))
Now ¢=lm d

inf ———
wermin d (a3 g,)
Hence ¢ is positive, which was to be proved.

2. Reduction of the proof of the theorem to the case where g is a non-principal
prime ideal

Let py, ..., p,, be the minimal prime ideals of a (associated with an arbitrary No-
etherian decomposition of this ideal). There is an integer N such that

(By-- Pm)¥=a. (2.1)

From this inclusion (and the fact that a< p,(u =1, 2, ..., m)) it is seen that the set
of zeros of a is the union of the sets of zeros of the p,. Therefore, if y € K",

d{y;a) = rr:‘in d(y; Pu)- (2.2)
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Suppose that we have proved the theorem for the ideals y,, ..., p,. Then there are
polynomials f,€p.(x=1,2,...,m) and positive constants c, such that, for every

real a e K™,
d{o; fu) Z cud (o5 py). (2.3)
Put f=(f;...}.)". Then fea according to (2.1). Applying (2.2) and (2.3) we get

d(of) = mmd(ac fu) = (mmc,,)(mmd(oc,p,l))=(minc,,)d(ac;a).

This means that / meets the requirements of the theorem for ¢ = minc,. Hence it suf-

»
fices to prove the theorem when q is prime. If a is principal, i.e. generated by a single
element, the theorem is clearly valid with f equal to that single element and ¢ equal
to one. Thus it suffices to prove the theorem for non-principal prime ideals. In
particular, this excludes the ideals (0) and (1).

3. Construction of the module M

From the two preceding sections it is clear that the theorem will be proved if, for
every non-principal prime ideal p of K{z], we can find a module M < p satisfying the
condition of Lemma 2. For an arbitrary non-principal prime ideal b we shall now
construct a module M which subsequently will be shown to have the desired proper-
ties.

We adopt from algebraic geometry the convenient idea of & “‘universal domain’ and
introduce Q as an extension field of K of infinite transcendence degree over that
field and algebraically closed. Then every finitely generated extension of the field K
can be isomorphically embedded as an extension within Q. The elements of Q will
be called quantities. By a generalized quantity we shall mean an element of the set
{Q,00} where co is a new element occurring as image under specializations ([5],
Chap. II. § 2, p. 26).

Let p be a non-principal prime ideal of K [z], and let d be its dimension. We have
0 <d <n —2 since otherwise p would be principal (as to the case d =n — 1, see [5],
Prop. 10 of Chap. I, p. 7). Let £ =(&, ..., &) be a set of = quantities such that &
determines the ideal p over K, in other words such that there is a natural isomorphism
between K[z]/p and K[&] ([5), Chap. I, § 3, p. 6, and Chap. III, § 2, p. 48). For
i=1,2,...,n—d—1, let 1; be a quantity and 7, = (T}, ..., T}) & set of n quantities
such that the set of all the 2, and all the 7} is a set of independent indeterminates
over K (£). Finally, define { =({?, ..., (") by

G=8+A1h+-- +A,,_d_11’n_'d_1 (=12, ..., ) (3.1)

or, in vector notation,
{=¢+hnt o+ agTaa

We shall prove that the ideal determined by {{,7} over K is generated by a single
non-constant polynomial, which will be denoted by F(z,t). This polynomial will
form a basis for our definition of M (cf. the introduction).

In order to avoid repeating the same argument at different places, we first prove
a lemma which collects some results about the specializations of {£,4,{,7} over K.
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By {&4,(,7} we mean the set of all the quantities &, 4,, {!, 7}. The sets {£,4}, {C,7}
ete. are defined similarly. A set of generalized quantities is called finite if none of its
elements is co, otherwise it is called wnfinite.

Lemma 3. Let {§,1,C,7} be a specialization of {£,A,(,t} over K with {{,7} finite.
The following five implications are true:

£ TV e [{C} is not a set of independent
A f
) {6, A} finite g | indeterminates over K (7).
(B) {€, A} finite, [{%} is not a set of independent
A1 oees An_a-1 not all zero |indeterminates over K ({).
£ Ry s g [{%} is not a set of independent
© {6, 4} infinite ~ | intermediates over K.
{1 finite, £ 1, £, T} is a specialization of
(D) u - - P -
=+ =2pg1=0 {&, %, £, 7} over K for every finite {T}.

2y e g {€, 2, z 7} is a specialization of _
(E) {6, A} ininite = [{5, A, £, 7} over K for every finite {{}.

Proof. We begin with (A). Substituting {£,1,£,7} for {,4,C, 7} in (3. 1), we see that
K(,#)c K(£,2,%). It follows that the transcendence degree of K ({,7) over K (%)
cannot exceed that of K ({-’,A) over K, which in its turn cannot exceed that of K (£, 4)
over K, i.e. n — 1. Hence the result. The proof of (B) is similar: if, say, 1, 0, the
transcendence degree of K (£,7) over K({,%,, ..., T,_q_;) cannot be larger thann — 1.
Also (O) is proved in essentially the same way. In this case we first extend the spe-
cialization so that it applies to all the quotients between any two non-zero elements
of the set {£,1}, and choose x € {£,1} such that the quotients with this element as
denominator are specialized into finite values ([5], Prop. 10 of Chap. II, p. 34).
Dividing by x in (3.1) and specializing, we obtain % (non-homogeneous) linear equa-
tions satisfied by the 74 with coefficients that are images of elements in K (£,1).
None of these linear equations can vanish identically since this would mean that they
all did, which is clearly impossible. The argument can therefore be continued as in
the preceding cases.

The proofs of (D) and (E) depend on the obvious fact that, for each ¢, anyn —d—1
of the n —d elements %, 7}, ..., Th_4_; are independent indeterminates over K (£, 4),
and that therefore any such #n —d — 1 elements can be specialized into arbitrary values
in compatibility with any specialization of {£, l} over K ([5], part (a) of the proof of
Theorem 6 of Chap. II, p. 30). Thus in (D) the given {£, 1} together with an arbltrary
finite {7} forms a specialization {£,1,7} of {£,4,7} over K. In view of (3.1) there is
only one possibility of extending that specialization of {&,2,7} to {, namely to spe-
cialize  into the same value (=¢£) as in the given specialization {E,Z ,7}. This gives
the result. The proof of (E) is similar to that of (D), and the actual differences are
quite analogous to those between the proof of (C) and that of (A). This finishes the
proof of Lemma 3.

Let K[z,t] be a polynomial ring over K where {z} and {t} are independent sets
of variables indexed in the same way as {{} and {z} respectively. We assert that the
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ideal in K[z,t] determined by {{,7} is a principal ideal different from (0) and (1).
This is equivalent to saying that the transcendence degree of K (£, 7) over K is precisely
one less than the number of elements in the set {{,7}, i.e. n(n —d) — 1 ([5], Prop. 10
of Chap. I, p. 7). It follows directly from our successive introduction of &, {1}, {z}, {
that the transcendence degree of K (£,4,(,7) over K is just n(n — d) — 1. We therefore
have to prove that the set {£,1} is algebraic over K({,7). Suppose the. contrary!
Then there is an infinite specialization of {£,4} over K(,7) ([5], part (a) of the proof
of Theorem 6 of Chap. II, p. 30). But since {} is a set of independent indeterminates
over K, this contradicts (C) of Lemuma 3, and our assertion follows. Let F(z,t) be a
generator of the ideal in K{z,f] determined by {Z,7}. A set of quantities {{’,7'} is
then a specialization of {{,7} over K if and only if F({’,7") =0.
The polynomial F(z,t) can be written

N
F(a,)= 2,1 @) . () (3.2)

where f,(z)eK[z], @, (t)€eK[t] (»=1,2, ..., N), and where each of the two sets of
polynomials, {f,(z)}1' and {g,(t)}{', are linearly independent over K. Let us fix such
a decomposition of F(z,t). We then define M as the module generated by the set
{f,(x)}{'. It is easy to see that M is uniquely determined by p, but we shall not use
this fact.

4. Auxiliary results about F (3, t) and M

Lemma 4. The common zeros of f,(x) (v=1,2, ..., N) are precisely the finite spe-
cializations of & over K. The common zeros of @,(t) (v =1, 2, ..., N) are precisely those
sets {T} which occur in some specialization {£,A,C,%} of {£,4,C,7} over K with {£,1}
infinste, {£,7} finite.

Proof. Let &£ = ({1, ..., {") be a set of quantities. We shall prove the first part of the
lemma by showing successively that the following four statements are equivalent:

W) LO=0p=01,2..,8;
(ii) £ occurs in a specialization {,7} of {{,7} over K where {T} is a set of inde-
pendent indeterminates over K ({); _
(iii) ¢ occurs in a finite specialization {£,4,C,%7} of {£,4,(,7} over K with 4, =--- =
Zn——d—l =0; =
(iv) there is a specialization £ of £ over K such that {=£.

The condition for {{,7} to be a specialization of {{,7} over K is F({,7) =0. It
therefore follows directly from (3.2) that (i) implies (i1). To obtain the reverse impli-
cation we have just to observe that, as formal polynomials, the @, (t) are linearly
independent over any extension field of K, in particular over K ({); this can be seen
for instance from the fact that their independence over K means the non-vanishing
of some determinant. The equivalence of (ii) and (iii) follows from (B), (C), and (D)
of Lemma 3 and the extension theorem for specializations. The equivalence of (iii)
and (iv) is a consequence of (3.1) and the fact that {A,7} is a set of independent in-
determinates over K (£).

The second part of the lemma is proved quite similarly. We assume that {Z} is a
set of quantities indexed in the same way as {z}, and prove the equivalence, this
time using (A) and (E) of Lemma 3, of the following three statements:
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) @(T)=0(=1,2,...,N) .
(ii) {Z} occurs in a specialization {,7} of {{,7} over K where {{} is a set of in-
dependent indeterminates over K (7); _
(iif) {7} occurs in a specialization {£,1,(,7} of {£,4,{,7} over K with {£, 1} infinite,
{€,7} finite.
The proof is complete.
If {7} is a set of elements in K, it is clear that the polynomial F (x,7)€ K [x] belongs
to M. To see that N such polynomials, corresponding to different sets {7}, will in
general generate M, we need the following

Lemma 5. If {*j|k=1,2,...,N;§=1,2, ..,n—d—1;5=1,2,...,n} is a system
of independent variables over K, consisting of N copies {*} (k=1,2, ..., N) of the
set {t}, then the determinant

| @ ()]s, k1,2, ... »
does not vanish.

Proof. Let us show by induction on N that, if {p, (£)}{ is any system of polynomials
of K [t], linearly independent over K, then the above determinant is not zero. This is
clear for N =1. To pass from N —1 to N, we expand the determinant according to
the elements of the first column, thus obtaining a sum

P ()0 -+ pn () Cy

where the cofactors Oy, ..., Cy belong to K[%, ..., ™]. The sum cannot vanish, for
the @, (}) are linearly independent over K, hence also over K (%, ..., *f), and the
C, are different from zero by the induction hypothesis.

5. Proof that M satisfies the condition of Lemma 2 with respect to

First we note that M < p since, by Lemma 4, £ is a zero of f,, ..., fy. As b= (0),
there are real elements of K™ which are not zeros of p. If {a,};* denotes an arbitrary
sequence of such elements, we shall determine an infinite subset J of the natural
numbers and a generating system {g,}i’ of M such that

lim inf 4 (o3 9)

s d(%p)>0 w=1,2, ..., N). (5.1)

(It is understood that y— co0.) Obviously this will show that the condition of Femma 2
is satisfied.

We begin by determining J. By Lemma 4 we know that, for each u, at least one
of the numbers f,(x,) (v =1, 2, ..., N) is not zero. Thus there are numbers c,€ K (u =1,
2,3, ...) such that

N
2 ouhu@|=1.
‘We now choose J such that each of the N limits

d, = lin} cufuly) (v=1,2,...,N)
e
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exists. Evidently, the d,(» =1, 2, ..., N) cannot all be zero. Putting

()= Z @y (t), (5.2)
we have lin]l cuF(au;t)=¢ (2) (5.3)

in the sense that the coefficients of the several power products in ¢ converge separately.
The polynomial ¢ (¢) is not identically zero. This follows from (5.2} since the ¢, (f) are
linearly independent over K and the d, are not all zero.

Having determined J, we turn to the generators g,(» =1, 2, ..., N). For each of the
systems {*} (k=1, 2, ..., N) of Lemma 5, choose values { } in K such that

det | @, (%) s k-1.2,.... ¥ =0, (5.4)
$("%)+0 (k=1,2,...,N). (5.5)
Such a choice is possible since K is an infinite field. Put
ge(@) = F(z,"5) (k=1,2,..,N).

The polynomials g, (z) are contained in M, and it follows readily from (5.4) that they
generate M. It remains to prove that the inequalities (5.1) hold true, or, since the
ordering of the sets {*7} is quite arbitrary, that

e Fz,9))
i Inf = (s 1)

Let us first present our argument in a more intuitive form. We assume all points,
vectors ete. to be complex. Denote by D the set of those directions in n-space that
can be represented by vectors that are linear combinations of 7,, ..., 1%, _;_;. Call
D-line every line whose direction belongs to D. It can be shown that the set of zeros
of F(z,27) consists of all D-lines which contain some zero of . Combining (5.3) and
(5.5) we see that, if {f} is an arbitrary set sufficiently close to {17}, and if u€J is
large enough, then F(a,,7)= 0. This means that there is a neighbourhood N of D
such that «, does not belong to any N-line which contains a zero of b, provided that
1> pho, o €J. Thus the distance from o, to a D-line through a zero & of pisneverless
than some fixed fraction of the distance from o to £, provided that u > yy,u€d.
Hence the result.

Now we proceed to the formal proof of (5.6). Since F(x,'T) € p and since p= (1),
it follows that F(z,1%) is not a non-zero constant and that, hence, it has complex
zeros. Let £ be a complex zero of F(z, 7). Then {{,'7} is a specialization of {{,7}
over K. Extend this specialization to a specialization {£,1,(,7}—{£ 1,C, 1T} with
{E,).}C {K,c0} (see [5], the proof of Theorem 6 of Chap. II, pp. 30, 31). By (5.4),
{17} is not a common zero of ¢,(t) (v =1, 2, ..., N). On account of Lemma 4, {£,1}
must therefore be finite, and by (3.1) we ha,ve the vector equation

E =§ +Z11i'1 +oee +zn—d—llfn—d—-1‘

>0. (5.6)

Denote by & the linear subspace of K™ spanned by the vectors 17y, ..., 1¥,_,_,. From
the above expression for { it follows that

552



ARKIV FOR MATEMATIK. Bd 3 nr 52
d (05;4; F(QS, LE))= i_l'lf H“M—E-—ﬁ” ’
3%

where E€ K" iz a specialization of £ over K, and 7€ L. It is then obvious that the frac-
tion in the left hand side of (5.6) is not less than

inf “a/‘_ Etﬁ“’
i, low—E&]
or, since § is linear,
l
7l , (56.7)
it | =g sll K

where, as before, £ K" is a specialization of £ over K, and e
It now suffices to prove that the expression (5.7) is larger than some positive con-

stant if u€J is large enough. To do this we shall show that there are an integer y,
and a closed set §§ of K* such that

o
ot~ ]| 5 H
& N L is empty, (5.9)

€EF if u>py n€d, (5.8)

where, in (5.8), £ ranges over all specializations of £ over K which lie in K*. Then,
for y > ug, p €J, the expression (5.7) will not be less than the distance between the
closed and disjoint sets § and Q.

Denote by {7} a variable system of values in K indexed in the same way as {t}.
By (5.3) and (5.5) we can find é >0 and an integer u, such that,

if 1> pho, PEJ,
|# =1 <6 (=1,2,...n—d—1;i=1,2 ... n), (5.10)
then F(ou,7)*0. (6.11)

We define {§ as the set of all vectors of unit norm in K" which cannot be written as
linear combinations of any system of n —d — 1 vectors 7,, ..., 7,_4., satisfying (5.10).
& is closed. For let y be a vector of K™ not in {§. Then either |[y||+ 1 or

14 :z1f1 +e- +zn—d—1fn—d—1

with {T} satisfying (5.10) and 1,= 0 for at least one value of j. Suppose that 1, + 0.
Then by varying 7, within the limits determined by (5.10) we obtain a nelghbourhood
of y which does not belong to §. This shows that the complement of § in K™ is open.

If (5.8) were false, then for some > o, €, and some £, we could write o, —&
as a linear combination of vectors 7,, ..., T,_4_, satisfying (5.10):

Oy =£ +Zl7?1 T "f'zn—d—ffn—d—r

Then, evidently, {£,1,«,,%} would be a specialization of {£,1,{,7} over K so that
in particular F(o,,7) =0. But this contradicts (5.11), and so (5.8) must be true.
The validity of (5.9) is an immediate consequence of the definition of .
The proof that M satisfies the condition of Lemma 2 with respect to p is thus
complete, hence also the proof of the theorem.
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